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ABSTRACT  

Balance and postural control exercises are often a part of exercise programs. During exercise 

programs, movement practitioners can provide instructions to facilitate performance and 

learning. Instructions can be used to direct attentional focus, which has been found to affect the 

performance and learning of motor skills, including balance and postural control tasks. However, 

no known studies to date have investigated the effect of both internal and external attentional 

focus instructions on static single leg balance performance. The purpose of this study was to 

investigate the effect of attentional focus instructions on static single leg balance performance as 

reflected by the complexity of the center of pressure (COP) profile. Data from forty-six 

participants between the ages of 19-28 years old were analyzed. Participants were divided into 

three groups: internal focus (INT) (n=15), external focus (EXT) (n=16) and control (CON) 

(n=15). Participants performed a thirty-five second static single leg balance task. Prior to the 

balance task, instructions were provided to participants which differed in the direction of 

attentional focus (internal or external focus), and the control group did not receive specific 

attentional focus instructions. Outcome measures were the scaling exponent determined from a 

detrended fluctuation analysis (DFA) to infer complexity of the COP profile in the anterior-

posterior (AP) and medial-lateral (ML) directions, and root mean square error (RMSE) of the 

COP profile in AP and ML directions. A one-way analysis of variance (ANOVA) determined 

there were no statistically significant differences in the measured variables among groups. The 

results did not support the claim that manipulating the direction of attentional focus affects static 

single leg balance performance.  
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CHAPTER 1 

INTRODUCTION  

 Among the many facets of physical fitness that are popularly trained in fitness programs 

are balance and postural control (Thompson, 2018; Thompson, 2019). Balance and postural 

control are related in so far as balance is a multidimensional concept referring to the ability of a 

person not to fall, and postural control is the act of maintaining, achieving or restoring a state of 

balance during any posture or activity (Pollock et al., 2000). When balance and postural control 

training is included in a multifaceted fitness program, it can provide injury-prevention benefits 

such as reduction in the occurrence of both ankle and knee injuries in athletes (Hrysomallis, 

2007). Postural control training is prevalent in sport and therapeutic settings (Zech et al., 2010; 

Shubert, 2011) - environments in which movement practitioners can provide instructions to 

learners. An important aspect of instructions during motor skill performance and acquisition is 

the attentional focus that they facilitate (Nideffer, 1976; Nideffer, 1993; Wulf, 2013), namely 

external focus or internal focus (which will be discussed in a subsequent section). Nideffer 

(1976) originally classified attention as having two primary characteristics - width 

(broad/narrow) and direction (internal/external). The effects of the direction of attentional focus 

on motor performance and learning have been well studied using a variety of tasks (Wulf, 2013). 

Although the effects of attentional focus on balance and postural control have been investigated 

(Kim et al., 2017), few studies have investigated the effects of internal and external attentional 

focus instructions on static standing postural control tasks, defined as balance tasks during which 

the feet are fixed on a firm support surface (Vuillerme & Nafati, 2005; Polskaia et al., 2015); 

studies that have used static standing postural control tasks have often manipulated attention 

using secondary tasks (Donker et al., 2007; Cluff et al., 2010; Uiga et al., 2018) instead of using 
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explicit attentional focus instructions. An investigation of the effects of providing internal and 

external attentional focus instructions on balance performance might guide decisions made by 

movement practitioners regarding providing attentional focus instructions to clients/patients 

performing static balance and postural control tasks. Dynamic systems theory offers a 

perspective from which such an investigation can be taken.   

 Dynamical systems theory provides a framework for the study of human movement 

science in which movement behavior is viewed as the result of self-organized pattern-forming 

processes (Kelso et al., 1987; Haken, 2010; Kelso, 1995) influenced by constraints arising from 

the organism, task and environment (Newell et al., 1989). Movement practitioners, when viewed 

from the dynamical systems perspective, act as change agents in an organism-task-environment 

system; they serve to manipulate the nature of the constraints acting on a client/patient in order to 

channel the dynamics of the movement system towards successful coordination solutions 

(Newell & Valvano, 1998). Therefore, from this perspective, it can be important for movement 

practitioners to consider the interaction of these constraints and their effect on movement 

behavior while designing and implementing programs and providing instructions/information to 

clients and/or patients. The constraints-led approach to skill acquisition entails strategically 

manipulating constraints to facilitate the emergence and discovery of functional movement 

solutions (Davids et al., 2008). Attentional focus instructions have been demonstrated as an 

important and effective constraint to manipulate during skill acquisition and performance (Wulf, 

2013).  

 Two types of attentional focus that have been well-researched are external and internal 

attentional focus (Wulf, 2013). External focus is defined as consciously attending to details 

outside of the body, often regarding performance outcome(s), whereas internal focus is defined 
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as consciously attending to details within the body, often regarding the movement process 

(Nideffer, 1976; Wulf, 2013). Although the effects may be specific to the skill level of the 

performer (Castaneda & Gray, 2007), the task (Woo et al., 2014) and the nature of the internal 

focus (Kee et al., 2012; Komar et al., 2013), performance and learning are generally greater 

under external focus compared to internal focus conditions in a variety of tasks (Wulf, 2013). In 

studies using dynamic balance tasks (balance tasks in which the feet or surface is moving), 

results consistently show external focus instructions are superior to internal focus instructions 

(Kim et al., 2017). The effects of attentional focus on static standing postural control tasks 

(standing on a solid surface with feet stationary) have been studied by imposing secondary task 

demands (Cluff et al., 2010; Donker et al., 2007; Uiga et al., 2018), however, few studies have 

examined the effects of internal and external attentional focus instructions on static postural 

control and results tend to vary (Kim et al., 2017). Part of the inconsistency may be due to how 

stability of postural control is measured. Length, area and variability of center of pressure (COP) 

profiles have commonly been used to assess stability of posture, but Newell et al. (1993) suggest 

these measures alone are not sufficient; the attractor dynamics of the postural control system 

need to also be considered.  

 Assessments of the structure and correlation of fluctuations in center of pressure (COP) 

profiles during standing postural control are used to reflect the complexity of the behavior of the 

postural control system, and have been demonstrated as useful for determining the stability and 

functionality of postural control (Blaszczyk & Klonowski, 2001; Ghomaschchi et al., 2010; Ko 

& Newell, 2016). Complexity is a result of the non-linear interaction of many parts (degrees of 

freedom) on different spatial and/or time scales in a dynamic system and supports the ability to 

respond adaptively to internal and external demands; physiological systems exploit complexity 



	
	

4 

for adaptable functionality (Lipsitz, 2002; Haken, 2010). Reductions in the complexity of COP 

dynamics are therefore typically interpreted as reflecting reduced functionality and ability to 

adapt to stressors. In fact, changes in complexity of COP dynamics have been associated with 

pathological postural control systems (Blaszczyk & Klonowski, 2001; Ghomaschchi et al., 

2010), age-related declines in postural control (Ko & Newell, 2016; Uiga et al., 2018), and the 

risk of future falls (Zhou et al., 2017). Although lower complexity is typically associated with 

lower adaptability and pathology (Lipsitz, 2002), bi-directional changes in complexity which 

reflect a disruption in adaptive change in complexity might occur (Ko & Newell, 2016). 

 Few studies have investigated the effects of attentional focus on standing postural control 

using analyses of complexity. Differences in complexity have been found during postural control 

tasks under conditions of different attentional demands and strategies (Uiga et al., 2018; Kee et 

al., 2012; Donker et al., 2007), and complexity of COP dynamics has been associated with the 

degree of conscious involvement during postural control tasks (Uiga et al., 2018; Donker et al., 

2007). However, to date there are no known studies that have investigated the effects of explicit 

internal and external attentional focus instructions on standing postural control performance as 

reflected by the complexity of COP profiles. Attentional focus has been manipulated by 

comparing single and secondary or suprapostural tasks (Uiga et al., 2018; Donker et al., 2007) 

and/or inferred using questionnaires (Uiga et al., 2018; Kee et al., 2012) instead of providing 

internal and external attentional focus instructions directly pertaining to the postural control task. 

An investigation of the effects of internal and external attentional focus instructions on postural 

control performance, as reflected by COP complexity, may have implications to coaches and 

therapists who provide instructions during balance and postural control exercises.  
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Research question 

 Does the direction of attentional focus affect static single leg balance performance?  

Statement of problem 

 Although postural control often serves the purpose of supporting suprapostural tasks and 

is typically not performed for its own sake (Smart et al., 2004; Stroffregen et al., 1999), in 

exercise and therapeutic settings some postural control and balance training tasks are performed 

in and of themselves without suprapostural or secondary task goals (Zech et al., 2010; Shubert, 

2011).  Movement practitioners prescribing such balance tasks might wish to provide augmented 

information to performers with the goal of facilitating balance performance. Directing a 

performer’s attentional focus is a strategy for improving performance that practitioners can use 

(Wulf, 2013). Investigations of the effects of providing attentional focus instructions during 

standing postural control tasks could have implications to movement practitioners prescribing 

and coaching balance and postural control exercises.  

Purpose 

 The purpose of this study was to investigate whether the direction of attentional focus 

affects static single leg balance performance.  

Hypotheses  

H0: The COP complexity will not be different between groups  

Ha:  The COP complexity will be different between internal and external focus groups  

 



	
	

6 

H0: The amount of variability in the COP data will not be different between groups 

Ha: The amount of variability in the COP data will be less in the internal focus group 

than the external focus group. 

Delimitations 

 The delimitations of this study include:  

1. Participants were 19-28 years of age  

2. Participants did not wear glasses or have any self-reported visual impairments  

3. Participants had no self-reported trouble with dizziness  

4. Participants were not be experiencing pain or painful movement limitations  

5. Participants had a BMI less than 30  

6. Participants circled “No” in response to the following question: “To the best of your 

knowledge, do you have any physical condition(s) that may affect your balance and/or 

posture?” 

7. Participants were not currently be participating in any other balance- or postural control-

related research 

Limitations 

 The limitations of this study include:  

1. It is not possible to control for intentions; it can’t be known with certainty whether the 

participants adopted the instructed attentional focus. Therefore, the results of this study 

capture the effects of attentional focus instructions on balance performance.  

2. Standing on a force platform may not represent normal standing balance, as balance is 

typically not performed for its own sake, and task constraints can influence emergent 
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balance strategies (Smart et al., 2004; Stroffregen et al., 1999). Therefore, the results of 

this study should not be generalized to other balance tasks. 

3. Task-specific, bi-directional changes in complexity have been found in older individuals 

compared to younger individuals (Ko & Newell, 2016). Postural control performance in 

children (9-18 years) has been shown to improve with increasing age (Paniccia et al., 

2018). Participants in this study will be 19-28 years old, and therefore results should not 

be generalized to populations outside of this age range.  

Assumptions 

 The following assumptions were made about this study:  

1. Participants will follow the written instructions regarding where they should maintain 

their attentional focus 

2. Participants will answer questions honestly 

Definition of Terms 

External focus     Paying attention to the effects of an action or  

      something outside of the body during motor skill  

      performance 

Internal focus      Paying attention to the movement process, the body  

      or proprioceptive information during motor skill  

      performance  

Postural control     The act of maintaining, achieving or restoring a  

      state of balance during any posture or activity  
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Balance      The maintenance, achievement and/or restoration of 

      the line of gravity within the base of support  

Static postural control tasks   Exercises that challenge balance while the feet  

      remain fixed on a stable surface 

Dynamic postural control task   Exercises that challenge balance while the feet  

      and/or support surface are in motion.  

Suprapostural task     An action that a particular posture    

      facilitates/supports 

Secondary/dual task     A demand placed on a human during postural  

      control that usually does not require extra   

      movement, and requires the allocation of   

      attentional and cognitive resources 

Center of pressure     The point location of the vertical ground reaction  

      force vector which represents the weighted average  

      of all the pressures over the surface of the area in  

      contact with the ground.  

Center of mass    The point equivalent of the total body mass in the  

      global reference system.  

Significance of the study 

 This study could have implications to the provision of instructions from movement 

practitioners to learners during postural control and balance training protocols. During balance 
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and postural control training programs, some practitioners utilize static balance and postural 

control tasks (Zech et al., 2010; Shubert, 2011). To date, no known studies have examined the 

effect of internal and external attentional focus instructions on static single leg postural control 

performance using complexity of COP as a dependent variable, which is reflective of functional 

and adaptable performance. This study will contribute to the existing body of research on the 

effects of attentional focus on balance and postural control, and potentially help practitioners 

choose appropriate instructions for learners to augment performance during static standing 

balance training exercises. 
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CHAPTER 2 

LITERATURE REVIEW 

Balance and postural control: Basic biomechanics and terms 

 Balance as defined by Pollock et al. (2000) is a multidimensional concept referring to the 

ability of a person not to fall, and postural control as the act of maintaining, achieving or 

restoring a state of balance during any posture or activity. Winter (1995) defined posture as 

describing the orientation of any body segment relative to the gravitational vector and defined 

balance as a generic term describing the dynamics of body posture to prevent falling. Thus, 

postural control and balance are intimately related. Two variables often involved in the 

measurement and characterization of balance and postural control are the center of pressure 

(COP) and the center of mass (COM). COP is defined as the point location of the vertical ground 

reaction force vector representing the weighted average of all the pressures over the surface of 

the area in contact with the ground, and COM is a point equivalent of the total body mass in the 

global reference system; it is the weighted average of the COM of each body segment in three-

dimensional space (Winter, 1995). In the context of postural control, Winter (1995) refers to the 

center of gravity (COG) as the vertical projection of the COM to the ground. The COG is the 

point on a motionless rigid body where, if supported at that point, will remain balanced - it is the 

point where the weight of the body is considered to act (Robertson et al., 2014). According to 

one model of quiet stance control called the inverted pendulum model described by Winter 

(1995), control of quiet stance occurs predominately through pivoting at the ankle joint - much 

like an inverted pendulum. The horizontal acceleration of the COM is said to be proportional to 

the difference between the COG and COP. This model, however, has been argued to be 

inadequate because human balance and postural control is a complex process involving the 
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control of multiple mechanical degrees of freedom (Wang et al., 2014; Alexandrov et al., 1998; 

Morasso & Schieppati, 1999; Aramaki et al., 2001; Hsu et al., 2007; Pinter et al., 2008).  

For example, Hsu et al. (2007) tracked motion of the ankle, knee, hip, lumbo-sacral 

junction, cervical spine and atlanto-occipital joint in the sagittal plane during quiet standing. 

Analyses of variance of the joint motions suggested that all of the joints measured contributed to 

minimizing movement of both the COM and the head. Furthermore, coherence between pairs of 

joints was low, suggesting that motion at one joint could not directly represent movement at 

another. These results supported a more complex relationship among the measured joint motions 

during standing postural control, in contrast to the inverted pendulum model. Moreover, Aramaki 

et al. (2001) found that the angular motions around the hip and ankle joints served the role of 

minimizing COM acceleration, not maintain a constant COM position. These results also 

contrast the inverted pendulum model.  

 To fully capture the dynamics underlying human postural control, complex models are 

needed. Dynamic systems theory has offered a framework to develop such models through 

identification of relevant behavioral variables and their evolution in time, i.e., their dynamics 

(Kelso, 1995). Balance and postural control research grounded in dynamic systems theory has 

led to more understanding about the control strategies employed during quiet and perturbed 

stance in the context of self-organized pattern formation, as discussed in the next section.  

Characterization of human balance and postural control 

Balance in a static system occurs when the sum of gravito-inertial forces acting on the 

body are compensated by equal and opposite reaction forces from the support surface (Oullier et 

al., 2006). Human standing postural control in earth’s gravitational field, however, involves 
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continuous small amplitude movements occurring in multiple body segments in order to maintain 

the vertical projection of the center of mass (COM) within the base of support (Winter, 1995). As 

mentioned, to capture the complexity of human postural control, multi-segment models are 

needed, and dynamic systems theory and ideas from synergetics have proven useful for 

conceptualizing and modelling human postural control. 

Concepts from dynamical systems and synergetics have been applied to human 

movement sciences to characterize spontaneous pattern formation in the human motor system 

(Kelso, 1995). Some basic terms used in dynamical systems and synergetics include: order 

parameters/collective variables, control parameters, phase transitions, hysteresis, critical 

fluctuations, critical slowing down, and attractor states, and multistability. Order parameters, or 

collective variables, are those that characterize the state of a system on a given level of analysis; 

they reflect the organization of the components of the system. Control parameters are those that, 

when varied, lead the system through different patterns, or states, of behavior. Changes in these 

parameters may not initially lead to observable change in behavior until they cross a critical 

value and lead to an abrupt transition in the order parameter. This is known as a phase transition. 

Moreover, when the direction of change of the control parameter reverses after a transition 

occurs, the system does not always transition back at the same value, but may persist for a longer 

time until it transitions back to its previous state. This tendency to remain in the current state is 

referred to as hysteresis. When a system is near a critical point and poised to transition, 

fluctuations in the value of the order parameter increase. These fluctuations are known as critical 

fluctuations. The time it takes the system to “relax” back to its state from a perturbation increases 

when the system is closer to its critical point. This is referred to as critical slowing down. 

Evidence of multiple (meta)stable attractor states of the collective variable (multistablity), phase 
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transitions, critical fluctuations and critical slowing down suggests self-organized pattern 

formation in open, nonequilibrium systems (Kelso et al., 1987; Haken, 2010). Studies have 

applied such concepts to the study of human movement, including postural control (discussed 

next), which have found evidence of self-organization in the motor system and yielded systems-

based characterizations of the coordination and control of standing posture.   

A frequent collective variable identified in human movement research is relative phase, 

which captures the dynamic relationship between components of a system whose behavior is 

typically oscillatory in nature (Kelso, 1995; Davids et al., 2006). Relative phase has been 

identified as a collective variable that characterizes the relationship between the ankles and hips 

during standing postural control, which is evidenced by the presence of multistability, phase 

transitions influenced by control parameters, critical fluctuations, hysteresis and critical slowing 

down. Bardy et al. (1999), Marin et al. (1999), and Oullier et al. (1999) identified two 

predominant modes of coordination between the ankles and hips during standing postural control 

with tracking a back and forth moving target with their heads. The modes identified were an in-

phase coordination mode in which the relative phase between the ankles and hips was 

approximately 20°, and an anti-phase mode, in which the relative phase between the ankles and 

hips was approximately 180°. These findings contrasted the notion that movement occurs 

predominately in the ankle, as in the inverted pendulum model. Bardy et al. (1999), Marin et al. 

(1999) and Oullier et al. (1999) demonstrated that the coordination mode that emerged was a 

function of the interaction of task and organismic and environmental constraints. For example, in 

Bardy et al. (1999), the amplitude of the target motion that they were instructed to track was 

varied among four conditions, and each individual’s center of mass was modified by adding 

mass to their body in three different locations (normal, low and high). Only two modes of 
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coordination were identified: the in-phase and anti-phase modes. There was a transition from in-

phase to anti-phase as the target amplitude increased, but the amplitude at which the anti-phase 

pattern occurred was a function of center of mass location. As the center of mass was raised, the 

anti-phase pattern occurred with lower amplitudes of target motion. Marin et al. (1999) 

investigated the effects of support surface (standard, foam and rollers) and target amplitude on 

coordination mode. Oullier et al. (1999) investigated the effects of target motion frequency on 

coordination mode. These three studies suggested center of mass, support surface and target 

frequency act as control parameters on the coordination variable of relative phase between the 

ankles and hips.  

Oullier et al. (2002) provided further support of the two predominant modes of 

coordination between the ankles and hips, and also found that intention to sway affects the 

stability of these coordination patterns. Participants stood in a room which oscillated in the 

anterior-posterior direction with an amplitude matching normal postural sway amplitude. 

Frequency of the oscillations was manipulated, and participants were instructed to either track 

the target on the wall in front of them by maintaining the distance between the target and their 

head, or to merely watch the target. Coordination modes transitioned from in-phase to anti-phase 

as oscillation frequency increased under both tracking and watching conditions. However, the 

intention to sway (tracking condition) affected the stability of these patterns. These results 

support findings from experiments on the effects of intention on bimanual finger coordination 

(Kelso, 1995).  

Findings regarding the variability of coordination patterns were also found by Bardy et al. 

(1999) and Oullier et al. (1999), who noted that the variability of the order parameter (relative 

phase) was lower for extreme values of the control parameters than the intermediate range, 
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suggesting the presence of critical fluctuations (Kelso et al., 1987). Bardy et al. (2002) 

specifically designed their experiments to test for the hallmarks of self-organized processes: 

multiple stable states, phase transitions, critical fluctuations, hysteresis and critical slowing 

down- during postural control Their experiments found evidence of all of these properties. Taken 

together, the accumulated evidence supports the characterization of human postural control as an 

emergent behavior of a self-organized nonlinear complex system. However, previous results are 

not enough to make the claim that relative phase between the ankles and hips are the only 

collective variable of postural control tasks; a higher order collective variable has been suggested 

(Wang et al., 2014).  

Wang et al. (2014) found evidence suggesting that the coherence between the COM and 

the COP is the higher order collective variable that is stabilized during postural control with feet 

side by side, single leg quiet standing, and single leg standing with body rocking at the ankle 

joint in the sagittal plane. Similar to previous research, a transition from in-phase to anti-phase of 

the ankle-knee and ankle-hip coordination was found as a function of rocking frequency. No 

transition occurred in the COM-COP coherence, although the strength of coupling seemed to 

decrease as frequency of rocking increased. Although past research has found strong evidence of 

self-organization in ankle-hip coordination patterns and considered these patterns to be collective 

variables, Wang et al. (2014) emphasized these patterns exist at the muscular-articular level. 

These authors therefore suggested that joint motions and their phase relations are component and 

synergetic variables, respectively, serving the purpose of stabilizing a more macroscopic 

collective variable which characterizes postural control at the space level: the COM-COP 

coupling.  
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Assessment of postural control using COP  

A common means of investigation in human balance research has been analysis of the 

stabilogram, or a time-series of center of pressure (COP) data collected while standing on a force 

platform. Attempts have been made to directly assess stability with the variability of certain 

center of pressure parameters, but such assessments fail to capture finer details such as the 

structure of fluctuations in the data; more information about stability and control of posture can 

be obtained by also considering the attractor dynamics (Newell et al., 1993). While COP data 

alone is not sufficient for complete characterization of the coordination process of human 

balance, applying nonlinear analysis tools to COP data can capture meaningful information 

(Blaszczyk & Klonowski, 2001; Ghomaschchi et al., 2010). Moreover, analyzing COP data may 

be convenient and clinically practical for assessment of postural control performance 

(Ghomaschchi et al., 2010). One analytical tool that has been applied to COP data in human 

postural control research is the detrended fluctuation analysis (DFA).  

 The work of Einstein (1905/1956) has contributed to the development of methods for 

analyzing stochastic processes and assessing the structure and correlation properties of 

fluctuations in signals. Mandelbrot and van Ness (1968) generalized Einstein’s work for 

application to fractional Brownian motion processes. Using this generalized relation, the DFA 

was developed for analyzing the structure and correlation of fluctuations in measurements of 

such processes and successfully applied in a wide range of fields, including the biological 

sciences (Peng et al., 1995; Delignieres et al., 2003). In their methodology paper on nonlinear 

time-series, Delignieres et al. (2003) suggested it is appropriate to apply the DFA to COP data 

during standing postural control tasks. Numerous studies have since demonstrated the usefulness 

of applying DFA to COP time series taken during postural control tasks.  
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Using DFA, Delignieres et al. (2011) analyzed center of pressure trajectory dynamics and 

found a cross-over from persistent to anti-persistent correlations in the bi-logarithmic diffusion 

plots generated from the DFA function for the velocity, but not position, COP time series. This 

means that large (compared to the average) velocities tend to be followed by larger velocities on 

short time scales, whereas on longer time scales there is alternation of large and small velocities. 

Subsequently, these authors inferred a velocity-based control strategy during quiet stance, 

because no cross-over was found in the position COP time series. It is important to note that the 

authors did not argue that velocity of COP is directly controlled during upright stance, as the 

COP motion is an outcome reflective of underlying control processes. Rather, it was suggested 

that velocity information perceived through the visual and proprioceptive sensory systems is 

used in the control of postural stability. As noted in the previous section, to adequately 

characterize the coordination and control of posture, COP data is not in and of itself sufficient; 

the relative phase of the ankles and hips (Bardy et al., 1999; Marin et al., 1999; Oullier et al., 

1999) and the coherence of COP and COM (Wang et al., 2014) appear to be better suited for 

such characterization. Nonetheless, COP data can be used to infer meaningful properties of 

standing postural control.  

Assessments of the structure and correlation of fluctuations in COP profiles during 

standing postural control have been used to reflect the complexity of the behavior of the postural 

control system, and have been demonstrated as useful for determining the stability and 

functionality of postural control (Blaszczyk & Klonowski, 2001; Ghomaschchi et al., 2010; Ko 

& Newell, 2016). System complexity has been suggested to reflect the ability to adapt to 

perturbations and indicative of the involvement and coupling of system degrees of freedom 

(Goldberger et al., 2002; Lipsitz, 2002). Physiological systems exploit complexity for adaptable 
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functionality (Lipsitz, 2002; Haken, 2010). Changes in the complexity of COP dynamics are 

therefore typically interpreted as reflecting changes in functionality and ability to adapt to 

stressors. Analyses of the complexity of center of pressure time series collected during balance 

tasks have discriminated between pathological and healthy individuals (Blaszczyk & Klonowski, 

2001; Ghomaschchi et al., 2010) as well as older and younger individuals (Duarte & Sternad, 

2008; Uiga et al., 2018), identified task-specific, bi-directional change in complexity between 

older and younger individuals (Ko & Newell, 2016), demonstrated the ability to predict future 

falls (Zhou et al., 2017), and exposed effects of attentional demands (Donker et al., 2007; Uiga et 

al., 2018).  

Effects of attentional focus on balance and postural control  

 Nideffer (1976) originally classified attention as having two primary characteristics- 

width (broad/narrow) and direction (internal/external). The effects of the direction of attentional 

focus on motor performance and learning have been well studied using a variety of tasks (Wulf, 

2013). External focus is defined as consciously attending to details outside of the body, often 

regarding the outcome of the performance, whereas internal focus is defined as consciously 

attending to details related to the body, often regarding the movement process (Wulf, 2013). 

Although the effects may be specific to the skill level of the performer (Castaneda & Gray, 

2007), the task (Woo et al., 2014) and the nature of the internal focus (Komar et al., 2013; Kee et 

al., 2012), a consistent finding is that greater performance and learning occur under external 

focus instruction compared to internal focus instruction and no instruction conditions (Wulf, 

2013).  

 The constrained-action hypothesis was proposed as a potential explanation of the effects 

of internal and external attentional focus on motor performance and learning (Wulf, McNevin & 
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Shea, 2001). This hypothesis suggests that an internal focus of attention may over-constrain and 

interfere with the self-organized processes that lead to the emergence of functional behavior. 

Some of the support for the constrained-action hypothesis has come from findings in studies 

using balance tasks. Wulf, McNevin and Shea (2001) provide an early example. The authors 

found higher-frequency adjustments during performance on the stabilometer when participants 

adopted an external focus compared to internal focus, which is interpreted as evidence of 

increased exploitation of perceptual-motor degrees of freedom from an over-constrained 

movement system. Furthermore, reaction times were tested during the balance task to reflect 

attentional demands and compare between conditions. Consistent with the constrained-action 

hypothesis, reaction times were faster in the external focus group. Subsequently, it was 

concluded that a higher degree of automaticity and less conscious interference occurred under 

external focus conditions. Similar evidence is found from analyses of the complexity in center of 

pressure (COP) data during standing postural control under conditions of different attentional 

focus (Uiga et al., 2018; Kee et al., 2012; Donker et al., 2007), with reduced complexity typically 

associated with higher conscious involvement during postural control tasks. As discussed 

previously, complexity is reflective of the number of involved degrees of freedom and the ability 

to respond adaptively to internal and external demands (Liptsitz, 2002). Therefore, such findings 

can be taken as evidence of the constrained-action hypothesis.  

 The effects of attentional focus have been studied using a variety of balance and postural 

control tasks. Many studies have found superior effects of external focus instructions compared 

to internal focus instructions, however some have found minimal to no effect of attentional focus 

(see Kim et al. (2017) for a meta-analysis). The explicit provision of attentional focus 

instructions as well as the dual-task paradigm have been used. Researchers have used tasks such 
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as the stabilometer (Wulf et al., 1998; Shea & Wulf, 1999; Wulf, McNevin & Shea, 2001; Wulf, 

Shea & Park, 2001; Chiviacowsky et al., 2010; Huang et al., 2014), standing on unstable surfaces 

such as balance boards and rubber wobble disks (Diekfuss et al., 2018; Wulf, 2008; Wulf et al., 

2008), standing on a stabilometer or wobble disk with the suprapostural task of holding a tube 

horizontal (Wulf et al., 2003; Wulf et al., 2004, respectively) bilateral standing postural control 

(Landers et al., 2005; Vuillerme & Nafati, 2005), single-leg standing postural control (Kee et al., 

2012), and postural control tasks with the addition of dual-tasks tasks such as reaction tests 

(Remaud et al., 2013), tone counting (Uiga et al., 2018) and cognitive tasks (Donker et al., 2007), 

and suprapostural tasks such as pursuit-rotor tracking task (McNevin et al., 2013), and stick 

balancing (Cluff et al., 2010).  

Research that has used balance tasks which are more dynamic in nature (the feet and/or 

support surface moves) such as the stabilometer, balance boards and wobble disks, generally 

demonstrate improved performance and learning under external focus conditions (Wulf et al., 

1998, Exp. 2; Shea & Wulf, 1999; Wulf, McNevin & Shea, 2001; Wulf, Shea & Park, 2001; 

Chiviacowsky et al., 2010; Huang et al., 2014; Diekfuss et al., 2018; Wulf et al., 2008). 

However, skill level may mediate these effects (Wulf, 2008). The effects of attentional focus on 

static postural control tasks are often investigated using the dual-task paradigm, with results 

generally demonstrating improved performance with attention on a secondary task compared to 

attention on the postural control task itself. Few studies have investigated the effect of providing 

attentional focus instructions during static standing postural control tasks.  

Vuillerme and Nafati (2005) investigated the effects of attentional focus on bilateral 

standing postural control with the provision of attentional focus instructions. Participants were 

either instructed to focus on body sway (internal focus) or given no instructions (control). No 
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external focus condition was used. COP root mean square (RMS) was used to quantify postural 

control performance, and the difference between the vertically projected center of gravity (COG) 

and COP was used to reflect muscular stiffness of the lower limb. The root mean square of the 

COG-COP difference was greater under internal focus conditions compared to control 

conditions, while the RMS of the COP alone did not vary between groups. The authors 

interpreted these results to reflect greater muscular effort to maintain a similar level of postural 

performance. Interestingly, these results seem like they may be related to the findings by Wang 

et al. (2014) who identified the coherence between the COM and COP to be a relevant 

macroscopic collective variable during standing postural control, as discussed previously.  

Another study that used explicit attentional focus instructions is Polskaia et al. (2015). In 

this experiment, the effects of a cognitive secondary task, internal focus instructions and external 

focus instructions were compared during bilateral static standing postural control. Differences in 

stability were determined by sway area, sway variability and mean velocity. According to these 

parameters, the secondary task outperformed internal and external focus conditions, which did 

not significantly differ from each other. However, assessment of postural stability using 

parameters such as COP sway area, mean velocity, and  variability are not sufficient (Newell et 

al., 1993); these authors discuss the need for assessing the attractor dynamics of the postural 

control system in order to characterize stability of posture. More appropriate techniques of 

assessing postural control performance from COP data using tools from non-linear dynamics 

have been developed and applied in research investigating the effects of attentional focus 

postural control, as previously discussed.  

Using such non-linear tools, Donker et al. (2007) assessed standing postural control 

performance under single task and cognitive dual-task conditions with eyes open and eyes closed 
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for each condition. Standard deviation, sway path length, scaling exponent, dimensionality, 

largest Lyapunov exponent and sample entropy were calculated. The introduction of a cognitive 

dual task, which was presumed to decrease attentional focus from the balance process, resulted in 

increased sway path length, increased dimensionality and decreased scaling exponent. These 

results suggested there was increased complexity in the COP dynamics when attention was 

withdrawn from the balance process, which supports the constrained-action hypothesis.  

Uiga et al. (2018) also performed a non-linear analysis on COP data obtained during 

bilateral standing balance with and without a dual-task. In the single task condition, participants 

were instructed to stand as still as possible, while in the dual-task condition, a computer 

randomly generated tones, and participants were instructed to count the number of high-pitched 

tones. It is assumed that the dual-task reduces attention from the balance process. While there 

were no changes in any of the complexity-based measures between conditions, participants that 

were assessed as having a higher tendency to internally focus (using the Movement Specific 

Reinvestment Scale) had significantly lower measures of complexity under the single-task 

condition. This finding also supports the constrained-action hypothesis, and reinforces the idea 

that the effect of attentional focus on balance performance is related to an individual’s 

predispositions/preferences to internal focus.  

A complementary study, Kee et al. (2012), also found the effects of attentional focus on 

balance performance to be dependent on the individual’s focus predispositions. Participants that 

performed an activity designed to facilitate “mindfulness,” which is described as nonjudgmental 

present moment awareness (Brown & Ryan, 2003), showed evidence of higher complexity in 

COP profiles during subsequent single leg balance only if they had a predisposition for 

mindfulness. Participants with low mindfulness predisposition did not perform significantly 
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different after the mindfulness-facilitating activity. Interestingly, more external focus strategies, 

such as staring at a spot on the floor, were adopted by participants after the mindfulness-

facilitating activity.  

Studies using suprapostural tasks have demonstrated little or no effect of attentional focus 

on postural control when the attentional focus manipulations were directed towards the 

suprapostural task. For example, Cluff et al. (2010) measured COP during standing balance with 

and without the dual-task of balancing a stick on one finger. External and internal attentional 

focus instructions were given with respect to the stick balancing task, not the postural control 

task. The stabilogram diffusion analysis (SDA) method was used to assess changes in the 

structure of fluctuations, however this method for COP data is not without criticisms 

(Delignieres et al., 2003). While there was a negative effect of internal focus instructions on 

performance in the stick balancing task, no effects of attentional focus on COP trajectories were 

found. McNevin et al. (2013), using a rotor-pursuit tracking task as a suprapostural task, also 

found minimal effect of attentional focus instructions on postural performance with attentional 

focus manipulations directed to the tracking task.  

It is important to interpret results of studies using suprapostural tasks in the context of 

specific task constraints imposed by the suprapostural task (Smart et al., 2004; Stroffregen et al., 

1999). While complexity of COP dynamics has been associated with the degree of conscious 

involvement during postural control tasks (Donker et al., 2007; Uiga et al., 2018), no studies 

have examined the effects of the explicit provision of both internal and external attentional focus 

instructions during standing postural control. Attentional focus has been manipulated using 

secondary tasks (Donker et al., 2007; Uiga et al., 2018) and/or inferred using questionnaires 

(Uiga et al., 2018; Kee et al., 2012) instead of providing attentional instructions directly 
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pertaining to the postural control task. Although balance is usually not performed for its own 

sake (Smart et al., 2004; Stroffregen et al., 1999), there are times where the task goal is balance 

in and of itself, and these situations often emerge in exercise and therapeutic settings (Shubert, 

2011). Therefore, understanding the effects of attentional focus instructions on standing postural 

control has implications to training interventions.  
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CHAPTER 3 

METHODS 

Participants  

Forty-nine volunteers participated in this study. All participants provided informed 

consent to participate, and all procedures were approved by the university institutional review 

board (Appendix A). Participants were randomly assigned to one of three groups - an internal 

focus group (INT), an external focus group (EXT), or a control group (CON). Flyers regarding 

the opportunity to participate and essential details of the study (appendix B) were distributed to 

students in classrooms by instructors, and the flyers were also hung on hallway walls in campus 

buildings. The flyers clearly stated the inclusion criteria that the volunteers needed to meet to be 

eligible for the study. Those who responded were sent, via email, a consent form to review 

(appendix C), a questionnaire (appendix D) to confirm that they met the inclusion criteria. 

Participants were asked about orthotic footwear because orthotic footwear has been shown to 

affect static standing postural control (Hamlyn et al., 2012; Bateni, 2013). No participants 

reported wearing orthotics. No specific details regarding medical history were collected. 

Volunteers were asked to respond via e-mail or phone whether or not they intended to participate 

in the study on the provided day and time, and the appointment day and time was confirmed if 

they met the inclusion criteria. The volunteers were asked to bring a valid form of ID to the 

testing session to confirm their age. Inclusion criteria for participants were as follows:  

1. 19-28 years old, because Ko and Newell (2016) found that postural control 

performance as measured by complexity of center of pressure (COP) dynamics is 

significantly different between young adults (in their study, 19-28 years old) and 

older individuals. 
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2. no self-reported trouble with vision and no eyeglasses, because visual impairments 

have been found to affect standing postural control performance (Schwesig et al., 

2011). 

3. no self-reported trouble with dizziness, because dizziness affects balance performance 

and the task employed in this study involves a challenging single leg balance task 

with only one trial permitted per participant; it is therefore important to optimize the 

chances of a successful trial on the first attempt. 

4. no self-reported pain and/or painful movement limitations, because postural control 

has been found to be affected by painful movement limitations such as low back pain 

(Ruhe et al., 2011), experimentally-induced knee pain (Hirata et al., 2012), cervico-

brachial pain (Karlberg et al., 1995) and in general nociception affects the ability of 

muscles to perform synergistic functions related to maintaining joint stability and 

control (Sterling et al., 2001). 

5. a body mass index (BMI) score less than 30, because Blaszczyk et al. (2009) found 

differences in postural control performance in obese individuals classified as such by 

a BMI score of 30 or higher. 

6. participants needed to circle “No” in response to the following question: “To the best 

of your knowledge, do you have any physical condition(s) that may affect your 

balance and/or posture?” 

7. participants could not have been participating in any other balance- or postural 

control-related research to avoid influence of other instructions/information on their 

performance. 
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 Height and weight (used for calculation of BMI) were reported by the participant. BMI 

categories were determined according to guidelines from the American College of Sports 

Medicine (American College of Sports Medicine & Kaminsky, 2006).  

Design and procedures  

 Participants were scheduled for a single test date and time in the evening, and were asked 

not to participate in any exercise that day. Test sessions were scheduled in twenty-minute 

windows between September 26th, 2019 and February 27th, 2020. On each day of testing, at the 

beginning of the first test session and at the end of each subsequent test session, the force 

platform was sanitized using Wegmans Multi-Surface Disinfecting Wipes (Wegmans, 2020) 

according to the instructions listed on the product.  

 Participants were informed about the test procedure and specific details about the task 

they were to complete via written directions and a picture example of the posture they were 

asked to assume (Appendix E). Participants read the instructions while sitting at a desk. They 

were asked to balance barefoot on their non-preferred leg for one trial of thirty-five seconds 

duration on a force platform. The preferred limb was determined by asking the participant “if 

you would kick a ball at a target, which leg would you use to kick the ball?” The leg that would 

be used to kick the ball was considered the preferred leg. The participants were asked to stand on 

the leg that they would not use to kick the ball. This choice was made because Promsri et al. 

(2018) found that single leg postural control performance significantly differed between 

preferred and non-preferred limbs, with the distinction most pronounced when leg preference 

was determined for dynamic tasks. Promsri et al. (2018) therefore suggested that practitioners 

should consider the preferred dynamic leg during single leg standing postural control 

assessments. To determine dynamic leg preference, van Melick et al. (2017) determined that 
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asking healthy adults “if you would [kick] a ball at a target, which leg would you use to [kick] 

the ball?” is reliable, and therefore is the question that was used in the present study. 

 Participants were instructed via written instructions (Appendix E) to stand on a visible 

line on the force plate which was parallel to the y-axis (A-P direction) of the force plate 

coordinate system. Participants were asked to stand barefoot to eliminate the influence of 

footwear on postural control in consideration of previous findings that have found different 

insoles to affect postural control (Christovao et al., 2013). As shown in the picture in Appendix 

E, a piece of yellow tape with a black line drawn centered along the length of the tape was placed 

along the center of the force plate in the anterior-posterior (A-P) direction. The position of the 

foot was such that the anterior-posterior line on the force plate, as shown in the picture in 

Appendix E, bisected the calcaneus and passed under the base of the second metatarsal, as 

described by Promisri et al. (2018). Arms were loosely crossed over the chest, and the non-

support foot was placed behind the knee of the support leg, as in Kee et al. (2012).  

 Written instructions (Appendix E) were provided to the participants regarding the balance 

task. All instructions were identical among groups with the exception of the attentional focus 

instructions (see Appendix E). The INT group was instructed to “stand as still as you can, pay 

attention to your heart beat and try to count the number of times your heart beats during the 

balance task.” For the EXT group, a video of a cartoon (Maltese, 1994) was played during the 

balance trial and the participants were instructed to “stand as still as you can, watch the cartoon 

and count the number of times the cartoon switches scenes.” The CON group was instructed to 

“stand as still as you can.”  

 The flat screen television (SANYO Manufacturing Corp., DP26640) on which the 

cartoon was displayed	was placed on a television cart that was fifty-four inches in height as 
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measured from the floor to the top of the surface of the cart. The length of the base of the cart 

(the side of the cart facing the participant on the force plate) was thirty-two inches, and the width 

of the base of the cart was twenty-seven inches. The television screen had the following 

dimensions: width = 22.75 inches, height = 12.75 inches. Centering of the television on the 

surface of the television cart was visually approximated. The base of the television, after being 

initially placed on the surface of the television cart, was traced with a marker on the surface of 

the cart and not moved again for the duration of the study. The vertical distance from the ground 

to the center of the video monitor was 64.625 inches. The center of the force plate was 50.25 

inches to the left of the wall of the laboratory (the wall was to the right side of the participant 

during the balance task) and the television was placed such that the center of the television 

screen was also 50.25 inches to the left of the wall. The distance from the front of the force plate 

(that participants stood on) to the center of the base of the television cart was eight feet. The 

length of the force plate that participants stood on was 23.375 inches, and the width was 15.75 

inches. The television set-up as described above was present for all three conditions, but the 

television was turned off during the INT and CON conditions. The position of the wheels of the 

television cart were marked on the ground with two pieces of tape to ensure that the cart was 

positioned consistently for each testing session. The wheels were placed directly on the tape with 

the wheels of the cart oriented in the lateral direcetion (with respect to the force plate). The 

biomechanics laboratory where testing took place includes a black curtain eleven feet in height 

and hung thirty inches away from the wall (on the right of the participants) hung along the wall 

starting from the force plate and extending past the television cart.  

 The first ten seconds of data was not used in data analysis, as Kee et al. (2012) noted that 

due to the challenging nature of this task, large initial amplitudes of body movement tend to 
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occur in this initial ten-second period as participants attempt to establish balance. Therefore, the 

final twenty-five seconds of data were considered the most suitable for assessing the sustained 

efforts in postural control. The participants were standing on the force platform facing away 

from the experimenter. Participants who broke form were omitted from the analysis. Breaking 

form was defined as either uncrossing the arms from the chest, or losing contact between the foot 

and the back of the knee. This was visually determined by the experimenter. Data were not used 

if participants lost their balance at any point during the trial, or if instructions were not followed 

properly regarding the form that participants were asked to use.  

Instruments  

 Forces and moments (Fx, Fy, Fz and Mx, My Mz, respectively) were recorded by a force 

plate (Bertec Corporation, K00606 Type 4060-10), which was calibrated on September 26th, 

2019 before collection of data began. The sampling frequency was 100Hz, because findings from 

Giovanini et al. (2017), who conducted analyses of the structure of fluctuations in COP time 

series, suggest a sampling frequency of 100Hz to record COP trajectories. Ruhe et al. (2010) also 

recommended a sampling frequency of 100Hz for COP data collection for analyses of postural 

control. A time series of the center of pressure (COP) in the anterior-posterior (A-P) and medial-

lateral (M-L) directions was derived using built-in software (Contemplas professional motion 

analysis software, TEMPLO 2016.1.404).  

Data processing and analysis   

 The following calculations were carried out using Matlab software (MathWorks, Inc., 

2018b). The initial ten seconds of the data was not used in the data analysis to allow for initial 

adjustments to the balance task, as in the study by Kee et al. (2012), who utilized the same 
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balance task as the one used in this study. Therefore, twenty-five seconds of COP data was used 

for analysis.  

 Giovanini et al. (2017) determined that for fractal analyses on COP trajectory data, 

filtering is advisable. With COP data recorded at 100Hz, detrended fluctuation analysis (DFA) 

was only able to distinguish postural stability between healthy individuals and stroke victims 

when the data was filtered. It was concluded that detrended fluctuation analysis would perform 

well with filtered data. Therefore, the M-L and A-P COP time series data were separately filtered 

with a dual pass, 2nd order, 10 Hz low pass Butterworth filter as used by Giovanni et al. (2017).  

 The amount of variability was determined from the root mean square error (RMSE), 

calculated for the M-L and A-P directions, as follows:  

𝑅𝑀𝑆𝐸 =
1
𝑁 𝑥! − 𝑥 !

!

!!!

 

and  

𝑅𝑀𝑆𝐸 =
1
𝑁 𝑦! − 𝑦 !

!

!!!

 

 Where N is the number of data points, xi is ith data point in the M-L component of the 

COP time series, yi is the ith data point in the A-P component, and 𝑥,𝑦 are the means of the M-L 

and A-P COP series, respectively.   

 Complexity of the COP dynamics in both the M-L and A-P directions was assessed using 

detrended fluctuation analysis (DFA). DFA determines the fractal dimension of a time series and 
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is relatively robust to non-stationarities in the time series (see Peng et. al., 1995 for details). The 

scaling exponent, α, calculated from the DFA reveals the correlation properties of the signal 

across different time scales, which reflects the complexity of the time series. 

 The process is as follows: 

 First, the N-point time series {zt, t=1, . . .,N} is centered at zero mean and cumulatively 

summed to obtain the integrated time series, as follows:  

 

𝑍 𝑡 = 𝑧! − 𝑧
!

!!!

 

 

where  

𝑧 =
1
𝑁 𝑧!

!

!!!

 

is the global mean.  

 This series is then divided into a number of non-overlapping windows with an equal 

number, w, of data points. Hence, there are N/w windows. The size of the windows will range 

from 10 data points to N/4 data points, as suggested by Peng et al. (1994).  

 Within each window, the series Z(t) is detrended by a linear least square fit, ẑ(t). Then the 

detrended fluctuation parameter, F(w), is computed as 
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𝐹 𝑤 =
1
𝑁 𝑍 𝑡 − 𝑧 𝑡 !

!

!!!

 

where 𝑧 𝑡  is a piecewise continuous function composed of the local least-square fit lines in each 

window.  

 Because F(w) obeys a power-law function such that 𝐹 𝑤 ∝ 𝑤!, the scaling exponent α 

is obtained from the slope of the linear regression of a log-log plot of F(w) over w. 

 When α=1.0, the series is considered 1/f noise (pink noise) where f is frequency (the 

spectral power of the signal is inversely proportional to the frequency) and is maximally 

complex, while white noise (α=0.5) and Brownian noise (α=1.5) have lower or no complexity 

(Duarte & Sternad, 2008; Lipsitz, 2002; Peng et al., 1995). Moreover, α can be interpreted as the 

“roughness” of the series, with larger α reflecting “smoother” series than lower α (Peng et al., 

1995).  

 The range of window sizes on which the slope of the log-log plot is evaluated was 

determined according to the process developed by the Center for Research in Human Movement 

Variability at the University of Nebraska at Omaha and used in Taylor (2015). In short, a range 

of window sizes was determined appropriate if it performs “reasonably well” when used in a 

DFA analysis of one hundred samples of pink noise (with a known alpha value of 1) with the 

same number of data points as the collected COP data. “Reasonably well” is defined as meeting 

the following requirement: the ninety-five percent confidence interval of the mean alpha value 

calculated from the one-hundred random trials must contain the known alpha value of 1 for pink 
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noise. In other words, if a chosen window size did not perform reasonably well on a set of data 

with a known alpha value, it was not determined as suitable for the analysis of the collected data.  

 Delignieres et al.  (2011) found that the log-log plot of COP position data did not show 

signs of the “cross-over” phenomenon, whereas COP velocity data did. The data collected in this 

study was COP position data, and therefore the range of window sizes was chosen on the basis of 

location on the log-log plot, but based on the results of the statistical test described above.  

Statistical analysis  

 The statistical analysis was performed with SPSS software. The mean values of the root-

mean-square-error (RMSE) and the scaling exponents calculated from the detrended fluctuation 

analysis (DFA) were each compared among groups (INT, EXT and CON) using a one-way 

analysis of variance (ANOVA).  Data were inspected for normality and outliers. Q-Q plots were 

used to inspect the data for deviations from normality. Outliers were defined as data three or 

more standard deviations away from the mean, and if present were omitted from analysis. 

Levene’s test of equality of error variances was used to determine if the assumption of 

homogeneity of variance was violated. Post-hoc tests with a Bonferroni correction were used to 

determine significant differences. Significance level was set to 0.05. The null hypotheses was 

rejected if the test statistic p-value was less than 0.05.  
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CHAPTER 4 

RESULTS 

Participants 

Of the seventeen participants in the external focus group (EXT), one participant did not 

follow the instructions properly (did not cross arms over chest) and therefore the data for this 

participant were not included in the analysis. Sixteen total participants’ data were included in the 

analysis for the EXT group. Of the sixteen participants in the internal focus group (INT), one 

participant did not successfully maintain balance for the entire duration of the trial and therefore 

the data for this participant were not included in the analysis. Fifteen total participants’ data were 

included in the data analysis for the INT group. Of the sixteen participants in the control group 

(CON), one participant did not follow the instructions properly (did not place foot behind knee) 

and therefore their data were not included in the analysis. Fifteen total participants’ data were 

included in the data analysis for the CON group. Descriptive statistics of participants are 

presented in Table 1.  

Table 1 

Participant descriptive statistics  

Note. N=number, SD=standard deviation  

  

Group N   Age (years) 

Mean | SD 

       Gender 

Male       Female  

Height (inches) 

Mean | SD 

Weight (pounds)  

Mean | SD  

Leg balanced on   

Left        Right  

External  16   20       1.2 8 8 68         3.6 161      18.1 12            4  

Internal  15   21       2.4 7 8 67         4.7 165      31.4 14            1 

Control  15   20       1.3 5 10 67         3.3 164      28.5 14            1 
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ANOVA 

No statistically significant differences were found among groups for any of the dependent 

measures. The mean values and 95% confidence intervals for all measures and groups are 

provided in Table 2.  

 
Table 2 
Descriptive statistics  

Dependent External focus  Internal focus  Control  
measure Mean  95% CI Mean  95% CI Mean  95% CI 

Scaling 
exponent M-L 
 

1.1521	 [1.0894,1.2147] 1.1726	 [1.1078,1.2373] 1.1381	 [1.0733,	1.2028] 

Scaling 
exponent A-P 
 

1.3149	 [1.2314,1.3984] 1.3556	 [1.2694,1.4419] 1.3411	 [1.2549,1.4274] 

RMSE M-L 0.0058	 [0.0053,0.0062] 0.0053	 [0.0048,0.0058] 0.0050	 [0.0045,0.0055] 

RMSE A-P 0.0069	 [0.0059,0.0079] 0.0083	 [0.0073,0.0093]	 0.0070	 [0.0060,0.0081] 

Note. CI=confidence interval  

Scaling exponent 

 For the scaling exponent of the medial-lateral direction (M-L) component of the center of 

pressure (COP) time series data, Levene’s test of equality of error variances was insignificant 

(F(2,43) = 0.359, p = 0.7). The one-way ANOVA did not yield significant differences among 

groups (F(2,43) = 0.292, p=.748). For the scaling exponent of the anterior-posterior direction (A-

P) component of the COP time series data, Levene’s test of equality of error variances was 

insignificant (F(2,43) = 2.289, p = 0.114). The one-way ANOVA did not yield significant 

differences among groups (F(2,43) = 0.242, p=.786).  
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RMSE 

 For the root-mean-square-error (RMSE) of the M-L component of the COP time series 

data, Levene’s test of equality of error variances was insignificant (F(2,43) = 1.601, p = 0.214). 

The one-way ANOVA did not yield significant differences among groups (F(2,43) = 2.110, 

p=.134). For the RMSE of the A-P component of the COP time series data, Levene’s test of 

equality of error variances was insignificant (F(2,43) = 1.094, p = 0.344). The one-way ANOVA 

did not yield significant differences among groups (F(2,43) = 2.296, p=.113).  
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

 

Discussion 

The purpose of this study was to investigate the following research question: does the 

direction of attentional focus affect static single leg balance performance? There were no 

statistically significant differences among groups for any of the measured variables, contrary to 

the hypothesis that the external focus group would yield better performance than the internal 

focus group. The results of this study do not support the claim that the direction of attentional 

focus affects static single leg balance performance characterized by the complexity of the center 

of pressure (COP) and the root-mean-square-error (RMSE) of the COP. Furthermore, as 

indicated by the lack of statistically significant differences between the control group and the 

experimental groups, the results do not support that a silent counting task affects static single leg 

balance performance regardless of whether the task is associated with internal or external focus 

of attention. The following discussion of these results takes place in three parts. First, the results 

are discussed in terms of the direction of attentional focus. Next, the results are discussed in 

terms of the use of secondary tasks. Finally, the overall results are interpreted and discussed 

within the dynamical systems theoretical framework.  

Direction of attentional focus and balance performance 

 Although internal focus conditions often lead to detriments in performance and learning 

compared with external focus conditions (Wulf, 2013), the results have been mixed in the 

context of static standing balance (see Table 3). 
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Table 3  
Effect of attentional focus on static balance performance  

Study Attentional focus conditions Result  

Present study  Counting heart beats | Counting cartoon scenes  No significant difference  

Donker et al. 
(2007) 

Eyes closed: Cognitive secondary task | No secondary task  Better performance with 
secondary task   

Cluff et al. (2010)  While stick balancing:  
Focus on finger movement | Focus on stick movement  

No significant difference 

Kee et al. (2012) Mindfulness facilitation | Control  Better performance with 
mindfulness for those 
with predisposition to be 
mindful  
 

Uiga et al. (2018) Assessment of conscious investment in postural control  Lower performance with 
higher conscious 
investment  
 

Vuillerme & Nafati 
(2005) 

Consciously monitor postural corrections | Control  Lower performance 
while monitoring 
postural corrections  

 

Some studies have noted detrimental effects of internal focus (Uiga et al., 2018; 

Vuillerme & Nafati, 2005), one study found a beneficial effect of internal focus (Kee et al., 

2012) and one study found no significant effect of internal focus (Cluff et al., 2010). Donker et 

al., 2007 increased conscious involvement in postural control by having participants close their 

eyes and either perform a cognitive secondary task (to decrease attention from postural control) 

or stand with eyes closed without a secondary task (assumed to have more attention on postural 

control. The found that performance was greater (higher complexity of COP time series) during 

the cognitive secondary task.   
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Although a detrimental effect of an internal focus of attention on static standing balance 

performance has been noted when the internal focus emphasizes consciously monitoring 

movement form (Uiga et al., 2018; Vuillerme & Nafati, 2005), Kee et al. (2012) found that a 

general state of “mindfulness” (broad internal focus) can actually be beneficial for those that 

tend to be mindful, as reflected by the complexity of the COP time series during single leg 

standing balance. Therefore, it seems reasonable to claim that although focusing attention on 

corrections of postural sway is unlikely to be beneficial for static standing balance performance, 

in line with the constrained-action hypothesis (Wulf et al., 2001), a general awareness of 

sensations in the body may provide relevant information during standing balance and be 

beneficial for performance, as supported by the findings of Kee et al. (2012).  

Based on the current literature, results are mixed as to whether the effects of attentional 

focus on static balance performance are related specifically to the direction of the attentional 

focus. The experimental conditions in the present study manipulated the direction of attentional 

focus without appreciably changing the demands of the task (both conditions involved a silent 

counting task) and no statistically significant differences were found. These results complement 

the study by Cluff et al. (2010) who measured balance performance while participants balanced a 

stick on one finger, and manipulated the direction of attentional focus internally and externally. 

No statistically significant differences were found between attentional focus conditions. Overall, 

these findings do not support that internally-directed attention is always inappropriate during 

standing single leg balance.  

Secondary task conditions  

 When the instructions are to “stand as still as possible,” the addition of a counting 

secondary task did not seem to lead to significant differences in performance regardless of the 
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direction of the focus, as indicated by the lack of significant difference in any of the measured 

variables among CON, INT and EXT groups. There have been mixed findings in the literature on 

the effects of performing secondary tasks on static balance performance compared to single task 

conditions (see Table 4). 

Table 4 
secondary tasks on static balance performance  

Study  Secondary task conditions Result  

Cluff et al. (2010)  Stick balancing | Control  Better performance stick 
balancing   

Donker et al. (2007) Speaking names backwards | Control  Better performance while 
speaking names backwards  

Uiga et al. (2018)  Silent tone counting | Control  No significant difference  

Cluff et al. (2010)  Silent arithmetic | Control  No significant difference  

Present study  Silent heart beat counting | Silent cartoon 
scene counting | Control  

No significant difference  

 

In the study by Cluff et al. (2010), non-linear analyses on COP trajectories indicated that 

balance performance improved (increased complexity) with the addition of stick balancing as a 

secondary task compared to the single-task control condition. Donker et al. (2007) found 

statistically significant differences in the complexity of COP trajectories between single-task and 

secondary task conditions during bilateral standing balance. The secondary task used by Donker 

et al. (2007) was speaking names backwards that were spoken to them by the researcher. Uiga et 

al. (2018) found that silently counting tones as a secondary task during static standing balance 

did not yield statistically significant differences in the complexity of COP trajectories between 

single and secondary task conditions. Interestingly, Cluff et al. (2010) also used a silent 

arithmetic dual-task in their study (the participants did not speak their answer during the balance 
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task), which did not yield differences in balance performance as reflected by the complexity of 

the COP time series. A possible explanation for the lack of significant effect of the secondary 

tasks on balance performance in the present study, tone counting in Uiga et al. (2018), and the 

silent arithmetic task in Cluff et al. (2010), compared to the effect of stick balancing in Cluff et 

al. (2010) and speaking names backwards in Donker et al. (2007), might be related to the nature 

of the secondary tasks. The secondary tasks in the present study, Uiga et al. (2018) and Cluff et 

al. (2010) (silent arithmetic) did not require motor responses, unlike stick balancing and speaking 

names backwards. Since posture is typically performed to support suprapostural tasks (Smart et 

al., 2004; Stroffregen et al., 1999), it is reasonable to suspect that the motor responses required 

during stick balancing and speech are related to the significant differences in COP complexity 

between groups in Cluff et al. (2010) and Donker et al. (2007). Cluff et al. (2010) noted changes 

in the timescale of postural corrections during the stick balancing in the form of a “drift and 

correct” mechanism; the postural dynamics reflected the task demands of stick balancing. 

Although the motor component of the secondary task used in Donker et al. (2007) only required 

speaking, it is worth noting that even uttering simple syllables such as “pa” uses as many as 

seventy muscles which control respiratory, velar, facial, pharyngeal, laryngeal, lingual and 

masticatory movements (Abbs & Connor, 1989). Lagier et al. (2010) provided evidence that 

vocal effort and posture do seem to be functionally coordinated together. As Lagier et al. (2010) 

note, vocal effort involves the whole body. Therefore, the speech component of the secondary 

task used in Donker et al. (2007) might be related to the increased complexity of the COP 

dynamics in the secondary task condition. In Cluff et al. (2010) and Donker et al. (2007), the 

focus on the secondary task might be considered as “relevant” with respect to the postural 

control task if the postural control system was functioning in a subservient way to the secondary 
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task demands. In other words, the focus might be considered as directed to the outcome of the 

movement process if the postural control system acted as a component of the processes 

functioning to serve the motor performance of the secondary tasks. A consistent finding in 

attentional focus research is that when focus is on the outcome of the movement process 

(typically described as external focus) as opposed to the movement process itself (typically 

described as internal focus), performance and learning is superior (Wulf, 2013). In this light, 

research on the effects of secondary motor tasks on postural control performance are consistent 

with most of the research on the effects of attentional focus on motor performance.   

Interpretation within dynamical systems framework  

 A possible explanation for the seemingly mixed results of the effect of internal and 

external attentional focus on static balance performance may be related to the nature, relevance 

and usefulness of the information attended to among the experimental conditions. Coordination, 

from the dynamical systems perspective, is viewed as a self-organized process, the dynamics of 

which are affected by the confluence of constraints arising from the individual, task and 

environment (Davids et al., 2003; Newell & McDonald, 1991); information delivered by all of 

the sensory systems constrain coordination dynamics through the process of self-organization 

(Newell & McDonald, 1994; Profeta & Turvey, 2018). According to dynamical systems theory 

and the ecological approach to perception and action, perception is viewed as a functional act of 

picking up information to use for regulating actions (Chow et al., 2016), and skillful performance 

is related to becoming attuned to relevant information that is used to constrain movement 

behavior to accomplish a particular goal (Kugler & Turvey, 1987; Fajen et al., 2008; Pacheco et 

al., 2019). Bernstein (1945-46/1996) characterized the role of allocating attentional resources, 

hypothesizing that the level to which attention is allocated leads in the control of movement, and 
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that attention should be on the desire to solve the motor problem (Bernstein, 1945-46/1996); the 

relationship between what is attended to and the task goal is important. The information attended 

to will be located somewhere, and can be characterized as being located internally or externally 

(Nideffer, 1976). It is clear that postural dynamics are related to visual information (Lee & 

Lishman, 1975; Oullier et al., 2002; Smart et al., 2004; Stoffregen et al., 1999) which is located 

externally, and proprioceptive information (Peterka & Loughlin, 2003) which is located 

internally. Therefore, perhaps the effects of attentional focus instructions should be considered 

closely in terms of the content and relevance of the information attended to with respect to the 

constraints that define the context of the task being performed as opposed to specifically the 

direction of focus. In this light, the interplay between internal and external attentional focus 

during static standing postural control might become evident. For example, Kee et al. (2012) 

noted that for participants that had tendencies to be mindful, participating in a mindfulness 

facilitation task- in other words, facilitating a broad internal focus- resulted in improved 

performance as indicated by the complexity of the COP time series. Furthermore, these 

participants reported more use of external information compared to the control condition as 

indicated by responses to a questionnaire. Participants indicated utilizing “some spots” to look at 

while balancing, but responses in the questionnaire regarding using “a fixed spot” to look at was 

not significantly different between groups. This might have been indicative of a more “flexible” 

mode of perception allowing participants to adapt to ongoing demands as opposed to rigid 

fixation on narrow information (Kee et al., 2012). These results support the suggestion of Yi-

Ching Peh et al. (2011), who discuss that narrow internal attentional focus instructions 

commonly used in research might be too rigid and over-constraining. The dynamics of 

perception are self-organized patterns themselves (Pacheco et al., 2019), and perception and 
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action are circularly related to each other (Pacheco et al., 2019); each influences and supports the 

other. Variability in the dynamics of perception and action support skilled behavior (Seifert et 

al., 2013). It is in this light that Yi-Ching Peh et al. (2011) argue that the usefulness of internal 

focus might be underemphasized, and that both might play an important role in the development 

and performance of perceptual-motor skills. As the philosophical perspective of complementarity 

(Kelso & Engstrøm) would have it, perhaps internal and external focus are complementary. 

Future research investigating the interplay between internal and external focus during static 

standing postural control tasks might yield important insight about how attentional focus affects 

static standing postural control performance.  

When information is considered as relevant, it is considered as such with respect to a 

particular task goal (Turvey & Kugler, 1984; Kugler & Turvey, 1987; Fajen et al., 2008; Pacheco 

et al., 2019). As Pacheco et al. (2019) suggest, attentional focus might act as a constraint that 

alters the coupling of perception and action, and attentional focus instructions can constrain the 

learner to perform based on the information their attention is channeled to. Therefore, as Yi-

Ching Peh et al. (2011) suggest, the relationship between attentional focus instructions and the 

perceived goal of the task is important to consider. When relevant information with respect to the 

task goal is located internally, internal focus might be appropriate as supported by research on 

attentional focus instructions using tasks such as taekwondo routines (Woo et al., 2014) and 

swimming emphasizing movement form (Komar & Chow, 2013). If the nature of attentional 

focus instructions used in research conflict with the goal of the performance, the effectiveness 

and usefulness of both internal and external attentional focus might not be exposed (Yi-Ching 

Peh et al., 2011). In this light, to learn more about how internal and external attentional focus 
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impacts static standing postural control, comparing how different attentional focus instructions 

qualitatively affect variables related the movement process might be useful.  

It is worth noting that there is a subtle ambiguity in how the terms internal attentional 

focus and external attentional focus are used. Nideffer (1976) originally characterized attentional 

focus with a two-dimensional classification system: width and direction. According to Nideffer 

(1976), an internal focus of attention involves directing attention to one’s own body, actions 

and/or thoughts, and an external focus involves directing attention to information arising from 

the environment, typically related to the performance of some task. In much of the research 

investigating the effects of the direction of attentional focus on the performance and learning of 

motor skills (see Wulf, 2013) an external focus of attention is defined as focusing on information 

pertaining to the outcome of an action, and an internal focus of attention is defined as focusing 

on the movement process. This definition is not always reflected in the instructions used in 

attentional focus research. For example, Wulf et al. (2007) investigated the effects of the 

direction of attentional focus on jump-and-reach performance where the external focus group 

was instructed to focus on reaching for the rungs of the apparatus, and the internal focus group 

was instructed to focus on their fingertips. Wulf et al. (2001) characterized internal focus during 

performance of the stabilometer test as focusing on one’s feet, while an external focus was 

characterized as focusing on markers placed on the stabilometer platform. However, Wulf et al. 

(1998), during performance of a ski simulator, had participants either focus on putting force 

through the outsides of the feet (internal focus) or focusing on the force put into the wheels of the 

apparatus (external focus) which is more in line with the process and outcome definition of 

internal and external focus, respectively. Thus, clearly operationalizing these terms is important. 

As long as task performance outcome-related information is located externally, the 
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characterizations of external and internal focus as described by Wulf (2013) and by Nideffer 

(1976) do not conflict very much, but when performance outcome related information is located 

internally (related to one’s body), for example during taekwondo routines (Woo et al., 2014) and  

swimming emphasizing movement form (Komar & Chow, 2013), the consistent finding that an 

“internal” focus of attention (focusing on one’s body) causes performance decrements does not 

seem to hold. In fact, in Komar and Chow (2013), the outcome being measured was movement 

form - in other words, the process was the outcome. In this case, differentiating internal and 

external focus as process and outcome focused attention, respectively, is not straight forward. A 

similar statement might be made about postural control tasks - the task “stand as still as you 

can,” as was used in the present study, implies a relationship between the process and outcome in 

such a way that it is not easily distinguished.  

In the present study it was decided to operationalize the definitions of the directions of 

attentional focus - internal attentional focus and external attentional focus - in line with 

Nideffer’s (1976) characterization of the direction of attentional focus. Both experimental 

conditions in the present study involved attempted manipulations of the direction of the 

attentional focus (counting heart beats and counting cartoon scene changes) without appreciably 

changing the relevance of the focus (with respect to the balance task), and the results did not 

yield statistically significant differences among groups. The results therefore do not support that 

manipulating the direction of attentional focus alone is sufficient to affect static single leg 

balance performance, supporting the above discussion on the importance of considering the 

nature and relevance of the information attended to.   

It is worth noting that, although the present study did not detect significant differences 

among groups, it cannot be ruled out that other outcome measures might have yielded 
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differences. It is also important to note that the anterior-posterior positioning of the participants 

on the force platform was not prescribed, and the height of the video monitor was not matched 

for the height of each participant. Since these factors relate to the orientation of the participant 

with the monitor they were looking at, these confounding variables might have introduced error. 

Furthermore, the results of the present study should be interpreted within its limitations. 

Although written instructions were provided to participants intended to manipulate the direction 

of their attentional focus, it is not possible to control for the intentions of the participants. No 

follow-up questionnaires were used to assess the participants’ adherence to the written 

instructions, nor were participants asked to report their count of total number of heart beats or 

cartoon scene changes. Therefore, one cannot state with confidence that these results reflect the 

effect of the direction of attentional focus, because attentional focus was not measured; these 

results reflect the effects of the particular written instructions provided to the participants to the 

extent that participants read, remembered and attempted to follow the written directions provided 

to them prior to the performance of the balance task.  

Conclusions 

 The purpose of this study was to investigate whether the direction of attentional focus 

affects static single leg balance performance. Balance and postural control training is a popular 

part of physical fitness training (Thompson, 2018; Thompson, 2019), and it is common for 

physical fitness training be performed under the guidance of movement practitioners (Thompson, 

2018; Thompson, 2019). According to the constraints-led approach to skill acquisition (Davids et 

al., 2008), manipulation of the attentional focus of a learner is a strategy that can be used by 

movement practitioners to facilitate performance and learning of motor skills. The results of the 

present study do not support the proposition that the direction of attentional focus alone is 
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sufficient to improve static single leg balance performance as reflected by the scaling exponent 

and RMSE of the COP time series. Furthermore, the results do not suggest that utilizing a silent 

secondary counting task affects static single leg balance performance, regardless of the direction 

of attentional focus associated with the counting task. Based on these results, it is probably a 

good idea that practitioners should consider more than just the direction of the attentional focus 

of the performer if the goal is to facilitate balance performance. Future research might address 

whether instructions should be provided in the context of balance itself or whether balance is 

best to be practiced and instructed in the context of secondary or suprapostural tasks. 

Additionally, future research could address whether the effect of performing secondary tasks on 

static balance performance is different for secondary tasks requiring a motor response compared 

to secondary tasks that do not require a motor response. Overall, the results of this study suggest 

that when providing attentional focus instructions, it seems important to consider not only the 

direction of the focus of attention, but also the nature and content of the information attended to 

in relation to the task goal, and whether the provision of the internal and/or external attentional 

focus instructions changes task constraints.  
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APPENDIX B: Recruitment Flyer 
Are you interested in participating in a research 
study about balance?  

Cory Monahan (SUNY Cortland masters student) is conducting a research study about the effects of 
attentional focus instructions on single leg balance performance.  

The experiment consists of one (1) test session lasting approximately twenty (20) minutes. The test date 
and time will be provided to you by Cory. Test sessions will take place in the SUNY Cortland 
biomechanics laboratory.  

Please note you will be asked to abstain from physical exercise on the day of testing.  

To be eligible for participation, you must fit all of the following criteria:  

• You must be 19-28 years old 
• No trouble with vision, near or far, and no eyeglasses for vision correction  
• No current trouble with dizziness  
• No current pain or painful movement limitations such as pain in the ankle, knee, hips, low-back, 

neck, etc…  
• A body mass index (BMI) score less than 30 (see chart below)- you must fall within the blue, 

green or yellow sections based on your height and weight.  
• To the best of your knowledge, no current physical condition(s) that may affect your balance 

and/or posture  
• You cannot be currently participating in any other balance- or postural control-related research  

 

 
 

 

 

 

 

 

 
 
 

If you are interested in volunteering to participate in this research study, Contact Cory 
Monahan at cory.monahan@cortland.edu for complete details 
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1164 Professional Studies Building • P.O. Box 2000 • Cortland, NY 13045-0900 

	

APPENDIX C: Informed Consent Document 

INFORMED CONSENT FORM 

Title of study: The effect of attentional focus instructions on single leg balance performance 

Principal Investigator: Cory Monahan  

Participant’s Printed Name:  _________________________________________________________  

You are invited to take part in a research study which seeks to identify how attentional focus 
instructions may affect single leg balance. This research is being conducted by Cory Monahan, a 
graduate student at SUNY Cortland.  Your informed consent is requested if you wish to 
participate as a research subject in this study.  Before you consent to participate, please read the 
following regarding the details of the study so that you fully understand what your involvement 
will be and what risks and benefits you may experience as a participant in this research. If you 
decide you would like to participate, you will be asked to sign a copy of this document when you 
report for your test session. You will not be permitted to participate in this study without having 
read and signed this document. Taking part in this study is entirely voluntary. You are 
encouraged to ask any questions you may have regarding participation in the study.  

PURPOSE OF THE STUDY 
This research study is being done to find out if attentional focus affects the performance of single 
leg balance. Results of this study may have implications to movement coaches and therapists.  

ELIGIBILITY 
You are eligible to participate in this study if you: 

• are 19-28 years old 
• have a body mass index (BMI) less than 30 
•  do not have any difficulties with vision nor do you wear glasses 
• are not experiencing trouble with dizziness 
• do not have any pain or painful movement limitations (for example, pain in the ankle, 

knee, hip, low-back, neck, or any other area of the body) 
• do not have any physical conditions, that you are aware of, that may affect your balance 

and/or posture 
• are not currently participating in any other balance- or postural control-related research. 
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PROCEDURES  
On the day of testing, you will be asked to abstain from physical exercise. When you arrive for 
your scheduled appointment, you will be asked to sign this consent form. You will then be asked 
to read instructions that will explain the balance task. You will be asked to remove your shoes 
and socks, and if you are wearing long pants that extend past your ankles, you will be asked to 
roll them up just above your ankles. You will then be asked to stand and balance on one leg 
barefoot for thirty-five (35) seconds on a platform that measures forces. The instructions will 
specify a particular form required during the balance task, along with specific attentional focus 
instructions that you will be asked to adhere to.  
 
The force platform will be sanitized prior to your participation for hygiene purposes. 

 DURATON OF YOUR INVOLVEMENT 
If you agree to take part in this study, your scheduled test session will last approximately twenty 
minutes.  

DISCOMFORTS AND RISK 
Participating in this study involves a challenging balance task, which poses a risk of falling. 

POTENTIAL BENEFITS 
You will not directly benefit from taking part in this research study.  

The results of this research may guide future movement practitioners in providing instructions to 
clients/patients during balance exercises. More information about the effects of attentional focus 
on human balance performance may be gained.  

STATEMENT OF CONFIDENTIALITY 
Your research records from this study will be kept by the principal investigator. All electronic 
data collected will be stored in a password-protected file on the principal investigator’s personal 
computer as well as a password protected external hard drive,.Paper documents will be kept in a 
confidential folder and envelope. Your name will be associated with a numerical code so that the 
data collected during testing will not be directly associated with your name. Documents that will 
have your name directly attached are: 1) this consent form, 2) the questionnaire that you will 
complete during your appointment, 3) a schedule containing your one-time appointment, and 4) a 
list of codes assigned to each participant, which will include your name and e-mail address.  

The documents and data will be transported by the investigator to and from the the SUNY 
Cortland campus and the investigator’s home. After the research study has ended, your 
information will be stored in the investigator’s home for a minimum of three years (in 
accordance with federal, state and SUNY guidelines), after which it will be destroyed.  
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In the event of any publication or presentation resulting from the research, no personally 
identifiable information will be shared. 

Your participation in this research study will be kept confidential to the extent permitted by law. 
However, it is possible that other people may become aware of your participation in this study. 
For example, the State University of New York College at Cortland Institutional Review Board 
may inspect and copy records pertaining to this research:  

COSTS FOR PARTICIPATION 
There are no costs associated with your participation in this study, other than costs associated 
with your travel to and from the testing site. These travel costs will not be reimbursed to you. 
You are responsible for all travel and travel-related expenses.  

COMPENSATION FOR PARTICIPATION 
There will be no monetary compensation provided for participating in this research.  

VOLUNTARY PARTICIPATION 
Taking part in this research study is voluntary. You do not have to participate in this research. If 
you choose to take part, you have the right to stop at any time. If you decide not to participate or 
if you decide to stop taking part in the research at a later date, there will be no penalty to you. 

CONTACT INFORMATION FOR QUESTIONS OR CONCERNS 
You have the right to ask any questions you may have about this research. If you have questions, 
complaints, or concerns or believe you may have developed an injury related to this research, 
contact Cory Monahan (principal investigator) by phone at 518-755-9260 or by e-mail at 
cory.monahan@cortland.edu  

For questions or concerns about your rights as a research participant, contact the SUNY Cortland 
Institutional Review Board by email at irb@cortland.edu, or by phone 607-753-2511.  If you 
have questions regarding your rights as a research participant or you have concerns or general 
questions about the research, contact the SUNY Cortland Institutional Review Board by email at 
irb@cortland.edu, by phone 607-753-2511, or by mail: Miller Building, Room 206, PO Box 
2000, Cortland, NY 13045. You may also call this number if you cannot reach the research team 
or wish to talk to someone else.  

For more information about participation in a research study and about your institutional review 
board (IRB), a group of people who review the research to protect your rights, please visit the 
State University of New York (SUNY) College at Cortland IRB’s Web site at 
www2.cortland.edu/offices/irb/. Included on this Web site, under the heading “Information for 
Research Participants” you can access Federal regulations and information about the protection 
of human research participants. If you do not have access to the Internet, copies of these Federal 
regulations are available by calling the SUNY Cortland Institutional Review Board by phone: 
607-753-2511 or by email: irb@cortland.edu  
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I _______________________________________ have read the description of the project for 
which this consent is requested, I understand my rights, and I hereby consent to participate 
in this study.  

 ___________________________________   ____________________  

 Signature  Date  
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APPENDIX D:  Questionnaire 

Thank you for your interest in volunteering to participate in the research study titled “The effect of attentional focus 
instructions on single leg balance performance.”  

Please respond to the following questions to be sure you meet the necessary criteria for participation in this research 
study.  

1) How old are you?  
________ years 
 

2) Are you male or female? (circle your answer) 
 
Male  Female 
 

3) Are you currently experiencing trouble with vision, either near or far?  
________   (Yes or No)  
 

4) Do you currently wear glasses to correct vision?  
________ (Yes or No)  
 

5) Are you experiencing trouble with dizziness?  
________ (Yes or No)  
 

6) Do you have any pain or painful movement limitations anywhere in the body (examples: ankle pain, knee 
pain, hip pain, low-back pain, neck pain, or any other areas of the body)?  
 
________ (Yes or No) 
 

7) To the best of your knowledge, do you have any physical condition(s) that may affect your balance and/or 
posture? If yes, simply respond “yes.” You do not need to list or explain the condition(s). 
________ (Yes or No) 
 

8) What is your weight and height?  
 
Weight:_______ pounds  
Height: _______ feet ______ inches  
 

9) Do you wear orthotic footwear?  
________ (Yes or No)  
 
If Yes, are they custom-made or generic? __________________ 
 
If Yes, do you wear the orthotic(s) in your left shoe, right shoe, or both?____________________ 
 

Please sign below to indicate that you responded truthfully and to the best of your knowledge. 

 
Sign here _____________________________________________________________________________________ 

 
Printed name _____________________________________________________Date _________________________ 
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APPENDIX E:  Task Instructions 

Instructions	for	your	balance	task		

You	are	asked	to	perform	a	trial	of	single	leg	balance	standing	on	the	square	force	plate	that	the	
investigator	(Cory	Monahan)	will	direct	you	to.	Before	performing	the	task,	please	read	the	
following	instructions.	It	is	important	that	you	understand	these	instructions	and	adhere	to	
them	throughout	the	experiment.	Cory	will	not	speak	any	instructions	to	you.	Please	do	your	
best	to	follow	these	written	instructions:		

1) If	you	are	wearing	long	pants	and	the	bottom	of	the	pant	legs	extend	past	your	ankles	
and	you	have	not	yet	rolled	them	up	past	your	ankles,	please	do	so	now.	Remove	your	
shoes	and	socks,	as	this	task	will	be	performed	barefoot.		
	

2) Cory	will	guide	you	to	the	platform	that	you	will	stand	on	and	which	direction	to	face.	
You	will	balance	standing	on	either	your	right	or	left	leg	(determined	below)	for	thirty-
five	seconds.	Cory	will	inform	you	when	to	start	by	saying	“You	may	begin.”	
	

3) Circle	either	“Left”	or	“Right”	based	on	the	following	question:		
If	you	were	to	kick	a	ball	on	a	target,	which	leg	would	you	use	to	kick	the	ball?				
Left					Right		
	
The	answer	that	you	DID	NOT	circle	will	be	the	leg	you	are	going	to	stand	on.		
	

4) The	balance	task	procedure:		
	 -When	Cory	tells	you	“You	may	begin,”	stand	on	the	determined	leg	and	place	
the	other	foot	against	the	back	of	your	knee	of	the	leg	you	are	standing	on.	Cross	your	
arms	loosely	across	your	chest.	Look	at	the	red	three-inch	marker	on	the	floor	in	front	of	
you.		
	 -A	picture	of	the	form	required	is	on	the	next	page.	Be	sure	to	look	at	the	picture	
so	that	you	understand	the	task.	Be	sure	position	your	foot	on	the	line	as	illustrated.	
Please	note	that	the	line	on	the	platform	passes	through	the	heel	and	under	the	base	of	
the	second	toe	(see	picture	on	next	page).	
	
	 -After	you	begin	balancing,	Cory	will	tell	you	when	time	begins	by	saying	“Time	
starts	now”	and	when	the	trial	is	over	by	saying	and	“You	are	finished.”		
	

5) Your	attentional	focus	instructions	are	on	the	last	page.	Be	sure	to	read	and	adhere	to	
these	instructions	while	you	are	performing	the	balance	task.	This	is	very	important!		
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Standing	on	right	foot	Standing	on	left	foot	



	
	

68 

INT	group	

Attentional	focus	instruction:		

During	the	balance	task,	stand	as	still	as	you	can.	Focus	on	feeling	your	
heartbeat,	and	try	to	count	the	number	of	times	your	heart	beats.		

	

Sign	your	name	on	the	following	line	if	you	understand	the	instructions	and	will	
adhere	to	them	for	the	duration	of	the	balance	trial.		
	

Signature______________________________________________	
	

	

Hand	this	document	to	Cory	and	he	will	direct	you	to	the	force	platform.		
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EXT	group	

Attentional	focus	instruction:		

During	the	balance	task,	stand	as	still	as	you	can.	Watch	the	cartoon	on	the	
monitor	in	front	of	you.	Try	to	count	the	number	of	times	the	cartoon	switches	
scenes.		

	

Sign	your	name	on	the	following	line	if	you	understand	the	instructions	and	will	
adhere	to	them	for	the	duration	of	the	balance	trial.		
	

Signature______________________________________________	
	

	

	

Hand	this	document	to	Cory	and	he	will	direct	you	to	the	force	platform.		
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CON	group	

Attentional	focus	instruction:		

During	the	balance	task,	stand	as	still	as	you	can.		

	

Sign	your	name	on	the	following	line	if	you	understand	the	instructions	and	will	
adhere	to	them	for	the	duration	of	the	balance	trial.		
	

Signature______________________________________________	

 

 

Hand	this	document	to	Cory	and	he	will	direct	you	to	the	force	platform.		
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APPENDIX	F	

Participant	data		

Participant	 Group		 Age	 Gender	 Height		 Weight	 BMI	 Leg	
balanced	

on		

Successful	
attempt?		

1	 Internal	 20	 male	 70	 180	 25.88	 left		 No	
2	 Internal		 20	 male	 69	 197	 29.15	 left		 yes		
3	 Internal		 23	 male	 75	 195	 24.42	 left		 yes		
4	 Internal		 22	 male	 73	 212	 28.03	 left		 yes		
5	 Internal		 23	 male	 69	 195	 28.86	 left		 yes		
6	 Internal		 21	 female	 61	 132	 24.99	 left		 yes		
7	 Internal		 20	 female	 65.5	 140	 22.99	 left		 yes		
8	 Internal		 22	 female		 63	 120	 21.30	 left		 yes		
9	 Internal		 28	 female	 60	 131	 25.64	 right	 yes		
10	 Internal		 19	 female	 62	 116	 21.26	 left		 yes		
11	 Internal		 22	 female		 66	 160	 25.88	 left		 yes		
12	 Internal		 21	 male	 74	 196	 25.22	 left		 yes		
13	 Internal		 19	 female	 62	 160	 29.33	 left		 yes		
14	 Internal		 19	 male	 71	 164	 22.92	 left		 yes		
15	 Internal		 19	 female	 66	 135	 21.84	 left		 yes		
16	 Internal	 19	 male	 68	 183	 27.88	 left		 yes		
17	 External		 19	 female	 62	 145	 26.58	 right	 no		
18	 External		 20	 Male	 68	 165	 25.14	 left		 yes		
19	 External		 19	 female	 64	 135	 23.22	 left		 yes		
20	 External		 19	 male	 71	 185	 25.86	 left		 yes		
21	 External		 19	 female	 69	 150	 22.20	 left		 yes		
22	 External		 19	 male	 69	 160	 23.68	 left		 yes		
23	 External		 20	 female	 61	 145	 27.45	 right	 yes		
24	 External		 21	 male	 74	 192	 24.70	 right	 yes		
25	 External		 20	 female	 69	 175	 25.90	 left		 yes		
26	 External		 20	 female	 66	 180	 29.11	 left		 yes		
27	 External		 21	 female	 66	 135	 21.84	 left		 yes		
28	 External		 23	 male	 66	 161	 26.04	 left		 yes		
29	 External		 21	 male	 73	 170	 22.48	 right	 yes		
30	 External		 21	 male	 70	 135	 19.41	 left		 yes		
31	 External		 22	 male	 69	 165	 24.42	 left		 yes		
32	 External		 20	 female	 64	 155	 26.66	 left		 yes		
33	 External		 22	 female	 68	 180	 27.43	 left		 yes		
34	 Control	 20	 male	 69	 200	 29.60	 left		 no		
35	 Control		 19	 male	 74	 195	 25.09	 left		 yes		
36	 Control		 20	 male	 68	 190	 28.95	 left		 yes		
37	 Control		 19	 female	 68	 195	 29.71	 left		 yes		
38	 Control		 19	 male	 69	 185	 27.38	 left		 yes		
39	 Control		 19	 female	 67	 140	 21.97	 left		 yes		
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40	 Control		 19	 female	 66	 115	 18.60	 left		 yes		
41	 Control		 22	 male	 66	 143	 23.13	 left		 yes		
42	 Control		 21	 female	 67	 165	 25.90	 left		 yes		
43	 Control		 23	 male	 74	 197	 25.35	 left		 yes		
44	 Control		 20	 female	 68	 183	 27.88	 left		 yes		
45	 Control		 21	 female	 63	 145	 25.74	 left		 yes		
46	 Control		 20	 female	 65	 132	 22.01	 left		 yes		
47	 Control		 21	 female	 65	 165	 27.51	 left		 yes		
48	 Control		 20	 female	 62	 130	 23.83	 right	 yes		
49	 Control	 22	 female	 66	 143	 23.13	 left		 yes		
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