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Abstract 

A.J. Jago. Understanding habitat effects on pollinator guild composition in New York State and 

the importance of community science involvement in understanding species distributions, 115 

pages, 12 tables, 19 figures, 2019. Journal of Ecology style guide used. 

 

Concerns regarding pollinator declines have grown recently, yet detection of changes in species 

richness, abundance, and guild composition are inhibited by a lack of data over space and time. 

New York State initiated surveys for pollinators in multiple ecoregions and habitat types across 

NYS to assess current distributions as rarity measures. Sampling took place from May–Aug 2018 

with contributions by community scientists. Pollinator richness was influenced by habitat 

(meadow, roadside, wetland, forest), floral presence and abundance, and interactions between 

floral abundance and month, but not ecoregion. Research to date on data collection quality by 

community science volunteers has provided mixed results, thus, data collected by volunteers was 

evaluated relative to paid field biologists. Results suggest volunteers added valuable data to that 

collected by paid biologists. Volunteers (both via field collection and digital submissions) 

increased quantified species richness, of both common and species of conservation interest, and 

informed where species occurred. This research informs development and implementation of 

conservation practices. 

Key Words: pollinators, conservation, habitat selection, pollinator monitoring, community 

science, New York State 
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Understanding Biodiversity  

The concept of biodiversity has fascinated naturalists and ecologists for centuries 

(Darwin 1859, Hutchinson 1959, Huston 1979, May 1988). Many research studies, e.g. 

MacArthur and Wilson (1963), have developed mechanistic explanations to understand patterns 

and maintenance of diversity. However, in the last few decades, due to widespread 

environmental changes and human-induced climate change, ecological research has refocused 

towards how these changes affect worldwide biodiversity (Cardinale et al. 2012). 

Why biodiversity is important  

In natural environments, biodiversity increases resilience to disturbances in ecosystems 

(Gaston 2000) and can aide ecosystem functioning (Carpenter et al. 2006, Bartomeus et al. 

2013b, Winfree et al. 2018). For example, more diverse ecosystems are more resilient to drought, 

by stabilizing ecosystem productivity and productivity-dependent services (Isbell et al. 2015, 

Oliver et al. 2015). From an anthropocentric perspective, biodiversity can positively impact 

humans physiologically (Balvanera et al. 2001), psychologically (Fuller et al. 2007), and via 

ecosystem services provided by multiple organisms, such as pollination (Daily et al. 2003, Potts 

et al. 2016, Sánchez-Bayo and Wyckhuys 2019).  

These services are often essential to our survival; however, they are almost always 

ignored, due to a lack of understanding (Kremen 2005). Nevertheless, based on services 

organisms provide, we can place an economic value on every individual providing such services, 

a language understood by most of society. In crop pollination for example, individual pollinators 

can be given a dollar value for services rendered. This has been successfully shown in Mexico 

with Agave plants (used in production of tequila and mezcal), and the nectivorous bats that 

pollinate them (Trejo-Salazar et al. 2016). Scientists compiled data on the pollination biology of 
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Agave plants to demonstrate how many individual bats could feed on a single plant. From there, 

they put a price on individual bats providing pollination services (Trejo-Salazar et al. 2016). 

In reality, it is extremely difficult to assign a monetary value to services that are 

invaluable (Howarth and Farber 2002, Costanza et al. 2014), and some people often argue that 

this cannot, or should not, be done. In economics, a classic example is the water and diamonds 

paradox (Heal 2000). Water is essential to our existence on earth, yet the price is extremely low 

or free, however, diamonds are frivolous and unnecessary, yet their price far exceeds that of 

water. In economics, prices are set by supply and demand: if the supply is abundant, prices go 

down. Diamonds are naturally scarce; thus, prices are high. Along the same line, in places where 

water is extremely abundant, prices are low.  

When we talk about ecosystem services such as pollination, in nature, this service comes 

free of charge. However, the end products of this service, such as fruits, have a monetary price 

tag, which can be very cheap, just like water. Economics primarily deals with prices, and at 

times, prices for goods does not reflect perceived value of those goods (Heal 2000). However, 

what would the price of those fruits be if pollinating insects suddenly became very scarce, like 

diamonds? Do we need to put a price on an individual pollinator to conserve them? Do we need 

to lose something invaluable to make it valuable?    

Pollinators, tiny animals that control ecosystems 

In the last decade, many studies have indicated pollinators are declining world-wide 

(Gallai et al. 2009a, Lebuhn et al. 2013, Goulson et al. 2015); however, this has been a hidden 

problem for a long time (Allen-wardell et al. 1998). It is understood that pollen transfer is near 

essential for angiosperm reproduction (Ledyard Stebbins 1970, Ollerton et al. 2011), with recent 
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estimates stating ~90% of all flowering plants rely on animals to facilitate reproduction. With 

certainty, the earth would not look the same without insect pollinators (Ollerton et al. 2011).  

Many generalized adaptations make an insect a pollinator, e.g. elongation of mouth parts 

to form a proboscis, a generally hairy body, etc. (Crepet et al. 1991, Grimaldi 1999). These 

adaptations are simple and can make it easy for almost any insect to act as a pollinator. This is 

beneficial for plants as it increases the number of pollination vectors available. But what really 

makes an animal an efficient pollinator is found in the amount and frequency of pollen 

transferred during each floral visit (Herrera 1987). This can depend on the frequency and length 

of time of each flower visitation (Primack and Silander 1975). Based on these characteristics, 

bees are the most important pollinators, due to the nature of their foraging behavior and 

morphological structures specific to flower visitation (Herrera 1987, Michener and Grimaldi 

1988). However, many “poor” pollinators who lack certain morphological structures, such as 

pollen carrying hairs, can make up in efficiency what they lack morphologically by their high 

abundance, as seen with many floral-visiting Diptera (Ssymank et al. 2008, Orford et al. 2015).  

Who are the pollinating insects? 

 Insects in the Order Diptera are arguably the earliest specialized pollinating insects 

(Baker 1963, Pellmyr 1992, Larson et al. 2001). Variation observed in their mouthparts has 

facilitated evolution of a long proboscis. Moreover, their hindwings, modified into halters, have 

enabled them to become excellent fliers and facilitated their ability to hover in place (Baker 

1963, Larson et al. 2001). Hovering is a trait almost all pollinating animals have in common 

(Heinrich and Raven 1972, Faegri and van der Pijl 1979). Anthophilia (the attraction to flowers) 

in Diptera dates to the early Cretaceous (Larson et al. 2001). Fossil flies with pollen on them 

were members of the taxa Nemestrinidae and Stratiomyomorpha. Extant members of both groups 
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are frequent flower visitors. Pollinating flies use several different food resources, not just nectar 

and/or pollen (Kevan and Baker 1983, Larson et al. 2001). Thus, fly-pollinated plants tend to 

have less showy flowers (i.e. less colorful petals) and instead have a more pungent odor (Dobson 

and Bergström 2000, Ssymank et al. 2008). For example, the corpse flower (Amorphophallus 

spp.) relies completely on Brachyceran flies for pollination and emits a smell akin to rotting flesh 

(Kite et al. 1998). The cocoa plant (Theobroma cacao L.) attracts midges from the family 

Ceratopogonidae by emitting an earthy smell that vaguely resembles chocolate (Cope 1962). 

 Beetles are thought to be the original pollinating insects (Gottsberger 1977). It has been 

argued that the carpel floral structure evolved in response to beetles consuming the nutritious 

ovules (Kevan and Baker 1983, Bernhardt 2000, Grimaldi and Engel 2005, Peris et al. 2017b, 

2017a). Moreover, many extant Magnoliids (primitive monocotyledons), and a few families of 

woody Eudicotyledons are pollinated by beetles (Bernhardt 2000). Beetle-pollinated plants have 

flowers that tend to be bowl shaped, making their floral rewards easily accessible to their bulky 

visitors (Gottsberger 1977). Since beetles visit flowers chiefly to eat pollen, plants have evolved 

numerous stamens in response to these gluttonous visitors (Gottsberger 1977). 

 Insects from the order Lepidoptera are thought to be “poor” pollinators, because they do 

not visit flowers often and tend to fly long distances between visitations (Primack and Silander 

1975, Bell 1985, Herrera 1987) However, there are many plants which are obligately pollinated 

by moths, e.g. yucca, which is pollinated by the yucca moth (Bull and Rice 1991, Althoff et al. 

2012). Regardless of how effective a pollinator they may be, Lepidopterans do have important 

pollination mutualisms and played a role in the radiation of plants globally. 

 Bees are likely the most recent pollinators to have evolved, but are now the most 

important pollinators of angiosperms - and are important drivers of plant diversity on earth 
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(Primack and Silander 1975, Kevan and Baker 1983, Bell 1985, Herrera 1987, Pellmyr 1992). As 

a whole, this group visits flowers directly and regularly; thus, they are the most reliable source 

for plant reproduction (Larson et al. 2001). Many pollination adaptations, such as pollen 

gathering structures, e.g. scopae, pollen baskets, arose multiple times in the clade Aculeata 

(Michener and Grimaldi 1988, Crepet and Nixon 1998). The elongated proboscis of long 

tongued bees, one of the most important adaptations for anthophily and pollination, is found only 

in the family Apidae (Kevan and Baker 1983).  

Extant bees are some of the most efficient foragers, making them important pollinators 

(Herrera 1987). A major reason for their efficiency is their social behavior (e.g. provisioning 

nests with food for larvae) (Dukas and Real 1991, Seeley 1997). Evidence from preserved bee 

nests from the early Cretaceous indicates social behavior in bees and wasps started early in their 

evolutionary history (Genise and Verde 2000), supporting the idea that social behavior was most 

likely an enabling mechanism for the family Apidae, the group containing eusocial bees (Genise 

and Verde 2000). The evolution of social behavior led to more fit offspring, which allowed a 

more efficient foraging behavior. Most of the ~20,000 species of extant bees world-wide 

provision their larvae with food collected from flowers, e.g. pollen balls (Gullan and Cranston 

2014).  

Domestic vs. native pollinators 

Benefits we obtain from domesticated pollinators, e.g. honey bees (Apis mellifera L., 

Morse and Calderone 2000) are well known. However, many species of cultivated pollinators in 

North America are not native to this continent. Pollination services provided by native (i.e. wild) 

species are less well known, even though their impacts in the ecosystem are significant (Gardner 

and Ascher 2006, Park et al. 2016). For instance, although domesticated pollinators account for 
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most crop pollination, native pollinators provide these services to 30–40% of crops (Kremen et 

al. 2002, Kremen 2005, Greenleaf and Kremen 2006). Moreover, because most domesticated 

pollinators are non-native, they are more vulnerable to endemic diseases and parasites that native 

species have evolved with (Murray et al. 2013, Vanbergen et al. 2013). Because native 

pollinators can be locally abundant and diverse, they can potentially provide pollination services 

needed to maintain populations of wild plants and crops, even if domesticated pollinator 

populations decline (Garibaldi et al. 2013, Vanbergen et al. 2013).     

Macro-, micro-, and structural-habitat selection 

Macrohabitat vs. microhabitat 

Pleistocene glacial activity initiated shifts in climate and geology, thus creating what we 

call ecoregions or macrohabitats (large areas with similar geology, soils, climate, and vegetation, 

Bailey 1998, Bellows et al. 2006, Corser et al. 2014). Many species have evolved a large range 

of functional traits, including behavioral, phenological, dispersal, and genetic traits to be able to 

occupy such landscapes (Violle et al. 2007). Research has shown there is a relationship between 

traits and macrohabitats, suggesting species are molded by environmental differences (Yates et 

al. 2014). 

 Microhabitat (referred to as habitat type in the research reported herein) is found within 

macrohabitats at a finer scale. A microhabitat can be considered to be nonrandom occurrences of 

characteristics that simultaneously direct species distributions and abundances within 

macrohabitats (Dueser and Shuggart 1978, Bellows et al. 2006). Habitat generalist species thrive 

in a wide variety of landscapes by being, or becoming, flexible with habitat requirements. This 

enables their presence in a wide range of ecoregions. For these generalist species, macrohabitat 

selection may be based on specific habitat components found in many different ecoregions 
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(Morris 1984, Bellows et al. 2006). Specialist species, whose abundances correlate with specific 

or rare habitat characteristics, are limited in distribution on an ecoregional scale (Dueser and 

Shuggart 1978, Bellows et al. 2006). 

Structural Scale 

Animal habitat selection can be influenced by plant species richness and abundance. For 

example, floral size, shape, scent, and color traits are selected based on pollinator preferences 

(Rausher 2008, Schiestl and Johnson 2013, Gómez et al. 2015, Reverté et al. 2016). Many 

studies of habitat selection are at the structural scale, such as tree stands (Wuellner 1999, Buse et 

al. 2007). Research in small protected areas show notable peaks in bee abundance and species 

diversity corresponding with blooming patterns of flowering plants found in late spring and 

summer (Mackenzie and Eickwort 1996, Giles and Ascher 2006). Additionally, bee surveys 

conducted in southern New York State (NYS), found many soil nesting bees associated with 

specific soil types (Giles and Ascher 2006). Though Westphal et al. (2008) evaluated bee 

diversity in different habitats and biogeographical regions in Europe, and found high species 

richness in open, meadow habitats at lower latitudes. I conducted a large-scale habitat 

association survey that included a diverse array of native pollinator species (i.e. bees and flies). 

Work like this would help to understand habitat characteristics associated with pollinator species 

richness and guild composition at the state level. 

Potential causes for pollinator declines 

Land-use change  

Habitat fragmentation and urbanization are considered the most important threats to 

pollinators around the world (Potts et al. 2010, Lebuhn et al. 2013, Vanbergen et al. 2013, 

Vanbergen 2014, Goulson et al. 2015, Gezon et al. 2016). These factors cause pollinators to be 
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separated from, or lose, nesting and foraging habitats (Kremen et al. 2002, Foley et al. 2005, 

Ollerton et al. 2014). When distances between floral resources and nesting habitats become 

larger, foraging insects are at greater risk of mortality. Moreover, lower quality pollination 

services, due to land-use change and loss in bee phylogenetic diversity, causes a cascading effect 

leading to lower plant reproduction overall and lower crop yields (Didham et al. 2007, Tylianakis 

et al. 2008, Grab et al. 2019).  

Herbicides and pesticides 

 Pesticide and herbicide use in agriculture and urban environments is another important 

cause of pollinator decline (Potts et al. 2010, Goulson et al. 2015, Stanley et al. 2015). 

Agricultural pests are capable of evolving resistance to chemicals used against them (Tabashnik 

et al. 2004, Tabashnik and Carrière 2017), thereby leading to the use of more/different 

chemicals. Furthermore, these chemicals can persist in the environment for a very long time with 

lethal and sublethal effects on non-target beneficial insects (Potts et al. 2016, McArt et al. 2017). 

Results from a recent study suggest many risks from pesticides to bees come from residues in 

non-crop pollen, e.g. contaminated wildflowers (McArt et al. 2017). A growing number of 

studies confirm pesticide residues are commonly found in pollen and wax in honey bee colonies 

near agricultural settings (Chauzat et al. 2006, Sanchez-Bayo and Goka 2014, Long and Krupke 

2016). Long-term exposure to pesticides can influence immunity to diseases (Pettis et al. 2012), 

alter foraging behaviors (Stanley et al. 2015), and affect growth and survival of colonies 

(Whitehorn et al. 2012).      

Invasive exotic species 

Invasive exotic (IE) species are organisms that have been accidentally, or intentionally, 

introduced outside of their native range, and their subsequent spread and population growth 
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impacts biota, ecosystems, and societies at large (Vanbergen et al. 2018). In general, IE species 

are better competitors for limited resources, e.g. food and space (Lee 2002, Allendorf and 

Lundquist 2003, Kandori et al. 2009, Davidson et al. 2011). Moreover, they introduce new 

selective pressures into a local community, altering the evolutionary trajectory of community 

members (Brown et al. 2002, Fierke and Kauffman 2006, Vanbergen et al. 2018), including 

disrupting community dynamics, species interactions, and consequently, lowering overall 

diversity (Pyšek et al. 2012, Kumschick et al. 2015, Stout and Tiedeken 2017). Invasive exotic 

plants can become permanent members of a community through generalist pollinators visiting 

them, and then over taking space (mutualism facilitation hypothesis, Richardson et al. 2000, 

Nienhuis and Stout 2009, Nienhuis et al. 2009, Gillespie et al. 2017). This can cause further 

declines in native specialist pollinators in favor of generalist or domesticated pollinators. 

Disease & parasites 

It is widely known that infectious disease spillover events from domesticated livestock 

pose a threat to human health and welfare (Lloyd-Smith et al. 2009, Quamman 2012). The same 

threat is true regarding transfer of parasites and viruses from European honeybees to native, 

North American wild bees (Fürst et al. 2014). Shared floral resources can create hotspots for 

interspecies disease transmission (McArt et al. 2014, Adler et al. 2018). Deformed wing virus, 

Nosema, and Varroa mites are some of the infectious diseases/parasites affecting A. mellifera 

(Neumann and Carreck 2009, Martin et al. 2012) and these also negatively affect native bumble 

bees (Fürst et al. 2014).  

In small populations of native bees, this is problematic. Repeated exposure to source 

hosts results in multiple spillover events, allowing pathogens to mutate, thus causing frequent 

outbreaks (Dobson 2004, Murray et al. 2013). Ultimately, small populations dwindle even 
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further, resulting in local extinction (Dobson 2004). Moreover, phylogenetic relatedness of bee 

species exacerbates interspecies transmission even more, making naïve native species more 

vulnerable (Manley et al. 2015). This is especially problematic for Bombus, a group with many 

species already on endangered or at-risk lists (e.g., NYS DEC 2016).   

Are these issues mutually exclusive? 

 Ecological systems are complicated webs with intricate relationships (Tylianakis et al. 

2008). Multiple drivers of environmental change act simultaneously causing species distributions 

to change, or populations to decline, and it becomes difficult to tease apart possible causes. 

Research focusing on single drivers of change to biodiversity loss has produced mixed results 

(Carpenter and Brock 2006). Understanding interactive effects among multiple drivers has been 

a fruitful research topic (Carpenter et al. 2006). Declines in some groups can result in the decline 

of other groups, leading to cascade effects (Didham et al. 2007, Tylianakis et al. 2008) and no 

definitive answers.  

Pollinators of concern 

 As a result of all above-mentioned environmental changes, many species of pollinators 

are on the decline, most notably bumble bees (Bombus spp.). Recent research on bumble bee 

decline in North America have shown declining populations have significantly higher infection 

levels of Nosema bombi Fanthom and Porter, a microsporidian pathogen, and have lower genetic 

diversity compared to co-occurring populations of non-declining bumble bee species (Cameron 

et al. 2011).  

Other declining, less charismatic pollinator species detected by Bartomeus et al. (2013a) 

include solitary ground-nesting bees (e.g. Andrena, Melissodes, and Colletes), solitary stem- and 

cavity-nesting bees (e.g. Osmia and Megachile), social ground-nesting bees (e.g. Lasioglossum 
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subgenus Dialictus), host-plant specialists (e.g. Peponapis, some Andrena and Colletes), and 

cleptoparasites (e.g. Coelioxys, Epeolus). Bees from the family Melittidae, the “oil bees,” that 

collect floral oils instead of pollen for lining brood cells as well as for larval nutrition (Cane et al. 

1983), are some of the rarest species native to NYS. Almost all are host-plant specialists and 

many genera prefer sandy soils for nesting (Michez 2008, Danforth and van Dyke 2015). 

Epeoloides pilosula (Cresson) is likely the most threatened bee species in NYS. This species is a 

cleptoparasite of Macropis (family Melittidae), a genus from the rarest family of bees in NYS 

(Danforth and van Dyke 2015).  

Flies and moths are lesser known, yet important pollinators to both agriculture and 

natural landscapes. The species Cynorhinella longinasus Shannon is a rare endemic hoverfly in 

northeastern North America (Peterson et al. 1987). Very little is known of the natural history and 

habitat preferences of this species; however, it is likely to inhabit northern hardwood forests, 

flying in early to mid-spring. Similar to C. longinasus, Callicera erratica (Walker) is an 

extremely rare syrphid fly inhabiting late-successional old growth pine stands in southern NYS 

(Peterson et al. 1987). Larvae live in water-filled rot-holes or cavities of old living conifers and 

adults fly from April to mid-June, feeding especially on Rannunculus (buttercups) (Thompson 

1988). Schinia bifascia Hübner is a moth species known in NYS from a single record on the 

privately-owned Robins Island in 1997 (NYNHP 2017, Schlesinger et al. 2017). The golden aster 

flower moth, Schinia tuberculum Hübner, is also only known from a single NYS location, in the 

dwarf pine barrens on Long Island in 1999 (NYS DEC 2015, NYNHP 2017). This moth also has 

historical records in Ithaca, Riverhead, Montauk, and Coram (NYS DEC 2015, NYNHP 2017, 

Schlesinger et al. 2017).  
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What can be done to help pollinators? 

Current protection for pollinators 

In the last decade, efforts have been made to protect pollinators on federal, state, and 

other protected lands. In 2015, President Obama announced the Pollinator Partnership Action 

Plan, which created a federal strategy aimed at promoting health and wellness of all pollinators 

(Vilsack and McCarthy 2016). The USDA and Department of Interior have also worked together 

to create a practical guide for land owners and managers with a set of stewardship 

responsibilities (USDA 2015). These documents outline safe use of pesticides, restoration plans 

for habitats used by pollinators, and identification of certain species.  

In NYS, over 30 native pollinator species have been listed as Species of Greatest 

Conservation Need, ~20 of those were designated as High-Priority (NYS DEC 2015). However, 

information regarding current distributions and abundance of native species in NYS is limited, 

outdated, in need of revision for some species, or is unknown for others (NYS DEC 2016). In 

2017, the New York Natural Heritage Program (NYNHP) designed a multi-year state-wide study 

to document current distributions and conservation status of native pollinators in non-agricultural 

habitats (Schlesinger et al. 2017). This project is proposed as a foundation for development and 

implementation of future conservation practices (NYS DEC 2016, Schlesinger et al. 2017), and 

will inform the State Wildlife Action Plan, the state list of Threatened and Endangered species, 

and federal databases.  

Community scientists and conservation research 

Current costs of conducting scientific research can be challenging, even more so when 

study areas are large, or focal organisms are small/rare (Losey et al. 2012). Furthermore, it is 

difficult to build in the necessary time and effort to cover a large area within the time frame and 
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budgetary constraints of a research project (Deguines et al. 2012). Thus, over the last decade, 

scientists have been engaging local community members in scientific endeavors. These 

community members are called community scientists (formerly termed citizen scientists, Cohn 

2008, Bonney et al. 2009, Conrad and Hilchey 2011). Although there have been concerns 

regarding the quality of data collected by volunteers (Cohn 2008, Kremen et al. 2011, Freitag et 

al. 2016), evidence suggests non-scientists are capable of increasing the flow of data essential to 

scientific research (Bonney et al. 2009, Howard and Davis 2009, Silvertown 2009, Dickinson et 

al. 2010, Kremen et al. 2011, Kullenberg and Kasperowski 2016). Moreover, community 

scientists can be trained to collect samples with rigor comparable to that of professionals (Fore et 

al. 2001, Kremen et al. 2011, Kosmala et al. 2016). For example, they can learn about pollinator 

biology and collection methods from professionals at training workshops (Schlesinger et al. 

2017, White et al. 2018).  

Another efficient way to involve community members in scientific collection is through 

the use of technology (Bonney et al. 2009, Dickinson et al. 2010). One example is iNaturalist, a 

website and app that functions as a portal wherein anyone can sign up and upload photographs to 

document species presence data. In NYS, the NYNHP project the Empire State Native Pollinator 

Survey (ESNPS) has a project on iNaturalist where people can document pollinators 

photographically (Schlesinger et al. 2017). These projects are also useful for obtaining 

geographic coordinates of obscure or private locations.  

With the incorporation of both volunteer surveyors and iNaturalist users, scientists and 

agencies can potentially extend the scale of their studies; however, the efficiency of these two 

components in facilitating the temporal and geographical expansion of data collection with 

appropriate scientific rigor has not been assessed. Quantitative and qualitative analyses of the 
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quality of data collected by volunteers have provided mixed results (Fore et al. 2001, Conrad and 

Hilchey 2011, Kosmala et al. 2016, Ballard et al. 2017). Thus, it is important to document and 

assess how data collected by volunteers (both community scientists and iNaturalist users) 

contributes to surveys conducted by field biologists.  

Outreach & partnership programs 

 Outreach and educational programs are essential for species conservation management 

programs and go hand-in-hand with community science involvement (Brewer 2002). Outreach 

programs are more unidirectional in structure, connecting scientists with audiences by way of 

seminars, discussions, or workshops (Brewer 2002). A partnership program gives participants a 

more equal share in a project with researchers, ensuring everyone can make contributions. 

Contrasting this with an outreach program, a partnership program represents a multidirectional 

model for sharing information (Brewer 2002). 

In a long-term conservation program for green sea turtle nesting habitats in Costa Rica, 

residents have played a major role in keeping sea turtle eggs safe. Starting out as an education 

program to teach young children about sea turtles and developing into a partnership program for 

adults, the project conservationists have been successful in making the local residents feel 

connected to the turtles (Jacobson and Lopez 1994, Troeng and Rankin 2005). Doing this gives 

residents the motivation and tools to keep the turtles safe when they leave the water to lay their 

eggs (Troeng and Rankin 2005). Through research, outreach, and education programs, 

participants learn first-hand what scientists do, how they do it, and why they do it. Furthermore, 

by working with local communities, researchers learn how residents relate to the threatened 

species and habitats they study. In working together, both communities and researchers gain 

valuable knowledge that can help the natural world (Brewer 2006).  
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Sustainable land management practices   

Land management for conservation efforts is an ongoing challenge, especially in areas of 

the world where agriculture is an important part of society. NYS, for example, has a thriving 

agricultural industry (NYS DEC 2016). Because there is no one-size-fits-all for best land 

management practices, every region is unique. Therefore, historical land use, local demands, and 

governing regulations and policies should be considered when developing land management 

practices (Senapathi et al. 2015). The best management practices should be voluntary, cost-

effective, and ensure conservation of native animals, such as pollinators (NYS DEC 2016, 

Schlesinger et al. 2017).  

Some management practices encourage farm owners to use Integrated Pest Management 

(IPM, Kogan 1998), and to add buffer strips of native and naturally occurring vegetation 

(Ricketts et al. 2004, Biddinger and Rajotte 2015). This would greatly reduce residual pesticides 

from encroaching on natural environments (Chauzat et al. 2006, Sanchez-Bayo and Goka 2014, 

McArt et al. 2017), and increase nesting and floral food resource availability for native 

pollinators (Rissman et al. 2007). However, at times landowner goals conflict with these 

practices. Additionally, IPM can be expensive at the beginning and can take a while to see results 

(Tabashnik and Carrière 2017). Moreover, creating habitats for pollinators can reduce the land 

area available for growing crops. 

In large cities, green roofs have become a source of sustenance for pollinators traveling 

long distances (Tonietto et al. 2011, Hall et al. 2016). Additionally, they can potentially act as 

stepping stones between larger natural areas within cities, thereby increasing local pollinator 

diversity (Mayrand and Clergeau 2018, Ksiazek-Mikenas et al. 2019). Changes such as these can 

secondarily help people, by curbing “heat island” effects (Foley et al. 2005). Research has shown 
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roadsides (Hopwood 2008, 2013, Rotholz and Mandelik 2013) and powerline corridors provide 

linear corridors of increased pollinator diversity and abundance (Russell et al. 2005, Wagner et 

al. 2014) as they tend to be open and free of cover from dominant trees. This can allow shrubs 

and other flowering plants to flourish, thus providing nutrient resources for pollinators. Many 

flowering plants, including non-native species, which are visited by many generalist pollinators, 

also thrive in these highly disturbed habitats (Morales and Traveset 2009, Nienhuis et al. 2009, 

Vanbergen et al. 2018). Furthermore, levels of disturbance commonly found in these habitats 

reduce interspecific competition, facilitating higher species coexistence (Southwood et al. 1979, 

Roxburgh et al. 2004).  

Conclusions and project summary 

 Humans can be motivated to action when food is promised as a reward (Epstein et al. 

2008, 2012). The promotion of pollinator conservation is ultimately a food-based incentive. One 

third of food we consume is made possible via pollinating insects (Klein et al. 2007, Gallai et al. 

2009b, Calderone 2012, McArt et al. 2017). Thus, if we make an effort to protect pollinators, we 

are ensuring our survival into the future (Potts et al. 2016).  

With my research, my goal was to provide information on important environmental 

factors predicting pollinator richness and to better inform land managers on best policies and 

practices. This information is crucial to protect native pollinating insect species that are in 

decline. Towards this, I present below two data chapters and a synthesis chapter to elucidate 

effects of local plant assemblages and landscapes on native pollinator guild composition and to 

evaluate involvement of community scientists in documenting native pollinators in NYS.  

Chapter two is largely analytical, as it aims to associate presence and species richness of 

native pollinator on protected lands in NYS based on multiple environmental variables, including 
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local plant assemblages. Many studies on habitat selection are at a local scale, e.g. habitat 

patches (Wuellner 1999, Buse et al. 2007, Hopwood 2008, Wagner et al. 2014); and though there 

is one study which looked at ecoregions and habitat types in Europe (Westphal et al. 2008), this 

has not been done in NYS. By conducting a large-scale habitat association survey that includes a 

diverse array of native pollinator species, I wished to understand habitat characteristics 

associated with pollinator species richness, and guild composition in NYS.  

Chapter three evaluates data collected by volunteer surveyors and iNaturalist users in 

documenting presence of pollinators in NYS. Specifically, my aim was to determine if involving 

community science volunteers in the data collection process contributes positively towards 

pollinator surveys in NYS. Often, quantitative and qualitative analyses of the quality of data 

collected by volunteers provide mixed results. Thus, this chapter compares data collected by 

volunteers (both voucher specimen based and observational based) with surveys conducted by 

paid field biologists. Chapter four synthesizes pollinating insects in NYS and overall 

effectiveness of including members of the community in the project.  
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Chapter 2: Effects of Local Plant and Landscape Composition on Pollinator Assemblages 

in New York State 
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Abstract 

Habitat models for conservation interests are important in landscape planning, development, and 

species management; however, information on how species use their habitats at different scales 

is lacking, especially for pollinators in non-agricultural environments. This study is a state-wide 

habitat association survey to understand variables associated with pollinator richness, and guild 

composition. In total, 45 sites across the seven ecoregions of New York State were sampled from 

May–Aug 2018. At each site, four habitat types (forest, meadow, roadside, and wetland) were 

sampled using bowl traps and timed targeted hand-netting for pollinators. Independent variables 

evaluated were ecoregion, habitat, month, floral richness, floral abundance, and interactions 

between month and floral variables. Pollinator richness (143 Hymenoptera and Diptera target 

species) was influenced by habitat type, floral presence and abundance, and the interaction 

between flora abundance and month, but not ecoregion. Pollinator richness was highest in 

meadow (14.5  2.6 species) and roadside (13.8  2 species) habitats and was strongly positively 

correlated with both floral richness and abundance across ecoregions and habitat types. This 

research provides information on environmental factors associated with pollinator richness to 

inform land managers on development of policies and practices for pollinator conservation. 

Key Words: pollinators, habitat selection, ecoregion, conservation, flowering plants 
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Introduction 

Habitat models for species of conservation interest are important in landscape planning, 

development, and species management (Fleishman et al. 2002, Buse et al. 2007); however, there 

is a lack of information on how species use habitats at different scales, e.g. landscape versus 

local habitat. This is especially true for pollinators, which play vital roles ecologically and 

economically (Potts et al. 2010, Lebuhn et al. 2013).  Pollinating insects are essential members 

of all terrestrial ecosystems and are organisms in need of conservation attention.  

Pollinators facilitate and can even control gene flow in flowering plants (Grant 1949, 

Endress 2011). It is estimated that 70–90% of crop plants are insect-pollinated; thus, they are 

responsible for a large portion of our food (Kluser and Peduzzi 2007, Marshman et al. 2019). 

Bees (Hymenoptera: Apidae) are the most important angiosperm pollinators and provide services 

to both wild plant assemblages and agricultural endeavors (Primack and Silander 1975, Kevan 

and Baker 1983, Pellmyr 1992, Larson et al. 2001). Insects from three other Orders, true flies 

(Diptera, Orford et al. 2015), beetles (Coleoptera, Bernhardt 2000), and moths/butterflies 

(Lepidoptera, Reddi and Bai 1984) are also important pollinators (Rader et al. 2016). Plants 

depend on both domesticated (European honeybees) and native pollinators, all of which are 

affected by a range of current and projected environmental issues, e.g., habitat loss, climate 

change, use of broad-spectrum pesticides, with consequences that lead to overall declines in 

certain species (Kluser and Peduzzi 2007, Potts et al. 2010, Schweiger et al. 2010, Lebuhn et al. 

2013, Vanbergen et al. 2013). 

Many species have evolved behavioral, phenological, dispersal, and genetic traits to adapt 

to and occupy different habitats (Violle et al. 2007). Animal habitat selection can be influenced 

by plant species richness and abundance. For example, floral size, shape, scent, and color traits 
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are selected based on pollinator preferences (Rausher 2008, Schiestl and Johnson 2013, Gómez 

et al. 2015, Reverté et al. 2016). Several studies have documented native bees as more abundant 

in apple orchards than honey bees (Gardner and Ascher 2006, Park et al. 2010) and that Bombus 

and Melandrena bees are equally as efficient pollinators as honey bees (Park et al. 2016). 

Research in protected areas show notable peaks in abundance and species diversity 

corresponding with blooming patterns of flowering plants in late spring and summer (Mackenzie 

and Eickwort 1996, Giles and Ascher 2006). Giles and Ascher (2006) found many soil nesting 

bees associated with specific soil types in southern New York State (NYS).  

Only one study by Westphal et al. (2008) was found evaluating bee sampling methods at 

large geographic scales, comparing among ecoregions (large areas with similar geology, soils, 

climate, and vegetation, Bailey 1998) and habitat types (nonrandom occurrences of 

characteristics that direct species distributions and abundances, Dueser and Shuggart 1978, 

Bellows et al. 2006) in Europe. They found the highest bee species richness in German 

grasslands and the lowest in oilseed rape fields in the United Kingdom.  

Specific Research questions and Predictions 

This research is part of a larger pollinator study (the Empire State Native Pollinator 

Survey, ESNPS, 2018-2020) to determine the conservation status of a wide array of native 

pollinators in non-agricultural habitats over three years. A specific goal was to elucidate if 

ecoregion and habitat type are important predictors of pollinator guild composition. Further, we 

wanted to evaluate specific environmental characteristics (ecoregion, habitat type, and floral 

resource availability) as predictor variables for pollinator species richness and variability in guild 

composition in NYS.   
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Methods 

Study Area 

 NYS is a geologically heterogeneous region of northeastern North America covering ~ 

141,300 km2 where the climate exhibits significant temperature seasonality throughout the year 

(Corser et al. 2014). The state is divided into seven major ecoregions (Bailey 1998): Great Lakes 

(GL), High Allegheny Plateau (HAP), Lower New England (LNE), North Atlantic Coast (NAC), 

Northern Appalachian (NAP), St. Lawrence/Champlain Valley (STL), and Western Allegheny 

Plateau (WAP) (Table 2.1, Fig. 2.1). NYS has 63% forested cover with considerable regrowth 

following extensive agricultural clearing during the early 1900s (NYS DEC 2014). Annual 

precipitation is 75–125 cm, and is uniformly distributed throughout the year (NYS DEC 2014). 

Table 2.1. Area (km2) and percent of each terrestrial ecoregion in NYS as well as number 

(percentage) of sites selected for the ESNPS for sampling in 2018 and the total for the 3-yr study 

period. Adapted from (Schlesinger et al. 2017). 

Ecoregion 

Area 

(km2) 

Percent 

of state 

No. Sites 

in 2018 

Total Sites to 

be Sampled 

Great Lakes (GL) 29,922 24% 10  30 (20%) 

High Allegheny Plateau  

(Southern Tier, HAP) 
35,248 28% 6  18 (12%) 

Lower New England  

(Southern NY, LNE) 
15,362 12% 5  15 (10%) 

North Atlantic Coast  

(NYC/Long Island, NAC) 
3,827 3% 4  12 (8%) 

Northern Appalachian (Adirondack 

Park, NAP) 
27,053 21% 11  33 (22%) 

St. Lawrence/Champlain Valley 

(STL) 
11,514 9% 10  30 (20%) 

Western Allegheny Plateau (WAP) 3,010 2% 4  12 (8%) 

Total 125,936 100% 50 150 
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Figure 2.1. The seven terrestrial ecoregions of NYS are areas with similar geology, soils, 

climate, and vegetation. Sites (n = 45) visited from 13-May to 20-Aug 2018 are indicated as well 

as all proposed/potential with the ~150 targeted sampling sites to be visited throughout the 3-yr 

span of this project. 

 

Field Sites 

 Sites in the seven ecoregions of NYS were sampled on protected lands, including those 

owned by universities, land trusts, and federal, state, and local governments. Number of sites 

chosen per ecoregion was approximately relative to the size of each ecoregion with larger 

ecoregions represented by more sites than smaller ecoregions (Table 2.1). As part of the overall 

ESNPS, a minimum of 150 extensive sites will be surveyed over three years, ~50 sites every year 

(Fig. 2.1). A Generalized Random Tessellation Stratified (GRTS) spatially explicit sampling 

methodology (Stevens and Olsen 2003, 2004) was used to maximize geographic spread of 
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sample locations throughout each ecoregion. This methodology resulted in a set of spatially 

balanced random points (sites) within protected lands (Fig. 2.2A). Sites were screened using GIS 

to assess habitat diversity, with a requirement that selected sites have at least two of the three 

habitat types—forest, wetland, meadow—within 250 m of the random point (Fig. 2.2B), and 

access was allowed. Points could be moved up to 1,000 m from the random placement to 

accommodate efficient and economical sampling (Fig. 2.2C). If the proposed site was 

inaccessible, or landowner information was unavailable, the site was rejected and a site from the 

“overdraw” from that ecoregion (see below) were screened. For the 2018 season many of the 

proposed sites in the LNE ecoregion randomly fell in the southern region, with one in the 

northern region. Unsuccessful attempts to contact the landowner for the point in the northern 

area were made and finally that site was rejected, resulting in a cluster of sites in the south (Fig. 

2.1). However, over the 2019 and 2020 survey seasons, this “gap” will be filled in. 

After an initial screening, an additional sampling “overdraw” sites provided backup site 

options when auto-selected sites were found to be unsuitable in the field, and moving them a 

reasonable distance nearby did not help. If all four habitat types—forest, wetland, meadow, and 

roadside—were not present or inaccessible at a site, then additional “bonus” transects were set 

out in habitat types that were available. This resulted in there always being four transects at 

every site. No site was visited more than once, i.e. seasonal changes in pollinator guilds over 

time were beyond the scope of this project.  

Due to variability in climate across the state, timing of first sampling was determined by 

the number of growing degree days (GDD), or thermal heat unit accumulation, in an effort to 

standardize sampling. For example, since it is warmer earlier in the North Atlantic Coast 

ecoregion, which includes Long Island and New York City, and warmer later in the Northern 
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Appalachian, which includes Adirondack State Park, sampling started in North Atlantic Coast 

sites in May and rotated through ecoregions based on GDD accumulation with sampling 

occurring last in the Northern Appalachian.  

 

Figure 2.2. Examples of sample site location and selection. A) The yellow dot is a random 

location within Grafton State Park in eastern NY. B) Landcover and habitat types: green = 

forests, blue = wetlands, pink = developed, brown = meadow. C) Closer aerial photo of the same 

location, red dots represent potential sampling locations within a 250 m circle of the initial 

randomly selected location. From right to left, forest, meadow, wetlands, and roadside. D) Closer 

aerial photo of the meadow habitat type, illustrating bowl trap layout with each colored dot 
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representing a trap - the red dot is the original dot from photo C. Adapted from Schlesinger et al. 

(2017). 

Pollinator Sampling 

 Data were collected from 13-May to 20-Aug 2018, when pollinators were most abundant. 

To maximize biodiversity captured at each site, two sampling procedures were employed in each 

habitat type: bowl trapping and timed targeted sweep netting of flowers with pollinating insects 

from out taxa list with nets (methods modified from Droege 2015, Table 2.2). Sites were 

sampled when temperatures were ≥ 20° C, wind was ≤ 2.5 m/s, and it was sunny, partly cloudy, 

or thinly overcast.   

Table 2.2. Taxa (family and genus) collected and analyzed as part of this project. * represents at 

risk species according to the New York Natural Heritage Program.  

 

 

Hymenoptera 

Andrenidae: Andrena*, Calliopsis* 

Apidae: Anthophora, Apis, Bombus*, Ceritina, 

Melissodes*, Nomada  

Colletidae: Colletes, Hylaeus 

Halictidae: Agapostemon, Augochlora, Augoclorella, 

Augochloropsis, Halictus, Lasioglossum, Sphecodes 

Megachilidae: Heriades, Hoplitis, Megachile*, Osmia* 

Melittidae: Macropis*, Melitta* 

Diptera 
Bombyliidae: Bombylius* 

Syrphidae: 32 genera 

 

Bowl trapping 

 Within each of the four habitat types, 15 bowls were deployed ~3 m apart for 5 hours 

during peak flight, typically from ~10:00 am – 3:00 pm along a transect (n = 60 bowls/site) 

based on methods used by Carboni and Lebuhn (2003) and Droege (2015). Coordinates, dates, 
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and timing of sampling were noted using the Geopaparazzi application (version 5.5.5, Antonello 

and Franceschi 2017) on a Samsung Galaxy Tab Active2© (Model number SM-T390, Android 

version 7.1.1).  

We used 96.1 mL painted plastic bowls (Fig. 2.3): UV fluorescent yellow, UV 

fluorescent blue, and white (Droege 2006). Each bowl was filled half-way with water mixed with 

several drops of unscented dish soap to break the surface tension. Bowls were placed directly on 

the ground, alternating colors along the transect (Fig. 2.2D). If the habitat was a wetland, bowls 

were placed along water edges. All specimens captured in bowl traps were transferred to Whirl-

Pak® bags (Nasco) containing 70% ethanol for later sorting and pinning. 

 

Figure 2.3. Bowls used for pollinator sampling. A) UV fluorescent yellow, B) UV fluorescent 

blue, and C) white bowl traps were placed directly on the ground, alternating colors along 

transects. 

 



 

29 

 

Targeted hand-netting 

 In each habitat type, two observers spent 30 minutes walking through each of the four 

habitat types, looking for pollinators and specifically targeting plants in flower. The habitat type 

to start hand-netting was arbitrarily chosen at every sampling site. An attempt to only catch one 

representative per species was made, though this was conservatively carried out knowing many 

species look similar and are difficult to differentiate in the field. All pollinators caught during 

hand-netting were exposed to cyanide, transferred to plastic pill bottles, and placed in a freezer 

as soon as possible to preserve for pinning. 

Vegetation Sampling 

 Four fixed area 1 X 1 m plots, two on either side of the bowl transects, were sampled to 

quantify floral richness and abundance (Fig. 2.4). If flowers were present, a stem count was 

made, to assess floral abundance. Plants were identified to genus or species to assess floral 

richness. 

 

Figure 2.4. Four 1 X 1 m plots placed adjacent to bowl sampling transect lines in four habitat 

types were used to quantify presence of plants (including trees) in flower. 
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Pollinator Processing 

Specimens caught in bowl traps were rinsed with water through a brine shrimp net, blow-

dried in a mason jar with a screen for 1–2 min, turned onto a paper towel, and pinned 

immediately (following methods from Droege 2015). Specimens caught in sweep-nets were kept 

frozen until being pinned. After pinning, all specimens were placed in boxes based on Order and 

grouped by site, habitat type, and sampling method. Each site had eight groups of specimens: 

four habitat types, and two sampling methods. Specimens were individually labeled and sent to 

experts for identification to the species level for all target pollinators (Hymenoptera at the 

Danforth lab at Cornell University and Diptera at the Greenwood lab at SUNY Cobleskill). 

Voucher specimens were housed in the Cornell University Insect Collection in Ithaca, NY and 

the NYS Museum in Albany, NY.  

 

Statistical Analysis 

 All statistical analyses were performed in R Studio version 1.1.456 (RStudio 2016). All 

outliers were kept for data analysis. A t-test was used to compare species richness caught in bowl 

traps to sweep nets in the MASS package.  

A non-metric multidimensional scale analysis (NMDS) was performed on pollinator 

species, and floral species to visualize how guild composition varied among ecoregions and 

habitat types. For the overall pollinator matrix of species richness, pollinator species included all 

species captured in bowls and by sweep netting in all ecoregions and habitat types. A matrix of 

the top 11 floral taxa was ordinated as vectors in an attempt to find patterns in the distribution of 

pollinator species. A matrix for floral taxa based on taxon richness by habitat type and ecoregion 

were made. Because species richness data did not follow a normal distribution, a square root 
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transformation was used to find the best cluster method. The rank index function in the Vegan R 

package (Oksanen et al. 2018) was used to compare and rank multiple models. The Manhattan 

distance was ranked highest and used for all NMDS analyses. The distance matrix and metaMDS 

functions were performed in the Mass and Vegan packages respectively (Venables and Ripley 

2002, Oksanen et al. 2018). All plots were made in the ggplot2 (version 2.5-3) or MASS 

packages (Wickham 2016). 

 To further investigate effects habitat and environmental variables had on pollinator 

species richness, a variance partitioning analysis was performed using the VarPar function in the 

Vegan R package (Legendre and Legendre 2012, Oksanen et al. 2018). Pollinator species 

richness was treated as a dependent variable with ecoregion and habitat as independent 

explanatory variables. This test characterized 1) unique variation explained by each of the 

components (ecoregion and habitat), 2) correlated variation explained by each two-way 

interaction, and 3) correlated variation explained by all explanatory variables. To determine 

significance for each component, partial regressions were carried out based on redundancy 

analyses (RDA function, Vegan R package).  

To further investigate specific variables contributing to variation, a negative binomial 

regression model was used with pollinator species richness (determined by combining number of 

species captured in bowls and by hand-netting per site) as a function of ecoregion, habitat type, 

month, plant richness, plant abundance, and the interactions between month and plant abundance 

and month and plant richness (global model). Interactions between month and plant abundance 

and plant richness were evaluated as they represent seasonal vegetation changes. A negative 

binomial model was selected after testing for goodness of fit on the residual deviance and 

degrees of freedom. To select the most important variables in the model, a forward selection was 



 

32 

 

used with 1,000 permutations, using the function Step (Mass package). All variables selected for 

the final model were plotted using ggplot2 package (version 2.5-3) (Wickham 2016).  

Results 

 Forty-five sites across NYS were visited from 13-May to 20-Aug 2018 (Fig. 2.1, 

Appendix 1) and included sampling in 33 meadows, 37 wetlands, 44 roadsides, and 45 forests. 

Note, these numbers vary from expected as extra transects, “bonus” transects, were set out when 

all four habitat types were not present. There were 1,431 specimens collected, representing 143 

unique pollinator species (Appendix 2). Across all sites, there were 1,271 Hymenoptera and 160 

Diptera within the focal orders/families and 76 flowering plant taxa (Appendix 3). A total of 89 

Hymenoptera species and 54 Diptera species were identified with the top five pollinator species 

being Augochlorella aurata Smith, Lasioglossum leucozonium (Schrank), Ceratina calcarata 

Robertson, Augochlora pura (Say), and Toxomerus geminatus (Say) (Table 2.3 and 2.4).  

There was a marginally significant difference in pollinator species richness caught in 

bowls compared to hand-netting (t = 1.97, df = 63, p = 0.053, Fig. 2.5) with mean number of 

pollinator species captured in bowls being 19.4  3.2 and 12.4  1.6 via hand-netting. Out of the 

143 different species of pollinators, 66 species (46%) were only caught via hand-netting and 15 

of those species are of conservation concern. Out of the 143 different species of pollinators, 30 

(21%) were only caught in bowls and 10 of those species are of conservation concern. The two 

bowl traps with the highest species richness were both from meadows in July at two sites that 

were relatively close together. The hand-net session with highest species richness was from a 

meadow in a Great Lakes site during May. Bumble bees, in general, were more often found in 

open habitats, e.g. meadows, roadsides (Table 2.5). Honey bees were also found in mostly open 

habitats but favored wetlands rather than meadows (Table 2.5). 
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Table 2.3. Proportion of sites that the five most common pollinators were collected in, by habitat 

type, in 45 sites across New York State. 

Pollinator Taxa Meadow Roadside Wetland Forest 

Augochlorella aurata 40% 25% 11% 7% 

Lasioglossum leucozonium 33% 16% 11% 4% 

Ceratina calcarata 36% 20% 8% 7% 

Augochlora pura 25% 14% 16% 4% 

Toxomerus geminatus* 18% 16% 22% 13% 

*Order Diptera - all others are Order Hymenoptera. 

 

Table 2.4. Proportion of sites that the top five most commonly collected pollinator species were 

collected in, by ecoregion, in 45 sites across New York State. 

Pollinator Taxa GL HAP LNE NAC NAP STL WAP 

Augochlorella aurata 50% 50% 80% 100% 74% 38% 50% 

Lasioglossum leucozonium 100% 100% 80% 50% 82% 50% 75% 

Ceratina calcarata 80% 67% 80% 50% 73% 25% 75% 

Augochlora pura 90% 100% 60% 50% 91% 38% 50% 

Toxomerus geminatus* 60% 100% 80% 75% 82% 25% 100% 

*Order Diptera - all others are Order Hymenoptera. 

 

 

Figure 2.5. There was a marginally significant difference (p = 0.053) in pollinator richness 

between bowl trapping and sweep netting in the 45 field sites across NYS. Dark horizontal bars 

indicate the sample median. 
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Table 2.5. Number of honey bees and bumble bees (Bombus spp.) and percent of the total 

number of individuals documented in all habitat types in 45 sites sampled across New York state. 

 

Pollinator 

Taxa 

Meadow Roadside Wetland Forest 

Number of 

individuals 

Percent 

of total 

Number of 

individuals 

Percent 

of total 

Number of 

individuals 

Percent 

of total 

Number of 

individuals 

Percent 

of total 

Apis mellifera 4 20% 10 50% 6 30% 0 -- 

B. bimaculatus 4 75% 2 25% 1 12.5% 1 12.5% 

B. borealis*• 2 66% 1 33% 0 -- 0 -- 

B. fervidus*° 0 -- 1 100% 0 -- 0 -- 

B. griseocollis 4 50% 3 37.5% 1 12.5% 0 -- 

B. impatiens 8 21% 18 47.4% 11 29% 1 3% 

B. perplexus• 0 -- 3 75% 1 25% 0 -- 

B. rufocinctus° 0 -- 0 -- 1 100% 0 -- 

B. sandersoni• 3 50% 0 -- 3 50% 0 -- 

B. sp.• 1 50% 0 -- 1 50% 0 -- 

B. ternarius• 0 -- 0 -- 2 100% 0 -- 

B. terricola* 0 -- 1 50% 1 50% 0 -- 

B. vagans 8 31% 11 42% 7 27% 0 -- 

* Indicates species of conservation interest according to NYNHP 

• Indicates species was found only via sweep netting  

° Indicates species was found only via bowl traps 

 

Across the 45 sites sampled for pollinators, there were 76 flowering plant taxa 

documented. Ecoregions were significantly different from each other based on floral richness 

(F6,166 = 3.26, p = 0.005, Table 2.6, Fig. 2.6A) and abundance (F6,166 = 2.97, p = 0.009, Table 2.6, 

Fig. 2.6B). Northern Appalachian sites had significantly lower floral richness (1.66  0.18) than 

the Great Lakes (2.99  0.31, p = 0.05), the High Allegheny Plateau (3.44  0.85, p = 0.05), and 

the St. Lawrence sites (3.22  0.44, p = 0.02). Additionally, Northern Appalachian sites had 

lower floral abundance than the Great Lakes (p = 0.05) and the High Allegheny Plateau (p = 

0.01) sites. Many of the outliers associated with floral richness and abundance were during the 

month of June in the Great Lakes and High Allegheny Plateau ecoregions (Fig. 2.6); however, 

floral richness and abundance by month blocked by ecoregion was not significant. 

Habitat types were significantly different from each other based on floral richness (F3,169 

= 14.17, p > 0.000, Table 2.6, Fig. 2.7A) and abundance (F3,169 = 24.16, p > 0.000, Table 2.6, 

Fig. 2.7B). Forest habitats (1.02  1) had significantly fewer species than meadow (4.1  0.6, p > 
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0.000) and roadside (3.22  0.25 p > 0.000) habitats. Wetlands (2.4  0.27) also had significantly 

fewer species than meadows (p = 0.0001). Forest habitats had significantly lower abundance than 

meadows (p > 0.000), roadsides (p > 0.000), and wetlands (p = 0.008), and wetlands had 

significantly lower abundance than meadows (p = 0.02). The meadow habitat had two major 

outliers, one in June and the other in August for floral richness (Fig 2.7A). For floral abundance, 

the meadow habitat also had two major outliers, both in the month of June (Fig. 2.7B). 

Based on floral richness by habitat types, months differed significantly from each other 

(F3,169 = 3.84, p = 0.011, Table 2.6, Fig. 2.7A). There were fewer flowering plant species in May 

(2.18 ± 0.23) relative to June (3.24 ± 0.36, p = 0.03), and June was marginally significantly 

higher than July (2.28 ± 0.28, p = 0.06), August did not significantly differ from other months. 

Based on floral abundance by habitat types, months were also significantly different from each 

other (F3,169 = 5.77, p = 0.0009, Table 2.6, Fig. 2.7B). There were significantly more flowers 

present in June (85.5 ± 15.1) relative to both May (47.1 ± 7.6, p = 0.05) and July (37 ± 6.4, p = 

0.005), while August (80.2 ± 13) was significantly higher than July (p = 0.01). August was 

marginally significantly different from May (p = 0.08). Many of the major outliers occurred in 

June, however, the month of August also had at least a few as well (Fig. 2.6, Fig. 2.7). The most 

common plant species were buttercups, clover, garlic mustard, chickweed, and mullein (Tables 

2.7 and 2.8).   
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Table 2.6. Mean flowering plant richness and abundance (based on number of stems) by 

ecoregion and habitat type by month in 45 sites across NYS. Dashes indicate sampling did not 

occur in an ecoregion in a particular month.  

  May June July August 

 

Floral 

abundance 

Floral 

richness 

Floral 

abundance 

Floral 

richness 

Floral 

abundance 

Floral 

richness 

Floral 

abundance 

Floral 

richness 

GL 23.1 ± 6.3 1.7 ± 0.4 112.4 ± 24.0 3.1 ± 0.5 68.9 ± 24.2 4.2 ± 0.6 132.5 ± 28.7 3.8 ± 0.7 

HAP -- -- 80.7 ± 38.8 4 ± 1.6 60.3 ± 54.1 1.3 ± 0.8 -- -- 

LNE 52.4 ± 22.3 3.0 ± 0.7 -- -- 57.8 ± 30.0 2.0 ± 1.0 -- -- 

NAC 111.5 ± 50.3 1.8 ± 0.5 -- -- -- -- -- -- 

NAP -- -- 21.5 ±7.4 1.5 ± 0.4 23.8 ± 9.9 1.5 ± 0.3 39.2 ± 11.5 1.9 ± 0.3 

STL -- -- -- -- 57.1 ± 25.8 3.0 ± 0.8 81.4 ± 29.6 3.3 ± 1.0 

WAP -- -- 61.4 ± 26.0 3.0 ± 1.2 -- -- 108.0 ± 49.0 3.0 ± 0.8 

Meadow 
 

89.1 ± 89.0 2.4 ± 1.0 96.5 ± 68.1 4.9 ± 2.3 92.1 ± 71.5 3.4 ± 1.5 135.5 ± 89.2 5.3 ± 2.5 

Roadside 70.5 ± 46.1 2.7 ± 1.6 64.4 ± 59.9 3.0 ± 1.6 75.3 ± 83.8 3.3 ± 1.9 119.3 ± 76.7 3.8 ± 1.9 

Wetland 73.4 ± 75.1 2.1 ± 1.5 82.2 ± 81.1 3.1 ± 1.9 25.6 ± 83.8 1.8 ± 2.0 61.1 ± 76.7 2.3 ± 1.1 

Forest 12.6 ± 16.6 1.6 ± 1.3 8.2 ± 14.8 0.7 ± 0.9 7.3 ± 9.0 0.9 ± 1.0 19.0 ± 49.7 1.0 ± 0.9 

 

 

Figure 2.6. A) floral richness and B) abundance (based on counts of stems) by ecoregion and 

month in 45 sites across NYS. Dark horizontal bars indicate the sample median. 
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Figure 2.7. A) floral richness and B) abundance (based on counts of stems) by habitat type and 

month in 45 sites across NYS. Dark horizontal bars indicate the sample median. 
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Table 2.7. Proportion of the top ten most commonly found plant taxa by habitat type across 45 

sites throughout NYS. Dashes indicate a species was not present in a particular habitat type.     

Plant  

Taxa 

Meadow 

(n = 33) 

Roadside 

(n = 44) 

Wetland 

(n = 37) 

Forest 

(n = 45) 

Clover (Trifolium hybridum L. & Melilotus officinalis (L.) Pall.) 45% 45% 11% 8% 

Buttercup (Ranunculus spp. L.) 67% 50% 24% 40% 

Garlic Mustard (Alliaria petiolate (M. Bieb.) Cavara) 33% 11% 11% 2% 

Chickweed (Stellaria media (L.) Vill.) 24% 5% 19% 4% 

Mullein (Verbascum sp. L.) 18% 7% 16% 4% 

Queen Anne’s Lace (Daucus carota L.)  18% 23% 3% -- 

Violet (Viola sp. L.)  33% 9% -- 4% 

Meadowsweet (Spiraea ulmaria (L.) Maxim.) 27% 14% 11% 2% 

Jewelweed (Impatiens capensis Meerb.) 6% 7% 10% -- 

Raspberry (Rubus sp. L.) 25% 5% 8% -- 

 

Table 2.8. Proportion of the top ten most commonly found plant taxa by ecoregion across 45 

sites throughout NYS. Dashes indicate that a species was not present in that ecoregion. 

Plant 

Taxa 

GL 

(n = 10) 

HAP 

(n = 4) 

LNE 

(n = 5) 

NAC 

(n = 3) 

NAP 

(n = 11) 

STL 

(n = 8) 

WAP 

(n = 4) 

Clover (Trifolium hybridum L. & Melilotus 

officinalis (L.) Pall.) 

100% 50% 40% 100% 55% 100% 100% 

Buttercup (Ranunculus spp. L.) 100% 100% 100% -- 73% 75% 100% 

Garlic Mustard (Alliaria petiolate (M. Bieb.) 

Cavara) 

60% 25% 60% 67% 19% 50% 50% 

Chickweed (Stellaria media (L.) Vill.) 70% -- -- -- 36% 75% 25% 

Mullein (Verbascum sp. L.) 10% 50% 100% 33% -- -- -- 

Queen Anne’s Lace (Daucus carota L.)  20% -- 20% -- -- 100% 100% 

Violet (Viola sp. L.)  90% 25% 40% 33% 9% 25% -- 

Meadowsweet (Spiraea ulmaria (L.) Maxim.) 50% 25% 40% -- 27% 88% 25% 

Jewelweed (Impatiens capensis Meerb.) -- -- -- -- 27% 13% 75% 

Raspberry (Rubus sp. L.) 20% 100% 20% -- 27% 63% 100% 

 

The NMDS analysis using a matrix of 76 flowering plant taxa by the seven ecoregions 

showed little differentiation in flowering plant assemblages (Fig. 2.8). However, a permutational 

multivariate analysis using Adonis distance indicated ecoregions were significantly different 

from each other based on flowering plant assemblages (R2 = 0.11, F6, 1411 = 28.9, p = 0.001, 

maximum stress = 0.23, Fig. 2.8). Incongruence between the NMDS and Adonis analysis 

appeared to be related to a high variation associated with flowering plant assemblages among 
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ecoregions (Fig. 2.8). There was also significant overlap in flowering plant assemblages (R2 

=0.04, F6,1411 = 19.7, p = 0.001, maximum stress = 0.23, Fig. 2.9) among the four habitat types.   

Similar non-significant results were also seen using a matrix of 143 pollinator species by 

the seven ecoregions. There was no difference in pollinator species guild composition among 

ecoregions (R2 = 0.02, F6,314 = 1.3, p = 0.048, maximum stress = 0.07, Fig. 2.10) nor among the 

four habitat types (R2 = 0.009, F3,179 = 0.52, p = 0.96, maximum stress = 0.14, Fig. 2.11). 

 

Figure 2.8. NMDS ordination of floral assemblage (76 taxa) by the seven ecoregions indicated 

overlap in flowering plant assemblages among the 45 sites across NYS. 
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Figure 2.9. NMDS ordination plot of floral assemblage (76 taxa) by the four habitat types 

revealed flowering plant assemblage composition exhibited little variation among the 45 

pollinator sampling sites throughout NYS. 
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Figure 2.10. NMDS ordination plot of pollinator guild among the seven ecoregions revealed 

variation across the 45 sites in NYS was not associated with the seven ecoregions. An overlay of 

the top 11 flowering plants indicate flowering plants associated with axes. 
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Figure 2.11. NMDS ordination plot of pollinator guild among the four habitat types revealed that 

the variation across the 45 sites in NYS did not line up with the four habitat types. An overlay of 

the top 11 flowering plants indicate flowering plants associated with axes. 

 

Based on the variance partitioning analysis, both ecoregion and habitat type together 

accounted for ~22% of the variation in pollinator species richness (p = 0.01, Fig. 2.12). Variation 

explained by habitat type after controlling for ecoregion was ~20% (p = 0.005, Fig. 2.12). 

Variation explained by ecoregion after controlling for habitat type was not significant, and the 

variation explained by interactions between ecoregion and habitat type was not significant. 
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Figure 2.12. Venn diagram showing variance partitioning for pollinator species richness based on 

ecoregion and habitat type. Habitat type explained most of the variation. 

 

Based on the negative binomial model and model selection, habitat and environmental 

variables influencing pollinator species richness were habitat type, floral abundance, floral 

richness, month sampled, the interactions between month sampled and floral abundance, and 

month sampled and floral richness (F44,55 = 37.2, p < 0.001, Table 2.9).  

Table 2.9. Habitat, ecoregion, and temporal variables associated with pollinator species richness 

in NYS. The degrees freedom, p-values, and AIC values for each of the variables from the global 

model are presented. 

Variable DF F-value p-value AICc 

Month*floral richness 3 0.35 0.81 140.3 

Month*floral abundance 3 6.4 0.010 140.5 

Floral abundance 1 140.6 0.005 162.7 

Floral richness 1 13.5 0.010 222.0 

Habitat type 3 5.4 0.010 223.3 

Month 3 4.0 0.025 226.7 

Ecoregion 6 1.2 0.28 236.7 
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Ecoregion was not significantly associated with pollinator species richness (F6,49 = 1.20, 

p = 0.32, Fig. 2.13), though the Northern Appalachian (Adirondacks) had the lowest species 

richness with < 5 species caught on average across the four habitat types. The two dates of 

highest species richness statewide were in the Great Lakes ecoregion in June (Fig. 2.13). 

Meadows (14.6  2.6) and roadsides (13.8  2.0) had the highest pollinator species richness (F3,52 

= 5.4, p = 0.003, Fig. 2.14) and were significantly different from forest habitats (4.7  1.1) based 

on a pairwise comparison (meadow-forest p = 0.003, roadside-forest p = 0.007). Wetlands were 

intermediate at 10.4  1.5 species caught. The two dates of highest species richness statewide 

were in June at roadside and wetland habitats (Fig. 2.14). 

Month significantly affected pollinator richness (F3,52 = 4.04, p = 0.01, Fig. 2.15). June 

with an average of 16  2.7 was not significantly different from May with an average of 12.3  

1.6, however, it was significantly higher than July (7.8  1.7, p = 0.02) and August (8.2  1.3, p 

= 0.03). The highest species richness in July was from a meadow habitat in the St. Lawrence 

ecoregion. Additionally, the interaction between month and floral abundance was significant 

with richness increasing with floral abundance with a peak in the month of June (R2 = 0.83, F7,48 

= 38.6, p < 0.0001, Fig. 2.16).  



 

45 

 

 

Figure 2.13. Pollinator richness did not vary significantly among ecoregions in 45 sites sampled 

throughout NYS from 13-May to 20-Aug 2018. Dark horizontal bars indicate the sample median.  
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Figure 2.124. Pollinator species richness varied among habitat types in 45 sites sampled 

throughout NYS from 13-May to 20-Aug 2018. A pairwise comparison revealed meadow and 

roadside habitats were significantly different from forest habitats. Dark horizontal bars indicate 

the sample median. 
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Figure 2.135. Pollinator species richness was highest in June in 45 sites sampled across NYS. A 

Pairwise comparison revealed June was significantly different from both July and August. Dark 

horizontal bars indicate the sample median. 
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Figure 2.146. There was a significant interaction between month and floral abundance on 

pollinator species richness in 45 sites sampled across NY from 13-May to 20-Aug 2018. 

Reported R2 is for the overall model. 

 

Both floral abundance (R2= 0.72, F1,54 = 140.5, p < 0.0001, Fig. 2.17) and floral richness 

(R2= 0.20, F1,54 = 13.5, p < 0.0001, Fig. 2.18) were important predictors of pollinator species 

richness with pollinator richness increasing as floral resources increased.  
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Figure 2.157. Pollinator species richness increased with floral abundance in 45 sites sampled 

across NY from 13- May to 20-Aug 2018. 
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Figure 2.168. Pollinator species richness increased with flowering plant richness in 45 sites 

sampled across New York from 13-May to 20-Aug 2018. 

 

Discussion 

This research indicates pollinator species richness was influenced by habitat type and 

presence/abundance of flowering plants, as well as the interaction between flowering plants and 

sampling month. Both sampling methods (bowl traps and sweep netting) are complementary 

because there is a tendency for both methods to catch different species. We caught 143 different 

species, 31 which were of conservation interest. Out of the 31 species of conservation interest, 15 

were only caught while sweep-netting, i.e. they were not caught in bowls, and 10 were only 

caught via bowl-traps (Appendix 2). This illustrates that combining passive bowl traps with 

targeted sweep-netting increased diversity captured.  
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Species richness of bees found in this study (89 species) is less than what was found in a 

similar study of bees (144 species) in Black Rock Forest Preserve (Giles and Ascher 2006). That 

survey was conducted in Orange County, NY and focused on bee species. Their study was 

conducted in a small area and sampling lasted from 31-March through 16-Oct of 2003. Our study 

took place from 13-May through 20-August of 2018, thus, their study had a four month longer 

sampling season than ours did. That study also had 150 bowl traps at each site and utilized 

wooden trap-nests, a method that caught a rather rare species of Vespid wasp Zethus spinipes. 

Wooden trap-nests were not utilized in our study. Additionally, these researchers 

opportunistically chose survey sites based on presence of bees. Thus, survey efforts for that study 

were thorough and captured the entire season, resulting in an accurate quantification of species 

richness for that preserve. For our study, the sites were only visited once and were scattered 

statewide, giving a “snapshot” of species distributions each year. Additionally, a handful of taxa 

(e.g. Lasioglossum (Dialictus), Nomada spp., Sphecodes spp.) were either only identified to 

genera or sub-genera due to time constraints for this project and difficultly in identifying to 

species level.  

Bee species richness was also less than what was found in another similar study (278 

species) across Europe (Westphal et al. 2008). That survey was conducted in five countries in 

Europe representing distinct biogeographic regions, with eight sites in each country. The purpose 

of this study was to compare sampling methods, thus they employed six different methods, thus, 

the high numbers of bee species would make sense. Additionally, these researchers sampled in 

agricultural environments, specifically in crop plants that are insect pollinated, this is a habitat 

that was not a part of our study.   
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Comparison of dipteran diversity in the present study to those previously conducted 

presented a significant challenge. Previous research (e.g. Bankowska (1982) and Kearns (2001)) 

has focused largely on Syrphidae. In a 5-year Syrphid survey in Poland, Bankowska (1982) 

found a total of 313 species. The most species rich areas were from natural areas rather than 

urban areas. In the first year of this project, we have found 47 species, representing 32 genera. 

Kearns (2001) proposed larval food supplies could be more important in producing differences in 

population sizes among syrphid species and stressed a change in abundance and species 

composition. Since syrphid larvae are predaceous, the availability of larval food is a key resource 

and may drive different temporal and spatial patterns in abundance than that observed for bees 

(Kearns 2001). Since bee larvae are dependent on pollen for food, this would reinforce the idea 

that different pollinator groups may respond differently to environmental change (Bankowska 

1982, Kearns 2001). 

Pollinator species richness was best explained by the interaction between month and 

flower abundance with highest pollinator richness in the month of June. Higher numbers of 

pollinators in June is likely correlated with a slightly higher floral richness and abundance in 

June. Other studies also found bee species richness is closely linked to floral diversity and 

abundance (e.g. Potts et al. 2003, Sargent and Ackerly 2008, Dorn et al. 2010). Furthermore, 

based on counts, there were more flowering plants in more open habitats (meadows, roadsides, 

and wetlands) than in forested habitats. The NMDS analysis indicated no difference in flowering 

plant assemblages by ecoregion or habitat type, suggesting floral abundance and richness are 

more important and influencing trends seen with pollinators. Furthermore, many of the flowering 

plant assemblages were dominated by exotic species, that tend to be present at many sites and in 

many ecoregions. 
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Results indicate pollinator species richness did not differ by ecoregion. Many wild bees 

are closely associated with nesting materials, i.e. specific plant species or soil types (Potts and 

Willmer 1997, Wuellner 1999, Sardiñas and Kremen 2014), which can vary among ecoregions. 

Potts et al. (2003) found availability of nesting resources influenced ~10% of bee guild 

composition. Based on this information, it was predicted ecoregion would affect pollinator 

richness and guild composition. The lack of effects found in this study could be because most 

sampling efforts were on protected lands with conservation efforts already being implemented. 

Bates et al. (2011) documented that pollinator guild composition changes along an urbanization 

gradient, which may extend to this study in that sampling was only carried out in natural 

environments. Furthermore, only the Great Lakes ecoregion was visited every month throughout 

the study. All other ecoregions were either visited three out of the four months (NAP), two out of 

the four months (HAP, LNE, STL, WAP), or only visited one out of the four months (NAC). The 

phenology of many of the pollinator and floral taxa are not seasonally represented, which may be 

contributing to the results we found. However, to fully gage this and get a full species list at a 

site, one would need to sample every two weeks throughout the season (Droege, personal 

communication). The lack of effects in floral richness and abundance by month, and ecoregion 

may be confounded by the fact that not all ecoregions were visited every month; however, 

examining soil composition in addition to quantifying floral resource availability would be an 

important component to add in future studies.  

Most of the pollinators collected and identified are known to be common species that are 

widespread among ecoregions and habitat types. Locally rare pollinators (ones with a narrow 

distribution) found during our study, only accounted for a small portion (< 10%) of collected 

pollinators. It is well known that despite using thorough survey efforts, common and widespread 
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species are always dominant species in pollinator surveys, and thus, they tend to drive statistical 

patterns (Giles and Ascher 2006). Moreover, NMDS ordination showed that floral assemblages 

were not different among ecoregions. Many of the flowering plants found in this study are 

cosmopolitan or invasive species, occurring across many sites. These plants are known to attract 

cosmopolitan or generalist pollinators. When a habitat is dominated by invasive plant species, it 

could increase the distribution of generalist pollinator species at the cost more specialized 

species (mutualism facilitation hypothesis, Richardson et al. 2000, Prior et al. 2014). Therefore, 

elucidating these patterns are important to bring awareness to the long-term effects that invasive 

plant species can have on the distribution and abundance of rare insect pollinators. 

Pollinator species richness at 35 species was highest in meadow habitats. Hughes et al. 

(2000), also found consistently higher number of species in meadow habitats (243 Dipteran 

species and 203 Hymenopteran species) compared to coniferous forests (159 Dipteran species 

and 137 Hymenopteran species). However, malaise trapping was used in that study, which is 

very effective at collecting a large number of insects and is normally deployed for a period of 

24–48 hours (Matthews and Matthews 1971, Darling and Packer 1988, Campbell and Hanula 

2007). Thus, that study had much higher species richness than our study. Meadows are open and 

free from dominant tree cover; thus, allowing plants to flourish in the sun.  

The roadside habitat type had the second highest number of pollinators at 33 species. 

This was similar to what Hopwood (2008) found in their study of restored roadside hedges and 

maintained roadsides. Their results showed that the restored roadsides harbored higher bee 

species richness (79 bee species) compared to the maintained roadsides (53 bee species). Edge 

habitats tend to be open, and free of cover from dominant trees. This can mimic meadows in 

many ways, allowing shrubs and weedy flowering plants to flourish and thus provide abundant 
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nutrient resources throughout the growing season. Moreover, many flowering plants, including 

non-native species, which are visited by many generalist pollinators, thrive in these highly 

disturbed habitats (Morales and Traveset 2009, Nienhuis et al. 2009, Vanbergen et al. 2018). 

Levels of disturbance commonly found in this habitat type can prevent interspecific competition, 

facilitating higher species coexistence (Southwood et al. 1979, Roxburgh et al. 2004). However, 

butterfly and other insect casualties as a result of increased traffic can be a major problem along 

roadsides (Rao and Girish 2007, Alvarez et al. 2019).  

Pollinator declines and future endeavors 

With this study, my goal was to provide information on important environmental factors 

associated with pollinator richness to better inform land managers as they develop best policies 

and management practices. This information is crucial to protect pollinating insect species that 

are in decline. 
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Chapter 3: Evaluating community scientists in pollinator conservation research 
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Abstract 

Incorporation of community science may allow the Empire State Native Pollinator Survey to 

extend the temporal and geographical range of data collection. The goal of this study was to 

illuminate on contributions of community scientists to data collected by paid biological 

technicians. Workshops were held to train volunteers, who could choose to participate via 

specimen collection (volunteer surveyors) or by observational photos (iNaturalist). Results 

suggest volunteers contributed valuable data which increased species richness numbers as well as 

capturing unique species of conservation interest when combined with data collected by paid 

biologists. This indicates volunteers can extend spatial and temporal ranges of monitoring 

programs; however, it should be seen as a complement to biological fieldwork.  

 

 

Key Words: pollinators, ecosystem services, pollinator monitoring, community science, 

conservation, iNaturalist 
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Introduction 

In the last decade, studies show pollinators are declining world-wide (Gallai et al. 2009a, 

Lebuhn et al. 2013, Goulson et al. 2015). The consequences of the losses, declines, and changes 

to pollinator guild composition are not well understood (Potts et al. 2010, Schweiger et al. 2010). 

In New York State (NYS), > 30 native pollinator species have been listed as Species of Greatest 

Conservation Need, ~20 of those as High-Priority (NYS DEC 2015). Information regarding the 

current status of native pollinator species in NYS is limited  (NYS DEC 2016). Thus, the New 

York Natural Heritage Program (NYNHP) has initiated a multi-year state-wide study to 

document current distribution and status of native pollinators in non-agricultural habitats in NYS 

(Schlesinger et al. 2017). This project will serve as a foundation for development and 

implementation of future conservation practices.  

Costs for conducting scientific research can be challenging, even more so when study 

areas are large or focal organisms are small/rare (Losey et al. 2012). Furthermore, it is difficult to 

incorporate sufficient time and effort to cover a large area within the duration and budget limits 

of most grant-funded research projects. Thus, over the last decade, scientists have been engaging 

local community members in scientific endeavors. These community members are called 

community scientists (formerly termed citizen scientists, Cohn 2008, Bonney et al. 2009, Conrad 

and Hilchey 2011). Although there have been concerns regarding the quality of data collected by 

volunteers (Cohn 2008, Kremen et al. 2011, Freitag et al. 2016), evidence suggests non-scientists 

are capable of increasing the flow of data essential to scientific research (Bonney et al. 2009, 

Howard and Davis 2009, Silvertown 2009, Dickinson et al. 2010, Kremen et al. 2011, 

Kullenberg and Kasperowski 2016). Moreover, community scientists can be trained to collect 
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samples with a rigor comparable to professionals (Fore et al. 2001, Kremen et al. 2011, Kosmala 

et al. 2016).  

Another efficient way to involve community members in scientific collection is with the 

use of technology (Bonney et al. 2009, Dickinson et al. 2010). One example is iNaturalist, a 

website and app that functions as a portal. iNaturalist compiles species presence data via 

georeferenced photographs. In New York, the NYNHP project the Empire State Native 

Pollinator Survey (ESNPS) has a project on iNaturalist where people can document pollinators 

photographically (Schlesinger et al. 2017). With the incorporation of both volunteer surveyors 

and observational iNaturalist users, scientists and agencies can extend the scale of their studies. 

However, the efficiency and data quality of these two components in facilitating the temporal 

and geographical expansion of data collection has not been evaluated. 

The goal of my research was to compare data collected by community science volunteers, 

who used different methods, in documenting presence of pollinators in NYS. The specific aim 

was to determine how involving community science volunteers complements the work of paid 

technicians conducting pollinator surveys in NYS.  

Specific research questions and predictions 

For this study, I sought to determine whether involving community scientists yielded 

more robust results than if only field biologists conducted surveys. Data were collected by 

iNaturalist users (observational photos only), volunteer surveyors (collected voucher specimens), 

and by paid field biologists (collected voucher specimens) across NYS. Specifically, I sought to 

determine whether involving community scientists yielded a larger species presence list and 

sampled in more areas of the state than if only field biologists conducted surveys. Data were 

collected by iNaturalist users, volunteer surveyors, and by paid field biologists across NYS. 
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Methods 

Study Area 

New York State is a geologically heterogeneous region of northeastern North America 

comprising ~141,300 km2 where the climate exhibits significant temperature seasonal changes 

throughout the year (Corser et al. 2014). New York State has 63% forested cover with 

considerable regrowth following extensive agricultural clearing during the early 1900s (NYS 

DEC 2014). Annual precipitation is 75–125 cm, and is uniformly distributed throughout the year 

(NYS DEC 2014). 

Community Science Participation 

Volunteer recruitment  

New York Natural Heritage Program personnel contacted partners, colleagues, and 

community science volunteers from past projects via email. Interested individuals were asked to 

create a profile on an online registry to stay up to date with the project 

(http://signup.com/go/yxaxrgQ). New York Natural Heritage Program personnel created a public 

project on iNaturalist and encouraged participation via the iNaturalist website and app 

(https://www.inaturalist.org/projects/empire-state-native-pollinator-survey).  

Volunteer training 

New York Natural Heritage Program personnel created a participant handbook outlining 

the field survey protocol, voucher preparation, field data sheets, and data submission (White et 

al. 2018). They held four public day-long in-person workshops in June and July of 2018 in 

Wyoming (Western NYS), Franklin (Northern Adirondack region), Albany (Capital Region), 

and Westchester (Southern NYS) Counties. The workshop curriculum included basic biology, 

morphology, life histories, and behaviors of Hymenoptera, Diptera, Lepidoptera, and Coleoptera. 
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New York Natural Heritage Program personnel taught sixty participants how to identify ESNPS 

focal taxa (Table 3.1) in the field and in the lab. Additionally, participants learned about field 

protocols and methodologies by practicing outdoors with bowls and hand-nets. Specimen 

processing and uploading voucher photographs to iNaturalist were also included in the workshop 

curriculum.  

After training, community science volunteers chose to participate via iNaturalist 

submissions (photographic submissions) or by doing field collections for voucher specimens. 

The NYNHP provided recommendations of where to obtain equipment needed to complete field 

surveys and specimen processing to volunteers who chose to collect voucher specimens in the 

field.  
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Table 3.1. Focal taxa used in analysis for this project. Focal taxa were species or groups of 

species on which survey efforts were concentrated. * represents genera of conservation interest 

according to the NYNHP. 

Hymenoptera Andrenidae: Andrena*, Calliopsis* 

Apidae: Anthophora, Apis, Bombus*, Ceritina, 

Melissodes*, Nomada  

Colletidae: Colletes, Hylaeus 

Halictidae: Agapostemon, Augochlora, 

Augoclorella, Augochloropsis, Halictus, 

Lasioglossum, Sphecodes 

Megachilidae: Heriades, Hoplitis, Megachile*, 

Osmia* 

Melittidae: Macropis*, Melitta* 

Diptera 
Bombyliidae: Bombylius* 

Syrphidae: 32 genera, ex: Mallota 

Coleoptera Cerambycidae: ~100 species in Lepturinae, ex: 

Leptura  

Scarabeidae: Trichiotinus* 

Lepidoptera Sphingidae: ~26 species, ex: Hyles, Sphinx 

Noctuidae: Schinia* 

 

Pollinator Sampling by Volunteers and Field Biologists 

Field protocols and specimen processing by volunteers and field biologists were based on 

methods used by Carboni and Lebuhn (2003) and Droege (2015). The primary methods of 

specimen collection were bowl trapping and targeted netting. Bowl trapping was executed with 

four transects comprised of 15 blue, yellow, and white bowls filled half-way with soapy water 

between 9:00 am – 3:00 pm. At each of the sites, an attempt was made to sample four habitat 

types: meadow, wetland, forest, and roadside. If all habitat types were not present, then volunteer 

surveyors set out additional transects in habitat types that were present. Additionally, observers 
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conducted targeted sweep net sessions with insect nets, spending 30 min walking through each 

sampling location, looking primarily on flowers for bees, flies, beetles, and moths. Volunteer 

surveyors made an attempt to only catch one representative per species, though this was 

conservatively carried out knowing many species look similar and are difficult to differentiate in 

the field. Specimens caught in bowl traps were stored in ethanol, then rinsed, dried, and pinned 

immediately (following methods from Droege 2015). Specimens caught in hand-nets were kept 

frozen until they were pinned. Specimens were placed in boxes based on insect Order and 

grouped by site, habitat type, and sampling method. Volunteers who chose to conduct field 

surveys collected data from 13-May to 16-Aug 2018.  

Pollinator Identification 

Specimens collected by volunteer community scientists were sent to NYNHP project 

managers in Albany, NY. Once there, specimens were labeled, sorted, and distributed to 

specialists for identification (Hymenoptera at the Danforth lab at Cornell University, Diptera at 

the Greenwood lab at SUNY Cobleskill, Coleoptera and Lepidoptera by NYNHP personnel). 

Voucher specimens were housed in the NYS Museum in Albany, NY and the Cornell University 

Insect Collection in Ithaca, NY. Individuals who chose iNaturalist submitted photographic 

voucher specimens online and photos were examined by the taxonomic experts from the 

iNaturalist community which includes taxonomic experts. Photographic submissions with 

identifiable pollinators collected from 13-May to 20-Aug 2018 were used in data analyses.  

Specimens collected by two paid field biologists were from 45 sites in seven ecoregions 

throughout NYS during the same field season in 2018 (see Chapter 2).   
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Statistical Analysis 

All statistical analyses were performed in R Studio version 1.1.456 (RStudio 2016). To 

compare unique taxa and species of conservation need collected by community scientists, 

iNaturalist users, and field biologists, lists were generated, species of conservation interest were 

indicated, and counts of unique contribution to the project were made. 

 Bumble bees get a lot of media attention; thus, a comparison was made of only bumble 

bees. To compare efficiency of field collections by volunteers and iNaturalist submissions in 

documenting bumble bee species of conservation need and contribution of unique taxa, lists of 

all bumble bee species found on the project were made, and total numbers of each species were 

compared. Total number of species of greatest conservation need that were detected by each 

participating group were compared. Percentage of each species of the total number of bumble 

bees documented by each participating group were compared. To assess distribution of sampling 

locations by all participating groups, maps were made using ArcMap (version 10.6.1) (ESRI 

2018). 

Results 

From 13-May to 16-Aug 2018, five volunteer surveyors completed field protocols and 

collected voucher specimens. Together, these 5 volunteer surveyors visited 78 sites (25 

meadows, 23 wetlands, 19 roadsides, 11 forests, and 25 unidentified bonus habitats). They 

collected a total of 337 specimens representing 102 focal taxa within the focal orders/families, 

including 266 Hymenoptera, 39 Diptera, 11 Coleoptera, and 15 Lepidoptera. These resulted in a 

total of 63 Hymenoptera species, 27 Diptera species, 9 Coleoptera species, and 2 Lepidoptera 

species being identified (Appendix 4). Of the 102 species collected, 22 were unique, i.e. species 
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collected only by these volunteers, including 8 Hymenoptera, 9 Diptera, 4 Coleoptera, and 1 

Lepidoptera.  

For the ESNPS iNaturalist project, a total of 470 users participated and posted 1,611 

photographic submissions, which included 141 focal taxa. They observed 935 Hymenoptera, 266 

Diptera, 85 Coleoptera, and 325 Lepidoptera (Appendix 5) within the orders/families mentioned 

above with a total of 57 Hymenoptera species, 26 Diptera species, 23 Coleoptera species, and 35 

Lepidoptera species identified. Of the 141 species collected, 81 were unique, including 20 

Hymenoptera, 9 Diptera, 18 Coleoptera, and 34 Lepidoptera.  

Field biologists collected 1,431 specimens, representing 147 pollinator species (Appendix 

2), across 45 sites (including 33 meadows, 37 wetlands, 44 roadsides, and 45 forests). There 

were 1,271 Hymenoptera and 160 Diptera within the focal orders/families with a total of 89 

Hymenoptera species and 54 Diptera species identified. Of these, 58 were unique species, 31 

Hymenoptera and 27 Diptera. Coleoptera and Lepidoptera were also collected; however, these 

have not been identified and so are not included in these counts. 

Pollinators of conservation interest found  

Proportionally, iNaturalist users observed pollinators of conservation interest more often 

(52%) than community scientists (27%). iNaturalist users tended to document more noticeable 

species, such as bumble bees and hummingbird moths compared to community scientists and 

field biologists (Table 3.2, Appendix 4). However, by order, field biologists caught more bee 

species of conservation interest than both community scientists and iNaturalist users (Table 3.2).  
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Table 3.2. Number of pollinator species (SR = species richness), number of unique species, and 

number of species of concern documented by volunteers and paid biologists from 13-May to 20-

Aug of 2018 across NYS. Dashes indicate groups not identified for particular methods. 

 

Volunteer Surveyors 

(5 volunteers, 65 sites) 

iNaturalist 

(470 users, 1,611 photos) 

Field Biologists 

(team of 2, 45 sites) 

SR Unique Concern SR Unique Concern SR Unique Concern 

Hymenoptera          

Andrenidae 11 1 2 3 0 0 24 15 4 

Apidae 21 3 6 22 7 4 20 20 3 

Colletidae 3 0 0 5 2 0 7 1 0 

Halictidae* 14 2 0 10 2 0 16 1 0 

Megachilidae 13 1 3 17 9 1 22 12 4 

Melittidae 1 1 0 0 0 0 0 0 0 

Diptera          

Bombyliidae 3 0 1 2 1 2 4 0 1 

Syrphidae 24 9 7 24 8 9 48 26 19 

Coleoptera          

Cerambycidea 9 4 7 22 17 21 -- -- -- 

Scarabaeidae 0 0 0 1 1 1 -- -- -- 

Lepidoptera          

Noctuidae 1 1 0 4 4 4 -- -- -- 

Sphingidae 1 0 1 31 30 31 -- -- -- 

Totals 101 22 27 141 81 73 141** 75** 31** 

*Dialictus (subgenus of Lasioglossum) were not identified to species. 

**Total is without Coleoptera and Lepidoptera, which are not yet identified from field biologist collections. 

Bumble bees found during the project 

Close to 47% (437/935) of Hymenopteran images submitted by iNaturalist users were of 

bumble bees, whereas bumbles bees were only 23% (63/266) of specimens collected by 

community scientists and 8% (101/1341) of specimens collected by field biologists.  In field 

collections, 50% of bumble bee species were caught only via sweep netting (n = 12) with only a 

few (n = 2) collected in bowls, the passive method of field collection used by both community 

volunteers and field biologists. The remaining 10 species of bumble bees were caught using 

more than one method of collection. volunteer surveyors observed bumble bees of conservation 

interest more often than iNaturalist users, including a species not seen by any other participants 

in the project (Table 3.3). Of the 47% (437/935) of the submitted bumble bee images by 

iNaturalist users, 48% (416/671) were of Bombus impatiens Cresson, 1863-i.e. they tended to 
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document many of the same species repeatedly. However, they also documented B. citrinus, a 

bumble bee species not collected by other participants (Table 3.3). Collections by field biologists 

did not yield any unique Bombus species. Honey bees, like bumble bees, were seen by all 

participating groups. iNaturalist users documented honey bees 184 times out of 776 bee (family 

Apidae) documentations (24%); which is a much higher number than both volunteer surveyors, 

who only documented honey bees 5% of the time (5/98) and field biologists, who only 

documented them 6% of the time (20/359). 

Table 3.3. Total number of individual bumble bee (Bombus spp.) species and percentage out of 

total numbers of bumble bees documented by volunteers and field biologists.  

 
Vol. Surveyors  

(5 volunteers,  

65 sites) 

iNaturalist 

(470 users,  

1,611 photos) 

Field Biologists  

(team of 2,  

45 sites) 

  Number Percent Number Percent Number Percent 

B. bimaculatus 5 8% 29 7% 8 8% 

B. borealis* 6 9% 5 1% 3 3% 

B. citrinus† 0 -- 2 0.5% 0 -- 

B. fervidus* 2 3% 20 4% 1 0.9% 

B. flavidus*† 2 3% 0 -- 0 -- 

B. griseocollis 5 7% 119 27% 8 8% 

B. impatiens 13 20% 208 48% 38 38% 

B. perplexus 7 10% 10 2% 4 4% 

B. rufocinctus 0 -- 1 0.5% 1 0.9% 

B. sandersoni 1 1.5% 0 -- 6 6% 

Bombus sp. 0 -- 0 -- 2 11% 

B. ternarius 4 6% 26 6% 2 2% 

B. terricola* 4 6% 7 1% 2 2% 

B. vagans 14 22% 10 3% 26 26% 

Total      63       437     101 

*Indicates species of conservation need according to NYNHP. †Indicates unique taxa seen only by one group. 
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Sites sampled during the field season 

Volunteer surveyors sampled in five out of seven ecoregions (Fig. 3.1A). Field biologists 

sampled in all seven ecoregions (Fig. 3.1C). iNaturalist users submitted data from all seven 

ecoregions. Moreover, for iNaturalist, there were clusters of submissions in southern NYS 

around New York City (NYC) and along the I-87 corridor leading to NYC. There were also 

smaller clusters in the Great Lakes region, around Buffalo, Ithaca, and Rochester (Fig. 3.1B). 

Workshops were held in Wyoming (Western NY), Franklin (Northern Adirondack region), 

Albany (Capital Region), and Westchester (Southern NY) Counties (Fig. 3.1D). Despite having a 

workshop in them, Wyoming and Franklin counties had the least number of visitations from 

survey participants (Fig. 3.1D). After compiling volunteer surveyor vouchers, iNaturalist user 

submissions, and field biologist specimens, it appears sampling efforts were concentrated in 

areas to the east, while areas to the north and west were surveyed less (Fig. 3.1D).  
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Figure 3.1. Pollinator data gathered across NYS from 13-May to 6-October of 2018. A) 

Volunteer surveyors conducted field sampling in 81 field sites in five out of seven ecoregions. 

Workshops were held in Wyoming county (Western NY), Franklin county (Northern Adirondack 

region), Albany county (Capital Region), and Westchester County (Southern NY).; county 

outlines in light blue B) iNaturalist users submitted data from all seven ecoregions; there were 

clusters of many submission in southern NYS around New York City and along the I-87 corridor 

leading to NYC. There were smaller clusters in the Great Lakes region, around Buffalo, Ithaca, 

and Rochester. C) 45 field sites were sampled by field biologists during the 2018 field season. D)  

Considering all sites, much of the state was surveyed; however, areas to the west and to the north 

were surveyed less. 
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Discussion 

The purpose of this study was to evaluate contributions of volunteer surveyors and 

iNaturalist photo submissions to the statewide pollinator survey effort. Volunteer surveyors and 

iNaturalist users added a great deal to data collected by field biologists. iNaturalist users tended 

to document more charismatic species than both volunteer surveyors and field biologists. Those 

species tend to be easier to take photos of and identify in photographs (e.g. Bombus impatiens). 

Field biologists were sent to random locations within protected land, with an attempt to 

be spatially balanced within ecoregions. Volunteer surveyors and iNaturalist users appeared to be 

distributing sampling efforts nonrandomly. For example, in the southern NYS region, sites that 

field biologists were sent to were in the lower portion, near Orange and Rockland counties (Fig. 

3.1C). The volunteer surveyors sampled in the upper portion near Albany and Columbia counties 

(Fig. 3.1A). Together, each participating group provided a thorough survey of that region of 

NYS (Fig 3.1D). Furthermore, the 2018 field season was the first of three years; thus, the 

sampling gets balanced geographically over the coming field seasons. 

Volunteer surveyors and iNaturalist users both added unique taxa to the study, thereby 

increasing the number of species detected for the study. iNaturalist users contributed many of the 

unique moth and beetle species. Moths and beetles are both easy to take pictures of, and easier to 

identify by pictures. Field biologists contributed the greatest number of unique fly and bee 

species to the study. Bee and fly species are more difficult to identify in pictures, a voucher 

specimen is most often required to make a definitive identification. This is especially true for 

groups like Andrena spp. and many flies in the family Syrphidae. Field biologists collected 

beetle and moth species, but these data were unavailable at the time that this manuscript was 

being written.  
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Lasioglossum was the most common pollinator recorded by both volunteer surveyors and 

field biologists. Lasioglossum are small bees, easily overlooked by untrained individuals, and 

thus more commonly detected using different trapping methods, such as passive bowl traps, but 

these bees were also caught in nets. iNaturalist volunteers recorded Bombus impatiens Cresson, 

1863 and Apis mellifera L. most frequently. This is expected, since those species are larger and 

more abundant and easier to document with a camera. The trend of identifying larger charismatic 

fauna has been seen in other digital community science projects, e.g. Snapshot Serengeti 

(Kosmala et al. 2016, Swanson et al. 2016). Volunteers for that project were better at identifying 

iconic mammals (e.g. giraffes, zebras) than identifying lesser known species, e.g. aardwolves, 

and less distinguishable antelope species (Kremen et al. 2011, Swanson et al. 2016). 

Additionally, field biologists and the community scientists who attended workshops were asked 

to avoid collecting honey bees, which were not a taxon of conservation interest. This resulted in 

field biologists and volunteer surveyors collecting less honey bees. Furthermore, honey bees and 

bumble bees tend to get a lot of media attention, thus, they can be a focus in cities. 

Volunteer surveyors and iNaturalist users documented similar numbers of unique taxa 

compared to field biologists. Volunteer surveyors used the same field sampling methods as the 

field biologists, thus, it would make sense that they were collecting similar, less charismatic 

species as field biologists. Fore et al. (2001) compared data collected between volunteers and 

biologists, and found ~90% of the variation in their ANOVA models was attributed to 

differences among sampling sites, not between biologists and volunteers. Kremen et al. (2011) 

found a strong positive correlation between observational data only collected by volunteers and 

both netting, and bowl-trapping data only collected by biologists. This suggested that data 
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collected by volunteers could accurately represent trends in pollinator guild composition, as well 

as abundance and species richness. 

Combining passive traps (bowls) with active capture (nets) allowed field collectors to 

find more cryptic or rare species that would be harder to see while observing and taking pictures 

(Kremen et al. 2011). With field surveys, community scientists and field biologists were 

conservative with collections, i.e. they tried to collect only one representative from each species. 

This is opposed to iNaturalist users who were documenting species by photos, so causing 

mortality of insects was not a constraint. However, photographic submissions cannot substitute 

for abundance, and care must be taken with assuming documentation of particular species. Users 

can upload pictures of the same individual multiple times and call it more than one observation, 

thereby inflating numbers and causing issues with analyses. This illustrates that conducting field 

surveys adds value to results rather than relying only on observational photos. Another problem 

with relying on iNaturalist users to document rarity and commonness of species is that, species 

which are easy to identify could seem more common than they actually are, simply because they 

can be readily identified in photographs. 

Locations where iNaturalist users were taking pictures were generally clustered near 

cities. Volunteer surveyors visited some less accessible areas to sample but were also close to 

cities. Field biologists visited mostly remote and rural locations to sample. Since volunteer 

surveyors visited more sites in protected areas with conservation efforts implemented and used a 

standardized protocol to sample, they had a higher chance of collecting rare and cryptic species. 

Moreover, urban areas, such as NYC, can support a diverse pollinator guild; however, this is 

affected by the quality of plants available to them. Other researchers have documented pollinator 

guild composition changes along an urbanization gradient (Bates et al. 2011), many iNaturalist 
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users were documenting species along a similar urbanization gradient. This urbanization gradient 

might explain many of the moth species iNaturalist users documented as many people plant 

showy, garden flowers to attract pollinators to their backyards. Although many bee, fly, and 

moth species were documented in and around NYC, mostly common, widespread taxa were 

being submitted (e.g. honey bees, carpenter bees, Bombus impatiens Cresson, 1863).  

Sixty people attended at least one workshop training. The most attended workshops were 

in Wyoming county (Western NY) and in Franklin county (Northern Appalachian region). 

Interestingly, those two regions had the least number of visits by volunteer surveyors and the 

least number of photographic submissions from iNaturalist users. Much of the Adirondack 

region can be essentially inaccessible, making it less desirable for a volunteer to sample. 

Additionally, there were four workshops held around the state, which meant that some volunteers 

needed to travel a great distance to attend one. Thus, many of these volunteers were more likely 

to go back to where they live and document pollinators there. Since many iNaturalist points were 

clustered around cities, and highways, this indicates users didn’t necessarily go far from home to 

document pollinators. This clustering can be problematic; however, it is something that can be 

avoided by talking to volunteers at workshops. Talking to volunteers about the importance of 

reaching the whole state and motivating them to go to more remote places may help cover more 

area in the future. Additionally, in the following years of this project these workshops will be 

held in different areas around the state. Thus, would reach more people in different communities. 

This study illustrates the importance of conducting biological fieldwork and using 

volunteer surveyors and digital participants as a complement. Field biologists can visit remote, 

less acessible sites, while volunteers can provide data from more urban easily accessible places. 
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Our data indicate volunteers collected valuable species data; thus, involving volunteers can 

supplement and extend the scale of the study.  

The future of community science 

Integrating conservation biology research and the public is a good model towards 

promoting environmental literacy and is essential to the longevity of conservation efforts 

(Brewer 2002). Furthermore, projects, such as iNaturalist, are useful for obtaining data from 

urbanized or private locations. This project illustrates volunteers, both observational and 

specimen based, can collect valuable data, especially in urbanized areas. As a complement to 

each other, both volunteer surveyors and iNaturalist users together with field biologists were able 

to reach much of NYS. 
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Chapter 4: Conclusions 
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Human driven activities have irreversibly changed large portions of the earth’s surface in 

pervasive ways (Defries et al. 2004). Habitat fragmentation and urbanization are thought to be 

some of the biggest threats to pollinators around the world (Potts et al. 2010, Lebuhn et al. 2013, 

Vanbergen et al. 2013, Vanbergen 2014, Goulson et al. 2015, Gezon et al. 2016). Agricultural 

intensification with pesticide and herbicide application having lethal and sublethal long term 

effects on pollinators (Kremen et al. 2002, Foley et al. 2005, Potts et al. 2010, Ollerton et al. 

2014, Grab et al. 2019) lead to overall declines in certain species (Potts et al. 2010, Schweiger et 

al. 2010). Since we heavily depend on pollinator services, this in turn affects us. Moreover, lower 

quality pollination services have been shown to cause a cascading effect on seed dispersal and 

seed predation, leading to overall lower plant reproduction (Didham et al. 2007, Tylianakis et al. 

2008, Grab et al. 2019). 

Information on environmental factors predicting pollinator richness can help better 

inform land managers on best policies and practices. For example, keeping protected land 

protected and not allowing people to visit certain areas at times of year when pollinators are 

known to be foraging more may help increase pollinator species richness. This information is 

crucial to protect pollinating insect species in decline. There are not a lot of data on habitat 

variables associated with native pollinating species and to protect just one species would not 

necessarily be economically feasible. Thus, finding out which habitats have the most species and 

protecting those habitats would be more efficient (Yagerman 1990, Bloomgarden 1995). 

However, these habitats are part of an integrated landscape and most of those species rich 

habitats were near forests and wetlands. Which indicates that these pollinators still require 

habitat heterogeneity to thrive. Thus, if protected land is kept protected, species should thrive. 

Bates et al. (2011) found that pollinator guild composition changes along an urbanization 
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gradient, which may illustrate the benefit of management plans that are carried out on protected 

lands. 

Results from this study show that floral abundance and richness were the best predictors 

of pollinator species richness, which supports what has been found in past research. Potts et al. 

(2003) found that ~40% of the variation found in bee guild composition was due to floral 

community characteristics, which supported the notable increase in pollinator species richness 

and floral richness and abundance in June. Research in protected areas show notable peaks in 

abundance and species diversity that corresponded with flowering plant blooming patterns found 

in late spring and summer (Mackenzie and Eickwort 1996, Giles and Ascher 2006).  

However, it was difficult to know if ecoregion really affected pollinator species richness, 

because not every ecoregion was sampled every month and the number of sites was not balanced 

across months. It would have been easier to tease apart certain factors if the timing of sampling 

had been more carefully chosen. To a lesser degree, this was seen with habitat types. For 

example, the only habitat type that was found at almost every site was the forest; every other 

habitat type was less common. Additionally, having bonus habitat types at sites posed a problem 

with pseudo-replication and perhaps those transects should have been omitted from analysis.  

Some things that I did do differently in the second year compared to the first year of 

fieldwork, was that I was less conservative with honey bee and the bumble bee (Bombus 

impatiens) collection. I later learned that many other, important species of bees look very similar 

to these species, and by not collecting them, I could be missing important species 

documentations. Thus, in the second year of collecting, if I saw them, I collected them. 

Many long-term ecological monitoring projects rely on community science volunteers to 

collect data (Conrad and Hilchey 2011). Results from this project indicate that by incorporating 
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community scientists, a much broader scope of pollinators across NYS are assessed in one field 

season, i.e. volunteers do facilitate temporal and geographical expansion of data collection. 

However, there were still areas of the state that volunteers did not visit, which illustrates the 

importance of using field biologists to conduct surveys and having data from voluteer surveyors 

and digital participants as a complement. For this project it would be important for the volunteer 

surveyors to understand how to properly identify habitat types and to label them as such. 

Perhaps, also to encourge them to travel to many different areas of NYS, such as different 

ecoregions. Addionally, by showing the volunteers where the field biologists would be sampling, 

they can focus their efforts in different areas of the state. 

Increasing the number of sites visited was not the only reason to involving community 

science volunteers. Being able to foster awareness and educate the public about pollinators in 

tandom was also a major part of this project. Getting people involved in conservation research is 

a very good way to also spread awarness and educate (Brewer 2006). By volunteering with this 

project, community scientists learn about many of the pollinator species that NYS is home to, 

and learn about the habitats that they can be found in. The more people know about a group of 

species, the more they will want to protect them. Integrating conservation biology research and 

the public inspires people to take action and is probably more meaningful in the long run than 

just solely focusing on the research (Brewer 2006). 
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APPENDICES 

Appendix 1. Sites visited from 13-May to 20-August of 2018 

Sites visited Date visited 

Great Lakes  

Genesee  

Oak Orchard Wildlife Management Area 28-June 

Jefferson  

Wellesley Island State Park 7-June 

Livingston  

Twin Cedars Environmental Area 8-June 

Monroe  

Thousand Acre Swamp Preserve 15-June 

Mendon Ponds Park 15-August 

Oneida  

Penn Mountain State Forest 26-July 

Onondaga  

Green Lakes State Park 13-May 

Ontario  

Hemlock – Canadice State Forest 17-May 

Schuyler  

Finger Lakes National Forest 12-June 

Wayne  

Lake Shore Marshes Wildlife Management Area 15-May 

High Allegheny Plateau  

Cattaraugus  

Salamanca Public Utilities reservoir  25-June 

Chenango  

Pharsalia Wildlife Management Area 11-June 

Delaware  

Delaware Wild Forest 18-July 

Tompkins  

Connecticut Hill Wildlife Management Area 14-June 

Lower New England  

Orange  

Warwick State Forest 29-May 

Harriman State Park 19-July 

Rockland  

Kakiat County Park 30-May 

Westchester  

Teatown Lake Reservation 31-May 

Rockerfeller State Park 25-May 

North Atlantic Coast  
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Suffolk  

Otis Pike Preserve 22-May 

Gardiner County Park 23-May 

Sunken Meadow State Park 24-May 

Northern Appalachian   

Clinton  

Taylor Pond Wild Forest 20-June 

Essex  

Vanderwhacker Mountain Wild Forest 10-July 

Franklin  

Debar Mountain Wild Forest 21-June 

Deer River State Forest 23-July 

Debar Mountain Wild Forest 8-August 

Hamilton  

Wilcox Lake Wild Forest 2-August 

Siamese Ponds Wilderness Area 11-July 

Raquette Lake State Park 9-July 

Silver Lake Wilderness Area 12-July 

Herkimer  

Fulton Chain Wild Forest 19-June 

Lewis  

46-Corners Management Area 6-August 

St. Lawrence/Champlain Valley  

Clinton  

Ausable Marsh Wildlife Management Area 24-July 

Essex  

Boquet River Nature Preserve 1-August 

Jefferson  

Fort Drum Training Area 14F 3-July 

Chaumont Barrens Preserve 16-July 

Fort Drum Training Area 13A 2-July 

St. Lawrence  

Glenmeal State Forest 9-August 

Buckton State Forest 11-August 

Buckton State Forest 10-August 

Western Allegheny Plateau   

Chautauqua  

Hatch Creek State Forest 26-June 

Boutwell Hill State Forest 29-June 

Whalen Memorial State Forest 20-August 

North Harmony State Forest 19-August 
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Appendix 2. List and counts of pollinator species found during study. 

Taxonomic grouping Count of Species 

Diptera 159 

Asilidae 15 

Laphria 15 

Laphria sericea 14 

Laphria sericeus° 1 

Bombyliidae 5 

Bombylius 2 

Bombylius major*• 2 

Villa 2 

Villa modesta• 1 

Villa sp.• 1 

Xenox 1 

Xenox tigrinus• 1 

Conopidae 2 

Physocephala 2 

Physocephala tibialis†• 2 

Syrphidae 137 

Anasimyia 1 

Anasimyia anausis†° 1 

Blera 4 

Blera badia*†• 1 

Blera nigra*†• 3 

Chalcosyrphus 13 

Chalcosyrphus anthreas*†° 1 

Chalcosyrphus chalybeus*†° 2 

Chalcosyrphus nemorum*° 6 

Chalcosyrphus piger*° 2 

Chalcosyrphus vecors*†• 2 

Cheilosia 1 

Cheilosia yukonensis†• 1 

Chrysotoxum 1 

Chrysotoxum flavifrons†• 1 

Copestylum 1 

Copestylum vesicularium° 1 

Dasysyrphus 1 

Dasysyrphus venustus†• 1 

Eristalis 8 

Eristalis arbustorum• 2 

Eristalis flavipes 5 

Eristalis transversa• 1 

Eupeodes 1 
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Eupeodes americanus/pomus• 1 

Eurimyia 2 

Eurimyia stipata†• 2 

Helophilus 1 

Helophilus fasciata• 1 

Mallota 6 

Mallota bautius*• 2 

Mallota posticata*• 4 

Melanostoma 1 

Melanostoma mellinum†• 1 

Meliscaeva 1 

Meliscaeva cinctella†• 1 

Merodon 2 

Merodon equestris• 2 

Microdon 1 

Microdon ruficrus†° 1 

Orthonevra 2 

Orthonevra pictipennis†° 2 

Parasyrphus 1 

Parasyrphus relictus†• 1 

Parhelophilus 1 

Parhelophilus laetus• 1 

Pipiza 1 

Pipiza nigripilosa†• 1 

Platycheirus 2 

Platycheirus scambus†• 1 

Platycheirus spp.• 1 

Sericomyia 8 

Sericomyia chrysotoxoides 8 

Somula 2 

Somula decora* 2 

Sphegina 1 

Sphegina keeniana*†• 1 

Spilomyia 4 

Spilomyia fusca*• 4 

Syritta 2 

Syritta pipiens• 2 

Syrphus 2 

Syrphus ribesii† 2 

Temnostoma 3 

Temnostoma balyras* 3 

Toxomerus 53 

Toxomerus geminatus 42 

Toxomerus marginatus 10 
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Toxomerus politus• 1 

Tropidia 1 

Tropidia quadrata†• 1 

Xanthogramma 1 

Xanthogramma flavipes*†• 1 

Xylota 8 

Xylota confusa*†° 1 

Xylota hinei*† 3 

Xylota ouelleti*†• 1 

Xylota segnis*†• 1 

Xylota subfasciata*†° 2 

Hymenoptera 1272 

Andrenidae 122 

Andrena 100 

Andrena algida†° 1 

Andrena carlini* 7 

Andrena carolina†• 1 

Andrena crataegi*• 2 

Andrena cressonii• 4 

Andrena distans*†° 3 

Andrena heraclei†• 2 

Andrena hippotes†• 2 

Andrena imitatrix†• 1 

Andrena mandibularis• 1 

Andrena milwaukeensis†• 4 

Andrena nasonii 11 

Andrena nivalis†• 3 

Andrena perplexa†• 1 

Andrena personata† 2 

Andrena pruni† 6 

Andrena robertsonii† 3 

Andrena rufosignata†• 1 

Andrena rugosa† 5 

Andrena spp. 26 

Andrena spireana†• 3 

Andrena thaspii• 2 

Andrena wilkella 9 

Calliopsis 22 

Calliopsis andreniformis*° 22 

Apidae 359 

Anthophora 9 

Anthophora furcata† 9 

Apis 20 

Apis mellifera 20 
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Bombus 101 

Bombus bimaculatus 8 

Bombus borealis*• 3 

Bombus fervidus*° 1 

Bombus griseocollis 8 

Bombus impatiens 38 

Bombus perplexus• 4 

Bombus rufocinctus° 1 

Bombus sandersoni• 6 

Bombus sp.• 2 

Bombus ternarius• 2 

Bombus terricola* 2 

Bombus vagans 26 

Ceratina 167 

Ceratina calcarata 80 

Ceratina dupla 28 

Ceratina mikmaqi 36 

Ceratina strenua° 23 

Melissodes 6 

Melissodes subillata 6 

Nomada 56 

Nomada spp.† 56 

Colletidae 27 

Colletes 2 

Colletes nudus†• 1 

Colletes thoracicus• 1 

Hylaeus 25 

Hylaeus affinis 10 

Hylaeus annulatus° 2 

Hylaeus mesillae 4 

Hylaeus modestus 8 

Hylaeus saniculae° 1 

Halictidae 683 

Agapostemon 29 

Agapostemon sericeus 6 

Agapostemon texanus†• 1 

Agapostemon virescens 22 

Augochlora 49 

Augochlora pura• 49 

Augochlorella 116 

Augochlorella aurata 114 

Augochlorella persimilis†° 2 

Augochloropsis 7 

Augochloropsis metallica 7 
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Halictus 48 

Halictus confuses 9 

Halictus ligatus 34 

Halictus rubicundus 5 

Lasioglossum 424 

Lasioglossum coriaceum 35 

Lasioglossum (Dialictus spp) 269 

Lasioglossum (Evylaeus spp) 9 

Lasioglossum leucozonium 111 

Sphecodes 10 

Sphecodes spp. 10 

Megachilidae 81 

Heriades 3 

Heriades leavitti†• 2 

Heriadesv ariolosa†• 1 

Hoplitis 20 

Hoplitis pilosifrons° 1 

Hoplitis producta†° 11 

Hoplitis spoliata† 8 

Megachile 20 

Megachile centuncularis° 1 

Megachile coquilletti†° 1 

Megachile frigida• 1 

Megachile inermis*• 1 

Megachile lapponica• 1 

Megachile latimanus*° 1 

Megachile mucida†• 2 

Megachile relativa* 12 

Osmia 38 

Osmia albiventris†• 1 

Osmia bucephala° 2 

Osmia cornifrons 11 

Osmia distincta†° 1 

Osmia felti*†• 1 

Osmia inspergens†• 1 

Osmia pumila† 19 

Osmia simillina†° 1 

Osmia taurus° 1 

Grand Total 1431 

* Indicates species in need of conservation attention according to NYNHP and Bartomeus et al. 2013a 

† Indicates unique species only found by this team  

• Indicates a species only found by sweep-netting  

° Indicates a species only found with bowl traps  
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Appendix 3. List and counts of plant taxa found in 45 study sites in NYS. 

Taxonomic 

Grouping 

No. Sites 

Present 

Counts of 

species 

Alismatales 3 9 

Alismataceae 3 9 

Sagittaria latifolia Willd. (broadleaf arrowhead) 3 9 

Apiales 18 538 

Apiaceae 17 523 

Daucus carota L. (Queen Anne's lace) 16 493 

Pastinaca sativa L. (parsnip) 1 30 

Araliaceae 1 15 

Panax trifolius L. (dwarf ginseng) 1 15 

Asparagales 19 183 

Asparagaceae 12 152 

Maianthemum racemosum (L.) Link (false Soloman's seal) 1 7 

Scilloideae spp. Miller (grape hyacinth) 11 145 

Asphodelaceae 2 15 

Hemerocallis fulva (L.) L. (orange day-lily) 2 15 

Iridaceae 3 12 

Iris spp. L., 1753 1 5 

Sisyrinchium spp. L. (blue-eyed grass) 2 7 

Orchidaceae 2 4 

Goodyera pubescens (Willd.) R.Br. (downy rattlesnake 

plantain) 1 3 

Pogonia ophioglossoides (L.) Ker Gawl. (snakemouth orchid) 1 1 

Asterales 25 1393 

Asteraceae 25 1393 

Arctium spp. L., 1753 (burdock) 1 4 

Bellis perinnus (L.) (common daisy) 25 280 

Cichorium intybus (L.) (chicory) 4 153 

Cirsium spp. Mill. (thistle) 10 147 

Echinacea purpurea (L.) Moench (purple coneflower) 7 83 

Krigia virginica (L.) Willd (dwarf dandelion) 1 40 

Lapsana communis (L.) (nipplewort) 5 105 

Rudbeckia. Hirta (L.) (black-eyed Susan) 7 40 

Solidago spp. L., 1753 (goldenrod) 12 288 

Taraxacum officinale F.H. Wigg. (dandelion) 20 253 

Boraginales 2 46 

Boraginaceae 2 46 

Myosotis scorpioides L. (forget-me-not) 2 46 

Brassicales 21 785 

Brassicaceae 21 785 
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Alliaria petiolata (M. Bieb.) Cavara (garlic mustard) 20 782 

Hasperis matronalis L. (dame's rocket) 1 3 

Caryophyllales 26 733 

Caryophyllaceae 22 723 

Dianthus spp. L. (grass pink) 3 21 

Spergularia ruba (L.) C.Presi (red sandspurry) 1 5 

Stellaria media (L.) Vill. (chickweed) 18 697 

Montiaceae 2 4 

Claytonia virginica L. (spring beauty) 2 4 

Polygonaceae 2 6 

Persicaria virginiana (L.) Gaertn. (jumpseed) 2 6 

Cornales 6 98 

Cornaceae 6 98 

Cornus canadensis L. (creeping dogwood) 6 98 

Dipsacales 3 34 

Caprifoliaceae 3 34 

Lonicera spp. L. (honeysuckle) 3 34 

Ericales 16 734 

Balsaminaceae 7 354 

Impatiens capensis Meerb. (orange jewelweed) 7 354 

Ericaceae 5 162 

Gaultheria procumbens L. (eastern teaberry) 2 6 

Vaccinium spp. L. (blueberry) 3 156 

Polemoniaceae 2 213 

Phlox spp. L 2 213 

Sarraceniaceae 2 5 

Sarracenia spp. L. (pitcher plant) 2 5 

Fabales 42 2052 

Fabaceae 42 2052 

Lathyrus spp. L. (sweetpea) 2 113 

Melilotus officinalis (L.) Pall. (sweet clover) 42 965 

Trifolium hybridum L. (alsike clover) 42 974 

Gentianales 8 23 

Apocynaceae 6 20 

Asclepias spp. L. (milkweed) 6 20 

Gentianaceae 2 3 

Centaurium erythraea Rafn. (European centaury) 2 3 

Geraniales 6 19 

Geraniaceae 6 19 

Geranium spp. L. 6 19 

Lamiales 22 841 

Lamiaceae 6 56 

Mentha spp. L. (mint) 2 3 

Monarda spp. L. (bee balm) 1 17 
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Physostegia virginiana (L.) Benth. (obedient plant) 3 36 

Orobanchaceae 1 1 

Castilleja spp. Mutis. (Indian paintbrush) 1 1 

Plantaginaceae 5 137 

Linaria vulgaris Mill. (common toadflax) 2 104 

Nuttallanthus canadensis (L.) D.A.Sutton (blue toadflax) 1 8 

Veronica officinalis L. (common gypsyweed) 2 25 

Scrophulariaceae 16 591 

Verbascum spp. L. (mullein) 16 591 

Verbenaceae 2 56 

Verbena hastat L.  (blue vervain) 2 56 

Liliales 7 110 

Colchicaceae 1 14 

Uvularia grandiflora Sm. (large flowered bellwort) 1 14 

Liliaceae 7 43 

Lilium spp. L. (lily) 2 26 

Streptopus spp. Michx. (rosybells) 2 6 

Tulipa spp. L. (tulip) 3 11 

Melanthiaceae 3 53 

Trillium spp. L. 3 53 

Malpighiales 16 429 

Violaceae 16 429 

Viola spp. L. (violet) 16 429 

Myrtales 11 378 

Lythraceae 5 147 

Lythrum salicaria L. (purple loosestrife) 5 147 

Onagraceae 6 231 

Chamaenerion angustifolium (L.) Scop. (fireweed) 5 222 

Ludwigia peploides (Kunth) P.H. Raven (floating primrose) 1 9 

Ranunculales 45 1478 

Berberidaceae 6 9 

Podophyllum peltatum L. (may apple) 6 9 

Papaveraceae 3 50 

Sanguinaria canadensis L. (bloodroot) 3 50 

Ranunculaceae 45 1419 

Actaea ruba (Ait.) Willd. (red baneberry) 1 12 

Anemone hepatica L. (kidneywort) 1 7 

Aquilegia canadensis L. (red columbine) 2 54 

Caltha palustris L. (marsh marigold) 2 41 

Ranunculus spp. L. (buttercup) 45 1305 

Rosales 40 1100 

Rosaceae 40 1100 

Argentina anserine (L.) Rydb. (silverweed) 1 3 

Fragaria spp. L. (strawberry) 7 89 
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Geum aleppicum Jacq. (yellow avens) 1 3 

Rosa multiflora Thumb. (multiflora rose) 14 308 

Rubus spp. L. (raspberry) 12 320 

Spiraea ulmaria (L.) Maxim. (meadowsweet) 19 377 

Saxifragales 7 26 

Crassulaceae 7 26 

Hylotelephium telephioides (Michx.) H.Ohba (Allegheny 

stonecrop) 7 26 

Solanales 1 12 

Convolvulaceae 1 12 

Ipomoea spp. L., 1753 (morning glory) 1 12 

Vitales 3 7 

Vitaceae 3 7 

Vitis spp. L. (wild grape) 3 7 

Grand Total 45 11,028 
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Appendix 4. List and counts of pollinator species collected by volunteer surveyors from 13-May 

to 16-Aug of 2018 across NYS. 

 

Taxonomic grouping Count of species 

Coleoptera 11 

Cerambycidae 11 

Analeptura  
Analeptura lineola* 1 

Brachyleptura  
Brachyleptura vagans*† 1 

Gaurotes  
Gaurotes cyanipennis 1 

Oberea  
Oberea praelonga† 1 

Stictoleptura  
Stictoleptura canadensis* 2 

Strangulepta  
Strangulepta abbreviate* 2 

Trigonarthris  
Trigonarthris proxima*† 1 

Typocerus  
Typocerus deceptus*† 1 

Typocerus velutinus* 1 

Diptera 39 

Bombyliidae 3 

Bombylius  
Bombylius major* 1 

Villa  
Villa modesta 1 

Xenox  
Xenox tigrinus 1 

Syrphidae 36 

Chalcosyrphus  
Chalcosyrphus nemorum* 1 

Chalcosyrphus piger* 1 

Cheilosia  
Cheilosia pallipes† 1 

Epistrophe  
Epistrophe grossulariae 2 

Eristalis  
Eristalis arbustorum 2 

Eristalis dimidiata 2 

Eristalis flavipes 1 

Eristalis anthophorina† 1 
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Eumerus  
Eumerus strigatus† 1 

Eupeodes  
Eupeodes americanus 1 

Myolepta  
Myolepta strigilata*† 1 

Orthonevra  
Orthonevra anniae† 1 

Parhelophilus  
Parhelophilus laetus 1 

Rhingia  
Rhingia nasica 1 

Sericomyia  
Sericomyia chrysotoxoides 1 

Sericomyia lata† 3 

Somula  
Somula decora 1 

Spilomyia  
Spilomyia fusca* 2 

Syrphus  
Syrphus torvus† 2 

Temnostoma  
Temnostoma balyras* 1 

Toxomerus  
Toxomerus geminatus 4 

Toxomerus marginatus 2 

Xylota  
Xylota annulifera*† 1 

Xylota quadrimaculata*† 1 

Hymenoptera 266 

Andrenidae 32 

Andrena 32 

Andrena carlini* 1 

Andrena crataegi* 2 

Andrena cressonii 1 

Andrena hippotes 1 

Andrena mandibularis 1 

Andrena nasonii 1 

Andrena nubecula 1 

Andrena scripta† 1 

Andrena sp. 19 

Andrena thaspii 1 

Andrena wilkella 3 
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    Apidae 98 

Anthophora 4 

Anthophora terminalis 4 

Apis 5 

Apis mellifera 5 

Bombus 63 

Bombus bimaculatus 5 

Bombus borealis* 6 

Bombus fervidus* 2 

Bombus flavidus*† 2 

Bombus griseocollis 5 

Bombus impatiens 13 

Bombus perplexus 7 

Bombus sandersoni 1 

Bombus ternarius 4 

Bombus terricola* 4 

Bombus vagans 14 

Ceratina 19 

Ceratina calcarata 10 

Ceratina dupla 4 

Ceratina mikmaqi 5 

Epeolus 1 

Epeolus scutellaris 1 

Melissodes 5 

Melissodes bidentis† 1 

Melissodes bimaculata 1 

Melissodes subillata 3 

Triepeolus 1 

Triepeolus spp. 1 

Colletidae 13 

Hylaeus 13 

Hylaeus affinis 1 

Hylaeus annulatus 3 

Hylaeus modestus 9 

Halictidae 85 

Agapostemon 6 

Agapostemon sericeus 1 

Agapostemon virescens 5 

Augochlora 16 

Augochlora pura 16 

Augochlorella 3 

Augochlorella aurata 3 

Halictus 19 

Halictus confusus  1 
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Halictus ligatus 14 

Halictus poeyi† 2 

Halictus rubicundus 1 

Halictus spp. 1 

Lasioglossum 40 

Lasioglossum coeruleum 2 

Lasioglossum (Dialictus) 33 

Lasioglossum leucozonium 1 

Lasioglossum zonulum† 4 

Sphecodes 1 

Sphecodes spp. 1 

Megachilidae 37 

Anthidium 4 

Anthidium manicatum 1 

Anthidium oblongatum 3 

Coelioxys 1 

Coelioxys sayi 1 

Hoplitis 1 

Hoplitis pilosifrons 1 

Megachile 30 

Megachile campanulae 2 

Megachile inermis* 9 

Megachile lapponica 2 

Megachile latimanus 2 

Megachile mendica 3 

Megachile montivaga*† 2 

Megachile relativa* 7 

Megachile sculpturalis 3 

Osmia 1 

Osmia taurus 1 

Melittidae 1 

Macropis 1 

Macropis patellata† 1 

Lepidoptera 15 

Noctuidae 2 

Alypia 2 

Alypia octomaculata† 2 

Sphingidae 3 

Hemaris 3 

Hemaris thysbe* 3 

Grand Total 337 

* Indicates species in need of conservation attention according to NYNHP and Bartomeus et al. 

2013a 

† Indicates unique taxa only found by these volunteers  
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Appendix 5. List and counts of pollinator species found by iNaturalist users from 13-May to 20-

Aug of 2018 

Taxonomic grouping Count of species 

Coleoptera 85 

Cerambycidae 84 

Analeptura 9 

Analeptura lineola* 9 

Anthophylax 4 

Anthophylax attenuates*† 2 

Anthophylax cyaneus*† 2 

Brachyleptura 2 

Brachyleptura brevis† 1 

Brachyleptura rubrica*† 1 

Centrodera 1 

Centrodera decolorate*† 1 

Evodinus 4 

Evodinus monticola*† 4 

Gaurotes 1 

Gaurotes cyanipennis* 1 

Judolia 9 

Judolia cordifera*† 9 

Leptorhabdium 1 

Leptorhabdium pictum*† 1 

Leptura 2 

Leptura subhamata*† 2 

Pidonia 1 

Pidonia ruficollis*† 1 

Stenelytrana 3 

Stenelytrana emarginata*† 3 

Stenocorus 1 

Stenocorus schaumii*† 1 

Stictoleptura 2 

Stictoleptura canadensis* 2 

Strangalepta 6 

Strangalepta abbreviate* 6 

Strangalia 17 

Strangalia acuminate*† 1 

Strangalia famelica*† 5 

Strangalia luteicornis*† 11 

Typocerus 21 

Typocerus acuticauda*† 2 

Typocerus lugubris*† 1 

Typocerus velutinus* 18 
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    Scarabaeidae 1 

Trichiotinus 1 

Trichiotinus assimilis*† 1 

Diptera 430 

Bombyliidae 6 

Bombylius 6 

Bombylius major* 5 

Bombylius pygmaeus*† 1 

Syrphidae 260 

Allograpta 3 

Allograpta obliqua† 3 

Ceriana 1 

Ceriana abbreviata*† 1 

Eristalis 92 

Eristalis arbustorum 38 

Eristalis dimidiata 38 

Eristalis flavipes 1 

Eristalis tenax 16 

Eristalis transversa 35 

Eupeodes 1 

Eupeodes americanus 1 

Lejops 1 

Lejops curvipes† 1 

Mallota 4 

Mallota bautius* 2 

Mallota posticata* 2 

Merodon 6 

Merodon equestris† 6 

Milesia 2 

Milesia virginiensis*† 2 

Sericomyia 3 

Sericomyia chrysotoxoides 1 

       Sphaerophoria 1 

Sphaerophoria contigua 1 

Spilomyia 7 

Spilomyia alcimus*† 1 

Spilomyia fusca* 4 

Spilomyia longicornis*† 2 

Syritta 8 

Syritta pipiens 8 

Temnostoma 2 

Temnostoma alternans*† 1 

Temnostoma balyras* 1 

Toxomerus 131 
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Toxomerus geminatus 51 

Toxomerus marginatus 61 

Toxomerus politus 19 

Hymenoptera 935 

Andrenidae 3 

Andrena 3 

Andrena hirticincta 1 

Andrena nubecula 1 

Andrena wilkella 1 

Apidae 776 

Anthophora 1 

Anthophora terminalis 1 

Apis 184 

Apis mellifera 184 

Bombus 437 

Bombus bimaculatus 29 

Bombus borealis* 5 

Bombus citrinus† 2 

Bombus fervidus* 20 

Bombus griseocollis 119 

Bombus impatiens 208 

Bombus perplexus 10 

Bombus rufocinctus 1 

Bombus ternarius 26 

Bombus terricola* 7 

Bombus vagans 10 

Ceratina 1 

Ceratina calcarata 1 

Melissodes 34 

Melissodes bimaculatus 26 

Melissodes desponsa† 3 

Melissodes druriellus*† 1 

Melissodes trinodis† 4 

Peponapis 5 

Peponapis pruinose† 5 

Ptilothrix 5 

Ptilothrix bombiformis† 5 

Triepeolus 3 

Triepeolus lunatus 3 

Xylocopa 106 

Xylocopa virginica† 106 

Colletidae 19 

Colletes 9 

Colletes inaequalis† 5 
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Colletes simulans armatus† 1 

Colletes thoracicus 3 

Hylaeus 10 

Hylaeus mesillae cressoni 1 

Hylaeus modestus 9 

Halictidae 78 

Agapostemon 21 

Agapostemon sericeus 1 

Agapostemon splendens† 1 

Agapostemon virescens 19 

Augochlora 29 

Augochlora pura 29 

Augochlorella 3 

Augochlorella aurata 3 

Halictus 22 

Halictus confuses 4 

Halictus ligatus 16 

Halictus rubicundus 2 

Lasioglossum 2 

Lasioglossum (Dialictus) 1 

Lasioglossum nigroviride† 1 

Megachilidae 59 

Anthidiellum 1 

Anthidiellum notatum† 1 

Anthidium 15 

Anthidium manicatum 15 

Coelioxys 3 

Coelioxys coturnix† 1 

Coelioxys modestus† 1 

Coelioxys octodentatus† 1 

Megachile 29 

Megachile campanulae 2 

Megachile frigida 1 

Megachile inermis* 1 

Megachile mendica 2 

Megachile pugnata pugnata† 3 

Megachile rotundata† 1 

Megachile sculpturalis 18 

Megachile texana† 1 

Osmia 4 

Osmia bucephala 1 

Osmia cornifrons 3 

Paranthidium 5 

Paranthidium jugatorium† 5 
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Stelis 2 

Stelis louisae† 2 

Lepidoptera 325 

Noctuidae 18 

Schinia 18 

Schinia arcigera*† 5 

Schinia florida*† 9 

Schinia rivulosa*† 3 

Schinia trifascia*† 1 

Sphingidae 307 

Amorpha 11 

Amorpha juglandis*† 11 

Amphion 11 

Amphion floridensis*† 11 

Ceratomia 27 

Ceratomia amyntor*† 7 

Ceratomia undulosa*† 20 

Darapsa 23 

Darapsa choerilus*† 4 

Darapsa myron*† 18 

Darapsa versicolor*† 1 

Deidamia 10 

Deidamia inscriptum*† 10 

Dolba 1 

Dolba hyloeus*† 1 

Eumorpha 23 

Eumorpha pandorus*† 23 

Hemaris 82 

Hemaris diffinis*† 32 

Hemaris gracilis*† 1 

Hemaris thysbe* 49 

Hyles 4 

Hyles gallii*† 3 

Hyles lineata*† 1 

Lapara 8 

Lapara bombycoides*† 8 

Lintneria 2 

Lintneria eremitus*† 2 

Manduca 8 

Manduca jasminearum*† 1 

Manduca quinquemaculata*† 1 

Manduca sexta*† 6 

Pachysphinx 12 

Pachysphinx modesta*† 12 
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Paonias 51 

Paonias astylus*† 4 

Paonias excaecata*† 27 

Paonias myops*† 20 

Smerinthus 12 

Smerinthus cerisyi*† 1 

Smerinthus jamaicensis*† 11 

Sphecodina 6 

Sphecodina abbottii*† 6 

Sphinx 16 

Sphinx chersis*† 3 

Sphinx gordius*† 1 

Sphinx kalmiae*† 10 

Sphinx poecila*† 2 

Grand Total 1,611 

* Indicates species in need of conservation attention according to NYNHP and Bartomeus et al. 

2013a 

† Indicates unique taxa only found by these volunteers 
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