# Certain Subclasses Of Meromorphic Functions With Fixed Second Coefficients Associated With Generalized Polylogarithm Functions 

S. R. Swamy ${ }^{1, *}$ and J. Nirmala ${ }^{2}$<br>${ }^{1}$ Department of Computer Science and Engineering R. V. College of Engineering Bangalore-560 059 Karnataka, India. e-mail : sondekola.swamy@gmail.com. ORCID Address: http://orcid.org/0000-0002-8088-4103.<br>${ }^{2}$ Department of Mathematics, Maharani's Science College for Women Bangalore-560 0001, Karnataka, India. e-mail : nirmalajodalli@gmail:com:<br>ORCID Address : http://orcid.org/0000-0002-1048-5609.


#### Abstract

In this paper we introduce and study a subclass $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ of meromorphic univalent functions which is associated with generalized polylogarithm functions. We obtain coefficient estimates, extreme points, growth and distortion bounds, radii of meromorphically starlikeness and meromorphically convexity for the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ by fixing the second coefficient. Further, it is shown that the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ is closed under convex linear combination.


2010 Mathematics Subject Classification: 30C80, 30C45.
Keywords and Phrases: Meromorphic functions, meromorphically starlike functions, meromorphically convex functions.

## 1. Introduction

Let $\Sigma$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured open unit disk

$$
\mathbb{U}^{*}:=\{z: z \in \mathbb{C}, 0<|z|<1\}=: \mathbb{U} \backslash\{0\} .
$$

Let $\Sigma_{\mathcal{S}}, \Sigma^{*}(\alpha)$ and $\Sigma_{K}(\alpha),(0 \leq \alpha<1)$ denote the subclasses of $\Sigma$ that are meromorphically univalent functions, meromorphically starlike functions of order $\alpha$ and meromophically convex functions of order $\alpha$ respectively. Analytically, $f \in \Sigma^{*}(\alpha)$ if and only if, $f$ is of the form (1.1) and satisfies

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in \mathbb{U}
$$

similarly, $f \in \Sigma_{K}(\alpha)$, if and only if, $f$ is of the form (1.1) and satisfies

$$
-\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad z \in \mathbb{U},
$$

and similar other classes of meromorphically univalent functions have been extensively studied by Altintas et al. [2], Aouf [3, 4], Ganigi and Uralegaddi [10], Kulkarni and Joshi [14], Mogra et al. [20], Uralegadi [28], Uralegaddi and Ganigi [29] and Uralegaddi and Somanatha [30] and others $[1,7,8,11,13,17,18,19,21,22,24,25,26,27,32]$.

Let $\Sigma_{P}$ be the class of functions of the form

$$
\begin{equation*}
f(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0 \tag{1.2}
\end{equation*}
$$

that are analytic and univalent in $\mathbb{U}^{*}$. For functions $f \in \Sigma$ given by (1.1) and $g \in \Sigma$ given by

$$
\begin{equation*}
g(z)=z^{-1}+\sum_{n=1}^{\infty} b_{n} z^{n}, \tag{1.3}
\end{equation*}
$$

we define the Hadamard product (or convolution) of $f(z)$ and $g(z)$ by

$$
\begin{equation*}
(f * g)(z):=z^{-1}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n}=:(g * f)(z) \tag{1.4}
\end{equation*}
$$

For $\varkappa \in \mathbb{N}$, the set of natural numbers with $\varkappa \geq 2$, an absolutely convergent series defined as

$$
L i_{\varkappa}(z)=\sum_{n=1} \frac{z^{n}}{n^{\varkappa}}
$$

is known as the polylogarithm. This class of functions was invented by Leibnitz [15]. For more works on polylogarithm and meromorphic function (see [1, 27, 32]).

We consider a linear operator

$$
\Omega_{\varkappa} f(z): \Sigma \rightarrow \Sigma
$$

which is defined by the following Hadamard product (or convolution) :

$$
\Omega_{\varkappa} f(z)=\phi_{\varkappa}(z) * f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} \frac{1}{(n+2)^{\varkappa}} a_{n} z^{n},
$$

where

$$
\phi_{\varkappa}(z)=z^{-2} L i_{\varkappa}(z) .
$$

Next, we define the linear operator

$$
\sigma_{\varkappa}: \Sigma \rightarrow \Sigma
$$

as follows:

$$
\sigma_{\varkappa} f(z)=\left(\Omega_{\varkappa} f(z)-\frac{1}{2^{\varkappa}} a_{0}\right)=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{1}{(n+2)^{\varkappa}} a_{n} z^{n} .
$$

For function $f$ in the class $\Sigma_{P}$, we define a linear operator $\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)$ as follows

$$
\begin{aligned}
\mathscr{D}_{\mu, \varkappa}^{0} f(z) & =\sigma_{\varkappa} f(z) \\
\mathscr{D}_{\mu, \varkappa}^{1} f(z) & =(1-\mu) \sigma_{\varkappa} f(z)+\mu z\left(\sigma_{\varkappa} f(z)\right)^{\prime}=\mathscr{D}_{\mu, \varkappa} f(z) \\
\mathscr{D}_{\mu, \varkappa}^{2} f(z) & =\mathscr{D}_{\mu, \varkappa}\left(\mathscr{D}_{\mu, \varkappa} f(z)\right) \\
\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z) & =\mathscr{D}_{\mu, \varkappa}\left(\mathscr{D}_{\mu, \varkappa}^{\kappa-1} f(z)\right) \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\varkappa}} a_{n} z^{n}, \quad \kappa \in \mathbb{N} .
\end{aligned}
$$

Now, in the following definition, we define a subclass $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$ for functions in the class $\Sigma_{p}$.

Definition 1.1. [27]) For $0 \leq \alpha<1,0 \leq \mu, \lambda \leq 1, \kappa, \varkappa \in \mathbb{N}$ and $\varkappa \geq 2$, let $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$ denote a subclass of $\Sigma$ consisting of functions of the form (1.1) satisfying the condition that

$$
\begin{equation*}
\Re\left(\frac{z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}}{(\lambda-1) \mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)+\lambda z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}}\right)>\alpha, \quad z \in \mathbb{U}^{*} \tag{1.5}
\end{equation*}
$$

The main object of this paper is to obtain coefficient estimates, extreme points, growth and distortion bounds, radii of meromorphically starlikeness and meromorphically convexity for the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ by fixing the second coefficient. Further, it is shown that the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ is closed under convex linear combination. Our first theorem gives a necessary and sufficient condition for a function $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$.

## 2. Coefficient Inequality by Fixing the Second Coefficient

Furthermore, we say that a function $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$, whenever $f(z)$ is of the form (1.2). For the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$, we derive the following characterization property:

Theorem 2.1. Let $f \in \Sigma_{P}$ be given by (1.2). Then $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}} a_{n} \leq(1-\alpha) \tag{2.1}
\end{equation*}
$$

Proof. If $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$, then

$$
\Re\left(\frac{z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}}{(\lambda-1) \mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)+\lambda z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}}\right)=\Re\left(\frac{-1+\sum_{n=0}^{\infty} n \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\varkappa}} a_{n} z^{n+1}}{-1+\sum_{n=0}^{\infty}(\lambda-1+n \lambda) \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\varkappa}} a_{n} z^{n+1}}\right)
$$

By letting $z \rightarrow 1^{-}$, we have

$$
\left(\frac{-1+\sum_{n=1}^{\infty} n \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}} a_{n}}{-1+\sum_{n=1}^{\infty}(\lambda-1+n \lambda) \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\varkappa}} a_{n}}\right)>\alpha
$$

This shows that (2.1) holds.
Conversely assume that (2.1) holds. It is sufficient to show that

$$
\left|\frac{\omega-1}{\omega+1-2 \alpha}\right|<1
$$

where

$$
\omega=\frac{z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}}{(\lambda-1) \mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)+\lambda z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}} .
$$

Using (2.1) that

$$
\begin{aligned}
& \left|\frac{z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}-\left[(\lambda-1) \mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)+\lambda z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}\right]}{z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}+(1-2 \alpha)\left[(\lambda-1) \mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)+\lambda z\left(\mathscr{D}_{\mu, \varkappa}^{\kappa} f(z)\right)^{\prime}\right]}\right| \\
& \quad=\left|\frac{\sum_{n=1}^{\infty}(1-\lambda)(n+1) \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}} a_{n} z^{n+1}}{-2(1-\alpha)+\sum_{n=1}^{\infty}[[(1+(1-2 \alpha) \lambda)] n+(1-2 \alpha)(\lambda-1)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\varkappa}} a_{n} z^{n+1}}\right| \\
& \quad \leq \frac{\sum_{n=1}^{\infty}(1-\lambda)(n+1) \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\varkappa}} a_{n}}{2(1-\alpha)-\sum_{n=1}^{\infty}[[(1+(1-2 \alpha) \lambda)] n+(1-2 \alpha)(\lambda-1)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\varkappa}} a_{n}}
\end{aligned}
$$

$$
\leq 1
$$

Thus we have $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$.
For a function defined by (1.2) and in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$, Theorem 2.1, immediately yields

$$
\begin{equation*}
a_{1} \leq \frac{(1-\alpha)}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} . \tag{2.2}
\end{equation*}
$$

Hence we may take

$$
\begin{equation*}
a_{1}=\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}, \quad c(0<c<1) . \tag{2.3}
\end{equation*}
$$

Motivated by the works of Aouf and Darwish [5], Aouf and Joshi [6], Ghanim and Darus [11], Magesh et al. [17], Sivasubramanian et al. [24] and Uralegaddi [28], we now introduce the following class of functions and use the similar techniques to prove our results.

Let $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ be the subclass of $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa)$ consisting of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} z+\sum_{n=2}^{\infty}[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}} a_{n} z^{n}, \tag{2.4}
\end{equation*}
$$

where $0<c<1$.

In our next theorem, we now find out the coefficient inequality for the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$.
Theorem 2.2. Let the function $f(z)$ defined by (2.4). Then $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ if and only if,

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}} a_{n} \leq(1-\alpha)(1-c) . \tag{2.5}
\end{equation*}
$$

The result is sharp.
Proof. By putting

$$
\begin{equation*}
a_{1}=\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}, \quad 0<c<1, \tag{2.6}
\end{equation*}
$$

in (2.1), the result is easily derived. The result is sharp for the function
$f(z)=\frac{1}{z}+\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} z+\frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}} z^{n}, \quad n \geq 2$.

Corollary 2.3. If the function $f$ defined by (2.4) is in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$, then

$$
\begin{equation*}
a_{n} \leq \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}}, \quad n \geq 2 . \tag{2.8}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by (2.7).
Next we obtain growth and distortion properties for the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$.
Theorem 2.4. If the function $f(z)$ defined by (2.4) is in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ for $0<|z|=r<1$, then we have

$$
\begin{aligned}
& \frac{1}{r}-\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{*}}} r-\frac{(1-\alpha)(1-c)}{(2+\alpha(1-3 \lambda)) \frac{[1+3 \mu]^{\kappa}}{4^{*}}} r^{2} \leq|f(z)| \\
& \quad \leq \frac{1}{r}+\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r+\frac{(1-\alpha)(1-c)}{(2+\alpha(1-3 \lambda)) \frac{[1+3 \mu]^{\kappa}}{4^{*}}} r^{2} .
\end{aligned}
$$

The result is sharp for the function $f(z)$ given by

$$
f(z)=\frac{1}{z}+\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{*}}} z+\frac{(1-\alpha)(1-c)}{(2+\alpha(1-3 \lambda)) \frac{[1+3 \mu]^{\kappa}}{4^{\kappa}}} z^{2} .
$$

Proof. Since $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$, Theorem 2.2 yields,

$$
\begin{equation*}
a_{n} \leq \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}}, \quad n \geq 2 . \tag{2.9}
\end{equation*}
$$

Thus, for $0<|z|=r<1$

$$
\begin{aligned}
|f(z)| & \leq \frac{1}{|z|}+\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}|z|+\sum_{n=2}^{\infty} a_{n}|z|^{n} \\
& \leq \frac{1}{r}+\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r+r^{2} \sum_{n=2}^{\infty} a_{n} \\
& \leq \frac{1}{r}+\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r+\frac{(1-\alpha)(1-c)}{(2+\alpha(1-3 \lambda)) \frac{[1+3 \mu]^{\kappa}}{4^{\kappa}}} r^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
|f(z)| & \geq \frac{1}{|z|}-\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}|z|-\sum_{n=2}^{\infty} a_{n}|z|^{n} \\
& \geq \frac{1}{r}-\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r-r^{2} \sum_{n=2}^{\infty} a_{n} \\
& \geq \frac{1}{r}-\frac{(1-\alpha) c}{(1+\alpha(1-2 \lambda)) \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r-\frac{(1-\alpha)(1-c)}{(2+\alpha(1-3 \lambda)) \frac{[1+3 \mu]^{\kappa}}{4^{\kappa}}} r^{2} .
\end{aligned}
$$

Thus the proof of the theorem is complete.
Theorem 2.5. If the function $f(z)$ defined by (2.4) is in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ for $0<|z|=r<1$, then we have

$$
\begin{aligned}
\frac{1}{r^{2}} & -\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}-\frac{(1-\alpha)(1-c)}{[2+\alpha(1-3 \lambda)] \frac{[1+3 \mu]^{\kappa}}{4^{\kappa}}} r \leq\left|f^{\prime}(z)\right| \\
& \leq \frac{1}{r^{2}}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}+\frac{(1-\alpha)(1-c)}{[2+\alpha(1-3 \lambda)] \frac{[1+3 \mu]^{\kappa}}{4^{*}}} r .
\end{aligned}
$$

The result is sharp for the function $f(z)$ given by

$$
f(z)=\frac{1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} z+\frac{(1-\alpha)(1-c)}{[2+\alpha(1-3 \lambda)] \frac{[1+3 \mu]^{\kappa}}{4^{\kappa}}} z^{2} .
$$

Proof. In view of Theorem 2.2, it follows that

$$
\begin{equation*}
n a_{n} \leq \frac{2 n(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}}, \quad n \geq 2 . \tag{2.10}
\end{equation*}
$$

Thus, for $0<|z|=r<1$ and making use of (2.10), we obtain

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq\left|\frac{-1}{z^{2}}\right|+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}+\sum_{n=2}^{\infty} n a_{n}|z|^{n-1}, \quad|z|=r \\
& \leq \frac{1}{r^{2}}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}+r \sum_{n=2}^{\infty} n a_{n} \\
& \leq \frac{1}{r^{2}}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}}+\frac{(1-\alpha)(1-c)}{[2+\alpha(1-3 \lambda)] \frac{[1+3 \mu]^{\kappa}}{4^{\kappa}}} r
\end{aligned}
$$

and

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \geq\left|\frac{-1}{z^{2}}\right|-\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{*}}}-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1}, \quad|z|=r \\
& \geq \frac{1}{r^{2}}-\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{*}}}-r \sum_{n=2}^{\infty} n a_{n} \\
& \geq \frac{1}{r^{2}}-\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{*}}}-\frac{(1-\alpha)(1-c)}{[2+\alpha(1-3 \lambda)] \frac{[1+3 \mu]^{\kappa}}{4^{\kappa}}} r .
\end{aligned}
$$

Hence the result follows.
Next, we shall show that the class $\mathcal{M}_{p}(\alpha, \lambda, c)$ is closed under convex linear combination.

Theorem 2.6. If

$$
\begin{equation*}
f_{1}(z)=\frac{1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{*}}} z \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}(z)=\frac{1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} z+\sum_{n=2}^{\infty} \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{*}}} z^{n}, \quad n \geq 2 . \tag{2.12}
\end{equation*}
$$

Then $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ if and only if it can expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=2}^{\infty} \mu_{n} f_{n}(z) \tag{2.13}
\end{equation*}
$$

where $\mu_{n} \geq 0$ and $\sum_{n=2}^{\infty} \mu_{n} \leq 1$.

Proof. From (2.11)(2.12)(2.13), we have

$$
\begin{aligned}
f(z) & =\sum_{n=2}^{\infty} \mu_{n} f_{n}(z) \\
& =\frac{1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} z+\sum_{n=2}^{\infty} \frac{(1-\alpha)(1-c) \mu_{n}}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}} z^{n} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{(1-\alpha)(1-c) \mu_{n}}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}} \frac{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\varkappa}}}{(1-\alpha)(1-c)} \\
& =\sum_{n=2}^{\infty} \mu_{n}=1-\mu_{1} \leq 1
\end{aligned}
$$

it follows from Theorem 2.1 that the function $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$. Conversely, suppose that $f \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$. Since

$$
a_{n} \leq \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}}, \quad n \geq 2 .
$$

Setting

$$
\mu_{n}=\frac{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}}{(1-\alpha)(1-c)} a_{n}
$$

and

$$
\mu_{1}=1-\sum_{n=2}^{\infty} \mu_{n} .
$$

It follows that

$$
f(z)=\sum_{n=2}^{\infty} \mu_{n} f_{n}(z) .
$$

Hence the proof complete.
Theorem 2.7. The class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$ is closed under linear combination.
Proof. Suppose that the function $f$ be given by (2.4), and let the function $g$ be given by

$$
g(z)=\frac{1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} z+\sum_{n=2}^{\infty}\left|b_{n}\right| z^{n}, \quad n \geq 2 .
$$

Assuming that $f$ and $g$ are in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$, it is enough to prove that the function $H$ defined by

$$
h(z)=\zeta f(z)+(1-\zeta) g(z), \quad 0 \leq \zeta \leq 1
$$

is also in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$. Since

$$
h(z)=\frac{1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} z+\sum_{n=2}^{\infty}\left|a_{n} \zeta+(1-\zeta) b_{n}\right| z^{n},
$$

we observe that

$$
\sum_{n=2}^{\infty}[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}\left|a_{n} \zeta+(1-\zeta) b_{n}\right| \leq(1-\alpha)(1-c),
$$

with the aid of Theorem 2.2. Thus $h \in \mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$.
Next we determine the radii of meromophically starlikeness of order $\delta$ and meromophically convexity of order $\delta$ for functions in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$.

Theorem 2.8. Let the function $f(z)$ defined by (2.4) be in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$, then we have
(i) $f$ is meromophically starlike of order $\delta(0 \leq \delta<1)$ in the disk $|z|<r_{1}(\alpha, \lambda, c, \delta)$ where $r_{1}(\alpha, \lambda, c, \delta)$ is the largest value for which
$\frac{(3-\delta)(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r^{2}+\frac{(n+2-\delta)(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}} r^{n+1} \leq(1-\delta), n \geq 2$.
(ii) $f$ is meromophically convex of order $\delta(0 \leq \delta<1)$ in the disk $|z|<r_{2}(\alpha, \lambda, c, \delta)$ where $r_{2}(\alpha, \lambda, c, \delta)$ is the largest value for which
$\frac{(3-\delta)(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r^{2}+\frac{n(n+2-\delta)(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}} r^{n+1} \leq(1-\delta), n \geq 2$.
Each of these results is sharp for the function $f_{n}(z)$ given by (2.7).
Proof. It is enough to highlight that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| \leq 1-\delta, \quad|z|<r_{1} .
$$

Thus, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|=\left|\frac{\frac{-1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3 x}} z+\sum_{n=2}^{\infty} n a_{n} z^{n}+\frac{1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{1+2 \mu+\kappa^{\kappa}}{3 x}} z+\sum_{n=2}^{\infty} a_{n} z^{n}}{\frac{1}{z}+\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{\left[1+2 \mu+\kappa^{k}\right.}{3 x}} z+\sum_{n=2}^{\infty} a_{n} z^{n}}\right| . \tag{2.14}
\end{equation*}
$$

Hence (2.14) holds true if

$$
\begin{align*}
& \frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r^{2}+\sum_{n=2}^{\infty}(n+1) a_{n} r^{n+1} \\
& \leq(1-\delta)\left[1-\frac{(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r^{2}-\sum_{n=2}^{\infty} a_{n} r^{n+1}\right], \tag{2.15}
\end{align*}
$$

or,

$$
\begin{equation*}
\frac{(3-\delta)(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r^{2}+\sum_{n=2}^{\infty}(n+2-\delta) a_{n} r^{n+1} \leq(1-\delta) \tag{2.16}
\end{equation*}
$$

and it follows that from (2.5), we may take

$$
\begin{equation*}
a_{n} \leq \frac{(1-\alpha)(1-c)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}} \mu_{n}, \quad n \geq 2, \tag{2.17}
\end{equation*}
$$

where $\mu_{n} \geq 0$ and $\sum_{n=2}^{\infty} \mu_{n} \leq 1$.
For each fixed $r$, we choose the positive integer $n_{0}=n_{0}\left(r_{0}\right)$ for which

$$
\frac{(n+2-\delta)}{[n+\alpha-\alpha \lambda(1+n)] \frac{[1+\mu(n+1)]^{\kappa}}{(n+2)^{\kappa}}} r^{n+1},
$$

is maximal. Then it follows that

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n+2-\delta) a_{n} r^{n+1} \leq \frac{\left(n_{0}+2-\delta\right)(1-\alpha)(1-c)}{\left[n_{0}+\alpha-\alpha \lambda\left(1+n_{0}\right)\right] \frac{\left[1+\mu\left(n_{0}+1\right)\right]^{\kappa}}{\left(n_{0}+2\right)^{\kappa}}} r^{n_{0}+1} \tag{2.18}
\end{equation*}
$$

Then $f$ is starlike of order $\delta$ in $0<|z|<r_{1}(\alpha, \lambda, c, \delta)$ provided that

$$
\begin{equation*}
\frac{(3-\delta)(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r^{2}+\frac{\left(n_{0}+2-\delta\right)(1-\alpha)(1-c)}{\left[n_{0}+\alpha-\alpha \lambda\left(1+n_{0}\right)\right] \frac{\left[1+\mu\left(n_{0}+1\right)\right]^{\kappa}}{\left(n_{0}+2\right)^{\varkappa}}} r^{n_{0}+1} \leq(1-\delta) . \tag{2.19}
\end{equation*}
$$

We find the value $r_{0}=r_{0}(k, c, \delta, n)$ and the corresponding integer $n_{0}\left(r_{0}\right)$ so that

$$
\begin{equation*}
\frac{(3-\delta)(1-\alpha) c}{[1+\alpha(1-2 \lambda)] \frac{[1+2 \mu]^{\kappa}}{3^{\kappa}}} r_{0}^{2}+\frac{\left(n_{0}+2-\delta\right)(1-\alpha)(1-c)}{\left[n_{0}+\alpha-\alpha \lambda\left(1+n_{0}\right)\right] \frac{\left[1+\mu\left(n_{0}+1\right)\right]^{\kappa}}{\left(n_{0}+2\right)^{\varkappa}}} r_{0}^{n_{0}+1}=(1-\delta) . \tag{2.20}
\end{equation*}
$$

It is the value for which the function $f(z)$ is starlike in $0<|z|<r_{0}$.
(ii) In a similar manner, we can prove our result providing the radius of meromorphically convexity of order $\delta(0 \leq \delta<1)$ for functions in the class $\mathscr{G}_{P}(\alpha, \lambda, \mu, \varkappa, c)$, so we skip the proof of (ii).

## References

[1] K. R. Alhindi and M. Darus, A new class of meromorphic functions involving the polylogarithm function, J. Complex Anal., 2014, Art. ID 864805, 5 pp.
[2] O. Altıntaş, H. Irmak and H. M. Srivastava, A family of meromorphically univalent functions with positive coefficients, PanAmer. Math. J., 5 (1995), no. 1, 75-81.
[3] M. K. Aouf, A certain subclass of meromorphically starlike functions with positive coefficients, Rend. Mat. Appl. (7) 9 (1989), no. 2, 225-235.
[4] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl., (7) 11 (1991), no. 2, 209-219.
[5] M. K. Aouf and H. E. Darwish, Certain meromorphically starlike functions with positive and fixed second coefficients, Turkish J. Math., 21 (1997), no. 3, 311-316.
[6] M. K. Aouf and S. B. Joshi, On certain subclasses of meromorphically star like functions with positive coefficients, Soochow J. Math.,24(1998), no. 2, 79-90.
[7] S. S. Bhoosnurmath and S. R. Swamy, Certain integrals for classes of univalent meromorphic functions, Ganita, 44 (1993) no. 1,19-25.
[8] M. Darus, Meromorphic functions with positive coefficients, Int. J. Math. Math. Sci., 2004, no. 5-8, 319-324.
[9] R. M. El-Ashwah, Some subclasses of meromorphically univalent functions, Stud. Univ. Babes-Bolyai Math. 55 (2010), no. 3, 131-147.
[10] M. R. Ganigi and B. A. Uralegaddi, New criteria for meromorphic univalent functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 33(81) (1989), no. 1, 9-13.
[11] F. Ghanim and M. Darus, On class of hypergeometric meromorphic functions with fixed second positive coefficients, Gen. Math. 17 (2009), no. 4, 13-28.
[12] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598-601.
[13] S. Kavitha, S. Sivasubramanian and K. Muthunagai, A new subclass of meromorphic function with positive coefficients, Bull. Math. Anal. Appl., 2 (2010), no. 3, 109-121.
[14] S. R. Kulkarni and Sou. S. S. Joshi, On a subclass of meromorphic univalent functions with positive coefficients, J. Indian Acad. Math., 24 (2002), no. 1, 197-205.
[15] G. W. Leibniz, Mathematische Schriften. Bd. IV, Herausgegeben von C. I. Gerhardt, Georg Olms Verlagsbuchhandlung, Hildesheim, 1962.
[16] J. E. Littlewood, On Inequalities in the Theory of Functions, Proc. London Math. Soc., (2) 23 (1925), no. 7, 481-519.
[17] N. Magesh, N. B. Gatti and S. Mayilvaganan, On certain subclasses of meromorphic functions with positive and fixed second coefficients involving the Liu-Srivastava linear operator, ISRN Math. Anal. 2012, Art. ID 698307, 11 pp.
[18] N. Magesh and V.Prameela, Partial sums for certain subclasses of meromorphically univalent functions, European J Math. Sci., 1 (2012), no. 1, 88-99.
[19] N. Magesh and V.Prameela, Further properties on certain subclass of meromorphically starlike functions defined by Liu-Srivastava operator, Far East J. Math. Sci., 76(2) (2013) 255-271.
[20] M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc., 32 (1985), no. 2, 161-176.
[21] K. I. Noor, Q. Z. Ahmad and J. Sokół, Applications of the differential operator to a class of meromorphic univalent functions, J. Egyptian Math. Soc., 24 (2016), no. 2, 181-186.
[22] S. Porwal, N. Magesh and A. Khan, A new subclass of hypergeometric meromorphic functions with fixed second positive coefficients, An. Univ. Oradea Fasc. Mat., 22 (2015), no. 1, 33-39.
[23] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), no. 4, 521-527.
[24] S. Sivasubramanian, N. Magesh and M. Darus, A new subclass of meromorphic functions with positive and fixed second coefficients, Tamkang J. Math., 44 (2013), no.3, 271 - 278.
[25] V. Srinivas and P. Thirupathi Reddy, Notes on meromorphic functions defined by polylogarithm, Int.J. Math. Trends and Technol., 65 (2019), no. 11, $180-186$.
[26] H. M. Srivastava, K. R. Alhindi and M. Darus, An investigation into the polylogarithm function and its associated class of meromorphic functions, Majeo Int. J. Sci. Technol., 10(2) (2016), 166 - 174.
[27] S. R. Swamy and J. Nirmala, Certain subclasses of meromorphic functions associated with generalized polylogarithm functions, Int. J. Math. Trends and Technol., 66 (2020), no. 6, 205-223.
[28] B. A. Uralegaddi, Meromorphically starlike functions with positive and fixed second coefficients, Kyungpook Math. J., 29 (1989), no. 1, 64-68.
[29] B. A. Uralegaddi and M. D. Ganigi, A certain class of meromorphically starlike functions with positive coefficients, Pure Appl. Math. Sci., 26 (1987), no. 1-2, 75-81.
[30] B. A. Uralegaddi and C. Somanatha, Certain differential operators for meromorphic functions, Houston J. Math., 17 (1991), no. 2, 279-284.
[31] B. A. B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), no. 1, 137-140.
[32] B. Venkateswarlu, P. Thirupathi Reddy and N. Rani, on a certain subclass of meromorphic functions with positive coefficients involving polylogarithm functions, Commun. Optim. Theory 2020 (2020), Article ID 6.

