2020

Twisted Sequences of Extensions

Kevin J. Carlin
Assumption University, kcarlin@assumption.edu

Follow this and additional works at: https://digitalcommons.assumption.edu/math-computer-sciencefaculty
Part of the Mathematics Commons

Recommended Citation

Carlin, Kevin J., "Twisted Sequences of Extensions" (2020). Mathematics and Computer Science Department Faculty Works. 1.
https://digitalcommons.assumption.edu/math-computer-science-faculty/1

This Article is brought to you for free and open access by the Mathematics and Computer Science Department at Digital Commons @ Assumption University. It has been accepted for inclusion in Mathematics and Computer Science Department Faculty Works by an authorized administrator of Digital Commons @ Assumption University. For more information, please contact digitalcommons@assumption.edu.

TWISTED SEQUENCES OF EXTENSIONS

KEVIN J. CARLIN

Abstract

Gabber and Joseph [GJ, §5] introduced a ladder diagram between two natural sequences of extensions. Their diagram is used to produce a 'twisted' sequence that is applied to old and new results on extension groups in category \mathcal{O}.

1. The Gabber-Joseph Isomorphism

Let \mathcal{A} be an abelian category with enough projectives. Let $\mathrm{E}^{p}=\operatorname{Ext}_{\mathcal{A}}^{p}$ (with the convention that $\mathrm{E}^{p}=0$ if $p<0$). Let $\mathrm{H}=\mathrm{E}^{0}=\operatorname{hom}_{\mathcal{A}}$. If E is used to represent some E^{p}, then use the relative notations, E^{+}and E^{-}, to represent E^{p+1} and E^{p-1} respectively.

Suppose that R and T are exact, mutually adjoint endofunctors defined on \mathcal{A}. Let $\theta=R T$. The unit of the adjunction (T, R) is $\eta: \mathrm{Id} \rightarrow \theta$ and the co-unit of the adjunction (R, T) is $\epsilon: \theta \rightarrow \mathrm{Id}$. Use these to define the functors,

$$
\begin{aligned}
C & =\operatorname{Coker} \eta & D & =\operatorname{Coim} \eta \\
K & =\operatorname{Ker} \epsilon & I & =\operatorname{Im} \epsilon .
\end{aligned}
$$

There are also natural transformations, $\iota: I \rightarrow \mathrm{Id}$ and $\pi: \mathrm{Id} \rightarrow D$.
There is a natural adjoint pairing (C, K) so that C is right exact and K is left exact. If M and N are objects in \mathcal{A}, there are canonical exact sequences, $K N \hookrightarrow \theta N \rightarrow I N$ and $D M \hookrightarrow \theta M \rightarrow C M$. Each gives rise to a long exact sequence of extensions.

Theorem 1.1 [GJ, 5.1.8] Suppose that M is C-acyclic. There is a natural commutative diagram with exact rows,

where β is an isomorphism. If $D M$ is C-acyclic and $I N=N$, then α and γ are isomorphisms.

Proof. Let $P \rightarrow M$ be a projective resolution. There is an exact sequence of chain complexes,

$$
0 \longrightarrow D P \longrightarrow \theta P \longrightarrow C P \longrightarrow 0
$$

2010 Mathematics Subject Classification. 17B10, 17B55.

Since M is C-acyclic, this is a resolution of the exact sequence,

$$
\begin{equation*}
0 \longrightarrow D M \longrightarrow \theta M \longrightarrow C M \longrightarrow 0 . \tag{1.1.1}
\end{equation*}
$$

Let $X \rightarrow D M$ and $Z \rightarrow C M$ be projective resolutions. Use the horseshoe lemma [W, 2.28] to construct a split exact sequence resolving diagram (1.1.1),

$$
\begin{equation*}
0 \rightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0 . \tag{1.1.2}
\end{equation*}
$$

By the comparison theorem [W, 2.3.7], there are chain maps $a: X \rightarrow D P$ and $c: Z \rightarrow C P$ lifting $\operatorname{Id}_{D M}$ and $\operatorname{Id}_{C M}$ respectively. Using the splitting maps of diagram (1.1.2), construct a chain map $b: Y \rightarrow \theta P$ lifting $\mathrm{Id}_{\theta M}$ and completing a commutative diagram of chain complexes with exact rows,

Applying $\mathrm{H}(-, N)$ yields a commutative diagram with exact rows,

Since P is a projective complex, there is also a natural commutative diagram of complexes with exact rows,

The chain map ϕ_{P} is uniquely defined by the diagram because $\mathrm{H}\left(\pi_{P}, N\right) \phi_{P}=$ $\mathrm{H}\left(P, \iota_{N}\right)$. The first two vertical mappings are isomorphisms.

Combining diagram (1.1.3) and diagram (1.1.4), and applying [W, 1.3.4] yields the Gabber-Joseph diagram. Since $\theta P \rightarrow \theta M$ is a projective resolution, b is a homotopy equivalence so β is an isomorphism. (So far, this is the same as the proof given in [GJ, 5.1.8].)

Let $f: P \rightarrow X$ be a chain map lifting π_{M}. Then, by the uniqueness part of the comparison theorem, af is homotopic to π_{P}. So, $\mathrm{H}(f, N) \mathrm{H}(a, N) \phi_{P}$ is homotopic to $\mathrm{H}\left(\pi_{P}, N\right) \phi_{P}=\mathrm{H}\left(P, \iota_{N}\right)$. Passing to cohomology, $\mathrm{E}\left(\pi_{M}, N\right) \alpha=\mathrm{E}\left(M, \iota_{N}\right)$.

Now suppose that $D M$ is C-acyclic so that $D X \rightarrow D M$ is a resolution. The chain map $D(f): D P \rightarrow D X$ lifts $\operatorname{Id}_{D M}$ so $D(f) a$ is homotopic to π_{X}. Hence $\mathrm{H}(a, N) \mathrm{H}(D(f), N) \phi_{X}$ is homotopic to $\mathrm{H}\left(\pi_{X}, N\right) \phi_{X}=\mathrm{H}\left(X, \iota_{N}\right)$.

By functoriality, $\mathrm{H}(f, N) \mathrm{H}\left(X, \iota_{N}\right)=\mathrm{H}\left(P, \iota_{N}\right) \mathrm{H}(f, I N)$ and, since π is a natural transformation, $\mathrm{H}\left(\pi_{P}, N\right) \mathrm{H}(D(f), N)=\mathrm{H}(f, N) \mathrm{H}\left(\pi_{X}, N\right)$. Then,

$$
\begin{aligned}
\mathrm{H}\left(\pi_{P}, N\right) \mathrm{H}(D(f), N) \phi_{X} & =\mathrm{H}(f, N) \mathrm{H}\left(\pi_{X}, N\right) \phi_{X}=\mathrm{H}(f, N) \mathrm{H}\left(X, \iota_{N}\right) \\
& =\mathrm{H}\left(P, \iota_{N}\right) \mathrm{H}(f, I N)=\mathrm{H}\left(\pi_{P}, N\right) \phi_{P} \mathrm{H}(f, I N) .
\end{aligned}
$$

Since $\mathrm{H}\left(\pi_{P}, N\right)$ is a monomorphism, $\mathrm{H}(D(f), N) \phi_{X}=\phi_{P} \mathrm{H}(f, I N)$ which means that $\mathrm{H}(a, N) \phi_{P} \mathrm{H}(f, I N)$ is homotopic to $\mathrm{H}\left(X, \iota_{N}\right)$. Passing to cohomology yields $\alpha \mathrm{E}\left(\pi_{M}, I N\right)=\mathrm{E}\left(D M, \iota_{N}\right)$.

If $I N=N, \mathrm{E}\left(M, \iota_{N}\right)=\mathrm{Id}$ and $\mathrm{E}\left(D M, \iota_{N}\right)=\mathrm{Id}$, so that α is an isomorphism. By the long-five lemma, γ is also an isomorphism.

Corollary 1.2 If M and $D M$ are C-acyclic, then $\mathrm{E}(M, K N)$ and $\mathrm{E}(C M, I N)$ are isomorphic.

Proof. By standard properties of adjunction maps, $T\left(\epsilon_{N}\right)$ is an epimorphism. So $I\left(\iota_{N}\right)$ is an isomorphism as are $\theta\left(\iota_{N}\right)$ and $K\left(\iota_{N}\right)$. In this way, $I(I N), \theta(I N)$, and $K(I N)$ will be identified with $I N, K N$, and θN respectively. Applying theorem 1.1 to $I N$, there is a commutative diagram,

where the vertical mappings are isomorphisms and the primes indicate maps defined with respect to $I N$.

2. The Twisted Sequence

ThEOREM 2.1 Suppose that M and $D M$ are C-acyclic. There is a commutative diagram with exact rows,

where $J N=$ Coker ϵ_{N}. If $D M=M$, the first row is the long exact sequence associated to the exact sequence, $I N \hookrightarrow N \rightarrow J N$.

Proof. Let ϕ_{P}^{\prime} be the map defined by (1.1.4) with $N=I N$. Then $\mathrm{H}\left(\pi_{P}, I N\right) \phi_{P}^{\prime}=\mathrm{Id}$. Using the notation from the previous section,

$$
\begin{aligned}
\mathrm{H}\left(\pi_{P}, N\right) \mathrm{H}\left(D P, \iota_{N}\right) \phi_{P}^{\prime} & =\mathrm{H}\left(P, \iota_{N}\right) \mathrm{H}\left(\pi_{P}, I N\right) \phi_{P}^{\prime} \\
& =\mathrm{H}\left(P, \iota_{N}\right)=\mathrm{H}\left(\pi_{P}, N\right) \phi_{P}
\end{aligned}
$$

Because $\mathrm{H}\left(\pi_{P}, N\right)$ is a monomorphism, $\mathrm{H}\left(D P, \iota_{N}\right) \phi_{P}^{\prime}=\phi_{P}$. Then

$$
\mathrm{H}(a, N) \phi_{P}=\mathrm{H}(a, N) \mathrm{H}\left(D P, \iota_{N}\right) \phi_{P}^{\prime}=\mathrm{H}\left(X, \iota_{N}\right) \mathrm{H}(a, I N) \phi_{P}^{\prime} .
$$

Taking cohomology, $\alpha=\mathrm{E}\left(D M, \iota_{N}\right) \alpha^{\prime}$. In a similar fashion, $\beta=\mathrm{E}\left(\theta M, \iota_{N}\right) \beta^{\prime}$ and $\gamma=\mathrm{E}\left(C M, \iota_{N}\right) \gamma^{\prime}$.

Diagram 1:

$$
\begin{array}{cc}
\longrightarrow \mathrm{E}^{-}(D M, J N) \xrightarrow{\delta} \mathrm{E}(M, I N) & \xrightarrow{\alpha} \mathrm{E}(D M, N) \xrightarrow{\kappa} \mathrm{E}(D M, J N) \rightarrow \\
\| & \alpha^{\prime} \downarrow \\
\rightarrow \mathrm{E}^{-}(D M, J N) \longrightarrow \mathrm{E}(D M, I N) & \rightarrow \mathrm{E}(D M, N) \rightarrow \mathrm{E}(D M, J N) \rightarrow \tag{2.1.1}
\end{array}
$$

The second row is the long exact sequence associated to $I N \hookrightarrow N \rightarrow J N$. Since α^{\prime} is an isomorphism, define δ so that the first square commutes. This produces a commutative diagram with exact rows. If $D M=M, \alpha^{\prime}=I d$ which proves the second conclusion.

Diagram 2:

This is a commutative diagram with exact rows where the vertical maps are the natural connecting maps.

Diagram 3:

$$
\begin{array}{cccc}
\longrightarrow \mathrm{E}(C M, J N) & \longrightarrow \mathrm{E}^{+}(C M, I N) & \rightarrow \mathrm{E}^{+}(C M, N) & \rightarrow \mathrm{E}^{+}(C M, J N) \longrightarrow \\
\delta_{3} \uparrow & \gamma^{\prime} \uparrow & \mathrm{E}^{-}(D M, J N) \xrightarrow{d} \mathrm{E}^{+}(M, K N) \xrightarrow{\gamma} \mathrm{E}^{+}(C M, N) \xrightarrow{\chi} \mathrm{E}(D M, J N) \longrightarrow
\end{array}
$$

Since $T\left(\epsilon_{N}\right)$ is surjective, $T J N=0$. By the adjoint pairing $(R, T), \mathrm{E}(\theta M, J N)=$ $\mathrm{E}(T M, T J N)=0$ so δ_{3} is an isomorphism. Define d and χ to make the diagram commutative. Then the second row is also exact.

Assembling the three diagrams proves the first conclusion since $\delta_{3}^{-1} \delta_{3}=\mathrm{Id}$ and $\left(\gamma^{\prime}\right)^{-1} \delta_{2}^{\prime} \alpha^{\prime}=\delta_{1}$.

The second row of 2.1 will be referred to as a twisted sequence.

3. Applications in category \mathcal{O} : Older Results

Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra over \mathbb{C}. Category \mathcal{O} is the category of \mathfrak{g}-modules introduced in [BGG]. For background information on category \mathcal{O}, we will rely on [Hum2] where the original sources and the later developments can be found.

Let S be the set of simple root reflections in the Weyl group W. The stabilizer of a weight λ under the dot action is W_{λ}°. Let w_{0} denote the longest element and let 1 denote the identity. The Bruhat order on W is denoted by $<$. Let ξ be its
characteristic function defined by

$$
\xi(x, y)= \begin{cases}1 & \text { if } x \leq y \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Let ℓ denote the length function on W. If $x, y \in W, \ell(x, y)=\ell(y)-\ell(x)$.
The R-polynomials are defined in [Hum1, §7]. Let $r_{p}(x, y)$ denote the coefficient of q^{p} in $(-1)^{n-p} R_{x, y}$ where $n=\ell(x, y)$. A recursion for $r_{p}(x, y)$ begins with $r_{p}\left(w_{0}, y\right)=0$ if $p \neq 0$ and $r_{0}\left(w_{0}, y\right)=\xi\left(w_{0}, y\right)$. If $x<w_{0}$, choose an $s \in S$ so that $x s>x$. Then, for all p,

$$
r_{p}(x, y)= \begin{cases}r_{p}(x s, y s) & \text { if } y s>y \tag{3.0.1}\\ r_{p}(x s, y)+r_{p-1}(x s, y)-r_{p-1}(x s, y s) & \text { if } y s<y\end{cases}
$$

The following properties of the r_{p} can be proved by induction or translated from properties of the R-polynomials in [Hum1, §7]. If $r_{p}(x, y) \neq 0$, then $x \leq y$ and $0 \leq p \leq \ell(x, y)$. Also $r_{0}=\xi$ and, if $n=\ell(x, y), r_{p}(x, y)=r_{n-p}(x, y)$.

Specializing (3.0.1) to $p=1, r_{1}\left(w_{0}, y\right)=0$ and, if $x s>x$,

$$
r_{1}(x, y)= \begin{cases}r_{1}(x s, y s) & \text { if } y s>y, \tag{3.0.2}\\ r_{1}(x s, y)+1 & \text { if } y s<y \text { and } x s \nless y s, \\ r_{1}(x s, y) & \text { if } y s<y \text { and } x s<y s .\end{cases}
$$

Choose anti-dominant integral weights λ and μ so that $W_{\lambda}^{\circ}=\{e\}$ and $W_{\mu}^{\circ}=\{e, s\}$ where $s \in S$. If $x \in W$, let M_{x} denote the Verma module with highest weight $x \cdot \lambda$. The block of \mathcal{O} with projective generator $M_{w_{0}}$ is $\mathcal{O}_{\lambda}[H u m 2,4.9]$. Here, T is the translation functor T_{λ}^{μ} where R is its left and right adjoint T_{μ}^{λ} [Hum2, 7.1-2]. A module $M \in \mathcal{O}_{\lambda}$ is C-acyclic if, and only if, $D M=M[\mathrm{C}, 2.9]$ and this condition is true for each $M_{x}[\mathrm{C}, 2.8(\mathrm{i})]$.

For $x, y \in W$, write $\mathrm{E}^{p}(x, y)$ for $\mathrm{E}^{p}\left(M_{x}, M_{y}\right)$ and $e_{p}(x, y)$ for its dimension. Also, for x and $z \leq y$ in W, write $\mathrm{E}^{p}(x, y / z)$ for $\mathrm{E}^{p}\left(M_{x}, M_{y} / M_{z}\right)$ and let $e_{p}(x, y / z)$ be the dimension.

Since $M_{w_{0}}$ is projective, $e_{p}\left(w_{0}, y\right)=0$ if $p \neq 0$. By the properties of homomorphisms between Verma modules, $e_{0}=\xi$ [Hum2, 5.2], so $e_{0}=r_{0}$. The vanishing properties also match. If $e_{p}(x, y) \neq 0$ then $x \leq y$ and $0 \leq p \leq \ell(x, y)$ [Hum2, 6.11].

The twisted sequence can be used to re-prove some of the results of [GJ, 5.2].
Proposition 3.1 [GJ, 5.2.1] Suppose that $x s>x$ and $y s<y$. For all p,

$$
e_{p}(x s, y)=e_{p}(x, y s)
$$

Proof. Let $M=M_{x s}$ and $N=M_{y s}$. Then $C M=M_{x}, I N=N$, and $K N=M_{y}[\mathrm{C}$, 3.5]. By 1.2, $\mathrm{E}(x s, y)$ is isomorphic to $\mathrm{E}(x, y s)$.

Suppose that $x s>x$ and $y s<y$. Apply 2.1 with $M=M_{x s}$ and $N=M_{y}$. Then $I N=M_{y s}, C M=M_{x}$, and $K N=M_{y}$. There is a commutative diagram with exact
rows,

$$
\begin{array}{ccc}
\rightarrow \mathrm{E}^{-}(x s, y / y s) & \xrightarrow{\delta} \mathrm{E}(x s, y s) \xrightarrow{\alpha} \mathrm{E}(x s, y) \xrightarrow{\kappa} \mathrm{E}(x s, y / y s) \longrightarrow \\
\| & \delta_{1} \downarrow & \delta_{2} \downarrow \tag{3.1.1}
\end{array}
$$

The following result is the twisted equivalent of [GJ, 5.2.3].
Proposition 3.2 Suppose that $x s>x$ and $y s<y$. For all p,

$$
e_{p}(x, y)-e_{p}(x s, y) \geq e_{p-1}(x s, y)-e_{p-1}(x s, y s)
$$

and this is an equality if, and only if, $\operatorname{Ker} d^{p-1}=\operatorname{Ker} \delta^{p-1}$ and $\operatorname{Ker} d^{p-2}=\operatorname{Ker} \delta^{p-2}$.
Proof. Since $d=\delta_{1} \delta, \operatorname{Ker} \delta \subseteq \operatorname{Ker} d$. Identify E with E^{p-1} and d with d^{p-2} in diagram (3.1.1). Because the second row is exact, there is a short exact sequence

$$
0 \longrightarrow \operatorname{Im} d^{p-2} \longrightarrow \mathrm{E}^{p}(x s, y) \longrightarrow \mathrm{E}^{p}(x, y) \longrightarrow \operatorname{Ker} d^{p-1} \longrightarrow 0
$$

Then

$$
\begin{aligned}
e_{p}(x, y)-e_{p}(x s, y) & =\operatorname{dim} \operatorname{Ker} d^{p-1}-\left(e_{p-2}(x s, y / y s)-\operatorname{dim} \operatorname{Ker} d^{p-2}\right) \\
& \geq \operatorname{dim} \operatorname{Ker} \delta^{p-1}-\left(e_{p-2}(x s, y / y s)-\operatorname{dim} \operatorname{Ker} \delta^{p-2}\right) \\
& =e_{p-1}(x s, y)-e_{p-1}(x s, y s),
\end{aligned}
$$

where the last equality uses the exactness of the first row of (3.1.1).
Corollary 3.3 [C, 3.9] Suppose that $x s>x$, $y s<y$, and $x s \nless y s$. For all p,

$$
e_{p}(x, y)=e_{p}(x s, y)+e_{p-1}(x s, y)
$$

Proof. Because $\mathrm{E}(x s, y s)=0, \delta=0$ and $d=0$. The conditions for equality in 3.2 are satisfied.

These results led naturally to the conjecture that $e_{p}=r_{p}$ for all $p[\mathrm{C}, 3.1]$. It was soon discovered that there are examples where $r_{p}(x, y)$ is negative [Boe], so equality in 3.2 can not hold in general. One easy consequence of [GJ, 5.2.3] is that r_{1} is, at least, a lower bound for e_{1}. (Later, it will be shown that $e_{1} \neq r_{1}$.)

Proposition $3.4 e_{1} \geq r_{1}$
Proof. Assume there is a counterexample, $e_{1}(x, y)<r_{1}(x, y)$, with x maximal in the Bruhat ordering. If $x=w_{0}, e_{1}\left(w_{0}, y\right)=0=r_{1}\left(w_{0}, y\right)$ so $x<w_{0}$. Choose an $s \in S$ with $x s>x$. There are two cases to consider.

If $y s>y$, then $e_{1}(x, y)=e_{1}(x s, y s)$ by 3.1. Since x is maximal, $e_{1}(x s, y s) \geq$ $r_{1}(x s, y s)=r_{1}(x, y)$ by equation (3.0.2).

If $y s<y$, then 3.2 implies that $e_{1}(x, y) \geq e_{1}(x s, y)+e_{0}(x s, y)-e_{0}(x s, y s)$. Since $e_{0}=r_{0}$ and x is maximal, $e_{1}(x, y) \geq r_{1}(x s, y)+r_{0}(x s, y)-r_{0}(x s, y s)=r_{1}(x, y)$ by (3.0.1).

In either case, $e_{1}(x, y) \geq r_{1}(x, y)$, which contradicts the choice of x.
The twisted sequence in diagram (3.1.1) has the same terms as the two-line spectral sequence of $[\mathrm{C}, 3.4]$. It is an indirect resolution of the conjecture that the coboundary of the spectral sequence should factor as $d=\delta_{1} \delta[\mathrm{C}, \mathrm{p} .37]$. It can also
be substituted for the spectral sequence in many of the proofs. As an example, one result that is needed below will be re-proved here.
Proposition 3.5 [C, 3.8] If $x \leq y$ and $n=\ell(x, y)$, then $e_{n}(x, y)=1$.
Proof. Suppose that $x \leq y$ and assume that there is a counterexample with x maximal. If $x=w_{0}$, then $y=w_{0}, n=0$ and $e_{0}\left(w_{0}, w_{0}\right)=1$ so $x<w_{0}$. Choose an $s \in S$ so that $x s>x$. There are two cases to consider.

If $y s>y$, and $e_{n}(x, y)=e_{n}(x s, y s)$ by 3.1. Because x is maximal and $x s \leq y s$, $e_{n}(x s, y s)=1$.

If $y s<y$, then consider diagram (3.1.1) with $\mathrm{E}=\mathrm{E}^{n-1}$ and apply the vanishing properties.

Then δ_{2} is an isomorphism, so $e_{n}(x, y)=e_{n-1}(x s, y)$. But $e_{n-1}(x s, y)=1$ since $x s \leq y$ and x is maximal.

In either case, $e_{n}(x, y)=1$, which contradicts the choice of x.
In the remainder of this section, the recursive calculation of $e_{n-1}(x, y)$ where $n=$ $\ell(x, y)$ will be considered. Suppose that $x<x s<y s<y$ for some $s \in S$. Applying diagram (3.1.1) with $\mathrm{E}=\mathrm{E}^{n-2}$ yields
$\longrightarrow \mathrm{E}^{-}(x s, y / y s) \xrightarrow{\delta} \mathrm{E}(x s, y s) \longrightarrow \mathrm{E}(x s, y) \longrightarrow \mathrm{E}(x s, y / y s) \longrightarrow 0$

$$
\begin{equation*}
\longrightarrow \mathrm{E}^{-}(x s, y / y s) \xrightarrow{d} \mathrm{E}^{+}(x s, y) \longrightarrow \mathrm{E}^{+}(x, y) \longrightarrow \mathrm{E}(x s, y / y s) \longrightarrow 0 \tag{3.5.1}
\end{equation*}
$$

By $3.5, e_{n-2}(x s, y s)=e_{n-1}(x s, y)=1$ so that δ_{1} is an isomorphism or zero. But δ_{1} is part of the exact sequence

$$
\mathrm{E}^{n-2}(x s, y s) \xrightarrow{\delta_{1}} \mathrm{E}^{n-1}(x s, y) \longrightarrow \mathrm{E}^{n-1}\left(M_{x s}, \theta M_{y}\right) \longrightarrow 0
$$

showing that δ_{1} is an isomorphism, if and only if, $\mathrm{E}^{n-1}\left(M_{x s}, \theta M_{y}\right)$ is zero. By the adjoint pairing $(T, R), \mathrm{E}^{n-1}\left(M_{x s}, \theta M_{y}\right)$ is isomorphic to $\mathrm{E}^{n-1}\left(T M_{x s}, T M_{y}\right)$. The vanishing behavior of this singular extension group determines whether d is zero or surjective. This suggests a conjecture on singular vanishing.

Conjecture 3.6 If $x<x s<y s<y$, then $\mathrm{E}^{n-1}\left(T M_{x s}, T M_{y}\right)=0$, where $n=\ell(x, y)$.
Proposition 3.7 Suppose that $x<y$ and let $n=\ell(x, y)$. Conjecture 3.6 implies that

$$
e_{n-1}(x, y)=r_{1}(x, y)
$$

Proof. Assume there is a counterexample with x maximal. Because $y \leq w_{0}, x<w_{0}$ and there is an $s \in S$ with $x s>x$. There are three cases to consider.

If $y s>y, 3.1$ implies that $e_{n-1}(x, y)=e_{n-1}(x s, y s)$. Since x is maximal and $x s<y s, e_{n-1}(x s, y s)=r_{1}(x s, y s)=r_{1}(x, y)$ by equation (3.0.2).

If $y s<y$ and $x s \nless y s, e_{n-1}(x, y)=e_{n-1}(x s, y)+e_{n-2}(x s, y)$ by 3.3. Since $x s \leq y$, $e_{n-1}(x s, y)=1$ by 3.5. If $x s=y$, then $n=1$ and $e_{0}(x, y)=r_{0}(x, y)=r_{1}(x, y)$ so $x s<y$ by the choice of x. Because x is maximal, $e_{n-2}(x s, y)=r_{1}(x s, y)$. Then $e_{n-1}(x, y)=1+r_{1}(x s, y)=r_{1}(x, y)$ by equation (3.0.2).

If $x<x s<y s<y$ and assuming that conjecture 3.6 is true, δ_{1} in diagram (3.5.1) is an isomorphism. Then $e_{n-1}(x, y)=e_{n-2}(x s, y)$. Because x is maximal, $e_{n-2}(x s, y)=r_{1}(x s, y)=r_{1}(x, y)$ by equation (3.0.2).

In each case, $e_{n-1}(x, y)=r_{1}(x, y)$, which contradicts the choice of x.

4. Applications in category \mathcal{O} : younger results

Most of the results of the last section have been known for a long time. The newer results involve r_{1}. The first new result in this direction was published by Mazorchuk in 2007.

Proposition 4.1 [Maz, Lemma 33] $e_{1}\left(1, w_{0}\right)=|S|$.
Corollary 4.2 For all $x, y \in W$,
(i) $e_{1}\left(x, w_{0}\right)=r_{1}\left(x, w_{0}\right)$ and
(ii) $e_{1}(1, y)=r_{1}(1, y)$.

The first item of 4.2 is equivalent to the original statement of [Maz, Theorem 32] (adjusting for anti-dominance and ignoring the grading). It is expressed here in terms of r_{1}. The proof of the corollary uses the following lemma.

Lemma 4.3 Suppose that $x s>x$ and $y s<y$ for some $s \in S$. If $e_{1}(x, y)=r_{1}(x, y)$, then $e_{1}(x s, y)=r_{1}(x s, y)$
Proof. Suppose that $e_{1}(x s, y) \neq r_{1}(x s, y)$. By 3.4, $e_{1}(x s, y)>r_{1}(x s, y)$. Using 3.2 and 3.0.1,

$$
\begin{aligned}
e_{1}(x, y) & \geq e_{1}(x s, y)+e_{0}(x s, y)-e_{0}(x s, y s) \\
& >r_{1}(x s, y)+r_{0}(x s, y)-r_{0}(x s, y s)=r_{1}(x, y)
\end{aligned}
$$

so $e_{1}(x, y) \neq r_{1}(x, y)$
Proof of the corollary. To show that $e_{1}\left(1, w_{0}\right)=r_{1}\left(1, w_{0}\right)$, apply [Hum1, 7.10(20)] with $x=1$ and $w=w_{0}$ to get

$$
\sum_{1 \leq y \leq w_{0}} R_{1, y}=q^{n}
$$

where $n=\ell\left(1, w_{0}\right)$. The coefficient of q^{n-1} on the left-hand side is

$$
(-1)^{1} r_{n-1}\left(1, w_{0}\right)+|S|
$$

so $r_{1}\left(1, w_{0}\right)=r_{n-1}\left(1, w_{0}\right)=|S|$.
To prove item (i), assume that there is a counterexample with x minimal. Then $x>1$ and there is an $s \in S$ with $x s<x$. By minimality of $x, e_{1}\left(x s, w_{0}\right)=r_{1}\left(x s, w_{0}\right)$. The lemma implies that $e_{1}\left(x, w_{0}\right)=r_{1}\left(x, w_{0}\right)$, contradicting the choice of x.

The proof of item (ii) is similar.

The next development was Noriyuki Abe's preprint that originally appeared on the ArXiv in 2010. Let $v(x, y)=e_{1}(x, y)-e_{0}\left(x, w_{0} / y\right)$ if $x \leq y$ and let $v(x, y)=0$ if $x \not \leq y$. If $x \leq y$, then $v(x, y)=\operatorname{dim} V\left(w_{0} x, w_{0} y\right)$ in Abe's notation. Then [Abe1, theorem 4.4] becomes $v=r_{1}$. As stated, the theorem is not true. There are 16 pairs (x, y) in type B_{3} with $r_{1}(x, y)=4$ but, by definition, $v \leq 3$ [Abe1, Theorem 1.1(1)]. Abe's recursion for V [Abe1, Theorem 4.3] does imply that $v \leq r_{1}$ (by comparison with 3.0.2). Then, combined with $3.4, v \leq r_{1} \leq e_{1}$ or

$$
r_{1}(x, y) \leq e_{1}(x, y) \leq r_{1}(x, y)+e_{0}\left(x, w_{0} / y\right)
$$

Note that $e_{0}\left(1, w_{0} / y\right)=0$ and $e_{0}\left(x, w_{0} / w_{0}\right)=0$, so Abe's inequality does generalize 4.2. Although $v \neq r_{1}$, Abe has communicated an example in type B_{3} showing that $e_{1} \neq r_{1}$ [Abe2].

In the remainder, the twisted sequence approach will be used to prove properties of v that correspond with Abe's results from [Abe1].

Proposition 4.4 If $x s>x$ and $y s<y$, then $e_{0}\left(x s, w_{0} / y\right)=e_{0}\left(x, w_{0} / y s\right)$.
Proof. Let $M=M_{x s}$ and $N=M_{w_{0}} / M_{y s}$. There is a commutative diagram with exact rows,

By the snake lemma, $K N=M_{w_{0}} / M_{y}$. By the adjoint pairing $(C, K), \mathrm{H}\left(M_{x s}, K N\right)$ and $\mathrm{H}\left(M_{x}, N\right)$ are isomorphic.

By 3.1, if $x s>x$ and $y s<y, e_{1}(x s, y)=e_{1}(x, y s)$ which proves the following property of v, which corresponds to [Abe1, 4.3(1)].

Corollary 4.5 If $x s>x$ and $y s<y$, then $v(x s, y)=v(x, y s)$.
Next, there is another ladder diagram that links extensions of fractional Verma modules to the twisted sequence.

Proposition 4.6 Suppose that $x s>x$ and $y s<y$. There is a commutative diagram with exact rows,

$$
\begin{array}{ccccc}
\longrightarrow \mathrm{E}^{-}(x s, y / y s) & \stackrel{\delta}{\longrightarrow} \mathrm{E}\left(x, w_{0} / y s\right) & \xrightarrow{\alpha} \mathrm{E}\left(x, w_{0} / y\right) & \xrightarrow{\kappa} \mathrm{E}(x s, y / y s) \longrightarrow \\
\| & \delta_{1} \downarrow & \delta_{2} \downarrow & \\
\longrightarrow \mathrm{E}^{-}(x s, y / y s) \xrightarrow{d} & \mathrm{E}^{+}(x s, y) & \xrightarrow{\gamma} & \mathrm{E}^{+}(x, y) & \xrightarrow{\chi} \mathrm{E}(x s, y / y s) \longrightarrow
\end{array}
$$

where the second row is the same as the second row of diagram (3.1.1).
Proof. The proof is similar in structure to the proof of 2.1. Fix a commuting triangle of Verma module injections,

$$
\begin{array}{ccc}
M_{y s} & \longrightarrow & M_{y} \tag{4.6.1}\\
\| & & \downarrow \\
M_{y s} & \longrightarrow & M_{w_{0}}
\end{array}
$$

Diagram 1:

$$
\begin{array}{cc}
\rightarrow \mathrm{E}^{-}(x s, y / y s) & \xrightarrow{\delta} \mathrm{E}\left(x, w_{0} / y s\right) \xrightarrow{\alpha} \mathrm{E}\left(x, w_{0} / y\right) \xrightarrow{\kappa} \mathrm{E}(x s, y / y s) \longrightarrow \\
\delta_{3} \downarrow & \| \\
\longrightarrow \mathrm{E}(x, y / y s) & \rightarrow \mathrm{E}\left(x, w_{0} / y s\right) \longrightarrow \mathrm{E}\left(x, w_{0} / y\right) \longrightarrow \mathrm{E}^{+}(x, y / y s) \longrightarrow
\end{array}
$$

The map δ_{3} is the same as the isomorphism δ_{3} from diagram (2.1.2) with $M=M_{x s}$ and $N=M_{y}$. The second row is the long exact sequence associated to the exact sequence,

$$
M_{y} / M_{y s} \hookrightarrow M_{w_{0}} / M_{y s} \rightarrow M_{w_{0}} / M_{y}
$$

Define δ and κ so that the diagram commutes. This produces a commutative diagram with exact rows.

Diagram 2:

This is a commutative diagram with exact rows where $\delta_{k}, 4 \leq k \leq 7$ are natural connecting maps (all derived from rotations of diagram (4.6.1)). For example, the middle square commutes because of the short ladder,

Diagram 3:

$$
\begin{array}{cccc}
\longrightarrow \mathrm{E}(x, y / y s) & \longrightarrow \mathrm{E}^{+}(x, y s) & \longrightarrow \mathrm{E}^{+}(x, y) & \longrightarrow \mathrm{E}^{+}(x, y / y s) \\
\delta_{3} \uparrow & \gamma^{\prime} \uparrow & \delta_{3} \uparrow \\
\longrightarrow \mathrm{E}^{-}(x s, y / y s) & \xrightarrow{d} \mathrm{E}^{+}(x s, y) \xrightarrow{\gamma} \mathrm{E}^{+}(x, y) \xrightarrow{\chi} \mathrm{E}(x s, y / y s) \longrightarrow
\end{array}
$$

This is a commutative diagram with exact rows because it is diagram (2.1.3) with $M=M_{x s}$ and $N=M_{y}$. Since γ^{\prime} is an isomorphism, assembling the diagrams completes the proof.

Applying the same argument as in the proof of 3.2 yields the following inequality.
Proposition 4.7 Suppose that $x s>x$ and $y s<y$. For all p,

$$
e_{p}(x, y)-e_{p}(x s, y) \geq e_{p-1}\left(x, w_{0} / y\right)-e_{p-1}\left(x, w_{0} / y s\right)
$$

This is an equality if, and only if, $\operatorname{Ker} d^{p-1}=\operatorname{Ker} \delta^{p-1}$ and $\operatorname{Ker} d^{p-2}=\operatorname{Ker} \delta^{p-2}$.

Corollary 4.8 If $x s>x$ and $y s<y$, then

$$
e_{1}(x, y)-e_{1}(x s, y) \geq e_{0}\left(x, w_{0} / y\right)-e_{0}\left(x s, w_{0} / y\right)
$$

and this is an equality if, and only if, $\operatorname{Ker} d^{0}=\operatorname{Ker} \delta^{0}$
Proof. Taking $p=1$ in 4.7,

$$
e_{1}(x, y)-e_{1}(x s, y) \geq e_{0}\left(x, w_{0} / y\right)-e_{0}\left(x, w_{0} / y s\right)
$$

By $4.4, e_{0}\left(x, w_{0} / y s\right)=e_{0}\left(x s, w_{0} / y\right)$.
The conclusion is equivalent to $v(x, y) \geq v(x s, y)$. When $x s<y s$, Abe proves $v(x, y)=v(x s, y)$ by showing that the images of $\mathrm{E}^{1}(x s, y)$ and $\mathrm{E}^{1}(x, y)$ in $\mathrm{E}^{1}\left(x, w_{0}\right)$ are the same [Abe1, 4.3(2)].

The preceding proposition is sufficient, by itself, to explain Abe's counter-example for $e_{1}=r_{1}$. In type B_{3}, let s_{1}, s_{2}, and s_{3} be the simple root reflections, where $s_{1} s_{2}$ has order 3 and $s_{2} s_{3}$ has order 4. Take $x=s_{1} s_{3}, y=w_{0} s_{3}=s_{2} s_{3} s_{1} s_{2} s_{3} s_{2} s_{1} s_{2}$, and $s=s_{2}$. Using the work of H. Matumoto [Mat] on scalar, generalized Verma module homomorphisms, Abe shows that there is a nonzero homomorphism between M_{x} and $M_{w_{0}} / M_{y}$ so $e_{0}\left(x, w_{0} / y\right) \neq 0$ [Abe2]. Kazhdan-Lusztig multiplicities imply that $e_{0}\left(x, w_{0} / y\right)-e_{0}\left(x s, w_{0} / y\right)=1$. By $4.8, e_{1}(x, y)>e_{1}(x s, y)$, which means $e_{1}(x, y) \neq r_{1}(x, y)$.
Proposition 4.9 Suppose that $x<x s \leq y$ and $y s<y$. If $x s \nless y s$, then $v(x, y) \leq$ $v(x s, y)+1$ and this is an equality if, and only if, $\operatorname{Ker} \delta^{0}=0$.
Proof. In 4.6, $d=0$ by 3.3. Also $e_{0}(x s, y / y s)=1$ implies that $e_{0}\left(x, w_{0} / y\right)-$ $e_{0}\left(x, w_{0} / y s\right) \leq 1$.

The condition for equality in 4.9 must somehow be equivalent to the condition $v_{s} \notin s V\left(w_{0} x s, w_{0} y\right)$ from [Abe1, 4.3(2)]. Finally, another twisted sequence can be used to prove a result that is also consistent with [Abe1, 4.3(2)].

Suppose that $x s>x$ and $y s<y$. Let $M=M_{x s}$ and $N=M_{w_{0}} / M_{y s}$. There is a twisted sequence associated to N. From diagram (4.4.1), $I N=M_{w_{0} s} / M_{y s}$ so, by 2.1, there is a commutative diagram with exact rows,

Proposition 4.10 Suppose that $x<x s \leq y$ and $y s<y$. If $x s \nless w_{0} s$, then $v(x, y)=$ $v(x s, y)+1$.
Proof. Because $y s<w_{0} s, x s \nless w_{0} s$ implies $x s \nless y s$ and hence $e_{0}\left(x s, w_{0} s / y s\right)=0$. If E is identified with E^{0} in diagram (4.9.1), κ is an injective map, which implies that δ_{2} is injective. Working through the definitions, there is a commutative diagram,

$$
\begin{aligned}
0 \longrightarrow \mathrm{H}(x s, y / y s) & \longrightarrow \mathrm{H}\left(x s, w_{0} / y s\right) \\
\delta \downarrow & \delta_{2} \downarrow \\
\mathrm{E}^{1}\left(x, w_{0} / y s\right) & =\mathrm{E}^{1}\left(x, w_{0} / y s\right)
\end{aligned}
$$

where δ is the homomorphism defined in the proof of 4.6. Since δ_{2} is injective, Ker $\delta=0$ and $v(x, y)=v(x s, y)+1$ by 4.9.

In a similar vein, one can prove that $v(x, y)=v(x s, y)$ if $x<x s<y s<y$ and $e_{0}\left(x s, w_{0} s / y s\right)=0$. In that case, $e_{1}(x, y)=e_{1}(x s, y)$ as well.

If the goal is a general recursive formula for e_{1}, then the goal is well over the horizon. The classic conjecture, $e_{1}=r_{1}$, is false. Abe's recursion for v is very effective (and v is bounded above by the rank of \mathfrak{g}), but the resulting determination of e_{1} depends on the very difficult problem of generalized Verma module homomorphisms. If $x \leq y$ and $e_{0}\left(x, w_{0} / y\right)$ is known, then $e_{1}(x, y)=v(x, y)+e_{0}\left(x, w_{0} / y\right)$.

References

[Abe1] N. Abe, First extension groups of Verma modules and R-polynomials, J. Lie Theory 25 (2015), 377-393.
[Abe2] N. Abe, private communication, September 14, 2015.
[BGG] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, A category of \mathfrak{g}-modules, Func. Anal. Appl. 10 (1976), 87-92.
[Boe] B. D. Boe, A counterexample to the Gabber-Joseph conjecture, Kazhdan-Lusztig theory and related topics, Contemp. Math., , Amer. Math. Soc., Providence, R. I., 139 (1992), 1-3.
[C] K. J. Carlin, Extensions of Verma modules, Trans. Amer. Math. Soc. 294, no. 1 (1986), 29-43.
[GJ] O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. Ecole Norm. Sup. 14 (1981), 261-302.
[Hum1] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math. 29, Cambridge University Press, Cambridge, 1990.
[Hum2] J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category \mathcal{O}, Grad. Studies in Math. 94, Amer. Math. Soc., Providence, R. I., 2008.
[Mat] H. Matumoto, The homomorphisms between scalar generalized Verma modules, Compos. Math. 150, no. 5 (2014), 877-892.
[Maz] V. Mazorchuk, Some homological properties of the category \mathcal{O}, Pacific Jour. of Math. 232 (2007), 313-341.
[W] C. A. Wiebel. An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, 1994.

Department of Mathematics and Computer Science, Assumption College, 500 Salisbury St., Worcester MA 01609-1296

Email address: kcarlin@assumption.edu

