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Preface 

Discrete math is a popular book topic — start Googling around 
and you’ll find a zillion different textbooks about it. Take a closer 
look, and you’ll discover that most of these are pretty thick, dense 
volumes packed with lots of equations and proofs. They’re prin-
cipled approaches, written by mathematicians and (seemingly) to 
mathematicians. I speak with complete frankness when I say I’m 
comforted to know that the human race is well covered in this area. 
We need smart people who can derive complex expressions and 
prove theorems from scratch, and I’m glad we have them. 

Your average computer science practitioner, however, might be bet-
ter served by a different approach. There are elements to the dis-
crete math mindset that a budding software developer needs ex-
perience with. This is why discrete math is (properly, I believe) 
part of the mandatory curriculum for most computer science un-
dergraduate programs. But for future programmers and engineers, 
the emphasis should be different than it is for mathematicians and 
researchers in computing theory. A practical computer scientist 
mostly needs to be able to use these tools, not to derive them. 
She needs familiarity, and practice, with the fundamental concepts 
and the thought processes they involve. The number of times the 
average software developer will need to construct a proof in graph 
theory is probably near zero. But the times she’ll find it useful to 
reason about probability, logic, or the properties of collections are 
frequent. 

I believe the majority of computer science students benefit most 
from simply gaining an appreciation for the richness and rigor of 
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iv PREFACE 

this material, what it means, and how it impacts their discipline. 
Becoming an expert theorem prover is not required, nor is deriving 
closed-form expressions for the sizes of trees with esoteric proper-
ties. Basic fluency with each topic area, and an intuition about 
when it can be applied, is the proper aim for most of those who 
would go forward and build tomorrow’s technology. 

To this end, the book in your hands is a quick guided tour of 
introductory-level discrete mathematics. It’s like a cool, brisk walk 
through a pretty forest. I point out the notable features of the 
landscape and try to instill a sense of appreciation and even of awe. 
I want the reader to get a feel for the lay of the land, and a little 
exercise. If the student acquires the requisite vocabulary, gets some 
practice playing with the toys, and learns to start thinking in terms 
of the concepts here described, I will count it as a success. 



Chapter 1 

Meetup at the trailhead 

Before we set out on our “cool, brisk walk,” let’s get oriented. What 
is discrete mathematics, anyway? Why is it called that? What does 
it encompass? And what is it good for? 

Let’s take the two words of the subject, in reverse order. First, 
math. When most people hear “math,” they think “numbers.” 
After all, isn’t math the study of quantity? And isn’t that the class 
where we first learned to count, add, and multiply? 

Mathematics certainly has its root in the study of numbers — 
specifically, the “natural numbers” (the integers from 1 on up) that 
fascinated the ancient Greeks. Yet math is broader than this, al-
most to the point where numbers can be considered a special case 
of something deeper. In this book, when we talk about trees, sets, 
or formal logic, there might not be a number in sight. 

Math is about abstract, conceptual objects that have prop-
erties, and the implications of those properties. An “object” 
can be any kind of “thought material” that we can define and reason 
about precisely. Much of math deals with questions like, “suppose 
we defined a certain kind of thing that had certain attributes. What 
would be the implications of this, if we reasoned it all the way out?” 
The “thing” may or may not be numerical, whatever it turns out to 
be. Like a number, however, it will be crisply defined, have certain 
known aspects to it, and be capable of combining with other things 
in some way. 
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2 CHAPTER 1. MEETUP AT THE TRAILHEAD 

Fundamental to math is that it deals with the abstract. Abstract, 
which is the opposite of concrete, essentially means something that 
can’t be perceived with the senses. A computer chip is concrete: 
you can touch it, you can see it. A number is not; nor is a function, 
a binary tree, or a logical implication. The only way to perceive 
these things is with the power of the mind. We will write expres-
sions and draw pictures of many of our mathematical structures in 
order to help visualize them, and nearly everything we study will 
have practical applications whereby the abstractness gets grounded 
in concreteness for some useful purpose. But the underlying math-
ematical entity remains abstract and ethereal — only accessible 
to the mind’s eye. We may use a pencil to form the figure “5” 
on a piece of paper, but that is only a concrete manifestation of 
the underlying concept of “five-ness.” Don’t mistake the picture or 
the symbol for the thing itself, which always transcends any mere 
physical representation. 

The other word in the name of our subject is “discrete” (not to 
be confused with “discreet,” which means something else entirely). 
The best way to appreciate what discrete means is to contrast it 
with its opposite, continuous. Consider the following list: 

Discrete Continuous 
whole numbers (Z) real numbers (R) 

int double 
digital analog 
quantum continuum 
counting measuring 

number theory analysisR 
Σ 

d – dx 

What do the left-hand entries have in common? They describe 
things that are measured in crisp, distinct intervals, rather than 
varying smoothly over a range. Discrete things jump suddenly from 
position to position, with rigid precision. If you’re 5 feet tall, you 
might some day grow to 5.3 feet; but though there might be 5 
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people in your family, there will never be 5.3 (although there could 
be 6 someday). 

The last couple of entries on this list are worth a brief comment. 
They are math symbols, some of which you may be familiar with.R 
On the right side — in the continuous realm — are and d 

dx , 
which you’ll remember if you’ve taken calculus. They stand for 
the two fundamental operations of integration and differentiation. 
Integration, which can be thought of as finding “the area under 
a curve,” is basically a way of adding up a whole infinite bunch 
of numbers over some range. When you “integrate the function 
x2 from 3 to 5,” you’re really adding up all the tiny, tiny little 
vertical slivers that comprise the area from x = 3 on the left to 
x = 5 on the right. Its corresponding entry in the left-column of 
the table is Σ, which is just a short-hand for “sum up a bunch of 
things.” Integration and summation are equivalent operations, it’s 
just that when you integrate, you’re adding up all the (infinitely 
many) slivers across the real-line continuum. When you sum, you’re 
adding up a fixed sequence of entries, one at a time, like in a loop. R 
Σ is just the discrete “version” of . 

The same sort of relationship holds between ordinary subtraction 
(“–”) and differentiation ( d ). If you’ve plotted a bunch of discretedx 
points on x-y axes, and you want to find the slope between two of 
them, you just subtract their y values and divide by the (x) distance 
between them. If you have a smooth continuous function, on the 
other hand, you use differentiation to find the slope at a point: 
this is essentially subtracting the tiny tiny difference between two 
supremely close points and then dividing by the distance between 
them. Thus subtraction is just the discrete “version” of d 

dx . 

Don’t worry, you don’t need to have fully understood any of the 
integration or differentiation stuff I just talked about, or even to 
have taken calculus yet. I’m just trying to give you some feel for 
what “discrete” means, and how the dichotomy between discrete 
and continuous really runs through all of math and computer sci-
ence. In this book, we will mostly be focusing on discrete values 
and structures, which turn out to be of more use in computer sci-
ence. That’s partially because as you probably know, computers 
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themselves are discrete, and can only store and compute discrete 
values. There can be many of them — megabytes, gigabytes, ter-
abytes — but each value stored is fundamentally comprised of bits, 
each of which has a value of either 0 or 1. This is unlike the human 
brain, by the way, whose neuronal synapses communicate based on 
the continuous quantities of chemicals present in their axons. So I 
guess “computer” and “brain” are another pair of entries we could 
add to our discrete vs. continuous list. 

There’s another reason, though, why discrete math is of more use 
to computer scientists than continuous math is, beyond just the 
bits-and-bytes thing. Simply put, computers operate algorithmi-
cally. They carry out programs in step-by-step, iterative fashion. 
First do this, then do that, then move on to something else. This 
mechanical execution, like the ticking of a clock, permeates every-
thing the computer can do, and everything we can tell it to do. 
At a given moment in time, the computer has completed step 7, 
but not step 8; it has accumulated 38 values, but not yet 39; its 
database has exactly 15 entries in it, no more and no less; it knows 
that after accepting this friend request, there will be exactly 553 
people in your set of friends. The whole paradigm behind reasoning 
about computers and their programs is discrete, and that’s why we 
computer scientists find different problems worth thinking about 
than most of the world did a hundred years ago. 

But it’s still math. It’s just discrete math. There’s a lot to come, 
so limber up and let me know when you’re ready to hit the road. 

1.1 Exercises 

Use an index card or a piece of paper folded lengthwise, and cover 
up the right-hand column of the exercises below. Read each exercise 
in the left-hand column, answer it in your mind, then slide the index 
card down to reveal the answer and see if you’re right! For every 
exercise you missed, figure out why you missed it before moving on. 
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6. If 

1. What’s the opposite 
of concrete? 

Abstract. 

2. What’s the opposite 
of discrete? 

Continuous. 

3. Consider a quantity 
of water in a glass. 
Would you call it ab-
stract, or concrete? 
Discrete, or continu-
ous? 

Concrete, since it’s a real entity you can ex-
perience with the senses. Continuous, since 
it could be any number of ounces (or liters, 
or tablespoons, or whatever). The amount 
of water certainly doesn’t have to be an in-
teger. (Food for thought: since all matter 
is ultimately comprised of atoms, are even 
substances like water discrete?) 

4. Consider the number 
27. Would you call it 
abstract, or concrete? 
Discrete, or continu-
ous? 

Abstract, since you can’t see or touch 
or smell “twenty-seven.” Probably discrete, 
since it’s an integer, and when we think of 
whole numbers we think “discrete.” (Food 
for thought: in real life, how would you know 
whether I meant the integer “27” or the dec-
imal number “27.0?” And does it matter?) 

5. Consider a bit in a 
computer’s memory. 
Would you call it ab-
stract, or concrete? 
Discrete, or continu-
ous? 

Clearly it’s discrete. Abstract vs. concrete, 
though, is a little tricky. If we’re talking 
about the actual transistor and capacitor 
that’s physically present in the hardware, 
holding a tiny charge in some little chip, 
then it’s concrete. But if we’re talking about 
the value “1” that is conceptually part of the 
computer’s currently executing state, then 
it’s really abstract just like 27 was. In this 
book, we’ll always be talking about bits in 
this second, abstract sense. 

math isn’t just 
about numbers, what 
else is it about? 

Any kind of abstract object that has prop-
erties we can reason about. 





Chapter 2 

Sets 

The place from which we’ll start our walk is a body of mathematics 
called “set theory.” Set theory has an amazing property: it’s so 
simple and applicable that almost all the rest of mathematics can 
be based on it! This is all the more remarkable because set theory 
itself came along pretty late in the game (as things go) — it was 
singlehandedly invented by one brilliant man, Georg Cantor, in the 
1870’s. That may seem like a long time ago, but consider that 
by the time Cantor was born, mankind had already accumulated 
an immense wealth of mathematical knowledge: everything from 
geometry to algebra to calculus to prime numbers. Set theory was 
so elegant and universal, though, that after it was invented, nearly 
everything in math was redefined from the ground up to be couched 
in the language of sets. It turns out that this simple tool is an 
amazingly powerful way to reason about mathematical concepts of 
all flavors. Thus everything else in this book stands on set theory 
as a foundation. 

Cantor, by the way, went insane as he tried to extend set theory to 
fully encompass the concept of infinity. Don’t let that happen to 
you. 

7 



8 CHAPTER 2. SETS 

2.1 The idea of a set 

A set is a selection of certain things out of a (normally larger) 
group. When we talk about a set, we’re declaring that certain 
specific items from that group are in the set, and certain items are 
not in the set. There’s no shades of gray: every element is either 
in or out. 

For instance, maybe the overall group I’m considering is my family, 
which consists of five people: Dad, Mom, Lizzy, T.J., and Johnny. 
We could define one set — call it A — that contains Dad and Lizzy, 
but not the other three. Another set B might have Lizzy, T.J., and 
Johnny in it, but not the two parents. The set C might have Dad 
and only Dad in it. The set D might have all five Davieses, and 
the set E might have nobody at all. Etc. You can see that every 
set is just a way of specifying which elements are in and which are 
out. 

Normally a set will be based on some property of its members, 
rather than just being some random assortment of elements. That’s 
what makes it worth thinking about. For example, the set P (for 
“parents”) might be “all the Davieses who are parents”: this set 
would contain Dad and Mom, and no one else. The set F (for 
“female”) might be declared as the female members, and contain 
Mom and Lizzy. The set H (for “humans”) would contain all five 
elements of the group. And so on. 

As with most of math, it turns out to be useful to define symbols for 
these concepts, because then we can talk about them more precisely 
and concisely. We normally list the members of a set using curly 
braces, like this: 

A = { Dad, Lizzy } 

or 

B = { Lizzy, T.J., Johnny } 

Note that it doesn’t matter what order you list the members in. 
The set F of females contains Mom and Lizzy, but it’s not like 
Mom is the “first” female or anything. That doesn’t even make 
any sense. There is no “first.” A set’s members are all equally 
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members. So P is the same whether we write it like this: 

P = { Dad, Mom } 

or this: 
P = { Mom, Dad }. 

Those are just two different ways of writing the same thing. 

The set E that had nobody in it can be written like this, of course: 

E = { } 

but we sometimes use this special symbol instead: 

E = ∅. 

However you write it, this kind of set (one that has no elements) is 
referred to as an empty set. 

The set H, above, contained all the members of the group under 
consideration. Sometimes we’ll refer to “the group under consider-
ation” as the “domain of discourse.” It too is a set, and we usually 
use the symbol Ω to refer to it.1 So in this case, 

Ω = { Mom, Johnny, T.J., Dad, Lizzy }. 

Another symbol we’ll use a lot is “∈”, which means “is a member 
of.” Since Lizzy is a female, we can write: 

Lizzy ∈ F 

to show that Lizzy is a member of the F set. Conversely, we write: 

T.J. ∈/ F 

to show that T.J. is not. 

As an aside, I mentioned that every item is either in, or not in, a 
set: there are no shades of gray. Interestingly, researchers have de-
veloped another body of mathematics called (I kid you not) “fuzzy 

1Some authors use the symbol U for this, and call it the “universal set.” 
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set theory.” Fuzzy sets change this membership assumption: items 
can indeed be “partially in” a set. One could declare, for instance, 
that Dad is “10% female,” which means he’s only 10% in the F set. 
That might not make much sense for gender, but you can imagine 
that if we defined a set T of “the tall people,” such a notion might 
be useful. At any rate, this example illustrates a larger principle 
which is important to understand: in math, things are the way they 
are simply because we’ve decided it’s useful to think of them that 
way. If we decide there’s a different useful way to think about them, 
we can define new assumptions and proceed according to new rules. 
It doesn’t make any sense to say “sets are (or aren’t) really fuzzy”: 
because there is no “really.” All mathematics proceeds from what-
ever mathematicians have decided is useful to define, and any of it 
can be changed at any time if we see fit. 

2.2 Defining sets 

There are two ways to define a set: extensionally and intension-
ally2 . I’m not saying there are two kinds of sets: rather, there are 
simply two ways to specify a set. 

To define a set extensionally is to list its actual members. That’s 
what we did when we said P = { Dad, Mom }, above. In this case, 
we’re not giving any “meaning” to the set; we’re just mechanically 
spelling out what’s in it. The elements Dad and Mom are called 
the extension of the set P . 

The other way to specify a set is intensionally, which means to 
describe its meaning. Another way to think of this is specifying a 
rule by which it can be determined whether or not a given element is 
in the set. If I say “Let P be the set of all parents,” I am defining 
P intensionally. I haven’t explicitly said which specific elements 
of the set are in P . I’ve just given the meaning of the set, from 
which you can figure out the extension. We call “parent-ness” the 
intension of P . 

2Spelling nit: “intensionally” has an ‘s’ in it. “Intentionally,” meaning 
“deliberately,” is a completely different word. 
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Note that two sets with different intensions might nevertheless have 
the same extension. Suppose O is “the set of all people over 25 
years old” and R is “the set of all people who wear wedding rings.” 
If our Ω is the Davies family, then O and R have the same ex-
tension (namely, Mom and Dad). They have different intensions, 
though: conceptually speaking, they’re describing different things. 
One could imagine a world in which older people don’t all wear wed-
ding rings, or one in which some younger people do. Within the 
domain of discourse of the Davies family, however, the extensions 
happen to coincide. 

Fact: we say two sets are equal if they have the same extension. 
This might seem unfair to intensionality, but that’s the way it is. 
So it is totally legit to write: 

O = R 

since by the definition of set equality, they are in fact equal. I 
thought this was weird at first, but it’s really no weirder than saying 
“the number of years the Civil War lasted = Brett Favre’s jersey 
number when he played for the Packers.” The things on the left 
and right side of that equals sign refer conceptually to two very 
different things, but that doesn’t stop them from both having the 
value 4, and thus being equal. 

By the way, we sometimes use the curly brace notation in combi-
nation with a colon to define a set intensionally. Consider this: 

M = { k : k is between 1 and 20, and a multiple of 3 }. 

When you reach a colon, pronounce it as “such that.” So this says 
“M is the set of all numbers k such that k is between 1 and 20, and 
a multiple of 3.” (There’s nothing special about k, here; I could 
have picked any letter.) This is an intensional definition, since we 
haven’t listed the specific numbers in the set, but rather given a 
rule for finding them. Another way to specify this set would be to 
write 

M = { 3, 6, 9, 12, 15, 18 } 

which is an extensional definition of the same set. 
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Interesting thought experiment: what happens if you enlarge the 
intension of a set by adding conditions to it? Answer: increasing 
the intension decreases the extension. For example, suppose M is 
initially defined as the set of all males (in the Davies family). Now 
suppose I decide to add to that intension by making it the set of 
all adult males. By adding to the intension, I have now reduced 
the extension from { Dad, T.J., Johnny } to just { Dad }. The 
reverse is true as well: trimming down the intension by removing 
conditions effectively increases the extension of the set. Changing 
“all male persons” to just “all persons” includes Mom and Lizzy in 
the mix. 

2.3 Finite and infinite sets 

Sets can have an infinite number of members. That doesn’t make 
sense for the Davies family example, but for other things it does, 
of course, like: 

I = { k : k is a multiple of 3 }. 

Obviously there are infinitely many multiples of 3, and so I has 
an unlimited number of members. Not surprisingly, we call I an 
infinite set. More surprisingly, it turns out that there are different 
sizes of infinite sets, and hence different kinds of infinity. For in-
stance, even though there are infinitely many whole numbers, and 
also infinitely many real (decimal) numbers, there are nevertheless 
more real numbers than whole numbers. This is the thing that 
drove Cantor insane, so we won’t discuss it more here. For now, 
just realize that every set is either finite or infinite. 

You might think, by the way, that there’s no way to define an 
infinite set extensionally, since that would require infinite paper. 
This isn’t true, though, if we creatively use an ellipsis: 

I = { 3, 6, 9, 12, 15, . . . } 

This is an extensional definition of I, since we’re explicitly listing 
all the members. It could be argued, though, that it’s really in-
tensional, since the interpretation of “. . . ” requires the reader to 
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figure out the rule and mentally apply it to all remaining numbers. 
Perhaps in reality we are giving an intensional definition, cloaked 
in an extensional-looking list of members. I’m on the fence here. 

2.4 Sets are not arrays 

If you’ve done some computer programming, you might see a re-
semblance between sets and the collections of items often used in 
a program: arrays, perhaps, or linked lists. To be sure, there are 
some similarities. But there are also some very important differ-
ences, which must not be overlooked: 

• No order. As previously mentioned, there is no order to the 
members of a set. “{Dad, Mom}” is the same set as “{Mom, 
Dad}”. In a computer program, of course, most arrays or lists 
have first, second, and last elements, and an index number 
assigned to each. 

• No duplicates. Suppose M is the set of all males. What 
would it possibly mean to say M = {T.J., T.J., Johnny}? 
Would that mean that “T.J. is twice the man that Johnny 
is”? This is obviously nonsensical. The set M is based on a 
property: maleness. Each element of Ω is either male, or it 
isn’t. It can’t be “male three times.” Again, in an array or 
linked list, you could certainly have more than one copy of 
the same item in different positions. 

• Infinite sets. ’Nuff said. I’ve never seen an array with in-
finitely many elements, and neither will you. 

• Untyped. Most of the time, an array or other collection in a 
computer program contains elements of only a single type: it’s 
an array of integers, or a linked list of Customer objects, for 
example. This is important because the program often needs 
to treat all elements in the collection the same way. Perhaps 
it needs to loop over the array to add up all the numbers, 
or iterate through a customer list and search for customers 
who have not placed an order in the last six months. The 
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program would run into problems if it tried to add a string of 
text to its cumulative total, or encountered a Product object 
in the middle of its list of Customers. Sets, though, can be 
heterogeneous, meaning they can contain different kinds of 
things. The Davies family example had all human beings, but 
nothing stops me from creating a set X = { Jack Nicholson, 
Kim Kardashian, Universal Studios, 5786, F }. 
I don’t press this point too hard for a couple of reasons. First, 
most programming languages do allow heterogeneous collec-
tions of some sort, even if they’re not the most natural thing 
to express. In Java, you can define an ArrayList as a non-
generic so that it simply holds items of class “Object.” In C, 
you can have an array of void *’s — pointers to some un-
specified type — which allows your array to point to different 
kinds of things. Unless it’s a loosely-typed language, though 
(like Perl or JavaScript), it sort of feels like you’re bending 
over backwards to do this. The other reason I make this dis-
tinction lightly is that when we’re dealing with sets, we often 
do find it useful to deal with things of only one type, and so 
our Ω ends up being homogeneous anyway. 

Perhaps the biggest thing to remember here is that a set is a purely 
abstract concept, whereas an array is a concrete, tangible, explicit 
list. When we talk about sets, we’re reasoning in general about 
large conceptual things, whereas when we deal with arrays, we’re 
normally iterating through them for some specific purpose. You 
can’t iterate through a set very easily because (1) there’s no order 
to the members, and (2) there might well be infinitely many of them 
anyway. 

2.5 Sets are not ordered pairs (or tuples) 

You’ll remember from high school algebra the notion of an ordered 
pair (x, y). We dealt with those when we wanted to specify a point 
to plot on a graph: the first coordinate gave the distance from 
the origin on the x-axis, and the second coordinate on the y-axis. 
Clearly an ordered pair is not a set, because as the name implies it is 



15 2.6. SETS OF SETS 

ordered: (3, −4) 6= (−4, 3). For this reason, we’ll be very careful to 
use curly braces to denote sets, and parentheses to denote ordered 
pairs. 

By the way, although the word “coordinate” is often used to de-
scribe the elements of an ordered pair, that’s really a geometry-
centric word that implies a visual plot of some kind. Normally we 
won’t be plotting elements like that, but we will still have use to 
deal with ordered pairs. I’ll just call the constituent parts “ele-
ments” to make it more general. 

Three-dimensional points need ordered triples (x, y, z), and it 
doesn’t take a rocket scientist to deduce that we could extend this 
to any number of elements. The question is what to call them, 
and you do sort of sound like a rocket scientist (or other generic 
nerd) when you say tuple. (Some people rhyme this word with 
“Drupal,” and others with “couple,” by the way, and there seems 
to be no consensus). If you have an ordered-pair-type thing with 
5 elements, therefore, it’s a 5-tuple (or a quintuple). If it has 117 
elements, it’s a 117-tuple, and there’s really nothing else to call 
it. The general term (if we don’t know or want to specify how 
many elements) is n-tuple. In any case, it’s an ordered sequence 
of elements that may contain duplicates, so it’s very different than 
a set. 

2.6 Sets of sets 

Sets are heterogeneous — a single set can contain four universities, 
seven integers, and an ahi tuna — and so it might occur to you 
that they can contain other sets as well. This is indeed true, but 
let me issue a stern warning: you can get in deep water very quickly 
when you start thinking about “sets of sets.” In 1901, in fact, the 
philosopher Bertrand Russell pointed out that this idea can lead 
to unresolvable contradictions unless you put some constraints on 
it. What became known as “Russell’s Paradox” famously goes as 
follows: consider the set R of all sets that do not have themselves 
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 as members3. Now is R a member of itself, or isn’t it? Either way 
you answer turns out to be wrong (try it!) which means that this 
whole setup must be flawed at some level. 

The good news is that as long as you don’t deal with this kind of 
self-referential loop (“containing yourself as a member”) then it’s 
pretty safe to try at home. Consider this set: 

V = { 3, 5, { 5, 4 }, 2 }. 

This set has four (not five) members. Three of V ’s members are 
integers: 2, 3, and 5. The other one is a set (with no name given). 
That other set, by the way, has two members of its own: 4 and 5. 
If you were asked, “is 4 ∈ V ”? the answer would be no. 

As a corollary to this, there’s a difference between 

∅ 

and 
{ ∅ }. 

The former is a set with no elements. The latter is a set with one 
element: and that element just happens to be a set with nothing 
in it. 

2.7 Cardinality 

When we talk about the number of elements in a set, we use the 
word cardinality. You’d think we could just call it the “size” of 
the set, but mathematicians sometimes like words that sound cool. 
The cardinality of M (the set of males, where the Davies family is 
the domain of discourse) is 3, because there are three elements in 
it. The cardinality of the empty set ∅ is 0. The cardinality of the 
set of all integers is ∞. Simple as that. 

3For instance, the set Z of all zebras is a member of R, since Z itself is a 
set (not a zebra) and so Z ∈/ Z. The set S, on the other hand, defined as “the 
set of all sets mentioned in this book,” is not a member of R, since S contains 
itself as a member. 
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The notation we use for cardinality is vertical bars, like with abso-
lute value. So we write: |M | = 3. 

To restate the example immediately above, |∅| = 0, but |{∅}| = 1. 

2.8 Some special sets 

In addition to the empty set, there are symbols for some other 
common sets, including: 

• Z — the integers (positive, negative, and zero) 

• N — the natural numbers (positive integers and zero) 

• Q — the rational numbers (all numbers that can be expressed 
as an integer divided by another integer) 

• R — the real numbers (all numbers that aren’t imaginary, 
even decimal numbers that aren’t rational) 

The cardinality of all these sets is infinity, although as I alluded 
to previously, |R| is in some sense “greater than” |N|. For the 
curious, we say that N is a countably infinite set, whereas |R| is 
uncountably infinite. Speaking very loosely, this can be thought 
of this way: if we start counting up all the natural numbers 0, 1, 
2, 3, 4, . . . , we will never get to the end of them. But at least we 
can start counting. With the real numbers, we can’t even get off 
the ground. Where do you begin? Starting with 0 is fine, but then 
what’s the “next” real number? Choosing anything for your second 
number inevitably skips a lot in between. Once you’ve digested this, 
I’ll spring another shocking truth on you: |Q| is actually equal to 
|N|, not greater than it as |R| is. Cantor came up with an ingenious 
numbering scheme whereby all the rational numbers — including 
− 4 3, 9, , and −1517 — can be listed off regularly, in order, just17 29 

like the integers can. And so |Q| = |N| = |R|. This kind of stuff 
can blow your mind. 

6



18 CHAPTER 2. SETS 

2.9 Combining sets 

Okay, so we have sets. Now what can we do with them? When 
you first learn about numbers back before kindergarten, the next 
thing you learn is how to combine numbers using various operations 
to produce other numbers. These include +, −, ×, ÷, exponents, 
roots, etc. Sets, too, have operations that are useful for combining 
to make other sets. These include: 

• Union (∪). The union of two sets is a set that includes the 
elements that either (or both) of them have as members. For 
instance, if A = { Dad, Lizzy }, and B = { Lizzy, T.J., Johnny 
}, then A ∪ B = { Dad, Lizzy, T.J., Johnny }. Note that an 
element is in the union if it is in A or B. For this reason, 
there is a strong relationship between the union operator of 
sets and the “or” (∨) operator of boolean logic that we’ll see 
later. 

• Intersection (∩). The intersection of two sets is a set that 
includes the elements that both of them have as members. In 
the above example, A ∩ B = { Lizzy }. There is a strong 
connection between intersection and the “and” (∧) boolean 
logic operator. 

• (Partial) complement (−). Looks like subtraction, but sig-
nificantly different. A − B contains the elements from A that 
are not also in B. So you start with A, and then “subtract off” 
the contents of B, if they occur. In the above example, A− B 
= { Dad }. (Note that T.J. and Johnny didn’t really enter in 
to the calculation.) Unlike ∪ and ∩, − is not commutative. 
This means it’s not symmetrical: A − B doesn’t (normally) 
give the same answer as B − A. In this example, B − A is 
{ T.J., Johnny }, whereas if you ever reverse the operands 
with union or intersection, you’ll always get the same result 
as before. 

• (Total) complement (X). Same as the partial complement, 
above, except that the implied first operand is Ω. In other 
words, A−B is “all the things in A that aren’t in B,” whereas 
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B is “all the things period that aren’t in B.” Of course, “all 
the things period” means “all the things that we’re currently 
talking about.” The domain of discourse Ω is very important 
here. If we’re talking about the Davies family, we would say 
that M = { Mom, Lizzy }, because those are all the Davieses 
who aren’t male. If, on the other hand, Ω is “the grand set 
of absolutely everything,” then not only is Mom a member of 
M , but so is the number 12, the French Revolution, and my 
nightmare last Tuesday about a rabid platypus. 

• Cartesian product (×). Looks like multiplication, but very
different. When you take the Cartesian product of two sets
A and B, you don’t even get the elements from the sets in
the result. Instead, you get ordered pairs of elements. These
ordered pairs represent each combination of an element from
A and an element from B. For instance, suppose A = { Bob,
Dave } and B = { Jenny, Gabrielle, and Tiffany }. Then:

A × B = { (Bob, Jenny), (Bob, Gabrielle), (Bob, Tiffany), 
(Dave, Jenny), (Dave, Gabrielle), (Dave, Tiffany) }. 

Study that list. The first thing to realize is that it consists 
of neither guys nor girls, but of ordered pairs. (Clearly, for 
example, Jenny ∈/ A × B.) Every guy appears exactly once 
with every girl, and the guy is always the first element of 
the ordered pair. Since we have two guys and three girls, 
there are six elements in the result, which is an easy way 
to remember the × sign that represents Cartesian product. 
(Do not, however, make the common mistake of thinking that 
A×B is 6. A×B is a set, not a number. The cardinality of the 
set, of course, is 6, so it’s appropriate to write |A × B| = 6.) 

Laws of combining sets 

There are a bunch of handy facts that arise when combining sets 
using the above operators. The important thing is that these are all 
easily seen just by thinking about them for a moment. Put another 
way, these aren’t facts to memorize; they’re facts to look at and see 
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for yourself. They’re just a few natural consequences of the way 
we’ve defined sets and operations, and there are many others. 

• Union and intersection are commutative. As noted 
above, it’s easy to see that A ∪ B will always give the same 
result as B ∪ A. Same goes for ∩. (Not true for −, though.) 

• Union and intersection are associative. “Associative” 
means that if you have an operator repeated several times, 
left to right, it doesn’t matter which order you evaluate them 
in. (A ∪ B) ∪ C will give the same result as A ∪ (B ∪ C). This 
means we can freely write expressions like “X ∪ Y ∪ Z” and 
no one can accuse us of being ambiguous. This is also true if 
you have three (or more) intersections in a row. Be careful, 
though: associativity does not hold if you have unions and 
intersections mixed together. If I write A ∪ B ∩ C it matters 
very much whether I do the union first or the intersection 
first. This is just how it works with numbers: 4 + 3 × 2 
gives either 10 or 14 depending on the order of operations. 
In algebra, we learned that × has precedence over +, and 
you’ll always do that one first in the absence of parentheses. 
We could establish a similar order for set operations, but we 
won’t: we’ll always make it explicit with parens. 

• Union and intersection are distributive. You’ll recall 
from basic algebra that a · (b + c) = ab + ac. Similarly with 
sets, 

X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z). 

It’s important to work this out for yourself rather than just 
memorize it as a rule. Why does it work? Well, take a con-
crete example. Suppose X is the set of all female students, Y 
is the set of all computer science majors, and Z is the set of 
all math majors. (Some students, of course, double-major in 
both.) The left-hand side of the equals sign says “first take 
all the math and computer science majors and put them in 
a group. Then, intersect that group with the women to ex-
tract only the female students.” The result is “women who are 
either computer science majors or math majors (or both).” 



21 2.9. COMBINING SETS 

Now look at the right-hand side. The first pair of parentheses 
encloses only female computer science majors. The right pair 
encloses female math majors. Then we take the union of the 
two, to get a group which contains only females, and specif-
ically only the females who are computer science majors or 
math majors (or both). Clearly, the two sides of the equals 
sign have the same extension. 

The distributive property in basic algebra doesn’t work if you 
flip the times and plus signs (normally a+b·c = (a+b)·(a+c)), 
but remarkably it does here: 

X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z). 

Using the same definitions of X, Y , and Z, work out the 
meaning of this one and convince yourself it’s always true. 

• Identity laws. Simplest thing you’ve learned all day: X ∪ 
∅ = X and X ∩ Ω = X. You don’t change X by adding 
nothing to it, or taking nothing away from it. 

• Domination laws. The flip side of the above is that X ∪Ω = 
Ω and X ∩ ∅ = ∅. If you take X, and then add everything 
and the kitchen sink to it, you get everything and the kitchen 
sink. And if you restrict X to having nothing, it of course 
has nothing. 

• Complement laws. X ∪ X = Ω. This is another way of 
saying “everything (in the domain of discourse) is either in, 
or not in, a set.” So if I take X, and then I take everything 
not in X, and smoosh the two together, I get everything. 
In a similar vein, X ∩ X = ∅, because there can’t be any 
element that’s both in X and not in X: that would be a 
contradiction. Interestingly, the first of these two laws has 
become controversial in modern philosophy. It’s called “the 
law of the excluded middle,” and is explicitly repudiated in 
many modern logic systems. 

• De Morgan’s laws. Now these are worth memorizing, if 
only because (1) they’re incredibly important, and (2) they 

6
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may not slip right off the tongue the way the previous prop-
erties do. The first one can be stated this way: 

X ∪ Y = X ∩ Y . 

Again, it’s best understood with a specific example. Let’s 
say you’re renting a house, and want to make sure you don’t 
have any surly characters under the roof. Let X be the set of 
all known thieves. Let Y be the set of all known murderers. 
Now as a landlord, you don’t want any thieves or murderers 
renting your property. So who are you willing to rent to? 
Answer: if Ω is the set of all people, you are willing to rent 
to X ∪ Y . 

Why that? Because if you take X ∪ Y , that gives you all the 
undesirables: people who are either murderers or thieves (or 
both). You don’t want to rent to any of them. In fact, you 
want to rent to the complement of that set; namely, “anybody 
else.” Putting an overbar on that expression gives you all the 
non-thieves and non-murderers. 

Very well. But now look at the right hand side of the equation. 
X gives you the non-thieves. Y gives you the non-murderers. 
Now in order to get acceptable people, you want to rent only 
to someone who’s in both groups. Put another way, they have 
to be both a non-thief and a non-murderer in order for you to 
rent to them. Therefore, they must be in the intersection of 
the non-thief group and the non-murderer group. Therefore, 
the two sides of this equation are the same. 

The other form of De Morgan’s law is stated by flipping the 
intersections and unions: 

X ∩ Y = X ∪ Y . 

Work this one out for yourself using a similar example, and 
convince yourself it’s always true. 

Augustus De  Morgan, by the way, was a brilliant 19th cen-
tury mathematician with a wide range of interests. His name 
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will come up again when we study logic and mathematical 
induction. 

2.10 Subsets 

We learned that the “∈” symbol is used to indicate set membership: 
the element on the left is a member of the set on the right. A related 
but distinct notion is the idea of a subset. When we say X ⊆ Y 
(pronounced “X is a subset of Y ”), it means that every member 
of X is also a member of Y . The reverse is not necessarily true, 
of course, otherwise “⊆” would just mean “=”. So if A = { Dad, 
Lizzy } and K = { Dad, Mom, Lizzy }, then we can say A ⊆ K. 

Be careful about the distinction between “∈” and “⊆”, which are 
often confused. With ∈, the thing on the left is an element, whereas 
with ⊆, the thing on the left is a set. This is further complicated 
by the fact that the element on the left-hand side of ∈ might well 
be a set. 

Let’s give some examples. Suppose that Q is the set { 4, { 9, 4 }, 
2 }. Q has three elements here, one of which is itself a set. Now 
suppose that we let P be the set { 4, 9 }. Question: is P ∈ Q? The 
answer is yes: the set { 4, 9 } (which is the same as the set { 9, 
4 }, just written a different way) is in fact an element of the set Q. 
Next question: is P ⊆ Q? The answer is no, P 6⊆ Q. If P were a 
subset of Q, that would imply that every member of P (there are 
two of them: 9 and 4) is also an element of Q, whereas in fact, only 
4 is a member of Q, not 9. Last question: if R is defined to be 
{ 2, 4 }, is R ⊆ Q? The answer is yes, since both 2 and 4 are also 
members of Q. 

Notice that by the definition, every set is a subset of itself. Some-
times, though, it’s useful to talk about whether a set is really a 
subset of another, and you don’t want it to “count” if the two sets 
are actually equal. This is called a proper subset, and the sym-
bol for it is ⊂. You can see the rationale for the choice of symbol, 
because “⊆” is kind of like “≤” for numbers, and “⊂” is like “<”. 

Every set is a subset (not necessarily a proper one) of Ω, because 
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our domain of discourse by definition contains everything that can 
come up in conversation. Somewhat less obviously, the empty set 
is a subset of every set. It’s weird to think that ∅ ⊆ Q when Q has 
several things in it, but the definition does hold. “Every” member 
of ∅ (there are none) is in fact also a member of Q. 

One note about reading this notation that I found confusing at first. 
Sometimes the expression “a ∈ X” is pronounced “a is an element 
of X,” but other times it is read “a, which is an element of X”. 
This may seem like a subtle point, and I guess it is, but if you’re 
not ready for it it can be a extra stumbling block to understanding 
the math (which is the last thing we need). Take this hypothetical 
(but quite typical) excerpt from a mathematical proof: 

“Suppose k ∈ N < 10 . . . ” 

If you read this as “Suppose k is a natural number is less than 10,” 
it’s ungrammatical. It really should be understood as “Suppose k 
(which is a natural number) is less than 10.” This is sometimes true 
of additional clauses as well. For instance, the phrase “Suppose 
k ∈ R > 0 is the x-coordinate of the first point” should be read 
“Suppose k, which is a real number greater than zero, is the x-
coordinate of the first point.” 

I’ll leave you with a statement about numbers worth pondering and 
understanding: 

∅ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ Ω. 

2.11 Power sets 

Power set is a curious name for a simple concept. We talk about 
the power set “of” another set, which is the set of all subsets of that 
other set. Example: suppose A = { Dad, Lizzy }. Then the power 
set of A, which is written as “P(A)” is: { { Dad, Lizzy }, { Dad }, 
{ Lizzy }, ∅ }. Take a good look at all those curly braces, and 
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don’t lose any. There are four elements to the power set of A, each 
of which is one of the possible subsets. It might seem strange to 
talk about “all of the possible subsets” — when I first learned this 
stuff, I remember thinking at first that there would be no limit to 
the number of subsets you could make from a set. But of course 
there is. To create a subset, you can either include, or exclude, each 
one of the original set’s members. In A’s case, you can either (1) 
include both Dad and Lizzy, or (2) include Dad but not Lizzy, or 
(3) include Lizzy but not Dad, or (4) exclude both, in which case 
your subset is ∅. Therefore, P(A) includes all four of those subsets. 

Now what’s the cardinality of P(X) for some set X? That’s an 
interesting question, and one well worth pondering. The answer 
ripples through the heart of a lot of combinatorics and the binary 
number system, topics we’ll cover later. And the answer is right 
at our fingertips, if we just extrapolate from the previous example. 
To form a subset of X, we have a choice to either include, or else 
ex clude, each of its elements. So there’s two choices for the first 
element4 , and then whether we choose to include or exclude that 
first element, there are two choices for the second. Regardless of 
what we choose for those first two, there are two choices for the 
third, etc. So if |X| = 2 (recall that this notation means “X has 
two elements” or “X has a cardinality of 2”), then its power set 
has 2 × 2 members. If |X| = 3, then its power set has 2 × 2 × 2 
members. In general: 

|P(X)| = 2|X|. 

As a limiting case (and a brain-bender) notice that if X is the 
empty set, then P(X) has one (not zero) members, because there 
is in fact one subset of the empty set: namely, the empty set itself. 
So |X| = 0, and |P(X)| = 1. And that jives with the above formula. 

4I know there’s really no “first” element, but work with me here. 
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2.12 Partitions 

Finally, there’s a special variation on the subset concept called a 
partition. A partition is a group of subsets of another set that 
together are both collectively exhaustive and mutually exclu-
sive. This means that every element of the original set is in one 
and only one of the sets in the partition. Formally, a partition of 
X is a group of sets X1, X2, . . . , Xn such that: 

X1 ∪ X2 ∪ · · · ∪ Xn = X, 

and 

Xi ∩ Xj = ∅ for all i, j. 

So let’s say we’ve got a group of subsets that are supposedly a 
partition of X. The first line, above, says that if we combine the 
contents of all of them, we get everything that’s in X (and nothing 
more). This is called being collectively exhaustive. The second line 
says that no two of the sets have anything in common: they are 
mutually exclusive. 

As usual, an example is worth a thousand words. Suppose the set 
D is { Dad, Mom, Lizzy, T.J., Johnny. } A partition is any way of 
dividing D up into subsets that meet the above conditions. One 
such partition is: 

{ Lizzy, T.J. }, { Mom, Dad }, and { Johnny }. 

Another one is: 

{ Lizzy }, { T.J. }, { Mom }, and { Johnny, Dad }. 

Yet another is: 

∅, ∅, { Lizzy, T.J., Johnny, Mom, Dad }, and ∅. 
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All of these are ways of dividing up the Davies family into groups 
so that no one is in more than one group, and everyone is in some 
group. The following is not a partition: 

{ Mom, Lizzy, T.J. }, and { Dad } 

because it leaves out Johnny. This, too, is not a partition: 

{ Dad }, { Mom, T.J. }, and { Johnny, Lizzy, Dad } 

because Dad appears in two of the subsets. 

By the way, realize that every set (S) together with its (total) com-
plement (S) forms a partition of the entire domain of discourse Ω. 
This is because every element either is, or is not, in any given set. 
The set of males and non-males are a partition of Ω because ev-
erything is either a male or a non-male, and never both (inanimate 
objects and other nouns are non-males, just as women are). The set 
of prime numbers and the set of everything-except-prime-numbers 
are a partition. The set of underdone cheeseburgers and the set of 
everything-except-underdone-cheeseburgers form a partition of Ω. 
By pure logic, this is true no matter what the set is. 

You might wonder why partitions are an important concept. The 
answer is that they come up quite a bit, and when they do, we can 
make some important simplifications. Take S, the set of all students 
at UMW. We can partition it in several different ways. If we divide 
S into the set of males and the set of females, we have a partition: 
every student is either male or female, and no student is both. If 
we divide them into freshmen, sophomores, juniors, and seniors, we 
again have a partition. But dividing them into computer science 
majors and English majors does not give us a partition. For one 
thing, not everyone is majoring in one of those two subjects. For 
another, some students might be double-majoring in both. Hence 
this group of subsets is neither mutually exclusive nor collectively 
exhaustive. 

Question: is the number of students |S| equal to the number of 
male students plus the number of female students? Obviously yes. 
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But why? The answer: because the males and the females form 
a partition. If we added up the number of freshmen, sophomores, 
juniors, and seniors, we would also get |S|. But adding up the 
number of computer science majors and English majors would al-
most certainly not be equal to |S|, because some students would be 
double-counted and others counted not at all. This is an example 
of the kind of beautiful simplicity that partitions provide. 



29 2.13. EXERCISES 

2.13 Exercises 

Use an index card or a piece of paper folded lengthwise, and cover 
up the right-hand column of the exercises below. Read each exercise 
in the left-hand column, answer it in your mind, then slide the index 
card down to reveal the answer and see if you’re right! For every 
exercise you missed, figure out why you missed it before moving on. 

1. Is the set { Will, Smith }
the same as the set { Smith, 
Will }? 

Yes indeed. 

2. Is the ordered pair (Will, 
Smith) the same as (Smith, 
Will)? 

No. Order matters with 
pairs (hence the name), and 
size tuple for that matter. 

ordered 
with any 

No. For instance, the first set has 

3. 

4. 

5. 

Is the set { { Luke, Leia }, 
Han } the same as the set 
{ Luke, { Leia, Han } }? 

Han as a member but the second set 
does not. (Instead, it has another 
set as a member, and that inner set 
happens to include Han.) 

What’s the first element of 
the set { Cowboys, Redskins, 
Steelers }? 

The question doesn’t make sense. 
There is no “first element” of a set. 
All three teams are equally members 
of the set, and could be listed in any 
order. 

Let G be { Matthew, Mark, 
Luke, John }, J be { Luke, 
Obi-wan, Yoda }, S be the set 
of all Star Wars characters, 

No. 

and F be the four gospels 
from the New Testament. 

6. 

7. 

Now then. Is J ⊆ G? 

Is J ⊆ S? 
Yes. 

Is Yoda ∈ J? 
Yes. 
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8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Is Yoda ⊆ J? 
No. 
be a 

Yoda isn’t even a set, 
subset of anything. 

so it can’t 

Is { Yoda } ⊆ J? 

Yes. 
tains 
J . 

The 
only 

(unnamed) set that con-
Yoda is in fact a subset of 

Is { Yoda } ∈ J? 

No. Yoda is one of the elements of J , 
but { Yoda } is not. In other words, 
J contains Yoda, but J does not con-
tain a set which contains Yoda (nor 
does it contain any sets at all, in 
fact). 

Is S ⊆ J? 
No. 

Is G ⊆ F ? 
Yes, since the two sets are equal. 

Is G ⊂ F ? 

No, since 
so neither 
other. 

the 
is a 

two sets are 
proper subset 

equal, 
of the 

Is ∅ ⊆ S? 
Yes, since the 
of every set. 

empty set is a subset 

Is ∅ ⊆ ∅? 
Yes, since the 
of every set. 

empty set is a subset 

Is F ⊆ Ω? 
Yes, since every set is 

 

a subset of Ω. 

Is F ⊂ Ω? 
Yes, 
and 

since every set is
F is certainly not

a subset 
 equal to 

of 
Ω. 
Ω, 

Yes and yes. The empty set is an el-
ement of X because it’s one of the 

18. 

19. 

20. 

Suppose X = { Q, ∅, { Z }
}. Is ∅ ∈ X? Is ∅ ⊆ X? 

elements, and it’s also a subset of 
X because it’s a subset of every set. 
Hmmm. 

Let A be { Macbeth, Hamlet, 
Othello }, B be { Scrabble, 
Monopoly, Othello }, and T 
be { Hamlet, Village, Town }. 
What’s A ∪ B? 

{ Macbeth, Hamlet, Othello, Scrab-
ble, Monopoly }. (The elements can 
be listed in any order.) 

What’s A ∩ B? 
{ Othello }. 
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21. 

22. 

23. 

What’s A ∩ B? 
{ Macbeth, Hamlet }. 

What’s B ∩ T ? 
∅. 

What’s B ∩ T ? 
B. (which 
Othello }.) 

is { Scrabble, Monopoly, 

24. 

25. 

26. 

27. 

28. 

What’s A ∪ (B ∩ T )? 
{ Hamlet, Othello, Macbeth }. 

What’s (A ∪ B) ∩ T ? 

{ Hamlet 
answer as 
parens are 

}. (Note: not the same 
in item 24 now that the 
placed differently.) 

What’s A − B? 
{ Macbeth, Hamlet }. 

What’s T − B? 
Simply 
nothing 

T , 
in 
since the 
common. 

two sets have 

What’s T × A? 

{ (Hamlet, Macbeth), (Hamlet, 
Hamlet), (Hamlet, Othello), (Vil-
lage, Macbeth), (Village, Hamlet), 
(Village, Othello), (Town, Macbeth), 
(Town, Hamlet), (Town, Othello) }. 
The order of the ordered pairs within 
the set is not important; the order 
of the elements within each ordered 

29. 

pair is important. 

What’s (B ∩ B) × (A ∩ T )? 
{ (Scrabble, Hamlet), (Monopoly, 
Hamlet), (Othello, Hamlet) }. 

30. What’s |A ∪ B ∪ T |? 
7. 

31. What’s |A ∩ B ∩ T |? 
0. 

21. (The first parenthesized expres-
sion gives rise to a set with 7 ele-
ments, and the second to a set with 

32. What’s |(A ∪ B ∪ T ) 
B ∪ B)|? 

× (B ∪ three elements (B itself). Each el-
ement from the first set gets paired 
with an element from the second, so 
there are 21 such pairings.) 
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33. 

34. 

35. 

36. 

37. 

Is A an extensional set, or an 
intensional set? 

The question doesn’t make sense. 
Sets aren’t “extensional” or “inten-
sional”; rather, a given set can be 
described extensionally or intension-
ally. The description given in item 19 
is an extensional one; an intensional 
description of the same set would be 
“The Shakespeare tragedies Stephen 
studied in high school.” 

Recall that G was defined 
as { Matthew, Mark, Luke, 
John }. Is this a partition of 
G? 

• { Luke, Matthew } 
• { John } 

No, because the 
tively exhaustive 

sets are not collec-
(Mark is missing). 

Is this a partition of G? 

• { Mark, Luke } 
• { Matthew, Luke } 

No, because the sets are neither col-
lectively exhaustive (John is miss-
ing) nor mutually exclusive (Luke 
appears in two of them). 

Is this a partition of G? 

• { Matthew, Mark, 
Luke } 

• { John } 

Yes. (Trivia: this partitions the 
ments into the synoptic gospels 
the non-synoptic gospels). 

ele-
and 

Is this a partition of G? 

• { Matthew, Luke } 
• { John, Mark } 

Yes. (This partitions the ele-
ments into the gospels which feature 
a Christmas story and those that 
don’t). 
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38. 

39. 

40. 

41. 

Is this a partition of G? 

• { Matthew, John } 
• { Luke } 
• { Mark } 
• ∅ 

Yes. (This partitions the elements 
into the gospels that were written 
by Jews, those that were written by 
Greeks, those that were written by 
Romans, and those that were writ-
ten by Americans). 

What’s the power set of { Ri-
hanna }? 

{ { Rihanna }, ∅ }. 

Is { peanut, jelly } ∈ 
P({ peanut, butter, jelly }? 

Yes, since { peanut, 
the eight subsets of 
ter, jelly }. (Can you 
seven?) 

jelly } is one of 
{ peanut, but-
name the other 

Is it true for every set S that 
S ∈ P(S)? 

Yep. 





Chapter 3 

Relations 

Sets are fundamental to discrete math, both for what they represent 
in themselves and for how they can be combined to produce other 
sets. In this chapter, we’re going to learn a new way of combining 
sets, called relations. 

3.1 The idea of a relation 

A relation between a set X and Y is a subset of the Cartesian 
product. That one sentence packs in a whole heck of a lot, so spend 
a moment thinking deeply about it. Recall that X×Y yields a set of 
ordered pairs, one for each combination of an element from X and 
an element from Y . If X has 5 elements and Y has 4, then X × Y 
is a set of 20 ordered pairs. To make it concrete, if X is the set {
Harry, Ron, Hermione }, and Y is the set { Dr. Pepper, Mt. Dew }, 
then X × Y is { (Harry, Dr. Pepper), (Harry, Mt. Dew), (Ron, 
Dr. Pepper), (Ron, Mt. Dew), (Hermione, Dr. Pepper), (Hermione, 
Mt. Dew) }. Convince yourself that every possible combination is 
in there. I listed them out methodically to make sure I didn’t miss 
any (all the Harry’s first, with each drink in order, then all the 
Ron’s, etc.) but of course there’s no order to the members of a set, 
so I could have listed them in any order. 

Now if I define a relation between X and Y , I’m simply specifying 
that certain of these ordered pairs are in the relation, and certain 

35 
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ones are not. For example, I could define a relation R that contains 
only { (Harry, Mt. Dew), (Ron, Mt. Dew) }. I could define an-
other relation S that contains { (Hermione, Mt. Dew), (Hermione, 
Dr. Pepper), (Harry, Dr. Pepper) }. I could define another relation 
T that has none of the ordered pairs; in other words, T = ∅. 

A question that should occur to you is: how many different relations 
are there between two sets X and Y ? Think it out: every one of the 
ordered pairs in X × Y either is, or is not, in a particular relation 
between X and Y . Very well. Since there are a total of |X| · |Y |
ordered pairs, and each one of them can be either present or absent 
from each relation, there must be a total of 

2|X|·|Y | 

different relations between them. Put another way, the set of all 
relations between X and Y is the power set of X × Y . I told you 
that would come up a lot. 

In the example above, then, there are a whopping 26 , or 64 differ-
ent relations between those two teensey little sets. One of those 
relations is the empty set. Another one has all six ordered pairs in 
it. The rest fall somewhere in the middle. (Food for thought: how 
many of these relations have exactly one ordered pair? How many 
have exactly five?) 

Notation 

I find the notation for expressing relations somewhat awkward. But 
here it is. When we defined the relation S, above, we had the 
ordered pair (Harry, Dr. Pepper) in it. To explicitly state this fact, 
we could simply say 

(Harry, Dr. Pepper) ∈ S 

and in fact we can do so. More often, though, mathematicians 
write: 

Harry S Dr. Pepper. 
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which is pronounced “Harry is S-related-to Dr. Pepper.” Told you 
it was awkward. 

If we want to draw attention to the fact that (Harry, Mt. Dew) is 
not in the relation S, we could strike it through to write 

Harry S Mt. Dew 

3.2 Defining relations 

Just as with sets, we can define a relation extensionally or intension-
ally. To do it extensionally, it’s just like the examples above — we 
simply list the ordered pairs: { (Hermione, Mt. Dew), (Hermione, 
Dr. Pepper), (Harry, Dr. Pepper) }. 

Most of the time, however, we want a relation to mean something. 
In other words, it’s not just some arbitrary selection of the possible 
ordered pairs, but rather reflects some larger notion of how the 
elements of the two sets are related. For example, suppose I wanted 
to define a relation called “hasTasted” between the sets X and Y , 
above. This relation might have the five of the possible six ordered 
pairs in it: 

(Harry, Dr. Pepper) 
(Ron, Dr. Pepper) 
(Ron, Mt. Dew) 

(Hermione, Dr. Pepper) 
(Hermione, Mt. Dew) 

Another way of expressing the same information would be to write: 

Harry hasTasted Dr. Pepper 
Harry hasTasted Mt. Dew 
Ron hasTasted Dr. Pepper 
Ron hasTasted Mt. Dew 

Hermione hasTasted Dr. Pepper 
Hermione hasTasted Mt. Dew 
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Both of these are extensional definitions. But of course the meaning 
behind the relation “hasTasted” is that if x hasTasted y, then in 
real life, the person x has given a can of y a try. We’re using this 
relation to state that although Ron and Hermione have sampled 
both drinks, Harry (perhaps because of his persecuted childhood 
at the Dursleys) has not. 

We can of course define other relations on the same two sets. Let’s 
define a relation “likes” to contain { (Harry, Dr. Pepper), (Ron, 
Dr. Pepper), (Hermione, Dr. Pepper), (Hermione, Mt. Dew) }. This 
states that while everybody likes Dr. Pepper, Hermione herself has 
broad tastes and also likes Mt. Dew. 

Another relation, “hasFaveDrink,” might indicate which drink is 
each person’s favorite. Maybe the extension is { (Harry, Dr. Pep-
per), (Ron, Dr. Pepper) }. There’s no ordered pair with Hermione 
in it, perhaps because she actually prefers iced tea. 

Yet another relation, “ownsStockIn,” represents which people own 
stock in which beverage companies. In this case, ownsStockIn = ∅ 
since all of the members of X are too busy studying potions to be 
stock owners in anything. 

Bottom line is: when we talk about a relation, we’re simply desig-
nating certain elements of one set to “go with” or “be associated 
with” certain elements of another set. Normally this corresponds 
to something interesting in the real world — like which people have 
tasted which drinks, or which people own stock in which companies. 
Even if it doesn’t, though, it still “counts” as a relation, and we can 
simply list the ordered pairs it contains, one for each association. 

3.3 Relations between a set and itself 

In the above example, the two sets contained different kinds of 
things: people, and drinks. But many relations are defined in which 
the left and right elements are actually drawn from the same set. 
Such a relation is called (don’t laugh) an endorelation. 

Consider the relation “hasACrushOn” between X and X, whose 
intensional meaning is that if (x, y) ∈ hasACrushOn, then in real 
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life x is romantically attracted to y. The extension is probably only 
{ (Ron, Hermione), (Hermione, Ron) }, although who knows what 
goes through teenagers’ minds. 

Another example would be the relation “hasMoreCaloriesThan” 
between Y and Y : this relation’s extension is { (Mt. Dew, Dr. Pep-
per) }. (Fun fact: Dr. Pepper has only 150 calories per can, whereas 
Mt. Dew has 170.) 

Note that just because a relation’s two sets are the same, that 
doesn’t necessarily imply that the two elements are the same for 
any of its ordered pairs. Harry clearly doesn’t have a crush on 
himself, nor does anyone else have a self-crush. And no soda has 
more calories than itself, either — that’s impossible. That being 
said, though, an ordered pair can have the same two elements. 
Consider the relation “hasSeen” between X and X. Surely all three 
wizards have looked in a mirror at some point in their lives, so in 
addition to ordered pairs like (Ron, Harry) the hasSeen relation also 
contains ordered pairs like (Ron, Ron) and (Hermione, Hermione). 

3.4 Finite and infinite relations 

Sets can be infinite, and relations can be too. An infinite rela-
tion is simply a relation with infinitely many ordered pairs in it. 
This might seem strange at first, since how could we ever hope to 
specify all the ordered pairs? But it’s really no different than with 
sets: we either have to do it intensionally, or else have a rule for 
systematically computing the extension. 

As an example of the first, consider the relation “isGreaterThan” 
between Z and Z. (Recall that “Z” is just a way of writing “the 
set of integers.”) This relation contains ordered pairs like (5, 2) and 
(17, –13), since 5 isGreaterThan 2 and 17 isGreaterThan –13, but 
not (7, 9) or (11, 11). Clearly it’s an infinite relation. We couldn’t 
list all the pairs, but we don’t need to, since the name implies the 
underlying meaning of the relation. 

As an example of the second, consider the relation “isLuckierThan” 
between N and N. (The “N” means “the natural numbers.”) We 
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specify it extensionally as follows: 

{ (1, 13), (2, 13), (3, 13), . . . (12, 13), (14, 13), (15, 13), (16, 13), 
. . . } 

Here we’re just saying “every number is luckier than 13 (except for 
13 itself, of course).” 

3.5 Properties of endorelations 

As I mentioned, lots of the relations we care about are endorelations 
(relations between a set and itself). Some endorelations have one 
or more of the following simple properties which are useful to talk 
about. Throughout this section, assume that R is the relation in 
question, and it’s defined from set A to set A. 

• Reflexivity. A relation R is reflexive if xRx for every x ∈ A. 
Other ordered pairs can also be in the relation, of course, but 
if we say it’s reflexive we’re guaranteeing that every element is 
in there with itself. “hasSeen” is almost certainly a reflexive 
relation, presuming that mirrors are relatively widespread in 
the world. “thinksIsBeautiful” is not reflexive, however: some 
people think themselves beautiful, and others do not. 

• Symmetry. A relation is symmetric if xRy whenever yRx 
and vice versa. This doesn’t mean that (x, y) is in the relation 
for every x and y — only that if (x, y) is in the relation, then 
(y, x) is guaranteed to also be in the relation. An example 
would be “hasShakenHandsWith.” If I’ve shaken hands with 
you, then you’ve shaken hands with me, period. It doesn’t 
make sense otherwise. 

• Antisymmetry. A relation is antisymmetric if xRy when-
ever yRx and vice versa (unless x and y are the same.) Put 
another way, if (x, y) is in the relation, fine, but then (y, x) 
can’t be. An example would be “isTallerThan.” If I’m taller 
than you, then you can’t be taller than me. We could in fact 
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be the same height, in which case neither the pair (you, me) 
nor (me, you) would be in the relation, but in any event the 
two cannot co-exist. 

Note carefully that antisymmetric is very different from asymmetric. 
An asymmetric relation is simply one that’s not symmetric: 
in other words, there’s some (x, y) in there without a match-
ing (y, x). An antisymmetric relation, on the other hand, is 
one in which there are guaranteed to be no matching (y, x)’s 
for any (x, y). 

If you have trouble visualizing this, here’s another way to 
think about it: realize that most relations are neither sym-
metric nor antisymmetric. It’s kind of a coincidence for a 
relation to be symmetric: that would mean for every single 
(x, y) it contains, it also contains a (y, x). (What are the 
chances?) Similarly, it’s kind of a coincidence for a relation 
to be antisymmetric: that would mean for every single (x, y) 
it contains, it doesn’t contain a (y, x). (Again, what are the 
chances?) Your average Joe relation is going to contain some 
(x, y) pairs that have matching (y, x) pairs, and some that 
don’t have matches. Such relations (the vast majority) are 
simply asymmetric: that is, neither symmetric nor antisym-
metric. 

Shockingly, it’s actually possible for a relation to be both 
symmetric and antisymmetric! (but not asymmetric.) For 
instance, the empty relation (with no ordered pairs) is both 
symmetric and antisymmetric. It’s symmetric because for ev-
ery ordered pair (x, y) in it (of which there are zero), there’s 
also the corresponding (y, x).1 And similarly, for every or-
dered pair (x, y), the corresponding (y, x) is not present. An-
other example is a relation with only “doubles” in it — say, 

1Wait — how can I say that? How can there be ”the corresponding” ordered 
pair in a relation that has no ordered pairs?! The answer has to do with the first 
clause: for every ordered pair (x, y) in it. There are none of these, therefore, 
no (y, x)’s are required. The condition is trivially satisfied. This is common in 
mathematics: we say that A requires B, but this means that if A is not true, 
then B is not forced. 
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{ (3,3), (7,7), (Fred, Fred) }. This, too, is both symmetric 
and antisymmetric (work it out!) 

• Transitivity. A relation is transitive if whenever xRy and 
yRz, then it’s guaranteed that xRz. The “isTallerThan” re-
lation we defined is transitive: if you tell me that Bob is taller 
than Jane, and Jane is taller than Sue, then I know Bob must 
be taller than Sue, without you even having to tell me that. 
That’s just how “taller than” works. An example of a non-
transitive relation would be “hasBeaten” with NFL teams. 
Just because the Patriots beat the Steelers this year, and the 
Steelers beat the Giants, that does not imply that the Pa-
triots necessarily beat the Giants. The Giants might have 
actually beaten the-team-who-beat-the-team-who-beat-them 
(such things happen), or heck, the two teams might not even 
have played each other this year. 

All of the above examples were defined intensionally. Just for prac-
tice, let’s look at some extensionally defined relations as well. Using 
our familiar Harry Potter set as A, consider the following relation: 

(Harry, Ron) 
(Ron, Hermione) 
(Ron, Ron) 

(Hermione, Ron) 
(Ron, Harry) 

(Hermione, Hermione) 

Consider: is this relation reflexive? No. It has (Ron, Ron) and 
(Hermione, Hermione), but it’s missing (Harry, Harry), so it’s not 
reflexive. Is it symmetric? Yes. Look carefully at the ordered 
pairs. We have a (Harry, Ron), but also a matching (Ron, Harry). 
We have a (Hermione, Ron), but also a matching (Ron, Hermione). 
So every time we have a (x, y) we also have the matching (y, x), 
which is the definition of symmetry. Is it antisymmetric? No, 
because (among other things) both (Harry, Ron) and (Ron, Harry) 
are present. Finally, is it transitive? No. We have (Harry, Ron) 
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and (Ron, Hermione), which means that if it’s transitive we would 
have to also have (Harry, Hermione) in there, which we don’t. So 
it’s not transitive. Remember: to meet any of these properties, 
they have to fully apply. “Almost” only counts in horseshoes. 

Let’s try another example: 

(Ron, Harry) 
(Ron, Ron) 
(Harry, Harry) 

(Hermione, Hermione) 
(Harry, Hermione) 
(Hermione, Harry) 

Is this one reflexive? Yes. We’ve got all three wizards appear-
ing with themselves. Is it symmetric? No, since (Ron, Harry) 
has no match. Is it antisymmetric? No, since (Harry, Hermione) 
does have a match. Is it transitive? No, since the presence of 
(Ron, Harry) and (Harry, Hermione) implies the necessity of (Ron, 
Hermione), which doesn’t appear, so no dice. 

Partial orders and posets 

A couple of other fun terms: an endorelation which is (1) reflexive, 
(2) antisymmetric, and (3) transitive is called a partial order. 
And a set together with a partial order is called a partially or-
dered set, or “poset” for short. The name “partial order” makes 
sense once you think through an example. 

You may have noticed that when dogs meet each other (especially 
male dogs) they often circle each other and take stock of each other 
and try to establish dominance as the so-called “alpha dog.” This 
is a pecking order of sorts that many different species establish. 
Now suppose I have the set D of all dogs, and a relation “isAtLeas-
tAsToughAs” between them. The relation starts off with every 
reflexive pair in it: (Rex, Rex), (Fido, Fido), etc. This is because 
obviously every dog is at least as tough as itself. Now every time 
two dogs x and y encounter each other, they establish dominance 
through eye contact or physical intimidation, and then one of the 
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following ordered pairs is added to the relation: either (x, y) or 
(y, x), but never both. 

I contend that in this toy example, “isAtLeastAsToughAs” is a 
partial order, and D along with isAtLeastAsToughAs together form 
a poset. I reason as follows. It’s reflexive, since we started off by 
adding every dog with itself. It’s antisymmetric, since we never add 
both (x, y) and (y, x) to the relation. And it’s transitive, because 
if Rex is tougher than Fido, and Fido is tougher than Cuddles, 
this means that if Rex and Cuddles ever met, Rex would quickly 
establish dominance. (I’m no zoologist, and am not sure if the last 
condition truly applies with real dogs. But let’s pretend it does.) 

It’s called a “partial order” because it establishes a partial, but 
incomplete, hierarchy among dogs. If we ask, “is dog X tougher 
than dog Y?” the answer is never ambiguous. We’re never going to 
say, “well, dog X was superior to dog A, who was superior to dog Y 
. . . but then again, dog Y was superior to dog B, who was superior 
to dog X, so there’s no telling which of X and Y is truly toughest.” 
No. A partial order, because of its transitivity and antisymmetry, 
guarantees we never have such an unreconcilable conflict. 

However, we could have a lack of information. Suppose Rex has 
never met Killer, and nobody Rex has met has ever met anyone 
Killer has met. There’s no chain between them. They’re in two 
separate universes as far as we’re concerned, and we’d have no way 
of knowing which was toughest. It doesn’t have to be that extreme, 
though: Suppose Rex established dominance over Cuddles, and 
Killer also established dominance over Cuddles, but those are the 
only ordered pairs in the relation. Again, there’s no way to tell 
whether Rex or Killer is the tougher dog. They’d either need to 
encounter a common opponent that only one of them can beat, or 
else get together for a throw-down. 

So a partial order gives us some semblance of structure — the 
relation establishes a directionality, and we’re guaranteed not to 
get wrapped up in contradictions — but it doesn’t completely order 
all the elements. If it does, it’s called a total order. 
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3.6 Functions 

One very, very important type of relation is called a function. 
Some mathematicians treat functions totally separately from rela-
tions, but I think it’s more useful to think of a function as a special 
kind of relation. Many of the ideas are the same, as you’ll see. 

Think back to the relations between wizards and soft drinks. One 
such relation (we called it R) had (Harry, Mt. Dew) and (Ron, 
Mt. Dew) in it. Another one (S) contained (Hermione, Mt. Dew), 
(Hermione, Dr. Pepper), and (Harry, Dr. Pepper). Since there were 
three wizards and two soft drinks, we calculated that there were 26 

such relations. 

Now some of those relations have exactly one ordered pair for each 
wizard. For instance, the relation F which contains { (Harry, 
Dr. Pepper), (Ron, Mt. Dew), (Hermione, Mt. Dew) }. This kind 
of relation is a function. It associates each element of the first 
set with exactly one element of the second set. Obviously not 
all relations are functions: R, for example, is not (there’s no pair 
with Hermione) and neither is S (there’s more than one pair with 
Hermione). But those that do form a very special class of interest, 
and warrant a whole new terminology. 

When we have a function F between a set X and Y , we write 
F : X → Y to indicate this. The set X is called the domain of the 
function, and the set Y is called the codomain. The colon and the 
arrow are just there to complete the syntax. The rule with functions 
is very simple: every element of the domain is related to exactly one 
element of the codomain. Sometimes we say that a domain element 
is “mapped” to its corresponding codomain element. Note very 
carefully that the reverse is not necessarily true. In fact, with the 
wizards-and-drinks example, it can’t possibly be true: there are 
fewer drinks than wizards, so some drink is bound to be related to 
more than one wizard. (Think about it.) It’s also perfectly legit 
to have a function like { (Harry, Dr. Pepper), (Ron, Dr. Pepper), 
(Hermione, Dr. Pepper) }, where some element(s) of the codomain 
are left out altogether. 

One of the things that makes functions useful is that we can ask 
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“which element of Y goes with X?” and we will always get back 
a well-defined answer. We can’t really do that with relations in 
general, because the answer might be “none” or “several.” Take a 
look back at the R and S examples, above: what answer would we 
get if we asked “which drink goes Hermione map to?” for either 
relation? Answer: there is no answer. 

But with functions, I can freely ask that question because I know 
I’ll get a kosher answer. With F , I can ask, “which drink does 
Hermione map to?” and the answer is “Mt. Dew.” In symbols, we 
write this as follows: 

F (Hermione) = Mt. Dew 

This will look familiar to computer programmers, since it resembles 
a function call. In fact, it is a function call. That’s exactly what 
it is. “Functions” in languages like C++ and Java were in fact 
named after this discrete math notion. And if you know anything 
about programming, you know that in a program I can “call the 
F() function” and “pass it the argument ‘Hermione’” and “get the 
return value ‘Mt.Dew.’” I never have to worry about getting more 
than one value back, or getting none at all. 

You might also remember discussing functions in high school math, 
and the so-called “vertical line test.” When you plotted the values 
of a numerical function on a graph, and there was no vertical (up-
and-down) line that intersected more than one point, you could 
safely call the plot a “function.” That’s really exactly the same 
thing as the condition I just gave for functions, stated graphically. 
If a plot passes the vertical line test, then there is no x value for 
which there’s more than one y value. This means it makes sense 
to ask “which is the value of y for a particular value of x?” You’ll 
always get one and only one answer. (There’s no such thing, of 
course, as a “horizontal line test,” since functions are free to map 
more than one x value to the same y value. They just can’t do the 
reverse.) 

The difference between the functions of high school math and the 
functions we’re talking about here, by the way, is simply that our 
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functions aren’t necessarily numeric. Sometimes we do draw “plots” 
of sorts, though, like this one: /pagebreak 

Figure 3.1: A function represented graphically. 

This simply shows which elements of the domain map to which ele-
ments of the codomain. The left blob is the domain, the right blob 
is the codomain, and there’s an arrow representing each mapping. 

Now as with relations, functions normally have “meaning.” We 
could define a function called “firstTasted” that associates each wiz-
ard with the soft drink he or she first sampled as a child. We could 
define another called “faveDrink” that maps each wizard to his or 
her favorite — presuming that every wizard has a favorite drink in 
the set (Hermione will have to overlook her iced tea and choose 
among the options provided). A third function called “would-
ChooseWithMexicanFood” provides information about which drink 
each wizard provides with that type of cuisine. Here are Ron’s val-
ues for each of the three functions: 

firstTasted(Ron) = Mt. Dew 
faveDrink(Ron) = Mt. Dew 

wouldChooseWithMexicanFood(Ron) = Dr. Pepper 

These values indicate that Mt. Dew was the soda pop that Ron 
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first sipped, and it has been his favorite ever since, although at La 
Estrellita he prefers a Pepper. 

Functions can be defined intensionally or extensionally, just as with 
relations. Intensionally, we provide the conceptual meaning of what 
the function represents. Extensionally, we list the values for each 
element of the domain. 

One other term that applies to every function is its range. A 
function’s range is the subset of the codomain that at least one 
element the domain actually maps to. It’s the part of the codomain 
that’s “reachable.” For instance, if the function G : X → Y is {
(Harry, Dr. Pepper), (Ron, Dr. Pepper), (Hermione, Dr. Pepper) }, 
then even though the codomain is { Dr. Pepper, Mt. Dew } the 
range is merely { Dr. Pepper }. That’s because there isn’t any 
ordered pair that contains Mt. Dew, so it’s left out of the range. 
You can’t “reach” Mt. Dew via the G function by starting with any 
of its inputs, so it’s left out in the cold. 

By the way, a function’s range is sometimes called its image. These 
terms are synonymous. 

3.7 Properties of functions 

As with relations, there are certain simple properties that some 
(not all) functions have, and it’s useful to reason about them. A 
function can be: 

• Injective. An injective function is not only a function, but 
also kind of a “function in reverse”: i.e., not only does no x 
map to two different y’s (which is the case for all functions), 
but no two x’s map to the same y. In graphical terms, it 
does pass a “horizontal line test” in addition to the vertical. 
Note that this can’t happen if the domain is larger than the 
codomain (as with wizards & soft drinks), since there aren’t 
enough y values to accommodate all the x values uniquely. So 
there is no injective function between wizards and soft drinks 
to be found, no matter how hard we try. 
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The function phoneExtension — with employees as the do-
main and four-digit numbers as the codomain — is an exam-
ple of an injective function. One mapping of this function 
would be “phoneExtension(Sally) = 1317”, indicating that 
Sally can be reached at x1317. Some of the available exten-
sions may be currently unused, but every employee does have 
one (and only one) which makes it a function. But since no 
two employees have the same extension, it is also an injective 
function. 

Injective functions are sometimes called one-to-one func-
tions. (One-to-one and injective are exact synonyms.) 

• Surjective. A surjective function is one that reaches all the 
elements of its codomain: some x does in fact reach every y. 
Another way of saying this is: for a surjective function, the 
range equals the entire codomain. You can see that this is 
impossible if the domain is smaller than the codomain, since 
there wouldn’t be enough x values to reach all the y values. If 
we added Pepsi and Barq’s Root Beer to our Y set, we would 
thereby eliminate the possibility of any surjective functions 
from X to Y (unless we also added wizards, of course). 

The function worksIn — with employees as the domain and 
departments as the codomain — is an example of an sur-
jective function. One mapping of this function would be 
“worksIn(Sid) = Marketing”, indicating that Sid works in the 
Marketing department. Each employee works for one depart-
ment, which makes it a function. But at least one employee 
works in every department (i.e., there are no empty depart-
ments with no people in them) which makes it surjective. 

Surjective functions are sometimes called “onto” functions. 
(Onto and surjective are exact synonyms.) 

• Bijective. Finally, a bijective function is simply one that 
is both injective and surjective. With an injective function, 
every y is mapped to by at most one x; with a surjective 
function, every y is mapped to by at least one x; so with 
a bijective function, every y is mapped to by exactly one x. 
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Needless to say, the domain and the codomain must have the 
same cardinality for this to be possible. 

The function employeeNumber — with employees as the do-
main and employee numbers as the codomain — is a bijective 
function. Every employee has an employee number, and ev-
ery employee number goes with exactly one employee. As a 
corollary of this, there are the same number of employees as 
employee numbers. 

Finally, a few extensionally-defined examples. With X = { Harry, 
Ron, Hermione } and Y = { Dr. Pepper, Mt. Dew }, consider the 
function f1: 

f1(Harry) = Mt. Dew 
f1(Ron) = Mt. Dew 

f1(Hermione) = Mt. Dew 

Is f1 injective? No, since more than one wizard (all of them, in 
fact) map to Mt. Dew. Is it surjective? No, since no wizard maps 
to Dr. Pepper. Is it bijective? No, duh, since to be bijective it 
must be both injective and surjective. 

Now for f2, change Ron to map to Dr. Pepper instead: 

f2(Harry) = Mt. Dew 
f2(Ron) = Dr. Pepper 

f2(Hermione) = Mt. Dew 

Is f2 injective? Still no, since more than one wizard maps to 
Mt. Dew. (And of course no function between these two sets can 
be injective, since there aren’t enough soft drinks for each wizard 
to have his/her own.) But is it surjective? Yes, it is now surjective, 
since every soft drink has at least one wizard mapping to it. (Still 
not bijective for obvious reasons.) 

Now let’s add Pepsi and Barqs Root Beer to our set of soft drinks 
Y , so that it now has four elements: { Dr. Pepper, Mt. Dew, Pepsi, 
Barqs Root Beer }. Consider the function f3: 
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f3(Harry) = Pepsi 
f3(Ron) = Pepsi 

f3(Hermione) = Mt. Dew 

Is f3 injective? No, since more than one wizard maps to Pepsi. Is 
it surjective? No, since no wizard maps to Dr. Pepper or Barqs. 
(And of course no function between these two sets can be surjective, 
since there aren’t enough wizards for each drink to have one.) And 
of course not bijective. 

Now for f4, change Ron to map to Dr. Pepper instead: 

f4(Harry) = Pepsi 
f4(Ron) = Dr. Pepper 

f4(Hermione) = Mt. Dew 

Still not surjective, of course, but now it is injective, since no drink 
has more than one wizard. (Still of course not bijective.) 

Finally, let’s add one more wizard (Neville) to the mix for two more 
examples. Let f5 be: 

f5(Harry) = Barqs Root Beer 
f5(Ron) = Dr. Pepper 

f5(Hermione) = Mt. Dew 
f5(Neville) = Dr. Pepper 

Is f5 injective? No, since Dr. Pepper has two wizards. Is it surjec-
tive? No, since Pepsi has none. Struck out on all counts. However, 
one small change and everything falls into place: 

f6(Harry) = Barqs Root Beer 
f6(Ron) = Pepsi 

f6(Hermione) = Mt. Dew 
f6(Neville) = Dr. Pepper 

Is this last function injective, surjective, bijective? Yes to all three! 
Every wizard gets his/her own soft drink, every soft drink gets its 
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own wizard, and no soft drinks (or wizards) are left out. How 
exciting. This is a perfectly bijective function, also called a bijec-
tion. Again, the only way to get a bijection is for the domain and 
codomain to be the same size (although that alone does not guaran-
tee a bijection; witness f5, above). Also observe that if they are the 
same size, then injectivity and surjectivity go hand-in-hand. Vio-
late one, and you’re bound to violate the other. Uphold the one, 
and you’re bound to uphold the other. There’s a nice, pleasing, 
symmetrical elegance to the whole idea. 
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3.8 Exercises 

1. 

2. 

3. 

4. 

5. 

6. 

Let A be the set { Chuck, 
Julie, Sam } and S be the set 
{ basketball, volleyball }. 
Is { (Julie, basketball), (Sam, 
basketball), (Julie, volley-
ball) } a relation between A 
and S? 

Yes it is, since it is a subset of A × S. 

Is the above relation an en-
dorelation? 

No, 
one 
sets 

because an endorelation
set with itself, not two 
(like A and S are.) 

 involves 
different 

Is { (Chuck, basketball), 
(basketball, volleyball) } a re-
lation between A and S? 

No, 
the 
A. 

since the first element of 
ordered pairs is not from 

one of 
the set 

Is ∅ a relation between A and 
S? 

Yes it is, since it is a subset of A × S. 

How large could a relation be-
tween A and S be? 

The maximum cardinality is 6, if 
all three athletes played all three 
sports. (I’m assuming that the 
meaning of the relation is “plays” 
instead of “isAFanOf ” or “know-
sTheRulesFor” or something else. In 
any case, the maximum cardinality is 
6.) 

Let T be the set { Spock, 
Kirk, McCoy, Scotty, 
Uhura }. Let O be an 
endorelation on T , defined 
as follows: { (Kirk, Scotty), 
(Spock, Scotty), (Kirk, 
Spock), (Scotty, Spock) }. 

Is T reflexive? 
No, since 
elements 
selves. 

it 
of 
doesn’t have 
T appearing 

any 
with 

of the 
them-
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7. 

8. 

9. 

10. 

Is T symmetric? 
No, 
but 

since it contains (Kirk, 
not (Scotty, Kirk). 

Scotty) 

Is T antisymmetric? 
No, 
and 

since it contains (Spock, 
also (Scotty, Spock). 

Scotty) 

Is T transitive? 

Yes, since for every (x, y) and (y, z) 
present, the corresponding (x, z) is 
also present. (The only example 
that fits this is x=Kirk, y=Spock, 
z=Scotty, and the required ordered 
pair is indeed present.) 

Let H be an endorelation 
on T , defined as follows: 

11. 

12. 

13. 

14. 

{ (Kirk, Kirk), (Spock, 
Spock), (Uhura, Scotty), 
(Scotty, Uhura), (Spock, 
McCoy), (McCoy, Spock), 
(Scotty, Scotty), (Uhura, 
Uhura) }. 

Is H reflexive? 
No, since 
Coy). 

it’s missing (McCoy, Mc-

Is H symmetric? 

Yes, since for every (x, y) it 
tains, the corresponding (y, x) is 
present. 

con-
also 

Is H antisymmetric? 
No, 
and 

since it contains (Uhura, 
also (Scotty, Uhura). 

Scotty) 

Is H transitive? 

Yes, since there aren’t any examples 
of (x, y) and (y, z) pairs both being 
present. 

Let outranks be an endore-
lation on the set of all crew 
members of the Enterprise, 
where (x, y) ∈ outranks if 
character x has a higher Star 
Fleet rank than y. 

Is outranks reflexive? 
No, since 
him/herself. 

no officer outranks 
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No, since an officer cannot out-

15. Is outranks symmetric? 
rank an officer 
him/her. 

who in turn outranks 

Yes, since if one officer outranks a 

16. Is outranks antisymmetric? 
second, the second one 
outrank the first. 

cannot also 

Yes, since if one officer outranks a 
second, and that officer outranks a 

17. 

18. 

19. 

Is outranks transitive? third, the first obviously also out-
ranks the third. 

Is outranks a partial order? 

No, but close. It satisfies antisym-
metry and transitivity, which are 
crucial. The only thing it doesn’t 
satisfy is reflexivity, since none of 
the members appear with them-
selves. If we changed this relation 
to ranksAtLeastAsHighAs, then we 
could include these “double” pairs 
and have ourselves a partial order. 

Let sameShirtColor be an 
endorelation on the set of 
all crew members of the 
Enterprise, where (x, y) ∈ 
sameShirtColor if character 
x ordinarily wears the same 
shirt color as character y. 

Is sameShirtColor reflexive? 
Yes, since you 
the same shirt 
ing. 

can’t 
color 

but help 
as you’re 

wear 
wear-

Yes, since if a crew member wears 
the same shirt color as another, then 
that second crew member also wears 

20. 

21. 

Is sameShirtColor symmet-
ric? 

the same shirt color as the first. If 
Scotty and Uhura both wear red, 
then Uhura and Scotty both wear 
red, duh. 

Is sameShirtColor antisym-
metric? 

No, for probably obvious reasons. 
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22. 

23. 

24. 

25. 

26. 

27. 

28. 

Is sameShirtColor transitive? 

Yes. 
color 
wear 
Kirk 
wear 

If Kirk and Sulu wear the same 
(yellow), and Sulu and Chekov 
the same color (yellow), then 
and Chekov most certainly will 
the same color (yellow). 

Above, we defined A as the 
set { Chuck, Julie, Sam } and 
S as the set { basketball, vol-
leyball }. Then we defined 
the relation { (Julie, bas-
ketball), (Sam, basketball), 
(Julie, volleyball) }. 

Is this relation a function? 
No, because 
tirely. 

it’s missing Chuck en-

Suppose we added the or-
dered pair (Chuck, basket-
ball) to it. Now is it a func-
tion? 

No, because Julie appears twice, 
mapping to two different values. 

Okay. Suppose we then re-
move (Julie, volleyball). We 
now have { (Julie, bas-
ketball), (Sam, basketball), 
(Chuck, basketball) }. Is this 
a function? 

Yes. Congratulations. 

Let’s call this function 
“faveSport,” which suggests 
that its meaning is to in-
dicate which sport is each 
athlete’s favorite. What’s 
the domain of faveSport? 

{ Julie, Chuck, Sam }. 

What’s the codomain of 
faveSport? 

{ basketball, volleyball }. 

What’s the range of faveS-
port? 

{ basketball }. 
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29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

Is faveSport injective? 

No, because Julie and Sam (and 
Chuck) all map to the same value 
(basketball). For a function to be 
injective, there must be no two do-
main elements that map to the same 
codomain element. 

Is there any way to make it 
injective? 

Not without altering the underlying 
sets. There are three athletes and 
two sports, so we can’t help but map 
multiple athletes to the same sport. 

Fine. Is faveSport surjective? 
No, 
ball.

because no one maps to volley-

Is there any way to make it 
surjective? 

Sure, for instance change Sam from 
basketball to volleyball. Now both 
of the codomain elements are “reach-
able” by some domain element, so 
it’s surjective. 

Is faveSport now also bijec-
tive? 

No, because it’s still not injective. 

How can we alter things so 
that it’s bijective? 

One way is to add a third sport — 
say, kickboxing — and move either 
Julie or Chuck over to kickboxing. 
If we have Julie map to kickboxing, 
Sam map to volleyball, and Chuck 
map to basketball, we have a bijec-
tion. 

How do we normally write 
the fact that “Julie maps to 
kickboxing”? 

faveSport(Julie) = kickboxing. 

What’s another name for “in- one-to-one. 

37. 

jective?” 

What’s another name for onto. 

38. 

“surjective?” 

What’s another name for image. 
“range?” 





Chapter 4 

Probability 

Probability is the study of uncertainty. This may seem like a hope-
less endeavor, sort of like knowing the unknowable, but it’s not. 
The study of probability gives us tools for taming the uncertain 
world we live and program in, and for reasoning about it in a pre-
cise and helpful way. 

We may not know exactly how long a particular visitor is willing to 
wait for our webpage to load in their browser, but we can use prob-
ability to estimate how much traffic we’ll lose if this takes longer 
than a certain average duration. We may not know which specific 
passwords a hacker will try as he attempts to break our security 
protocol, but we can use probability to estimate how feasible this 
approach will be for him. We may not know exactly when a certain 
program will run out of RAM and have to swap its data out to 
virtual memory, but we can predict how often this is likely to occur 
— and how painful it will be for us — given a certain system load 
and user behavior. 

The trick is to use the tools we’ve already built — sets, relations, 
functions — to characterize and structure our notions of the rela-
tive likelihood of various outcomes. Once those underpinnings are 
secured, a layer of deductive reasoning will help us make good use 
of that information to begin to predict the future. 

59 
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4.1 Outcomes and events 

Since life is uncertain, we don’t know for sure what is going to 
happen. But let’s start by assuming we know what things might 
happen. Something that might happen is called an outcome. You 
can think of this as the result of an experiment if you want to, 
although normally we won’t be talking about outcomes that we 
have explicitly manipulated and measured via scientific means. It’s 
more like we’re just curious how some particular happening is going 
to turn out, and we’ve identified the different ways it can turn out 
and called them outcomes. 

Now we’ve been using the symbol Ω to refer to “the domain of dis-
course” or “the universal set” or “all the stuff we’re talking about.” 
We’re going to give it yet another name now: the sample space. 
Ω, the sample space, is simply the set of all possible outcomes. Any 
particular outcome — call it O — is an element of this set, just 
like in chapter 1 every conceivable element was a member of the 
domain of discourse. 

If a woman is about to have a baby, we might define Ω as { boy, 
girl }. Any particular outcome o is either boy or girl (not both), but 
both outcomes are in the sample space, because both are possible. 
If we roll a die, we’d define Ω as { 1, 2, 3, 4, 5, 6 }. If we’re interested 
in motor vehicle safety, we might define Ω for a particular road trip 
as { safe, accident }. The outcomes don’t have to be equally likely, 
an important point we’ll return to soon. 

In probability, we define an event as a subset of the sample space. 
In other words, an event is a group of related outcomes (though 
an event might contain just one outcome, or even zero). I always 
thought this was a funny definition for the word “event”: it’s not 
the first thing that word brings to mind. But it turns out to be 
a useful concept, because sometimes we’re not interested in any 
particular outcome necessarily, but rather in whether the outcome 
— whatever it is — has a certain property. For instance, suppose 
at the start of some game, my opponent and I each roll the die, 
agreeing that the highest roller gets to go first. Suppose he rolls a 
2. Now it’s my turn. The Ω for my die roll is of course { 1, 2, 3, 
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4, 5, 6 }. But in this case, it doesn’t necessarily matter what my 
specific outcome is; only whether I beat a 2. So I could define the 
event M (for “me first”) to be the set { 3, 4, 5, 6 }. I could define 
the event H (“him first”) to be the set { 1 } (notice H is still a set, 
even though it has only one element.) Then I could define the event 
T (“tie”) as the set { 2 }. I’ve now effectively collapsed a larger 
set of outcomes into only the groups of outcomes I’m interested in. 
Now I’m all ready to reason about the likelihood that each of these 
events actually occurs. 

By the way, “the set of all outcomes” is simply Ω, since an outcome 
is an element of Ω. But an event is a subset of Ω, not a single 
element. What, then, is “the set of all events?” If you think it 
through, you’ll realize that it’s P(Ω) (the power set of the sample 
space). Put another way, when defining an event, I can choose any 
subset of the possible outcomes, and so I can choose any set from 
P(Ω). 

4.2 Probability measures 

Okay, we’ve defined sample spaces and events, but when do quan-
titative notions like “the odds of” and “percent chance” come into 
play? They enter the scene when we define a probability mea-
sure. A probability measure is simply a function from the domain 
of events to the codomain of real numbers. We’ll normally use the 
letters “Pr” for our probability measure. In symbols, Pr : P(Ω) → R 
(since the set of all events is the power set of the sample space, as 
per above). There’s actually another constraint, though, which is 
that Pr’s values must be in the range 0 to 1, inclusive. So it’s 
more correct to write: Pr : P(Ω) → [0, 1]. (You may recall from a 
previous math course that ‘[’ and ‘]’ are used to describe a closed 
interval in which the endpoints are included in the interval.) 

The “meaning” of the probability measure is intuitive enough: it 
indicates how likely we think each event is to occur. In the baby 
example, if we say Pr({boy}) = .5, it means there’s a .5 probability 
(a.k.a., a 50% chance) that a male child will be born. In the game 
example, if we say Pr(M) = .667, if means there’s a two-thirds 
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chance of me winning the right to go first. In all cases, a probability 
of 0 means “impossible to occur” and a probability of 1 means 
“absolutely certain to occur.” In colloquial English, we most often 
use percentages to talk about these things: we’ll say “there’s a 
60% chance Obama will win the election” rather than “there’s a 
.6 probability of Obama winning.” The math’s a bit clumsier if we 
deal with percentages, though, so from now on we’ll get in the habit 
of using probabilities rather than ‘percent chances,’ and we’ll use 
values in the 0 to 1 range rather than 0 to 100. 

I find the easiest way to think about probability measures is to start 
with the probabilities of the outcomes, not events. Each outcome 
has a specific probability of occuring. The probabilities of events 
logically flow from that just by using addition, as we’ll see in a 
moment. 

For example, let’s imagine that Fox Broadcasting is producing a 
worldwide television event called All-time Idol, in which the yearly 
winners of American Idol throughout its history all compete against 
each other to be crowned the “All-time American Idol champion.” 
The four contestants chosen for this competition, along with their 
musical genres, and age when originally appearing on the show, are 
as follows: 

Kelly Clarkson (20): pop, rock, R&B 
Fantasia Barrino (20): pop, R&B 
Carrie Underwood (22): country 

David Cook (26): rock 

Entertainment shows, gossip columns, and People magazine are all 
abuzz in the weeks preceding the competition, to the point where 
a shrewd analyst can estimate the probabilities of each contestant 
winning. Our current best estimates are: Kelly .2, Fantasia .2, 
Carrie .1, and David .5. 

Computing the probability for a specific event is just a matter of 
adding up the probabilities of its outcomes. Define F as the event 
that a woman wins the competition. Clearly Pr(F ) = .5, since 
Pr({Kelly}) = .2, Pr({Fantasia}) = .2, and Pr({Carrie}) = .1. If 
P is the event that a rock singer wins, Pr(P ) = .7, since this is the 
sum of Kelly’s and David’s probabilities. 
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Now it turns out that not just any function will do as a probability 
measure, even if the domain (events) and codomain (real numbers 
in the range[0,1]) are correct. In order for a function to be a “valid” 
probability measure, it must satisfy several other rules: 

1. Pr(Ω) = 1 

2. Pr(A) ≥ 0 for all A ⊆ Ω 

3. Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) 

Rule 1 basically means “something has to happen.” If we create 
an event that includes every possible outcome, then there’s a prob-
ability of 1 (100% chance) the event will occur, because after all 
some outcome has got to occur. (And of course Pr(Ω) can’t be 
greater than 1, either, because it doesn’t make sense to have any 
probability over 1.) Rule 2 says there’s no negative probabilities: 
you can’t define any event, no matter how remote, that has a less 
than zero chance of happening. 

Rule 3 is called the “additivity property,” and is a bit more difficult 
to get your head around. A diagram works wonders. Consider Fig-
ure 4.1, called a “Venn diagram,” which visually depicts sets and 
their contents. Here we have defined three events: F (as above) is 
the event that the winner is a woman; R is the event that the win-
ner is a rock musician (perhaps in addition to other musical genres); 
and U is the event that the winner is underage (i.e., becomes a mul-
timillionare before they can legally drink). Each of these events is 
depicted as a closed curve which encloses the outcomes that belong 
to it. There is obviously a great deal of overlap. 

Now back to rule 3. Suppose I ask “what’s the probability that 
the All-time Idol winner is underage or a rock star?” Right away 
we face an irritating ambiguity in the English language: does “or” 
mean “either underage or a rock star, but not both?” Or does it 
mean “underage and/or rock star?” The former interpretation is 
called an exclusive or and the latter an inclusive or. In computer 
science, we will almost always be assuming an inclusive or, unless 
explicitly noted otherwise. 
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Figure 4.1: Various events, and their overlap. 

Very well then. What we’re really asking here is “what’s Pr(U ∪ 
R)?” We want the union of the two events, since we’re asking for the 
probability that either (or both) of them occurs. You might first 
think that we’d add the two probabilities for the two events and 
be done with it, but a glance at the diagram tells you this means 
trouble. Pr(U) is .4, and Pr(R) is .7. Even if we weren’t very smart, 
we’d know something was wrong as soon as we added .4 + .7 = 1.1 
to get a probability of over 1 and violate rule 1. But we are smart, 
and looking at the diagram it’s easy to see what happened: we 
double-counted Kelly’s probability. Kelly was a member of both 
groups, so her .2 got counted in there twice. Now you can see the 
rationale for rule 3. To get Pr(U ∪ R) we add Pr(U) and Pr(R), 
but then we have to subtract back out the part we double-counted. 
And what did we double-count? Precisely the intersection U ∩ R. 

As a second example, suppose we want the probability of an un-
derage or female winner? Pr(U) = .4, and Pr(F ) = .5, so the first 
step is to just add these. Then we subtract out the intersection, 
which we double counted. In this case, the intersection U ∩ F is 
just U (check the diagram), and so subtract out the whole .4. The 
answer is .5, as it should be. 

By the way, you’ll notice that if the two sets in question are mutu-



4. Pr(∅) = 0 

5. Pr(A) = 1−Pr(A) (recall the “total complement” operator 
from p. 18.) 

6. Pr(A) ≤ Pr(B) if A ⊆ B 

|A|
Pr(A) = . 

N 
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ally exclusive, then there is no intersection to subtract out. That’s 
a special case of rule 3. For example, suppose I defined the event C 
as a country singer winning the competition. In this case, C con-
tains only one outcome: Carrie. Therefore U and C are mutually 
exclusive. So if I asked “what’s the probability of an underage or 
country winner?” we’d compute Pr(U ∪ C) as 

Pr(U ∪ C) = Pr(U) + Pr(C) − Pr(U ∩ C) 

= .4 + .1 − 0 

= .5. 

We didn’t double-count anything, so there was no correction to 
make. 

Here are a few more pretty obvious rules for probability measures, 
which follow logically from the first 3: 

Finally, let me draw attention to a common special case of the above 
rules, which is the situation in which all outcomes are equally likely. 
This usually happens when we roll dice, flip coins, deal cards, etc. 
since the probability of rolling a 3 is (normally) the same as rolling 
a 6, and the probability of being dealt the 10♠ is the same as the 
Q♦. It may also happen when we generate encryption keys, choose 
between alternate network routing paths, or determine the initial 
positions of baddies in a first-person shooter level. 

In this case, if there are N possible outcomes (note N = |Ω|) then 
the probability of any event A is: 



|F |
Pr(F ) = 

N 

|{K♠,K♥,K♦, · · · , J♣}|
= 

52 

12 
= = .231. 
52 
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It’s the size (cardinality) of the event set that matters, and the 
ratio of this number to the total number of events is the probability. 
For example, if we deal a card from a fair deck, the probability of 
drawing a face card is 

Please realize that this shortcut only applies when the probability 
of each outcome is the same. We certainly couldn’t say, for example, 
that the probability of a user’s password starting with the letter q 
is just 1 , because passwords surely don’t contain all letters with 26 
equal frequency. (At least, I’d be very surprised if that were the 
case.) The only way to solve a problem like this is to know how 
often each letter of the alphabet occurs. 

4.3 Philosophical interlude 

Which brings me to an important question. How do we get these 
probability numbers, anyway? Everything so far has assumed that 
the numbers have been dropped into our lap. 

The answer depends somewhat on your interpretation of what prob-
ability means. If we say “the probability of getting heads on a coin 
flip is .5,” what are we really saying? There have traditionally been 
two opposing answers to this question, called the frequentist view 
and the Bayesian view. It’s interesting to compare their claims. 

The frequentist view is that we derive probabilities by simply run-
ning many trials, and counting the results. The proportions of 
various outcomes yield a good idea of their probabilities, particu-
larly if the sample size is large. Consider flipping a coin. If we flip 
a coin ten times and count three heads, we might not have a great 
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idea of how often heads will occur in the long run. But if we flip it 
a million times and get 500,372 heads, we can confidently say that 
the probability of getting a head on a single flip is approximately 
.500. 

This much isn’t controversial: it’s more like common sense. But the 
frequentist philosophy states that this is really the only way that 
probability can be defined. It’s what probability is: the frequency 
with which we can expect certain outcomes to occur, based on our 
observations of their past behavior. Probabilities only make sense 
for things that are repeatable, and reflect a known, reliable trend 
in how often they produce certain results. Historical proponents 
of this philosophy include John Venn, the inventor of the afore-
mentioned Venn diagram, and Ronald Fisher, one of the greatest 
biologists and statisticians of all time. 

If frequentism is thus on a quest for experimental objectivity, Bayesian-
ism might be called “subjective.” This isn’t to say it’s arbitrary 
or sloppy. It simply has a different notion of what probability 
ultimately means. Bayesians interpret probability as a quantita-
tive personal assessment of the likelihood of something happening. 
They point out that for many (most) events of interest, trials are 
neither possible nor sensible. Suppose I’m considering asking a girl 
out to the prom, and I’m trying to estimate how likely it is she’ll 
go with me. It’s not like I’m going to ask her a hundred times and 
count how many times she says yes, then divide by 100 to get a 
probability. There is in fact no way to perform a trial or use past 
data to guide me, and at any rate she’s only going to say yes or no 
once. So based on my background knowledge and my assumptions 
about her, myself, and the world, I form an opinion which could be 
quantified as a “percent chance.” 

Once I’ve formed this opinion (which of course involves guesswork 
and subjectivity) I can then reason about it mathematically, using 
all the tools we’ve been developing. Of special interest to Bayesians 
is the notion of updating probabilities when new information comes 
to light, a topic we’ll return to in a moment. For the Bayesian, 
the probability of some hypothesis being true is between 0 and 1, 
and when an agent (a human, or a bot) makes decisions, he/she/it 
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does so on the most up-to-date information he/she/it has, always 
revising beliefs in various hypotheses when confirming or refuting 
evidence is encountered. Famous Bayesians include Pierre-Simon 
Laplace, sometimes called “the French Isaac Newton” for his sci-
entific brilliance, and 18th century theologian Thomas Bayes, for 
whom the theory is named. 

I won’t try to conceal that my own thinking on this topic is pretty 
Bayesian. But I find this whole topic fascinating because it shows 
how brilliant people, who unanimously agree on the rules and equa-
tions, can have such radically different interpretations of what it all 
means. 

4.4 Conditional probability 

I mentioned that Bayesians are especially concerned with the idea 
of revising estimates about probability based on new information 
that may come to light. This notion can be crystallized in the idea 
of conditional probability. When we talk about the conditional 
probability of an event A, we mean “what’s the probability that A 
occurs, given that I know some other event K has also occurred?” 
Think of K as “background knowledge”: it’s additional information 
which, when known, may influence how likely we think A is to have 
occurred. It can be mathematically computed as follows: 

Pr(A ∩ K)
Pr(A|K) = 

Pr(K) 

We pronounce Pr(A|K) as “the probability of A given K.” It is the 
conditional probability of A, or “the probability of A conditioned 
on K.” We’ll sometimes call plain old Pr(A) the a priori prob-
ability, or the prior probability if we don’t want to sound Latin. 
The prior is simply the original unadjusted probability, if we aren’t 
privy to the background information K. 

Let’s go back to American Idol. We know that the probability of 
an underage winner is only .4, because U = { Kelly, Fantasia }, and 
we estimate that each of them has a .2 probability of winning. So 
it seems more likely than not that our winner will be over 21. But 
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wait: suppose we had some additional information. Just before the 
outcome is announced, news is leaked through a Rupert Murdoch 
news source that the winner is a woman! If we believe this reporter, 
does that change our expectation about how old the winner is likely 
to be? 

Indeed it does. Knowing that the winner is female eliminates Dave 
from consideration. Looking back at Figure 4.1, we can see that 
once we know Dave is out of the running, the remaining pool con-
sists of just F , which includes Kelly, Fantasia, and Carrie. The 
question is, how do we update our probability from .4 to reflect the 
fact that only these three ladies are 

In this case F is the background knowledge: we know that the event 
F has occurred. And we want to know how likely U is to also have 
occurred. This is found easily: 

Pr(U ∩ F )
Pr(U |F ) = 

Pr(F ) 
Pr({Kelly,Fantasia}) 

= 
Pr({Kelly,Fantasia,Carrie}) 
.4 

= = .8. 
.5 

Our estimated chance of an underage winner doubled once we found 
out she was female (even though we don’t yet know which female). 

If you stare at the equation and diagram, you’ll see the rationale for 
this formula. Kelly and Fantasia originally had only .4 of the entire 
probability between them. But once David was axed, the question 
became: “what percentage of the remaining probability do Kelly 
and Fantasia have?” The answer was no longer .4 out of 1, but .4 
out of .5, since only .5 of the whole was left post-David. This is 
why we divided by Pr(F ): that’s what we know remains given our 
background fact. 

Now in this case, the conditional probability was higher than the 
original probability. Could it ever be lower? Easily. Consider the 
probability of a rock-star winner, Pr(R). A priori, it’s .7. But 



Pr(R ∩ F )
Pr(R|F ) = 

Pr(F ) 
Pr({Kelly}) 

= 
Pr({Kelly,Fantasia,Carrie}) 
.2 

= = .4. 
.5 
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again, let’s say we had information leaked to us that the winner, 
whoever she may be, is female. We can now update our estimate: 

You see, once we find out that David is no longer a possibility, our 
only remaining hope for a rock star is Kelly. And she has only 40% 
of the probability that’s left over. Note that this is a higher chance 
for her personally — she’s got to be excited by the press leak — 
but it’s lower for rock stars, of which she is only one (and evidently, 
not the predicted strongest). 

Background knowledge can even peg our probability estimate to an 
extreme: all the way to 0, or to 1. What’s Pr(U |C), the probability 
of an underage winner, given that he/she is a country singer? The 
intersection of U and C is zero, so this makes Pr(U |C) = 0. In 
words: a country winner eliminates any possibility of an underage 
winner. And what’s Pr(F |U), the probability that a woman wins, 
given that we know the winner to be underage? Well, F ∩ U and 

     Pr(F ∩U ) U are the same (check me), so = .4 = 1. Therefore, anPr(U) .4 
underage winner guarantees a female winner. 

The way I think about conditional probability is this: look at the 
diagram, consider the events known to have occurred, and then 
mentally block out everything except that. Once we know the back-
ground fact(s), we’re essentially dealing with a restricted world. 
Take the example of the known female winner. Once we know 
that event F in fact occurred, we can visually filter out David, 
and look at the F blob as though that were our entire world. In 
this restricted female-only view, the underage elements comprise a 
greater percentage of the total than they did before. And half of 
the rock-star elements have now been obscured, leaving only Kelly 
as the one-of-the-remaining-three. 
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Many psychologists, by the way, claim that we’re constantly doing 
this sort of thing in our minds: gathering facts, then revising our 
beliefs about the world in light of those facts. We start by believ-
ing that Pr(X) is approximately some value. Then we learn K1 has 
occurred, and we update this to Pr(X|K1). Then we learn that K2 

has also occurred, and so now we have Pr(X|K1 ∩K2). (Can you see 
why it’s the intersection?) The more we learn, the more we revise 
our estimate up or down, presumably getting more accurate as we 
go. Another way of looking at it is that every time we learn some-
thing new is true, we also learn that its opposite is not true, and 
therefore we can eliminate some parts of the theoretically-possible 
universe that we have now ruled out. The denominator gets smaller 
and smaller as we eliminate possibilities. 

Keep in mind, by the way, that unlike union and intersection, con-
ditional probability is not commutative. In other words, Pr(X|Y ) 
6= Pr(Y |X) in general. To take just one example, look again at 
the F and U sets from All-time Idol. Pr(F |U), as we already com-
puted, is equal to 1 since if U has occurred, we automatically know 
that F has also occurred (there aren’t any underage contestants 
except females). But the reverse is certainly not true: just because 
we have a female winner doesn’t mean we have an underage win-
ner, since the winner might be Carrie. Working it out, Pr(U |F ) = 
Pr(U∩F ) .4 = = .8. Higher than Pr(U), but not 1.Pr(F ) .5 

4.5 Total probability 

There’s a very useful fact that goes by the grandiose name “The 
Law of Total Probability.” It goes like this. If there’s an event 
whose probability we’d like to know, we can split it up into pieces 
and add up their probabilities, as long as we do it in the right way. 

“The right way” bit is the key, of course. And it has to do with 
partitions. Recall from section 2.12 that a partition of a set is 
a mutually exclusive and collectively exhaustive group of subsets. 
One example is that every set and its complement together form a 
partition of Ω. By the same token, for any sets A and B, these two 
sets together form a partition of A: 



A ∩ B 

A ∩ B 

Pr(A) = Pr(A ∩ B) + Pr(A ∩ B) 

= Pr(A|B)Pr(B) + Pr(A|B)Pr(B) 
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This is worth taking a moment to understand completely. Suppose 
A is the set of all WWE professional wrestling fans, and B is the 
set of all people born in southern states. The first set listed above, 
A ∩ B contains professional wrestling fans born in southern states, 
and the second set, A ∩ B, the wrestling fans not born in southern 
states. Clearly, every wrestling fan is in one of these two sets, and 
no fan is in both. So it’s a partition of A. This works for any two 
sets A and B: A ∩ B and A ∩ B are a partition of A. We’re just 
dividing up the A’s into the A’s that are also B’s, and the A’s that 
are not B’s. Every A is in one (and just one) of those groups. 

This idea can be extended to more than two sets. Let C1 be the 
set of all people born in southern states, C2 the set of people born 
in western states, and C3 those not born in either region. (The 
set C3 includes lots of things: people born in Ohio, people born in 
Taiwan, and ham sandwiches, among others.) The following three 
sets, then, together form another partition of A: A∩C1, A∩C2, and 
A ∩ C3. This is because every professional wrestling fan is either 
born in the south, or born in the west, or neither one. 

Okay, now back to probability. In the two-set case, no matter what 
the event A is, we can divide up its probability like this: 

where B is any other event. The last step makes use of the condi-
tional probability definition from above. We’re dividing up A into 
the B’s and the non-B’s, in a strategy to determine A’s probability. 
In the general case, if N sets named Ck (where k is a number from 
1 to N) make up a partition of Ω, then: 



Pr(Avengers) = 2000 = .5712000+500+1000 

Pr(BlackSwan) = 500 = .1432000+500+1000 

Pr(Lorax) = 1500 = .2862000+500+1000 
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Pr(A) = Pr(A ∩ C1) + Pr(A ∩ C2) + · · · + Pr(A ∩ CN ) 

= Pr(A|C1)Pr(C1) + Pr(A|C2)Pr(C2) + · · · + Pr(A|CN )Pr(CN ) 
NX 

= Pr(A|Ck)Pr(Ck) 
k=1 

 is the formula.1

Let’s take an example of this approach. Suppose that as part of 
a promotion for Muvico Cinemas movie theatre, we’re planning to 
give a door prize  to the 1000th customer this Saturday afternoon. 
We want to know, though, the probability that this person will be 
a minor. Figuring out how many patrons overall will be under 18 
might be difficult. But suppose we’re showing these three films on 
Saturday: The Avengers, Black Swan, and Dr. Seuss’s The Lorax. 
We can estimate the fraction of each movie’s viewers that will be 
minors: .6, .01, and .95, respectively. We can also predict how 
many tickets will be sold for each film: 2,000 for the Avengers, 500 
for Black Swan, and 1,000 for Lorax. 

Applying frequentist principles, we can compute the probability 
that a particular visitor will be seeing each of the movies: 

1If you’re not familiar with the notation in that last line, realize that Σ 
(a capital Greek “sigma”) just represents a sort of loop with a counter. The 
“k = 1” under the sign means that the counter is k and starts at 1; the “N” 
above the sign means the counter goes up to N , which is its last value. And 
what does the loop do? It adds up a cumulative sum. The thing being added to 
the total each time through the loop is the expression to the right of the sign. 
The last line with the Σ is just a more compact way of expressing the preceding 
line. 
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To be clear: this is saying that if we select a visitor at random on 
Saturday, the probability that they will be seeing The Avengers is 
.571. 

But (and this is the trick) we can also compute the conditional 
probability that an attendee of each of these films will be a minor: 

Pr(minor|Avengers) = .6 

Pr(minor|BlackSwan) = .01 

Pr(minor|Lorax) = .95 

In words: “If we know that a visitor is coming to see The Avengers, 
there’s a .6 probability that they’ll be a minor.” We’re using the 
background knowledge to determine the conditional probability. It 
might be hard to figure out the probability of minors in general, 
but easier to figure out the probability of minors watching a specific 
movie. 

Now, it’s just a matter of stitching together the parts: 

Pr(minor) = Pr(minor|Avengers) Pr(Avengers)+ 

Pr(minor|BlackSwan) Pr(BlackSwan)+ 

Pr(minor|Lorax) Pr(Lorax) 
= .6 · .571 + .01 · .143 + .95 · .286 
= .343 + .00143 + .272 ≈ .616 

In words, there are three different ways for a visitor to be a minor: 
they could be an Avengers fan and a minor (pretty likely, since 
there’s lots of Avengers fans), or a Black Swan fan and a minor 
(not likely), or a Lorax fan and a minor (fairly likely, since although 
there’s not a ton of Lorax fans overall, most of them are minors). 
Adding up these probabilities is legit only because the three movies 
form a partition of the visitors (i.e., every visitor is there to see one 
and only one movie). 
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The Law of Total Probability comes in handy in scenarios where 
there’s more than one “way” for an event to occur. It lets you break 
that event apart into the different ways, then apply your knowledge 
of the likelihood of each of those ways in order to compute the 
grand, overall probability of the event. 

4.6 Bayes’ Theorem 

Another trick that helps compute probabilities in practice is Bayes’ 
Pr(A∩K)Theorem. We’ve defined Pr(A|K) as , and by swapping Pr(K) 

Pr(K∩A)the letters we get Pr(K|A) = . Combining these with aPr(A) 
little bit of algebra yields: 

Pr(K|A) Pr(A)
Pr(A|K) = 

Pr(K) 

Now this is a very, very powerful equation that has a multitude of 
uses throughout computer science and statistics. What makes it 
powerful is that it allows us to express Pr(A|K), a quantity often 
very difficult to estimate, in terms of Pr(K|A), which is often much 
easier. 

A simple and commonly cited example is that of interpreting medi-
cal exam results for the presence of a disease. If your doctor recom-
mends that you undergo a blood test to see if you have some rare 
condition, you might test positive or negative. But suppose you do 
indeed test positive. What’s the probability that you actually have 
the disease? That, of course, is the key point. 

In symbols, we’re looking for Pr(D|T ), where D is the event that 
you actually have the disease in question, and T is the event that 
you test positive for it. But this is hard to approximate with avail-
able data. For one thing, most people who undergo this test don’t 
test positive, so we don’t have a ton of examples of event T occur-
ring whereby we could count the times D also occurred. But worse, 
it’s hard to tell whether a patient has the disease, at least before 
advanced symptoms develop — that, after all, is the purpose of our 
test! 
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Bayes’ Theorem, however, lets us rewrite this as: 

Pr(T |D) Pr(D)
Pr(D|T ) = . 

Pr(T ) 

Now we have Pr(D|T ), the hard quantity to compute, in terms of 
three things we can get data for. To estimate Pr(T |D), the proba-
bility of a person who has the disease testing positive, we can ad-
minister the test to unfortunate patients with advanced symptoms 
and count how many of them test positive. To estimate Pr(D), the 
prior probability of having the disease, we can divide the number 
of known cases by the population as a whole to find how prevalent 
it is. And getting Pr(T ), the probability of testing positive, is easy 
since we know the results of the tests we’ve administered. 

In numbers, suppose our test is 99% accurate — i.e., if someone 
actually has the disease, there’s a .99 probability they’ll test positive 
for it, and if they don’t have it, there’s a .99 probability they’ll test 
negative. Let’s also assume that this is a very rare disease: only 
one in a thousand people contracts it. 

When we interpret those numbers in light of the formula we’re 
seeking to populate, we realize that Pr(T |D) = .99, and Pr(D) = 
1 The other quantity we need is Pr(T ), and we’re all set. But1000 . 
how do we figure out Pr(T ), the probability of testing positive? 

Answer: use the Law of Total Probability. There are two differ-
ent “ways” to test positive: (1) to actually have the disease, and 
(correctly) test positive for it, or (2) to not have the disease, but 
incorrectly test positive for it anyway because the test was wrong. 
Let’s compute this: 

Pr(T ) = Pr(T |D) Pr(D) + Pr(T |D) Pr(D) 
1 999 

= .99 · + .01 · 
1000 1000 

= .00099 + .00999 = .01098 (4.1) 
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See how that works? If I do have the disease (and there’s a 1 in 1,000 
chance of that), there’s a .99 probability of me testing positive. On 
the other hand, if I don’t have the disease (a 999 in 1,000 chance of 
that), there’s a .01 probability of me testing positive anyway. The 
sum of those two mutually exclusive probabilities is .01098. 

Now we can use our Bayes’ Theorem formula to deduce: 

Pr(T |D) Pr(D)
Pr(D|T ) = 

Pr(T ) 
1 .99 · 1000 = ≈ .0902 

.01098 

Wow. We tested positive on a 99% accurate medical exam, yet we 
only have about a 9% chance of actually having the disease! Great 
news for the patient, but a head-scratcher for the math student. 
How can we understand this? Well, the key is to look back at that 
Total Probability calculation in equation 4.1. Remember that there 
were two ways to test positive: one where you had the disease, and 
one where you didn’t. Look at the contribution to the whole that 
each of those two probabilities produced. The first was .00099, 
and the second was .00999, over ten times higher. Why? Simply 
because the disease is so rare. Think about it: the test fails once 
every hundred times, but a random person only has the disease 
once every thousand times. If you test positive, it’s far more likely 
that the test screwed up than that you actually have the disease, 
which is rarer than blue moons. 

Anyway, all the stuff about diseases and tests is a side note. The 
main point is that Bayes’ Theorem allows us to recast a search for 
Pr(X|Y ) into a search for Pr(Y |X), which is often far easier to find 
numbers for. 

One of many computer science applications of Bayes’ Theorem is 
in text mining. In this field, we computationally analyze the words 
in documents in order to automatically classify them or form sum-
maries or conclusions about their contents. One goal might be to 
identify the true author of a document, given samples of the writ-
ing of various suspected authors. Consider the Federalist Papers, 
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the group of highly influential 18th century essays that argued for 
ratifying the Constitution. These essays were jointly authored by 
Alexander Hamilton, James Madison, and John Jay, but it was un-
certain for many years which of these authors wrote which specific 
essays. 

Suppose we’re interested in determining which of these three Found-
ing Fathers actually wrote essay #84 in the collection. To do this, 
the logical approach is to find Pr(Hamilton|essay84), Pr(Madison|
essay84), and Pr(Jay|essay84), and then choose the author with the 
highest probability. But how can we possibly find out Pr(Hamilton|
essay84)? “Given that essay #84 has these words in this order, 
what’s the probability that Hamilton wrote it?” Impossible to know. 

But with Bayes’ Theorem, we can restructure this in terms of 
Pr(essay84|Hamilton) instead. That’s a horse of a different color. 
We have lots of known samples of Hamilton’s writing (and Madi-
son’s, and Jay’s), so we can ask, “given that Hamilton wrote an 
essay, what’s the probability that he would have chosen the words 
that appear in essay #84?” Perhaps essay #84 has a turn of phrase 
that is very characteristic of Hamilton, and contains certain vo-
cabulary words that Madison never used elsewhere, and has fewer 
sentences per paragraph than is typical of Jay’s writing. If we can 
identify the relevant features of the essay and compare them to 
the writing styles of the candidates, we can use Bayes’ Theorem 
to estimate the relative probabilities that each of them would have 
produced that kind of essay. I’m glossing over a lot of details here, 
but this trick of exchanging one conditional probability for the other 
is the backbone of this whole technique. 

4.7 Independence 

We’ve seen that a particular problem can involve multiple different 
events. In the All-time Idol example, we considered the probabil-
ity of a female winner, a country singer winner, and an underage 
winner, among other things. 

Now one question that often arises concerns the independence of 
events. Two events A and B are called independent if the prior 
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probability is the same as the conditional probability; that is, if 
Pr(A|B) = Pr(A). 

If you reflect on what this means, you’ll see that with independent 
events, knowing that one of them occurred tells you nothing (either 
for or against) about whether the other one also occurred. 

For example, let S be the event that Strike For Gold wins the 
Kentucky Derby next May. Let R be the event that it rains that 
day. If I say that S and R are independent, I’m claiming that rain 
(or the absence thereof) would have no impact either way on the 
horse’s chances. If you were able to see the future, and reveal to me 
the weather on Derby Day, that’s fine but it wouldn’t help me in my 
betting. Knowing Pr(R) wouldn’t give me any helpful information, 
because Pr(S|R) is the same as just plain old Pr(S) anyway. 

That’s a conceptual explanation. In the end, it boils down to 
numbers. Suppose we have the following contingency table that 
shows the results of a survey we conducted at UMW on dominant 
handedness: 

Male Female 
Left-handed 20 26 
Right-handed 160 208 

The data is self-explanatory. Obviously there were a lot more right-
handers who took our survey than left, and slightly more women 
than men. Now consider: if this data is reflective of the popula-
tion as a whole, what’s Pr(L), where L is the event that a ran-
domly chosen person is left-handed? We surveyed 160+208=368 
right-handers and only 20+26=46 southpaws, so we’ll estimate that 
Pr(L) = 46 ≈ .111. If you pick a random person on campus,368+46 
our best guess is that there’s a .111 probability of them being left-
handed. 

Suppose I told you, however, before you knew anything about 
the randomly chosen person’s handedness, that she was a woman. 
Would that influence your guess? In this case, you’d have extra 
information that the F event had occurred (F being the event of 
a female selection), and so you want to revise your estimate as 
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Pr(L|F ). Considering only the women, then, you compute Pr(L|F ) 
26 = ≈ .111 from the data in the table.234 

Wait a minute. That’s exactly what we had before. Learning that 
we had chosen a woman told us nothing useful about her handed-
ness. That’s what we mean by saying that the L and F events are 
independent of each other. 

The shrewd reader may object that this was a startling coincidence: 
the numbers worked out exactly perfectly to produce this result. 
The proportion of left-handed females was precisely the same as 
that of left-handed males, down to the penny. Is this really likely 
to occur in practice? And if not, isn’t independence so theoretical 
as to be irrelevant? 

There are two ways of answering that question. The first is to admit 
that in real life, of course, we’re bound to get some noise in our data, 
just because the sample is finite and there are random fluctuations 
in who we happened to survey. For the same reason, if we flipped an 
ordinary coin 1,000 times, we aren’t likely to get exactly 500 heads. 
But that doesn’t mean we should rush to the conclusion that the 
coin is biased. Statisticians have sophisticated ways of answering 
this question by computing how much the experimental data needs 
to deviate from what we’d expect before we raise a red flag. Suffice 
to say here that even if the contingency table we collect isn’t picture 
perfect, we may still conclude that two events are independent if 
they’re “close enough” to independence. 

The other response, though, is that yes, the burden of proof is in-
deed on independence, rather than on non-independence. In other 
words, we shouldn’t start by cavalierly assuming all the events we’re 
considering are in fact independent, and only changing our mind if 
we see unexpected correlations between them. Instead, we should 
always be suspicious that two events will affect each other in some 
way, and only conclude they’re independent if the data we collect 
works out more or less “evenly” as in the example above. To say 
that Pr(A|B) is the same as Pr(A) is an aggressive statement, out-
side the norm, and we shouldn’t assume it without strong evidence. 

One more point on the topic of independence: please don’t make 
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the mistake that mutually exclusive events are independent ! This 
is by no means the case, and in fact, the opposite is true. If two 
events are mutually exclusive, they are extremely dependent on 
each other! Consider the most trivial case: I choose a random 
person on campus, and define M as the event that they’re male, 
and F as the event that they’re female. Clearly these events are 
mutually exclusive. But are they independent? Of course not! 
Think about it: if I told you a person was male, would that tell 
you anything about whether they were female? Duh. In a mutual 
exclusive case like this, event M completely rules out F (and vice 
versa), which means that although Pr(M) might be .435, Pr(M |F ) 
is a big fat zero. Pr(A|B) is most certainly not going to be equal 
to Pr(A) if the two events are mutually exclusive, because learning 
about one event tells you everything about the other. 
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4.8 Exercises 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

At a swim meet, the competitors in 
the 100-m freestyle are Ben, Chad, 
Grover, and Tim. These four swim-
mers make up our sample space Ω for 
the winner of this heat. 
Is Chad ∈ Ω? Yes. 

Is Tim an outcome? 
Yes. 

Is Ben an event? 

No, since outcomes are ele-
ments of the sample space, 
while events are subsets of the 
sample space. 

Is { Chad, Grover } an event? 
Yes. 

Is { Ben } an event? 
Yes. 

Suppose I told you that 
Pr({Ben})=.1, Pr({Chad})=.2, 
Pr({Grover})=.3, and 
Pr({Tim})=.3. Would you be-
lieve me? 

Better not. This is not 
a valid probability measure, 
since the sum of the proba-
bilities of all the outcomes, 
Pr(Ω), is not equal to 1. 

Suppose I told you that Pr({Ben, 
Chad})=.3, and Pr({Ben, Tim})=.4, 
and Pr({Grover})=.4. Could you 
tell me the probability that Ben wins 
the heat? 

Yes. If Pr({Ben, Chad})=.3 
and Pr({Grover})=.4, that 
leaves .3 probability left over 
for Tim. And if Pr({Ben, 
Tim})=.4, this implies that 
Pr({Ben})=.1. 
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8. 

9. 

And what’s the probability that 
someone besides Chad wins? 

Pr({Chad}) = 
1−Pr({Chad}), so we 
just need to figure out 
the probability that Chad 
wins, and take one minus 
that. Clearly if Pr({Ben, 
Chad})=.3 (as we were 
told), and Pr({Ben})=.1 
(as we computed), then 
Pr({Chad})=.2, and the 
probability of a non-Chad 
winner is .8. 

Okay, so we have the probabilities 
of our four swimmers Ben, Chad, 
Grover, and Tim each winning the 
heat at .1, .2, .4, and .3, respectively. 
Now suppose Ben, Chad, and 
Grover are UMW athletes, Tim 
is from Marymount, Ben and 
Tim are juniors, and Chad and 
Grover are sophomores. We’ll 
define U={Ben,Chad,Grover}, 
M={Tim}, J={Ben,Tim}, and 
S={Chad,Grover}. 
What’s Pr(U)? .7. 





Chapter 5 

Structures 

Much of computer science deals with representing and manipulat-
ing information. To do this, people have devised various struc-
tures for organizing chunks of data in a way that makes it easy to 
store, search, and retrieve. There’s a whole course in most com-
puter science curricula called “data structures” which covers how to 
implement these structures in code. In this book, we won’t be talk-
ing about the code, but rather the abstract structures themselves. 
This chapter has a lot of pictures in it, which depict examples of 
the various structures in a very general way. The concepts here 
map directly to code when you need to put them into practice. 

There are all kinds of data structures — arrays, linked lists, queues, 
stacks, hashtables, and heaps, to name a few — but they almost all 
boil down to one of two fundamental kinds of things: graphs, and 
trees. These are the two structures we’ll focus on in this chapter. 
A graph is just about the most general structure you can envision: 
a bunch of scattered data elements that are related to each other 
in some way. Almost every data structure imaginable can be recast 
as a type of graph. Trees are sort of a special case of graphs, but 
also sort of a topic in their own right, kind of like functions were 
a special type of relation, but also kind of different. A tree can be 
seen as a type of graph that imposes extra special conditions which 
give some navigational benefit. 

85 
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5.1 Graphs 

In many ways, the most elegant, simple, and powerful way of rep-
resenting knowledge is by means of a graph. A graph is composed 
of a bunch of little bits of data, each of which may (or may not) 
be attached to each of the others. An example is in Figure 5.1. 
Each of the labeled ovals is called a vertex (plural: vertices), 
and the lines between them are called edges. Each vertex does, 
or does not, contain an edge connecting it to each other vertex. 
One could imagine each of the vertices containing various descrip-
tive attributes — perhaps the John Wilkes Booth oval would have 
information about Booth’s birthdate, and Washington, DC infor-
mation about its longitude, latitude, and population — but these 
are typically not shown on the diagram. All that really matters, 
graph-wise, is what vertices it contains, and which ones are joined 
to which others. 

Figure 5.1: A graph (undirected). 

Cognitive psychologists, who study the internal mental processes of 
the mind, have long identified this sort of structure as the principal 
way that people mentally store and work with information. After 
all, if you step back a moment and ask “what is the ‘stuff’ that’s in 
my memory?” a reasonable answer is “well I know about a bunch 
of things, and the properties of those things, and the relationships 
between those things.” If the “things” are vertices, and the “prop-
erties” are attributes of those vertices, and the “relationships” are 
the edges, we have precisely the structure of a graph. Psychologists 
have given this another name: a semantic network. It is thought 
that the myriad of concepts you have committed to memory — 
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Abraham Lincoln, and bar of soap, and my fall schedule, and per-
haps millions of others — are all associated in your mind in a vast 
semantic network that links the related concepts together. When 
your mind recalls information, or deduces facts, or even drifts ran-
domly in idle moments, it’s essentially traversing this graph along 
the various edges that exist between vertices. 

That’s deep. But you don’t have to go near that deep to see the 
appearance of graph structures all throughout computer science. 
What’s MapQuest, if not a giant graph where the vertices are trav-
elable locations and the edges are routes between them? What’s 
Facebook, if not a giant graph where the vertices are people and 
the edges are friendships? What’s the World Wide Web, if not a 
giant graph where the vertices are pages and the edges are hyper-
links? What’s the Internet, if not a giant graph where the vertices 
are computers or routers and the edges are communication links 
between them? This simple scheme of linked vertices is powerful 
enough to accommodate a whole host of applications, which is why 
it’s worth studying. 

Graph terms 

The study of graphs brings with it a whole bevy of new terms which 
are important to use precisely: 

vertex. Every graph contains zero or more vertices.1 (These are 
also sometimes called nodes, concepts, or objects.) 

edge. Every graph contains zero or more edges. (These are also 
sometimes called links, connections, associations, or relation-
ships.) Each edge connects exactly two vertices, unless the 
edge connects a vertex to itself, which is possible, believe it 
or not. An edge that connects a vertex to itself is called a 
loop. 

1The phrase “zero or more” is common in discrete math. In this case, it 
indicates that the empty graph, which contains no vertices at all, is still a 
legitimate graph. 
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path. A path is a sequence of consecutive edges that takes you 
from one vertex to the other. In Figure 5.1, there is a path 
between Washington, DC and John Wilkes Booth (by means 
of Ford’s Theatre) even though there is no direct edge between 
the two. By contrast, no path exists between President and 
Civil War. Don’t confuse the two terms edge and path: the 
former is a single link between two nodes, while the second 
can be a whole step-by-step traversal. (A single edge does 
count as a path, though.) 

directed/undirected. In some graphs, relationships between nodes 
are inherently bidirectional: if A is linked to B, then B is 
linked to A, and it doesn’t make sense otherwise. Think of 
Facebook: friendship always goes both ways. This kind of 
graph is called an undirected graph, and like the Abraham 
Lincoln example in Figure 5.1, the edges are shown as straight 
lines. In other situations, an edge from A to B doesn’t neces-
sarily imply one in the reverse direction as well. In the World 
Wide Web, for instance, just because webpage A has a link on 
it to webpage B doesn’t mean the reverse is true (it usually 
isn’t). In this kind of directed graph, we draw arrowheads 
on the lines to indicate which way the link goes. An example 
is Figure 5.2: the vertices represent famous boxers, and the 
directed edges indicate which boxer defeated which other(s). 
It is possible for a pair of vertices to have edges in both di-
rections — Muhammad Ali and Joe Frazier each defeated the 
other (in separate bouts, of course) — but this is not the 
norm, and certainly not the rule, with a directed graph. 

weighted. Some graphs, in addition to merely containing the pres-
ence (or absence) of an edge between each pair of vertices, 
also have a number on each edge, called the edge’s weight. 
Depending on the graph, this can indicate the distance, or 
cost, between vertices. An example is in Figure 5.3: in true 
MapQuest fashion, this graph contains locations, and the 
mileage between them. A graph can be both directed and 
weighted, by the way. If a pair of vertices in such a graph is 
attached “both ways,” then each of the two edges will have 
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Figure 5.2: A directed graph. 

its own weight. 

Figure 5.3: A weighted (and undirected) graph. 

adjacent. If two vertices have an edge between them, they are said 
to be adjacent. 

connected. The word connected has two meanings: it applies 
both to pairs of vertices and to entire graphs. 

We say that two vertices are connected if there is at least one 
path between them. Each vertex is therefore “reachable” from 
the other. In Figure 5.1, President and actor are connected, 
but Ford’s Theatre and Civil War are not. 

“Connected” is also used to describe entire graphs, if every 
node can be reached from all others. It’s easy to see that Fig-
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ure 5.3 is a connected graph, whereas Figure 5.1 is not (be-
cause Civil War and Gettysburg are isolated from the other 
nodes). It’s not always trivial to determine whether a graph 
is connected, however: imagine a tangled morass of a mil-
lion vertices, with ten million edges, and having to figure out 
whether or not every vertex is reachable from every other. 
(And if that seems unrealistically large, consider Facebook, 
which has over a billion nodes.) 

degree. A vertex’s degree is simply the number of edges that con-
nect to it. Virginia Beach has degree 2, and Fredericksburg 
3. In the case of a directed graph, we sometimes distinguish 
between the number of incoming arrows a vertex has (called 
its in-degree) and the number of outgoing arrows (the out-
degree). Muhammad Ali had a higher out-degree (3) than 
in-degree (1) since he won most of the time. 

cycle. A cycle is a path that begins and ends at the same vertex.2 

In Figure 5.3, Richmond–to–Virginia Beach–to–Fredericksburg– 
to–Richmond is a cycle. Any loop is a cycle all by itself. For 
directed graphs, the entire loop must comprise edges in the 
“forward” direction: no fair going backwards. In Figure 5.2, 
Frazier–to–Ali–to–Foreman–to–Frazier is a cycle, as is the 
simpler Ali–to–Frazier–to–Ali. 

DAG (directed, acyclic graph). One common use of graphs is 
to represent flows of dependencies, for instance the prerequi-
sites that different college courses have for one another. An-
other example is project management workflows: the tasks 
needed to complete a project become vertices, and then the 
dependencies they have on one another become edges. The 
graph in Figure 5.4 shows the steps in making a batch of 
brownies, and how these steps depend on each other. The 
eggs have to be cracked before the ingredients can be mixed, 

2We’ll also say that a cycle can’t repeat any edges or vertices along the 
way, so that it can’t go back and forth repeatedly and pointlessly between two 
adjacent nodes. Some mathematicians call this a simple cycle to distinguish 
it from the more general cycle, but we’ll just say that no cycles can repeat like 
this. 
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and the oven has to be preheated before baking, but the pan 
can be greased any old time, provided that it’s done before 
pouring the brown goop into it. 

Figure 5.4: A DAG. 

A graph of dependencies like this must be both directed 
and acyclic, or it wouldn’t make sense. Directed, of course, 
means that task X can require task Y to be completed before 
it, without the reverse also being true. If they both depended 
on each other, we’d have an infinite loop, and no brownies 
could ever get baked! Acyclic means that no kind of cycle 
can exist in the graph, even one that goes through multiple 
vertices. Such a cycle would again result in an infinite loop, 
making the project hopeless. Imagine if there were an arrow 
from bake for 30 mins back to grease pan in Figure 5.4. Then, 
we’d have to grease the pan before pouring the goop into it, 
and we’d have to pour the goop before baking, but we’d also 
have to bake before greasing the pan! We’d be stuck right 
off the bat: there’d be no way to complete any of those tasks 
since they’d all indirectly depend on each other. A graph 
that is both directed and acyclic (and therefore free of these 
problems) is sometimes called a DAG for short. 
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Spatial positioning 

One important thing to understand about graphs is which aspects 
of a diagram are relevant. Specifically, the spatial positioning of the 
vertices doesn’t matter. In Figure 5.2 we drew Muhammad Ali in 
the mid-upper left, and Sonny Liston in the extreme upper right. 
But this was an arbitrary choice, and irrelevant. More specifically, 
this isn’t part of the information the diagram claims to represent. 
We could have positioned the vertices differently, as in Figure 5.5, 
and had the same graph. In both diagrams, there are the same 
vertices, and the same edges between them (check me). Therefore, 
these are mathematically the same graph. 

Figure 5.5: A different look to the same graph as Figure 5.2. 

This might not seem surprising for the prize fighter graph, but for 
graphs like the MapQuest graph, which actually represent physical 
locations, it can seem jarring. In Figure 5.3 we could have drawn 
Richmond north of Fredericksburg, and Virginia Beach on the far 
west side of the diagram, and still had the same graph, provided 
that all the nodes and links were the same. Just remember that 
the spatial positioning is designed for human convenience, and isn’t 
part of the mathematical information. It’s similar to how there’s 
no order to the elements of a set, even though when we specify a set 
extensionally, we have to list them in some order to avoid writing 
all the element names on top of each other. On a graph diagram, 
we have to draw each vertex somewhere, but where we put it is 
simply aesthetic. 
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Relationship to sets 

We seem to have strayed far afield from sets with all this graph 
stuff. But actually, there are some important connections to be 
made to those original concepts. Recall the wizards set A from 
chapter 3 that we extended to contain { Harry, Ron, Hermione, 
Neville }. Now consider the following endorelation on A: 

(Harry, Ron) 
(Ron, Harry) 

(Ron, Hermione) 
(Ron, Neville) 

(Hermione, Hermione) 
(Neville, Harry) 

This relation, and all it contains, is represented faithfully by the 
graph in Figure 5.6. The elements of A are the vertices of course, 
and each ordered pair of the relation is reflected in an edge of the 
graph. Can you see how exactly the same information is represented 
by both forms? 

Figure 5.6: A graph depicting a endorelation. 

Figure 5.6 is a directed graph, of course. What if it were an undi-
rected graph? The answer is that the corresponding relation would 
be symmetric. An undirected graph implies that if there’s an edge 
between two vertices, it goes “both ways.” This is really identical 
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to saying a relation is symmetric: if an (x, y) is in the relation, then 
the corresponding (y, x) must also be. An example is Figure 5.7, 
which depicts the following symmetric relation: 

(Harry, Ron) 
(Ron, Harry) 

(Ron, Hermione) 
(Hermione, Ron) 
(Harry, Harry) 
(Neville, Neville) 

Figure 5.7: A graph depicting a symmetric endorelation. 

Notice how the loops (edges from a node back to itself) in these 
diagrams represent ordered pairs in which both elements are the 
same. 

Another connection between graphs and sets has to do with parti-
tions. Figure 5.7 was not a connected graph: Neville couldn’t be 
reached from any of the other nodes. Now consider: isn’t a graph 
like this similar in some ways to a partition of A — namely, this 
one? 

{ Harry, Ron, Hermione } and { Neville }. 

We’ve simply partitioned the elements of A into the groups that 
are connected. If you remove the edge between Harry and Ron in 
that graph, you have: 

{ Harry }, { Ron, Hermione }, and { Neville }. 
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Then add one between Hermione and Neville, and now you have: 

{ Harry } and { Ron, Hermione, Neville }. 

In other words, the “connectedness” of a graph can be represented 
precisely as a partition of the set of vertices. Each connected sub-
set is in its own group, and every vertex is in one and only one 
group: therefore, these isolated groups are mutually exclusive and 
collectively exhaustive. Cool. 

Graph traversal 

If you had a long list — perhaps of phone numbers, names, or 
purchase orders — and you needed to go through and do something 
to each element of the list — dial all the numbers, scan the list for 
a certain name, add up all the orders — it’d be pretty obvious how 
to do it. You just start at the top and work your way down. It 
might be tedious, but it’s not confusing. 

Iterating through the elements like this is called traversing the 
data structure. You want to make sure you encounter each element 
once (and only once) so you can do whatever needs to be done with 
it. It’s clear how to traverse a list. But how to traverse a graph? 
There is no obvious “first” or “last” node, and each one is linked to 
potentially many others. And as we’ve seen, the vertices might not 
even be fully connected, so a traversal path through all the nodes 
might not even exist. 

There are two different ways of traversing a graph: breadth-first, 
and depth-first. They provide different ways of exploring the nodes, 
and as a side effect, each is able to discover whether the graph is 
connected or not. Let’s look at each in turn. 

Breadth-first traversal 

With breadth-first traversal, we begin at a starting vertex (it 
doesn’t matter which one) and explore the graph cautiously and 
delicately. We probe equally deep in all directions, making sure 
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we’ve looked a little ways down each possible path before exploring 
each of those paths a little further. 

To do this, we use a very simple data structure called a queue. A 
queue is simply a list of nodes that are waiting in line. (In Britain, 
I’m told, instead of saying “line up” at the sandwich shop, they 
say “queue up.”) When we enter a node into the queue at the tail 
end, we call it enqueueing the node, and when we remove one 
from the front, we call it dequeueing the node. The nodes in the 
middle patiently wait their turn to be dealt with, getting closer to 
the front every time the front node is dequeued. 

An example of this data structure in action is shown in Figure 5.8. 
Note carefully that we always insert nodes at one end (on the right) 
and remove them from the other end (the left). This means that 
the first item to be enqueued (in this case, the triangle) will be the 
first to be dequeued. “Calls will be answered in the order they were 
received.” This fact has given rise to another name for a queue: a 
“FIFO,” which stands for “first-in-first-out.” 

Start with an empty queue: |
Enqueue a triangle, and we have: |4
Enqueue a star, and we have: |4F 
Enqueue a heart, and we have: |4F♥ 
Dequeue the triangle, and we have: |F♥ 
Enqueue a club, and we have: |F♥♣ 
Dequeue the star, and we have: |♥♣
Dequeue the heart, and we have: |♣
Dequeue the club. We’re empty again: | 

Figure 5.8: A queue in action. The vertical bar marks the “front 
of the line,” and the elements are waiting to be dequeued in order 
from left to right. 

Now here’s how we use a queue to traverse a graph breadth-first. 
We’re going to start at a particular node, and put all of its adjacent 
nodes into a queue. This makes them all safely “wait in line” until 
we get around to exploring them. Then, we repeatedly take the 
first node in line, do whatever we need to do with it, and then put 
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all of its adjacent nodes in line. We keep doing this until the queue 
is empty. 

Now it might have occurred to you that we can run into trouble if 
we encounter the same node multiple times while we’re traversing. 
This can happen if the graph has a cycle: there will be more than 
one path to reach some nodes, and we could get stuck in an infinite 
loop if we’re not careful. For this reason, we introduce the concept 
of marking nodes. This is kind of like leaving a trail of bread-
crumbs: if we’re ever about to explore a node, but find out it’s 
marked, then we know we’ve already been there, and it’s pointless 
to search it again. 

So there are two things we’re going to do to nodes as we search: 

• To mark a node means to remember that we’ve already en-
countered it in the process of our search. 

• To visit a node means to actually do whatever it is we need 
to do to the node (call the phone number, examine its name 
for a pattern match, add the number to our total, whatever.) 

Now then. Breadth-first traversal (BFT) is an algorithm, which is 
just a step-by-step, reliable procedure that’s guaranteed to produce 
a result. In this case, it’s guaranteed to visit every node in the graph 
that’s reachable from the starting node, and not get stuck in any 
infinite loops in the process. Here it is: 

Breadth-first traversal (BFT) 

1. Choose a starting node. 
2. Mark it and enqueue it on an empty queue. 
3. While the queue is not empty, do these steps: 

a) Dequeue the front node of the queue. 
b) Visit it. 
c) Mark and enqueue all of its unmarked adjacent 
nodes (in any order). 
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Let’s run this algorithm in action on a set of Facebook users. Fig-
ure 5.1 depicts eleven users, and the friendships between them. 
First, we choose Greg as the starting node (not for any particular 
reason, just that we have to start somewhere). We mark him (in 
grey on the diagram) and put him in the queue (the queue contents 
are listed at the bottom of each frame, with the front of the queue 
on the left). Then, we begin our loop. When we take Greg off the 
queue, we visit him (which means we “do whatever we need to do to 
Greg”) and then mark and enqueue his adjacent nodes Chuck and 
Izzy. It does not matter which order we put them into the queue, 
just as it did not matter what node we started with. In pane 3, 
Chuck has been dequeued, visited, and his adjacent nodes put on 
the queue. Only one node gets enqueued here — Adrian — because 
obviously Greg has already been marked (and even visited, no less) 
and this marking allows us to be smart and not re-enqueue him. 

It’s at this point that the “breadth-first” feature becomes apparent. 
We’ve just finished with Chuck, but instead of exploring Adrian 
next, we resume with Izzy. This is because she has been waiting 
patiently on the queue, and her turn has come up. So we lay 
Adrian aside (in the queue, of course) and visit Izzy, enqueueing 
her neighbor Elaine in the process. Then, we go back to Adrian. 
The process continues, in “one step on the top path, one step on 
the bottom path” fashion, until our two exploration paths actually 
meet each other on the back end. Visiting Jackie causes us to 
enqueue Brittany, and then when we take Kim off the queue, we do 
not re-enqueue Brittany because she has been marked and so we 
know she’s already being taken care of. 

For space considerations, Figure 5.1 leaves off at this point, but 
of course we would continue visiting nodes in the queue until the 
queue was empty. As you can see, Hank and Danielle will not be 
visited at all in this process: this is because apparently nobody they 
know knows anybody in the Greg crowd, and so there’s no way to 
reach them from Greg. This is what I meant earlier by saying that 
as a side effect, the BFT algorithm tells us whether the graph is 
connected or not. All we have to do is start somewhere, run BFT, 
and then see whether any nodes have not been marked and visited. 
If there are any, we can continue with another starting point, and 
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then repeat the process. 

Figure 5.9: The stages of breadth-first traversal. Marked nodes are 
grey, and visited nodes are black. The order of visitation is: G, C, 
I, A, E, J, K, F, B. 

Depth-first traversal (DFT) 

With depth-first traversal, we explore the graph boldly and reck-
lessly. We choose the first direction we see, and plunge down it all 
the way to its depths, before reluctantly backing out and trying the 
other paths from the start. 

The algorithm is almost identical to BFT, except that instead of 
a queue, we use a stack. A stack is the same as a queue except 
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Start with an empty stack: 
Push a triangle, and we have: 

Push a star, and we have: 

Push a heart, and we have: 

Pop the heart, and we have: 

♥ 
F 
4

F 
4 

F 
4

4 

♣ 
Push a club, and we have: 

Pop the club, and we have: 

Pop the star, and we have: 

F 
4 
F 
4 
4 

Pop the triangle. We’re empty again: 

Figure 5.10: A stack in action. The horizontal bar marks the bot-
tom of the stack, and the elements are pushed and popped from 
the top. 

that instead of putting elements on one end and taking them off the 
other, you add and remove to the same end. This “end” is called 
the top of the stack. When we add an element to this end, we say 
we push it on the stack, and when we remove the top element, we 
say we pop it off. 

You can think of a stack as...well, a stack, whether of books or 
cafeteria trays or anything else. You can’t get anything out of the 
middle of a stack, but you can take items off and put more items 
on. Figure 5.10 has an example. The first item pushed is always 
the last one to be popped, and the most recent one pushed is always 
ready to be popped back off, and so a stack is also sometimes called 
a “LIFO” (last-in-first-out.) 

The depth-first traversal algorithm itself looks like déjà vu all over 
again. All you do is replace “queue” with “stack”: 
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Depth-first traversal (DFT) 

1. Choose a starting node. 
2. Mark it and push it on an empty stack. 
3. While the stack is not empty, do these steps: 

a) Pop the top node off the stack. 
b) Visit it. 
c) Mark and push all of its unmarked adjacent nodes 
(in any order). 

The algorithm in action is shown in Figure 5.11. The stack really 
made a difference! Instead of alternately exploring Chuck’s and 
Izzy’s paths, it bullheadedly darts down Chuck’s path as far as it 
can go, all the way to hitting Izzy’s back door. Only then does it 
back out and visit Izzy. This is because the stack always pops off 
what it just pushed on, whereas whatever got pushed first has to 
wait until everything else is done before it gets its chance. That 
first couple of pushes was critical: if we had pushed Chuck before 
Izzy at the very beginning, then we would have explored Izzy’s 
entire world before arriving at Chuck’s back door, instead of the 
other way around. As it is, Izzy got put on the bottom, and so she 
stayed on the bottom, which is inevitable with a stack. 

DFT identifies disconnected graphs in the same way as BFT, and 
it similarly avoids getting stuck in infinite loops when it encounters 
cycles. The only difference is the order in which it visits the nodes. 

Finding the shortest path 

We’ll look at two other important algorithms that involve graphs, 
specifically weighted graphs. The first one is called Dijkstra’s 
shortest-path algorithm. This is a procedure for finding the 
shortest path between two nodes, if one exists. It was invented in 
1956 by the legendary computer science pioneer Edsger Dijkstra, 
and is widely used today by, among other things, network routing 
protocols. 
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Figure 5.11: The stages of depth-first traversal. Marked nodes are 
grey, and visited nodes are black. The order of visitation is: G, C, 
A, J, B, K, F, E, I. 
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Consider Figure 5.12, a simplified map of France circa November 
1944. Fresh U.S. troops are arriving by ship at the port town of 
Bordeaux, and need to reach Strasbourg as quickly as possible to 
assist the Allies in pushing Nazi squadrons back into Germany. 
The vertices of this graph are French cities, and the edge weights 
represent marching distances in kilometers. Although D-Day was 
successful, the outcome of the War may depend on how quickly 
these reinforcements can reach the front. 

Figure 5.12: A weighted graph, through which we desire to find the 
shortest path from Bordeaux to Strasbourg. 

The question, obviously, is which path the troops should take so 
as to reach Strasbourg the soonest. With a graph this small, you 
might be able to eyeball it. (Try it!) But Dijksta’s algorithm 
systematically considers every possible path, and is guaranteed to 
find the one with the shortest total distance. 

The way it works is to assign each node a tentative lowest distance, 
along with a tentative path from the start node to it. Then, if 
the algorithm encounters a different path to the same node as it 
progresses, it updates this tentative distance with the new, lower 
distance, and replaces the “best path to it” with the new one. Di-
jkstra’s algorithm finds the shortest distance from the start node to 
the end node, but as a bonus, it actually finds the shortest distance 
from the start node to every node as it goes. Thus you are left with 
the best possible path from your start node to every other node in 
the graph. 

Here’s the algorithm in full: 
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Dijkstra’s shortest-path algorithm 

1. Choose a starting node and an ending node. 
2. Mark the tentative distance for the starting nodes as 0, 
and all other nodes as ∞. 

3. While there are still unvisited nodes, do these steps: 
a) Identify the unvisited node with the smallest tenta-
tive distance. (If this is ∞, then we’re done. All 
other nodes are unreachable.) Call this node the 
“current node.” 

b) For each unvisited neighbor of the current node, do 
these steps: 
i. Compute the sum of the current node’s tentative 
distance and the distance from the current node 
to its neighbor. 

ii. Compare this total to the neighbor’s current 
tentative distance. If it’s less than the cur-
rent tentative distance, update the tentative dis-
tance with this new value, and mark an arrow on 
the path from the current node to the neighbor 
(erasing any other arrow to the neighbor.) 

iii. Mark the current node as visited. (Its distance 
and best path are now fixed.) 

Don’t worry, this isn’t as hard as it sounds. But you do have to have 
your wits about you and carefully update all the numbers. Let’s 
see it in action for WWII France. In the first frame of Figure 5.13, 
we’ve marked each node with a diamond containing the tentative 
shortest distance to it from Bordeaux. This is 0 for Bordeaux itself 
(since it’s 0 kilometers away from itself, duh), and infinity for all 
the others, since we haven’t explored anything yet, and we want to 
start off as pessimistic as possible. We’ll update this distances to 
lower values as we find paths to them. 

We start with Bordeaux as the “current node,” marked in grey. In 
frame 2, we update the best-possible-path and the distance-of-that-
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path for each of Bordeaux’s neighbors. Nantes, we discover, is no 
longer “infinity away,” but a mere 150 km away, since there is a 
direct path to it from Bordeaux. Vichy and Toulouse are similarly 
updated. Note the heavy arrowed lines on the diagram, showing 
the best path (so far) to each of these cities from Bordeaux. 

Step 3a tells us to choose the node with the lowest tentative distance 
as the next current node. So for frame 3, Nantes fits the bill with a 
(tentative) distance of 150 km. It has only one unmarked neighbor, 
Paris, which we update with 450 km. Why 450? Because it took us 
150 to get from the start to Nantes, and another 300 from Nantes 
to Paris. After updating Paris, Nantes is now set in stone — we 
know we’ll never encounter a better route to it than from Bordeaux 
directly. 

Frame 4 is our first time encountering a node that already has a 
non-infinite tentative distance. In this case, we don’t further update 
it, because our new opportunity (Bordeaux–to–Toulouse–to–Vichy) 
is 500 km, which is longer than going from Bordeaux to Toulouse 
direct. Lyon and Marseille are updated as normal. 

We now have two unmarked nodes that tie for shortest tentative 
distance: Paris, and Vichy (450 km each). In this case, it doesn’t 
matter which we choose. We’ll pick Vichy for no particular reason. 
Frame 5 then shows some interesting activity. We do not update 
the path to Paris, since it would be 800 km through Vichy, whereas 
Paris already had a much better 450 km path. Lille is updated from 
infinity to 850 km, since we found our first path to it. But Lyon 
is the really interesting case. It already had a path — Bordeaux– 
to–Toulouse–to–Lyon — but that path was 800 km, and we have 
just found a better path: Bordeaux–to–Vichy–to–Lyon, which only 
costs 450 + 250 = 700. This means we remove the arrow from 
Toulouse to Lyon and draw a new arrow from Vichy to Lyon. Note 
that the arrow from Bordeaux to Toulouse doesn’t disappear, even 
though it was part of this apparently-not-so-great path to Lyon. 
That’s because the best route to Toulouse still is along that edge. 
Just because we wouldn’t use it to go to Lyon doesn’t mean we 
don’t want it if we were going simply to Toulouse. 

In frame 6, we take up the other 450 node (Paris) which we tem-
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porarily neglected when we randomly chose to continue with Vichy 
first. When we do, we discover a better path to Lille than we had 
before, and so we update its distance (to 800 km) and its path 
(through Nantes and Paris instead of through Vichy) accordingly. 

When we consider Marseille in frame 7, we find another better path: 
this time to Lyon. Forget that through–Vichy stuff; it turns out 
to be a bit faster to go through Toulouse and Marseille. In other 
news, we found a way to Nice. 

Hopefully you get the pattern. We continue selecting the unmarked 
node with the lowest tentative distance, updating its neighbors’ dis-
tances and paths, then marking it “visited,” until we’re done with 
all the nodes. The last frame shows the completed version (with all 
nodes colored white again so you can read them). The verdict is: 
our troops should go from Bordeaux through Toulouse, Marseille, 
Lyon, and Briançon on their way to the fighting in Strasborg, for a 
total of 1,250 kilometers. Who knew? All other paths are longer. 
Note also how in the figure, the shortest distance to every node is 
easily identified by looking at the heavy arrowed lines. 

Finding the minimal connecting edge set 

So we’ve figured out the shortest path for our troops. But our 
field generals might also want to do something different: establish 
supply lines. A supply line is a safe route over which food, fuel, 
and machinery can be delivered, with smooth travel and protection 
from ambush. Now we have military divisions stationed in each of 
the eleven French cities, and so the cities must all be connected to 
each other via secure paths. Safeguarding each mile of a supply 
line takes resources, though, so we want to do this in the minimal 
possible way. How can we get all the cities connected to each other 
so we can safely deliver supplies between any of them, using the 
least possible amount of road? 

This isn’t just a military problem. The same issue came up in 
ancient Rome when aqueducts had to reach multiple cities. More 
recently, supplying neighborhoods and homes with power, or net-
working multiple computers with Ethernet cable, involves the same 
question. In all these cases, we’re not after the shortest route be-
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tween two points. Instead, we’re sort of after the shortest route 
“between all the points.” We don’t care how each pair of nodes is 
connected, provided that they are connected. And it’s the total 
length of the required connections that we want to minimize. 

To find this, we’ll use Prim’s algorithm, a technique named for 
the somewhat obscure computer scientist Robert Prim who devel-
oped it in 1957, although it had already been discovered much 
earlier (1930, by the Czech mathematician Vojtech Jarnik). Prim’s 
algorithm turns out to be much easier to carry out than Dijkstra’s 
algorithm, which I find surprising, since it seems to be solving a 
problem that’s just as hard. But here’s all you do: 

Prim’s minimal connecting edge set algorithm 

1. Choose a node, any node. 
2. While not all the nodes are connected, do these steps: 

a) Identify the node closest to the already-connected 
nodes, and connect it to those nodes via the shortest 
edge. 

That’s it. Prim’s algorithm is an example of a greedy algorithm, 
which means that it always chooses the immediately obvious short-
term best choice available. Non-greedy algorithms can say, “al-
though doing X would give the highest short-term satisfaction, I 
can look ahead and see that choosing Y instead will lead to a bet-
ter overall result in the long run.” Greedy algorithms, by contrast, 
always gobble up what seems best at the time. That’s what Prim’s 
algorithm is doing in step 2a. It looks for the non-connected node 
that’s immediately closest to the connected group, and adds it with-
out a second thought. There’s no notion of “perhaps I’ll get a 
shorter overall edge set if I forego connecting this temptingly close 
node right now.” 

Sometimes, a greedy algorithm turns out to give an optimal result. 
Often it does not, and more sophisticated approaches can find bet-
ter solutions. In this case, it happens to work out that the greedy 
approach does work! Prim’s algorithm will always find the set of 
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edges that connects all the nodes and does so with the lowest possi-
ble total distance. It’s amazing that it can do so, especially since it 
never backtracks or revises its opinion the way Dijkstra’s algorithm 
does. 

Let’s follow the algorithm’s progress in the WWII example. We can 
start with any node, so we’ll pick Vichy just at random. Frame 1 
of Figure 5.14 shows what happens when the algorithm begins with 
Vichy: we simply examine all its neighbors, and connect the one 
that’s closest to it. Nothing could be simpler. In this case, Lyon is 
a mere 250 km away, which is closer than anything else is to Vichy, 
so we connect it and add the Vichy–Lyon edge to our edge set. The 
figure shows a heavy black line between Vichy and Lyon to show 
that it will officially be a supply line. 

And so it goes. In successive frames, we add Marseille, Nice, and 
Briançon to the set of connected nodes, since we can do no better 
than 150 km, 150 km, and 250 km, respectively. Note that in 
frame 5 we do not darken the edge between Lyon and Briançon, 
even though 200 km is the shortest connected edge, because those 
nodes have already been previously connected. Note also that the 
algorithm can jump around from side to side — we aren’t looking 
for the shortest edge from the most recently added node, but rather 
the shortest edge from any connected node. 

The final result is shown in the last frame. This is the best way 
to connect all the cities to each other, if “best” means “least total 
supply line distance.” But if you look carefully, you’ll notice a fas-
cinating thing. This network of edges does not contain the shortest 
path from Bordeaux to Strasbourg! I find that result dumbfound-
ing. Wouldn’t you think that the shortest path between any two 
nodes would land right on this Prim network? Yet if you compare 
Figure 5.14 with Figure 5.13 you’ll see that the quickest way to 
Strasborg is directly through Marseille, not Vichy. 

So we end up with the remarkable fact that the shortest route 
between two points has nothing whatsoever to do with the shortest 
total distance between all points. Who knew? 
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Figure 5.13: The stages of Dijkstra’s shortest-path algorithm. The 
“current node” is shown in grey, with visited nodes (whose best 
paths and shortest distances have been unalterably determined) in 
black. The diamond next to each node shows the tentative shortest 
distance to that node from Bordeaux. 
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Figure 5.14: The stages of Prim’s minimal connecting edge set 
algorithm. Heavy lines indicate edges that have been (irrevocably) 
added to the set. 
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5.2 Trees 

A tree is really nothing but a simplification of a graph. There are 
two kinds of trees in the world: free trees, and rooted trees.3 

Free trees 

A free tree is just a connected graph with no cycles. Every node 
is reachable from the others, and there’s only one way to get any-
where. Take a look at Figure 5.15. It looks just like a graph (and 
it is) but unlike the WWII France graph, it’s more skeletal. This is 
because in some sense, a free tree doesn’t contain anything “extra.” 

Figure 5.15: A free tree. 

If you have a free tree, the following interesting facts are true: 

1. There’s exactly one path between any two nodes. (Check it!) 
2. If you remove any edge, the graph becomes disconnected. 
(Try it!) 

3. If you add any new edge, you end up adding a cycle. (Try it!) 
4. If there are n nodes, there are n − 1 edges. (Think about it!) 

3There appears to be no consensus as to which of these concepts is the most 
basic. Some authors refer to a free tree simply as a “tree” — as though this 
were the “normal” kind of tree — and use the term rooted tree for the other 
kind. Other authors do the opposite. To avoid confusion, I’ll try to always use 
the full term (although I admit I’m one who considers rooted trees to be the 
more important, default concept). 
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So basically, if your goal is connecting all the nodes, and you have a 
free tree, you’re all set. Adding anything is redundant, and taking 
away anything breaks it. 

If this reminds you of Prim’s algorithm, it should. Prim’s algorithm 
produced exactly this: a free tree connecting all the nodes — and 
specifically the free tree with shortest possible total length. Go back 
and look at the final frame of Figure 5.14 and convince yourself that 
the darkened edges form a free tree. 

For this reason, the algorithm is often called Prim’s minimal 
spanning tree algorithm. A “spanning tree” just means “a free 
tree that spans (connects) all the graph’s nodes.” 

Keep in mind that there are many free trees one can make with the 
same set of vertices. For instance, if you remove the edge from A 
to F, and add one from anything else to F, you have a different free 
tree. 

Rooted trees 

Now a rooted tree is the same thing as a free tree, except that 
we elevate one node to become the root. It turns out this makes 
all the difference. Suppose we chose A as the root of Figure 5.15. 
Then we would have the rooted tree in the left half of Figure 5.16. 
The A vertex has been positioned at the top, and everything else is 
flowing under it. I think of it as reaching into the free tree, carefully 
grasping a node, and then lifting up your hand so the rest of the 
free tree dangles from there. Had we chosen (say) C as the root 
instead, we would have a different rooted tree, depicted in the right 
half of the figure. Both of these rooted trees have all the same edges 
as the free tree did: B is connected to both A and C, F is connected 
only to A, etc. The only difference is which node is designated the 
root. 

Up to now we’ve said that the spatial positioning on graphs is irrel-
evant. But this changes a bit with rooted trees. Vertical positioning 
is our only way of showing which nodes are “above” others, and the 
word “above” does indeed have meaning here: it means closer to 
the root. The altitude of a node shows how many steps it is away 
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Figure 5.16: Two different rooted trees with the same vertices and 
edges. 

from the root. In the right rooted tree, nodes B, D, and E are all 
one step away from the root (C), while node F is three steps away. 

The key aspect to rooted trees — which is both their greatest ad-
vantage and greatest limitation — is that every node has one and 
only one path to the root. This behavior is inherited from free trees: 
as we noted, every node has only one path to every other. 

Trees have a myriad of applications. Think of the files and folders 
on your hard drive: at the top is the root of the filesystem (perhaps 
“/” on Linux/Mac or “C:\\” on Windows) and underneath that are 
named folders. Each folder can contain files as well as other named 
folders, and so on down the hierarchy. The result is that each 
file has one, and only one, distinct path to it from the top of the 
filesystem. The file can be stored, and later retrieved, in exactly 
one way. 

An “org chart” is like this: the CEO is at the top, then underneath 
her are the VP’s, the Directors, the Managers, and finally the rank-
and-file employees. So is a military organization: the Commander 
in Chief directs generals, who command colonels, who command 
majors, who command captains, who command lieutenants, who 
command sergeants, who command privates. 
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The human body is even a rooted tree of sorts: it contains skeletal, 
cardiovascular, digestive, and other systems, each of which is com-
prised of organs, then tissues, then cells, molecules, and atoms. In 
fact, anything that has this sort of part-whole containment hierar-
chy is just asking to be represented as a tree. 

In computer programming, the applications are too numerous to 
name. Compilers scan code and build a “parse tree” of its un-
derlying meaning. HTML is a way of structuring plain text into 
a tree-like hierarchy of displayable elements. AI chess programs 
build trees representing their possible future moves and their oppo-
nent’s probable responses, in order to “see many moves ahead” and 
evaluate their best options. Object-oriented designs involve “inher-
itance hierarchies” of classes, each one specialized from a specific 
other. Etc. Other than a simple sequence (like an array), trees 
are probably the most common data structure in all of computer 
science. 

Rooted tree terminology 

Rooted trees carry with them a number of terms. I’ll use the tree 
on the left side of Figure 5.16 as an illustration of each: 

root. The node at the top of the tree, which is A in our example. 
Note that unlike trees in the real world, computer science 
trees have their root at the top and grow down. Every tree has 
a root except the empty tree, which is the “tree” that has 
no nodes at all in it. (It’s kind of weird thinking of “nothing” 
as a tree, but it’s kind of like the empty set ∅, which is still 
a set.) 

parent. Every node except the root has one parent: the node im-
mediately above it. D’s parent is C, C’s parent is B, F’s 
parent is A, and A has no parent. 

child. Some nodes have children, which are nodes connected di-
rectly below it. A’s children are F and B, C’s are D and E, 
B’s only child is C, and E has no children. 
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sibling. A node with the same parent. E’s sibling is D, B’s is F, 
and none of the other nodes have siblings. 

ancestor. Your parent, grandparent, great-grandparent, etc., all 
the way back to the root. B’s only ancestor is A, while E’s 
ancestors are C, B, and A. Note that F is not C’s ancestor, 
even though it’s above it on the diagram: there’s no connec-
tion from C to F, except back through the root (which doesn’t 
count). 

descendant. Your children, grandchildren, great-grandchildren, etc., 
all the way the leaves. B’s descendants are C, D and E, while 
A’s are F, B, C, D, and E. 

leaf. A node with no children. F, D, and E are leaves. Note that 
in a (very) small tree, the root could itself be a leaf. 

internal node. Any node that’s not a leaf. A, B, and C are the 
internal nodes in our example. 

depth (of a node). A node’s depth is the distance (in number of 
nodes) from it to the root. The root itself has depth zero. 
In our example, B is of depth 1, E is of depth 3, and A is of 
depth 0. 

height (of a tree). A rooted tree’s height is the maximum depth 
of any of its nodes; i.e., the maximum distance from the root 
to any node. Our example has a height of 3, since the “deep-
est” nodes are D and E, each with a depth of 3. A tree with 
just one node is considered to have a height of 0. Bizarrely, 
but to be consistent, we’ll say that the empty tree has height 
-1! Strange, but what else could it be? To say it has height 
0 seems inconsistent with a one-node tree also having height 
0. At any rate, this won’t come up much. 

level. All the nodes with the same depth are considered on the 
same “level.” B and F are on level 1, and D and E are on 
level 3. Nodes on the same level are not necessarily siblings. 
If F had a child named G in the example diagram, then G and 
C would be on the same level (2), but would not be siblings 
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because they have different parents. (We might call them 
“cousins” to continue the family analogy.) 

subtree. Finally, much of what gives trees their expressive power 
is their recursive nature. This means that a tree is made up 
of other (smaller) trees. Consider our example. It is a tree 
with a root of A. But the two children of A are each trees 
in their own right! F itself is a tree with only one node. B 
and its descendants make another tree with four nodes. We 
consider these two trees to be subtrees of the original tree. 
The notion of “root” shifts somewhat as we consider subtrees 
— A is the root of the original tree, but B is the root of the 
second subtree. When we consider B’s children, we see that 
there is yet another subtree, which is rooted at C. And so on. 
It’s easy to see that any subtree fulfills all the properties of 
trees, and so everything we’ve said above applies also to it. 

Binary trees (BT’s) 

The nodes in a rooted tree can have any number of children. There’s 
a special type of rooted tree, though, called a binary tree which 
we restrict by simply saying that each node can have at most two 
children. Furthermore, we’ll label each of these two children as 
the “left child” and “right child.” (Note that a particular node 
might well have only a left child, or only a right child, but it’s still 
important to know which direction that child is.) 

The left half of Figure 5.16 is a binary tree, but the right half is not 
(C has three children). A larger binary tree (of height 4) is shown 
in Figure 5.17. 

Traversing binary trees 

There were two ways of traversing a graph: breadth-first, and 
depth-first. Curiously, there are three ways of traversing a tree: 
pre-order, post-order, and in-order. All three begin at the 
root, and all three consider each of the root’s children as subtrees. 
The difference is in the order of visitation. 
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Figure 5.17: A binary tree. 

To traverse a tree pre-order, we: 

1. Visit the root. 
2. Treat the left child and all its descendants as a subtree, 
and traverse it in its entirety. 

3. Do the same with the right child. 

It’s tricky because you have to remember that each time you “treat 
a child as a subtree” you do the whole traversal process on that 
subtree. This involves remembering where you were once you finish. 

Follow this example carefully. For the tree in Figure 5.17, we be-
gin by visiting G. Then, we traverse the whole “K subtree.” This 
involves visiting K itself, and then traversing its whole left subtree 
(anchored at D). After we visit the D node, we discover that it 
actually has no left subtree, so we go ahead and traverse its right 
subtree. This visits O followed by I (since O has no left subtree 
either) which finally returns back up the ladder. 

It’s at this point where it’s easy to get lost. We finish visiting I, 
and then we have to ask “okay, where the heck were we? How 
did we get here?” The answer is that we had just been at the K 
node, where we had traversed its left (D) subtree. So now what is 
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it time to do? Traverse the right subtree, of course, which is M. 
This involves visiting M, C, and E (in that order) before returning 
to the very top, G. 

Now we’re in the same sort of situation where we could have gotten 
lost before: we’ve spent a lot of time in the tangled mess of G’s left 
subtree, and we just have to remember that it’s now time to do G’s 
right subtree. Follow this same procedure, and the entire order of 
visitation ends up being: G, K, D, O, I, M, C, E, H, A, B, F, N, L. 
(See Figure 5.18 for a visual.) 

Figure 5.18: The order of node visitation in pre-order traversal. 

To traverse a tree post-order, we: 

1. Treat the left child and all its descendants as a subtree, 
and traverse it in its entirety. 

2. Do the same with the right child. 
3. Visit the root. 

It’s the same as pre-order, except that we visit the root after the 
children instead of before. Still, despite its similarity, this has al-
ways been the trickiest one for me. Everything seems postponed, 
and you have to remember what order to do it in later. 

For our sample tree, the first node visited turns out to be I. This 
is because we have to postpone visiting G until we finish its left 
(and right) subtree; then we postpone K until we finish its left 
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(and right) subtree; postpone D until we’re done with O’s subtree, 
and postpone O until we do I. Then finally, the thing begins to 
unwind...all the way back up to K. But we can’t actually visit K 
itself yet, because we have to do its right subtree. This results in 
C, E, and M, in that order. Then we can do K, but we still can’t 
do G because we have its whole right subtree’s world to contend 
with. The entire order ends up being: I, O, D, C, E, M, K, A, F, 
L, N, B, H, and finally G. (See Figure 5.19 for a visual.) 

Note that this is not remotely the reverse of the pre-order visitation, 
as you might expect. G is last instead of first, but the rest is all 
jumbled up. 

Figure 5.19: The order of node visitation in post-order traversal. 

Finally, to traverse a tree in-order, we: 

1. Treat the left child and all its descendants as a subtree, 
and traverse it in its entirety. 

2. Visit the root. 
3. Traverse the right subtree in its entirety. 

So instead of visiting the root first (pre-order) or last (post-order) 
we treat it in between our left and right children. This might seem 
to be a strange thing to do, but there’s a method to the madness 
which will become clear in the next section. 
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For the sample tree, the first visited node is D. This is because it’s 
the first node encountered that doesn’t have a left subtree, which 
means step 1 doesn’t need to do anything. This is followed by O 
and I, for the same reason. We then visit K before its right subtree, 
which in turn visits C, M, and E, in that order. The final order is: 
D, O, I, K, C, M, E, G, A, H, F, B, L, N. (See Figure 5.20.) 

If your nodes are spaced out evenly, you can read the in-order 
traversal off the diagram by moving your eyes left to right. Be 
careful about this, though, because ultimately the spatial position 
doesn’t matter, but rather the relationships between nodes. For 
instance, if I had drawn node I further to the right, in order to 
make the lines between D–O–I less steep, that I node might have 
been pushed physically to the right of K. But that wouldn’t change 
the order and have K visited earlier. 

Figure 5.20: The order of node visitation in in-order traversal. 

Finally, it’s worth mentioning that all of these traversal methods 
make elegant use of recursion. Recursion is a way of taking a 
large problem and breaking it up into similar, but smaller, sub-
problems. Then, each of those subproblems can be attacked in the 
same way as you attacked the larger problem: by breaking them 
up into subproblems. All you need is a rule for eventually stopping 
the “breaking up” process by actually doing something. 

Every time one of these traversal processes treats a left or right 
child as a subtree, they are “recursing” by re-initiating the whole 
traversal process on a smaller tree. Pre-order traversal, for instance, 
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after visiting the root, says, “okay, let’s pretend we started this 
whole traversal thing with the smaller tree rooted at my left child. 
Once that’s finished, wake me up so I can similarly start it with my 
right child.” Recursion is a very common and useful way to solve 
certain complex problems, and trees are rife with opportunities. 

Sizes of binary trees 

Binary trees can be any ragged old shape, like our Figure 5.17 ex-
ample. Sometimes, though, we want to talk about binary trees with 
a more regular shape, that satisfy certain conditions. In particular, 
we’ll talk about three special kinds: 

full binary tree. A full binary tree is one in which every node 
(except the leaves) has two children. Put another way, every 
node has either two children or none: no stringiness allowed. 
Figure 5.17 is not full, but it would be if we added the three 
blank nodes in Figure 5.21. 

Figure 5.21: A full binary tree. 

By the way, it isn’t always possible to have a full binary tree 
with a particular number of nodes. For instance, a binary 
tree with two nodes, can’t be full, since it inevitably will have 
a root with only one child. 

complete binary tree. A complete binary tree is one in which 
every level has all possible nodes present, except perhaps for 
the deepest level, which is filled all the way from the left. 
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Figure 5.21 is not full, but it would be if we fixed it up as in 
Figure 5.22. 

Figure 5.22: A complete binary tree. 

Unlike full binary trees, it is always possible to have a com-
plete binary tree no matter how many nodes it contains. You 
just keep filling in from left to right, level after level. 

perfect binary tree. Our last special type has a rather audacious 
title, but a “perfect” tree is simply one that is exactly bal-
anced: every level is completely filled. Figure 5.22 is not per-
fect, but it would be if we either added nodes to fill out level 
4, or deleted the unfinished part of level 3 (as in Figure 5.23.) 

Figure 5.23: A “perfect” binary tree. 

Perfect binary trees obviously have the strictest size restric-
tions. It’s only possible, in fact, to have perfect binary trees 
with 2h+1 − 1 nodes, if h is the height of the tree. So there 
are perfect binary trees with 1, 3, 7, 15, 31, ... nodes, but 
none in between. In each such tree, 2h of the nodes (almost 
exactly half) are leaves. 
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Now as we’ll see, binary trees can possess some pretty amazing 
powers if the nodes within them are organized in certain ways. 
Specifically, a binary search tree and a heap are two special kinds 
of binary trees that conform to specific constraints. In both cases, 
what makes them so powerful is the rate at which a tree grows as 
nodes are added to it. 

Suppose we have a perfect binary tree. To make it concrete, let’s 
say it has height 3, which would give it 1+2+4+8=15 nodes, 8 of 
which are leaves. Now what happens if you increase the height of 
this tree to 4? If it’s still a “perfect” tree, you will have added 
16 more nodes (all leaves). Thus you have doubled the number of 
leaves by simply adding one more level. This cascades the more 
levels you add. A tree of height 5 doubles the number of leaves 
again (to 32), and height 6 doubles it again (to 64). 

If this doesn’t seem amazing to you, it’s probably because you don’t 
fully appreciate how quickly this kind of exponential growth can 
accumulate. Suppose you had a perfect binary tree of height 30 — 
certainly not an awe-inspiring figure. One could imagine it fitting 
on a piece of paper...height-wise, that is. But run the numbers and 
you’ll discover that such a tree would have over half a billion leaves, 
more than one for every person in the United States. Increase the 
tree’s height to a mere 34 — just 4 additional levels — and suddenly 
you have over 8 billion leaves, easily greater than the population of 
planet Earth. 

The power of exponential growth is only fully reached when the 
binary tree is perfect, since a tree with some “missing” internal 
nodes does not carry the maximum capacity that it’s capable of. 
It’s got some holes in it. Still, as long as the tree is fairly bushy 
(i.e., it’s not horribly lopsided in just a few areas) the enormous 
growth predicted for perfect trees is still approximately the case. 

The reason this is called “exponential” growth is that the quantity 
we’re varying — the height — appears as an exponent in the number 
of leaves, which is 2h . Every time we add just one level, we double 
the number of leaves. 

So the number of leaves (call it l) is 2h , if h is the height of the 
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tree. Flipping this around, we say that h = lg(l). The function 
“lg” is a logarithm, specifically a logarithm with base-2. This is 
what computer scientists often use, rather than a base of 10 (which 
is written “log”) or a base of e (which is written “ln”). Since 2h 

grows very, very quickly, it follows that lg(l) grows very, very slowly. 
After our tree reaches a few million nodes, we can add more and 
more nodes without growing the height of the tree significantly at 
all. 

The takeaway message here is simply that an incredibly large num-
ber of nodes can be accommodated in a tree with a very mod-
est height. This makes it possible to, among other things, search 
a huge amount of information astonishingly quickly...provided the 
tree’s contents are arranged properly. 

Binary search trees (BST’s) 

Okay, then let’s talk about how to arrange those contents. A bi-
nary search tree (BST) is any binary tree that satisfies one addi-
tional property: every node is “greater than” all of the nodes in its 
left subtree, and “less than (or equal to)” all of the nodes in its right 
subtree. We’ll call this the BST property. The phrases “greater 
than” and “less than” are in quotes here because their meaning is 
somewhat flexible, depending on what we’re storing in the tree. If 
we’re storing numbers, we’ll use numerical order. If we’re storing 
names, we’ll use alphabetical order. Whatever it is we’re storing, 
we simply need a way to compare two nodes to determine which 
one “goes before” the other. 

An example of a BST containing people is given in Figure 5.24. 
Imagine that each of these nodes contains a good deal of infor-
mation about a particular person — an employee record, medical 
history, account information, what have you. The nodes themselves 
are indexed by the person’s name, and the nodes are organized ac-
cording to the BST rule. Mitch comes after Ben/Jessica/Jim and 
before Randi/Owen/Molly/Xander in alphabetical order, and this 
ordering relationship between parents and children repeats itself all 
the way down the tree. (Check it!) 

Be careful to observe that the ordering rule applies between a node 
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Figure 5.24: A binary search tree. 

and the entire contents of its subtrees, not merely to its immediate 
children. This is a rookie mistake that you want to avoid. Your 
first inclincation, when glancing at Figure 5.25, below, is to judge 
it a BST. It is not a binary search tree, however! Jessica is to the 
left of Mitch, as she should be, and Nancy is to the right of Jessica, 
as she should be. It seems to check out. But the problem is that 
Nancy is a descendant of Mitch’s left subtree, whereas she must 
properly be placed somewhere in his right subtree. And yes, this 
matters. So be sure to check your BST’s all the way up and down. 

Figure 5.25: NOT a binary search tree, though it looks like one at 
first glance. (Notice Nancy and Mitch) 

The power of BST’s 

All right, so what’s all the buzz about BST’s, anyway? The key 
insight is to realize that if you’re looking for a node, all you have 
to do is start at the root and go the height of the tree down making 
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one comparison at each level. Let’s say we’re searching Figure 5.24 
for Molly. By looking at Mitch (the root), we know right away that 
Molly must be in the right subtree, not the left, because she comes 
after Mitch in alphabetical order. So we look at Randi. This time, 
we find that Molly comes before Randi, so she must be somewhere 
in Randi’s left branch. Owen sends us left again, at which point we 
find Molly. 

With a tree this size, it doesn’t seem that amazing. But suppose 
its height were 10. This would mean about 2000 nodes in the 
tree — customers, users, friends, whatever. With a BST, you’d 
only have to examine ten of those 2000 nodes to find whatever 
you’re looking for, whereas if the nodes were just in an ordinary 
list, you’d have to compare against 1000 or so of them before you 
stumbled on the one you were looking for. And as the size of the 
tree grows, this discrepancy grows (much) larger. If you wanted to 
find a single person’s records in New York City, would you rather 
search 7 million names, or 24 names?? Because that’s the difference 
you’re looking at. 

It seems almost too good to be true. How is such a speedup pos-
sible? The trick is to realize that with every node you look at, 
you effectively eliminate half of the remaining tree from consider-
ation. For instance, if we’re looking for Molly, we can disregard 
Mitch’s entire left half without even looking at it, then the same 
for Randi’s entire right half. If you discard half of something, then 
half of the remaining half, then half again, it doesn’t take you long 
before you’ve eliminated almost every false lead. 

There’s a formal way to describe this speedup, called “Big-O nota-
tion.” The subtleties are a bit complex, but the basic idea is this. 
When we say that an algorithm is “O(n)” (pronounced “oh–of–n”), 
it means that the time it takes to execute the algorithm is propor-
tional to the number of nodes. This doesn’t imply any specific 
number of milliseconds or anything — that is highly dependent on 
the type of computer hardware, you have, the programming lan-
guage, and a myriad of other things. But what we can say about 
an O(n) algorithm is that if you double the number of nodes, you’re 
going to approximately double the running time. If you quadruple 
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the number of nodes, you’re going to quadruple the running time. 
This is what you’d expect. 

Searching for “Molly” in a simple unsorted list of names is an O(n) 
prospect. If there’s a thousand nodes in the list, on average you’ll 
find Molly after scanning through 500 of them. (You might get 
lucky and find Molly at the beginning, but then of course you might 
get really unlucky and not find her until the end. This averages out 
to about half the size of the list in the normal case.) If there’s a 
million nodes, however, it’ll take you 500,000 traversals on average 
before finding Molly. Ten times as many nodes means ten times as 
long to find Molly, and a thousand times as many means a thousand 
times as long. Bummer. 

Looking up Molly in a BST, however, is an O(lg n) process. Recall 
that “lg” means the logarithm (base-2). This means that doubling 
the number of nodes gives you a miniscule increase in the running 
time. Suppose there were a thousand nodes in your tree, as above. 
You wouldn’t have to look through 500 to find Molly: you’d only 
have to look through ten (because lg(1000) ≈ 10). Now increase 
it to a million nodes. You wouldn’t have to look through 500,000 
to find Molly: you’d only have to look through twenty. Suppose 
you had 6 billion nodes in your tree (approximately the population 
of the earth). You wouldn’t have to look through 3 billion nodes: 
you’d only have to look through thirty-three. Absolutely mind-
boggling. 

Adding nodes to a BST 

Finding things in a BST is lightning fast. Turns out, so is adding 
things to it. Suppose we acquire a new customer named Jennifer, 
and we need to add her to our BST so we can retrieve her account 
information in the future. All we do is follow the same process we 
would if we were looking for Jennifer, but as soon as we find the 
spot where she would be, we add her there. In this case, Jennifer 
comes before Mitch (go left), and before Jessica (go left again), and 
after Ben (go right). Ben has no right child, so we put Jessica in 
the tree right at that point. (See Figure 5.26.) 

This adding process is also an O(lg n) algorithm, since we only need 
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Figure 5.26: The BST after adding Jennifer. 

look at a small number of nodes equal to the height of the tree. 

Note that a new entry always becomes a leaf when added. In fact, 
this allows us to look at the tree and reconstruct some of what 
came before. For instance, we know that Mitch must have been the 
first node originally inserted, and that Randi was inserted before 
Owen, Xander, or Molly. As an exercise, add your own name to 
this tree (and a few of your friends’ names) to make sure you get 
the hang of it. When you’re done the tree must of course obey the 
BST property. 

Removing nodes from a BST 

Removing nodes is a bit trickier than adding them. How do we 
delete an entry without messing up the structure of the tree? It’s 
easy to see how to delete Molly: since she’s just a leaf, just remove 
her and be done with it. But how to delete Jessica? Or for that 
matter, Mitch? 

Your first inclination might be to eliminate a node and promote 
one of its children to go up in its place. For instance, if we delete 
Jessica, we could just elevate Ben up to where Jessica was, and then 
move Jennifer up under Ben as well. This doesn’t work, though. 
The result would look like Figure 5.27, with Jennifer in the wrong 
place. The next time we look for Jennifer in the tree, we’ll search 
to the right of Ben (as we should), completely missing her. Jennifer 
has effectively been lost. 

One correct way (there are others) to do a node removal is to re-
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Figure 5.27: An incorrect would-be-BST after removing Jessica 
incorrectly. 

place the node with the left-most descendant of its right subtree. 
(Or, equivalently, the right-most descendant of its left subtree). 
Figure 5.28 shows the result after removing Jessica. We replaced 
her with Jim, not because it’s okay to blindly promote the right 
child, but because Jim had no left descendants. If he had, promot-
ing him would have been just as wrong as promoting Ben. Instead, 
we would have promoted Jim’s left-most descendant. 

Figure 5.28: The BST after removing Jessica correctly. 

As another example, let’s go whole-hog and remove the root node, 
Mitch. The result is as shown in Figure 5.29. It’s rags-to-riches for 
Molly: she got promoted from a leaf all the way to the top. Why 
Molly? Because she was the left-most descendant of Mitch’s right 
subtree. 

To see why this works, just consider that Molly was immediately 
after Mitch in alphabetical order. The fact that he was a king and 
she a peasant was misleading. The two of them were actually very 
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Figure 5.29: The BST after removing Mitch. 

close: consecutive, in fact, with in-order traversal. So replacing 
Mitch with Molly avoids shuffling anybody out of alphabetical or-
der, and preserves the all-important BST property. 

Balancedness 

Finally, recall that this amazingly fast lookup is critically depen-
dent on the tree being “bushy.” Otherwise, the approximation that 
h = lg(l) breaks down. As a laughably extreme example, consider 
Figure 5.30, which contains the same nodes we’ve been using. This 
is a legitimate binary search tree! (Check it!) Yet looking up a 
node in this monstrosity is obviously not going to be any faster 
than looking it up in a plain-old list. We’re back to O(n) perfor-
mance. 

Figure 5.30: An incredibly bad, but still technically legit, BST. 

In practice, there are three ways of dealing with this. One approach 
is to simply not worry about it. After all, as long as we’re insert-
ing and removing nodes randomly, with no discernable pattern, the 
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chances of obtaining a tree as lopsided as Figure 5.30 are astronom-
ically small. It’s as likely as throwing a deck of cards up in the air 
and having it land all in a neat stack. The law of entropy tells us 
that we’re going to get a mix of short branches and long branches, 
and that in a large tree, the unbalancedness will be minimal. 

A second approach is to periodically rebalance the tree. If our 
website goes offline for maintenance every once in a while anyway, 
we could rebuild our tree from the ground up by inserting the nodes 
into a fresh tree in a beneficial order. What order should we insert 
them in? Well, remember that whichever node is inserted first will 
be the root. This suggests that we’d want to insert the middle 
node first into our tree, so that Molly becomes the new root. This 
leaves half the nodes for her left subtree and half for her right. 
If you follow this process logically (and recursively) you’ll realize 
that we’d next want to insert the middle nodes of each half. This 
would equate to Jennifer and Randi (in either order). I think of 
it like the markings on a ruler: first you insert half an inch, then 
and inches, then , and inches, etc. This restores to 

us a perfectly balanced tree at regular intervals, making any large 
imbalances even more improbably (and short-lived). 

Thirdly, there are specialized data structures you may learn about 
in future courses, such as AVL trees and red-black trees, which are 
binary search trees that add extra rules to prevent imbalancing. 
Basically, the idea is that when a node is inserted (or removed), 
certain metrics are checked to make sure that the change didn’t 
cause too great an imbalance. If it did, the tree is adjusted so as 
to minimize the imbalance. This comes at a slight cost every time 
the tree is changed, but prevents any possibility of a lopsided tree 
that would cause slow lookups in the long run. 

5.3 Final word 

Whew, that was a lot of information about structures. Before we 
continue our walk in the next chapter with a completely different 
topic, I’ll leave you with this summary thought. Let BST be the 
set of Binary Search Trees, and BT be the set of Binary Trees. Let 

7531 
88,8,844 

31 
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RT be the set of rooted trees, and T be the set of trees (free or 
rooted). Finally, let CG be the set of connected graphs, and G the 
set of all graphs. Then we have: 

BST ⊂ BT ⊂ RT ⊂ T ⊂ CG ⊂ G. 

It’s a beautiful thing. 



Chapter 6 

Counting 

If the title of this chapter seems less than inspiring, it’s only because 
the kind of counting we learned as children was mostly of a straight-
forward kind. In this chapter, we’re going to learn to answer some 
more difficult questions like “how many different semester schedules 
could a college student possibly have?” and “how many different 
passwords can a customer choose for this e-commerce website?” 
and “how likely is this network buffer to overflow, given that its 
packets are addressed to three different destinations?” 

The more impressive-sounding name for this topic is combina-
torics. In combinatorics, we focus on two tasks: counting things 
(to find out how many there are), and enumerating things (to sys-
tematically list them as individuals). Some things turn out to be 
hard to count but easy to enumerate, and vice versa. 

133 
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6.1 The Fundamental Theorem 

We start with a basic rule that goes by the audacious name of The 
Fundamental Theorem of Counting. 1 It goes like this: 

If a whole can be divided into k parts, and there’s ni choices 
for the ith part, then there’s n1 × n2 × n3 × · · · × nk ways of 
doing the whole thing. 

Example: Jane is ordering a new Lamborghini. She has twelve 
different paint colors to choose from (including Luscious Red and 
Sassy Yellow), three different interiors (Premium Leather, Bonded 
Leather, or Vinyl), and three different stereo systems. She must 
also choose between automatic and manual transmission, and she 
can get power locks & windows (or not). How many different con-
figurations does Jane have to choose from? Put another way, how 
many different kinds of cars could come off the line for her? 

The key is that every one of her choices is independent of all the 
others. Choosing an Envious Green exterior doesn’t constrain her 
choice of transmission, stereo, or anything else. So no matter which 
of the 12 paint colors she chooses, she can independently choose any 
of the three interiors, and no matter what these first two choices 
were, she can freely choose any of the stereos, etc. It’s a mix-and-
match. Therefore the answer is: 

12 × 3 × 3 × 2 × 2 = 432 choices. 

Here’s an alternate notation you’ll run into for this, by the way: 

1How many other “Fundamental Theorems” of math do you know? Here are 
a few: the Fundamental Theorem of Arithmetic says that any natural number 
can be broken down into its prime factors in only one way. The Fundamental 
Theorem of Algebra says that the highest power of a polynomial is how many 
roots (zeroes) it has. The Fundamental Theorem of Linear Algebra says that 
the row space and the column space of a matrix have the same dimension. The 
Fundamental Theorem of Calculus says that integration and differentiation are 
the inverse of each other. 
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kY 
ni 

i=1 

which is just a shorter way of writing 

n1 × n2 × n3 × · · · × nk. 

As mentioned in section 4.5, the Σ notation is essentially a loop with 
a counter, and it says to add up the expression to the right of it 
for each value of the counter. The Π notation is exactly the same, 
only instead of adding the expressions together for each value of 
the counter, we’re multiplying them. (The reason mathematicians 
chose the symbols Σ (sigma) and Π (pi) for this, by the way, is 
that “sigma” and “pi” start with the same letter as “sum” and 
“product,” respectively.) 

We can actually get a lot of leverage just with the fundamental 
theorem. How many different PINs are possible for an ATM card? 
There are four digits, each of which can be any value from 0 to 9 
(ten total values), so the answer is: 

10 × 10 × 10 × 10 = 10, 000 different PINs. 

So a thief at an ATM machine frantically entering PINs at random 
(hoping to break your account before you call and stop your debit 
card) would have to try about 5,000 of them on average before 
cracking the code. 

What about middle school bullies who are trying to break into your 
locker? Well, most combination locks are opened by a three-number 
sequence, each number of which is anything from 0 to 39. So there 
are: 

40 × 40 × 40 = 64, 000 different combinations. 

That’s probably slightly overstated, since I’ll bet consecutive repeat 
numbers are not allowed (Master probably doesn’t manufacture a 
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lock with a combination of 17–17–23, for example.) But it does 
seem at least as secure as a PIN number. 

Every car in the state of Virginia must be issued its own license 
plate number. That’s a lot of cars. How many different license 
plate combinations are available? 

This one requires a bit more thought, since not all licenses numbers 
have the same number of characters. In addition to “SED4756” and 
“PXY1927” you can also have “DAWG” or “LUVME” or even “U2”. How 
can we incorporate these? 

The trick is to divide up our set into mutually exclusive subsets, 
and then add up the cardinalities of the subsets. If only 7 characters 
fit on a license plate, then clearly every license plate number has 
either 1, 2, 3, 4, 5, 6, or 7 characters. And no license plate has two 
of these (i.e., there is no plate that is both 5 characters long and 6 
characters long). Therefore they’re mutually exclusive subsets, and 
safe to add. This last point is often not fully appreciated, leading 
to errors. Be careful not to cavalierly add the cardinalities of non-
mutually-exclusive sets! You’ll end up double-counting items. 

So we know that the number of possible license plates is equal to: 

the # of 7-character plates + 
the # of 6-character plates + 
the # of 5-character plates + 

· · · + 
the # of 1-character plates. 

Very well. We can now figure out each one separately. How do 
we know how many 7-character plates there are? Well, if every 
character must be either a letter or a digit, then we have 26 + 10 
= 36 choices for each character. This implies 367 different possible 
7-character license plates. The total number of plates is therefore: 

367 + 366 + 365 + 364 + 363 + 362 + 36 = 80,603,140,212 plates 

which is about ten times the population of the earth, so I think 
we’re safe for now. 
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Here’s an interesting thought experiment to test your intuition 
about numbers. Look at the above calculation, and ask yourself: 
“what if the state of Virginia decided, for purposes of consistency, 
that all license plates had to have the full 7 characters? Would 
that significantly reduce the total number of possible plates?” My 
first inclination would be to say “yes,” because we’re adding seven 
things in that equation, and if we mandated 7-character plates for 
everyone we’d eliminate 6 out of the 7. Surely we’d be in danger of 
running out of license plates to give to all the cars! But in fact the 
new total number of plates would turn out to be: 

367 = 78,364,164,096 plates. 

Wow. We’ve hardly lost anything by scrapping all the less-than-7-
character plates. Turns out that in comparison with the 7-character 
plates, all the other lengths were a drop in the bucket. This is a 
powerful illustration of exponential growth. When you modify the 
exponent, going from something like 366 to 367 , you get astronom-
ically larger very, very quickly. This is a good thing to know when 
all you want is an approximation of some quantity. How many 
passwords are possible in a system that mandates 6-10 characters 
per password? Well, you can pretty much ignore all the 6-9 charac-
ter passwords and just count the 10-character passwords, because 
there are so many more of those. 

One last tweak to the license plate example before we move on. 
Suppose (again, for the sake of consistency) that Virginia out-
lawed personalized plates and gave everyone a randomly gener-
ated 7-character plate. Furthermore, the last four characters of 
the plate had to be digits instead of letters, so that something like 
“RFP-6YQ7” would be impossible. Now how many possible plates 
would there be? 

In this case, not each of the k parts of n have an equal number of 
choices. n1 through n3 are still 36, but now n4 through n7 are just 
10. So this gives us: 

36 × 36 × 36 × 10 × 10 × 10 × 10 = 466,560,000 plates 
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or only about .006 times as many as before. Better stick with 
alphanumeric characters for all seven positions. 

A simple trick 

Sometimes we have something difficult to count, but we can turn 
it around in terms of something much easier. Often this involves 
counting the complement of something, then subtracting from the 
total. 

For instance, suppose a certain website mandated that user pass-
words be between 6-10 characters in length — every character being 
an uppercase letter, lowercase letter, digit, or special character (*, 
#, @, % or &) — but it also required each password to have at least 
one digit or special character. How many passwords are possible? 

Without the “at least one digit or special character” part, it’s pretty 
easy: there are 26 + 26 + 10 + 5 = 67 different choices for each 
character, so we have 

6710 + 679 + 678 + 677 + 676 = 1,850,456,557,795,600,384 strings. 

But how do we handle the “at least one” part? 

One way would be to list all the possible ways of having a password 
with at least one non-alpha character. The non-alpha could appear 
in the first position, or the second, or the third, . . . , or the tenth, 
but of course this only works for 10-digit passwords, and in any 
event it’s not like the other characters couldn’t also be non-alpha. 
It gets messy really fast. 

There’s a simple trick, though, once you realize that it’s easy to 
count the passwords that don’t satisfy the extra constraint. Ask 
yourself this question: out of all the possible strings of 6-10 charac-
ters, how many of them don’t have at least one non-alpha character? 
(and are therefore illegal, according to the website rules?) 

It turns out that’s the same as asking “how many strings are there 
with 6-10 alphabetic (only) characters?” which is of course: 

10 9 8 7 652 + 52 + 52 + 52 + 52 = 147,389,519,403,536,384 (illegal) passwords. 
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Now, all we have to do is subtract to get 

total # of strings – # of illegal passwords = # of legit passwords 

1,850,456,557,795,600,384 – 147,389,519,403,536,384 = 1,708,735,865,301,022,720 

legitimate passwords. Looks like we don’t lose much by requiring 
the non-alpha character. 

The lesson learned is that if counting the elements in some set 
involves accounting for a lot of different sticky scenarios, it’s worth 
a try to count the elements not in the set instead, and see if that’s 
easier. 

6.2 Permutations 

When we’re counting things, we often run into permutations. A 
permutation of n distinct objects is an arrangement of them in 
a sequence. For instance, suppose all three Davies kids need to 
brush their teeth, but only one of them can use the sink at a time. 
What order will they brush in? One possibility is Lizzy, then T.J., 
then Johnny. Another possibility is T.J., then Lizzy, then Johnny. 
Another is Johnny, then Lizzy, then T.J. These are all different 
permutations of the Davies kids. Turns out there are six of them 
(find all 6 for yourself!) 

Counting the number of permutations is just a special application 
of the Fundamental Theorem of Counting. For the teeth brushing 
example, we have n = 3 different “parts” to the problem, each of 
which has ni choices to allocate to it. There are three different 
Davies kids who could brush their teeth first, so n1 = 3. Once that 
child is chosen, there are then two remaining children who could 
brush second, so n2 = 2. Then, once we’ve selected a first-brusher 
and a second-brusher, there’s only one remaining choice for the 
third-brusher, so n3 = 1. This means the total number of possible 
brushing orders is: 

3 × 2 × 1 = 6. 
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This pattern comes up so much that mathematicians have estab-
lished a special notation for it: 

n × (n − 1) × (n − 2) × · · · × 1 = n! (“n-factorial”) 

We say there are “3-factorial” different brushing orders for the 
Davies kids. For our purposes the notion of factorial will only 
apply for integers, so there’s no such thing as 23.46! or π!. (In 
advanced computer science applications, however, mathematicians 
sometimes do define factorial for non-integers.) We also define 0! to 
be 1, which might surprise you. 

This comes up a heck of a lot. If I give you a jumbled set of letters 
to unscramble, like “KRIBS” (think of the Jumble 
R word game in 
the newspaper), how many different unscramblings are there? The 
answer is 5!, or 120, one of which is BRISK. Let’s say I shuffle a deck 

 of cards before playing War.2 How many different games of War are 
there? The answer is 52!, since any of the cards in the deck might 
be shuffled on top, then any but that top card could be second, 
then any but those two could be third, etc. Ten packets arrive 
near-simultaneously at a network router. How many ways can they 
be queued up for transmission? 10! ways, just like a larger Davies 
family. 

The factorial function grows really, really fast, by the way, even 
faster than exponential functions. A five letter word like “BRISK” 
has 120 permutations, but “AMBIDEXTROUSLY” has 87,178,291,200, 
ten times the population of the earth. The number of ways to 
shuffle a deck is 

80,658,175,170,944,942,408,940,349,866,698,506,766,127,860,028,660,283,290,685,487,972,352 

so I don’t think my boys will end up playing the same War game 
twice any time soon, nor my wife and I the same bridge hand. 

2“War” is a mindless card game which involves no strategy or decision-
making on the part of the players. Once you shuffle the initial deck, the entire 
outcome of the game is fixed. 



RISK 
IRSK 
ISRK 
ISKR 
RIKS 
IRKS 
IKRS 
IKSR 
RSIK 
· · · 
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Enumerating permutations 

We’ve discovered that there are 120 permutations of BRISK, but 
how would we go about listing them all? You can play around with 
the Davies kids and stumble upon all 6 permutations, but for larger 
numbers it’s harder. We need a systematic way. 

Two of the easiest ways to enumerate permutations involve recur-
sion. Here’s one: 

Algorithm #1 for enumerating permutations 

1. Begin with a set of n objects. 

a) If n = 1, there is only one permutation; namely, the 
object itself. 

b) Otherwise, remove one of the objects, and find the per-
mutations of the remaining n − 1 objects. Then, insert 
the removed object at every possible position, creating 
another permutation each time. 

As always with recursion, solving a bigger problem depends on 
solving smaller problems. Let’s start with RISK. We’ve already dis-
covered from the toothbrushing example that the permutations of 
ISK are ISK, IKS, SIK, SKI, KIS, and KSI. So to find the permuta-
tions of RISK, we insert an R into each possible location for each of 
these ISK-permutations. This gives us: 
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and so on. Once we have the RISK permutations, we can generate 
the BRISK permutations in the same way: 

BRISK 
RBISK 
RIBSK 
RISBK 
RISKB 
BIRSK 
IBRSK 
IRBSK 
IRSBK 
IRSKB 
BRSIK 
· · · 

Another algorithm to achieve the same goal (though in a different 
order) is as follows: 

Algorithm #2 for enumerating permutations 

1. Begin with a set of n objects. 

a) If n = 1, there is only one permutation; namely, the 
object itself. 

b) Otherwise, remove each of the objects in turn, and prepend 
that object to the permutations of all the others, creat-
ing another permutation each time. 

I find this one a little easier to get my head around, but in the 
end it’s personal preference. The permutations of BRISK are: “B 
followed by all the permutations of RISK, plus R followed by all the 
permutations of BISK, plus I followed by all the permutations of 
BRSK, etc.” So the first few permutations of a 4-letter word are: �   

R I S K�� �  
R I K S�� �  
R S I K� � 
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R 
R 
R 
I 
I 
I 
I 
I 
I 
S 

�
S��
K��
K��
R��
R��
S��
S��
K��
K��
R� 

K 
I 
S 
S 
K 
R 
K 
R 
S 
I 

I 
S 
I 
K 
S 
K 
R 
S 
R 
K 

 � � � � � � � � � � 
· · · 

Then, for the 5-letter word: 

�  
B R I S K�� �  
B R I K S�� �  
B R S I K�� �  
B R S K I�� �  
B R K I S�� �  
B R K S I�� �  
B I R S K�� �  
B I R K S� � 

· · · 

Partial permutations 

Sometimes we want to count the permutations of a set, but only 
want to choose some of the items each time, not all of them. For 
example, consider a golf tournament in which the top ten finishers 
(out of 45) all receive prize money, with the first place winner re-
ceiving the most, the second place finisher a lesser amount, and so 
on down to tenth place, who receives a nominal prize. How many 
different finishes are possible to the tournament? 

In this case, we want to know how many different orderings of 
golfers there are, but it turns out that past tenth place, we don’t 
care what order they finished in. All that matters is the first ten 
places. If the top ten are 1.Tiger, 2.Phil, 3.Lee, 4.Rory, . . . , and 
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10.Bubba, then it doesn’t matter whether Jason finished 11th or 
45th . 

It’s easy to see that there are 45 possible winners, then for each 
winner there are 44 possible second-placers, etc., so that this total 
turns out to be: 

45×44×43×42×41×40×39×38×37×36 = 11,576,551,623,436,800 finishes. 

Each of the finishes is called a partial permutation. It’s a per-
mutation of k items chosen from n total, and is denoted pn,k. The 
number of such permutations works out to 

n × (n − 1) × (n − 2) × · · · × (n − k + 1). 

The “n − k + 1” bit can be confusing, so take your time and think 
it through. For the golf tournament case, our highest term was 45 
and our lowest term was 36. This is because n was 45 and k was 
10, and so we only wanted to carry out the multiplication to 36 
(not 35), and 36 is 45-10+1. 

This can be expressed more compactly in a few different ways. 
First, we can use factorials to represent it: 

n × (n − 1) × (n − 2) × · · · × (n − k + 1) = 

n × (n − 1) × (n − 2) × · · · × 1 n! 
= . 

(n − k) × (n − k − 1) × (n − k − 2) × · · · × 1 (n − k)! 

Too, we could use our compact product notation: 

k−1Y 
n × (n − 1) × (n − 2) × · · · × (n − k + 1) = (n − i). 

i=0 

Finally, as with (non-partial) permutations, this comes up so much 
that the professionals have invented a special notation for it. It 
looks like a power, but has an underline under the exponent: 

k n × (n − 1) × (n − 2) × · · · × (n − k + 1) = n . 

This is pronounced “n-to-the-k-falling,” and was invented by one 
of the most brilliant computer scientists in history, Donald Knuth. 
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To keep straight what nk means, think of it as the same as plain ex-
ponentiation, except that the product diminishes instead of staying 
the same. For example, “17-to-the-6th” is 

176 = 17 · 17 · 17 · 17 · 17 · 17 

but “17-to-the-6th-falling” is 

176 = 17 · 16 · 15 · 14 · 13 · 12. 

In both cases, you’re multiplying the same number of terms, it’s 
just that in the second case, these terms are “falling.” 

Anyway, notation aside, partial permutations abound in practice. 
A late night movie channel might show four classic films back to 
back every evening. If there are 500 films in the studio’s library, 
how many nightly TV schedules are possible? Answer: 5004 , since 
there are 500 choices of what to show at 7pm, then 499 choices for 
9pm, 498 for 11pm, and 497 for the 1am late show. 

The fastest 41 auto racers will qualify for Sunday’s race, and will be 
placed from Pole Position on down depending on their qualifying 
time. If 60 cars participate in the qualifying heat, then there are 
6041 different possible starting configurations for Sunday. 

Middle schoolers entering sixth grade will be assigned a semester 
schedule that consists of five “blocks” (periods), each of which will 
have one of thirteen classes (science, math, orchestra, study hall, 
etc.) How many schedules are possible? You guessed it, 135 . Notice 
that this is the correct answer only because no repeats are allowed: 
we don’t want to schedule any student for American History more 
than once. If a student could take the same class more than once 
in a day, then there would be 135 (not “falling”) different possible 
schedules. 

6.3 Combinations 

All the stuff with permutations has emphasized order. Somebody 
gets first place in the golf tournament, and somebody else gets 
second, and you bet your bottom dollar that it matters which is 
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which. What if it turns out we don’t care about the order, though? 
Maybe we don’t care who got what place, but just which golfers 
were in the top ten. Maybe we don’t care which film is showing in 
which time slot, but only which films are in tonight’s movie lineup. 

This counting scenario involves something called combinations rather 
than permutations. A combination of k objects out of a possible 
n is a choice of any set of k of them, without regard to order. For 
instance, suppose all three Davies kids want to play on the Wii, but 
only two can play at a time. Who will get to play first after school? 
One possibility is Lizzy and T.J., another is Lizzy and Johnny, and 
the last one is T.J. and Johnny. These are the three (and only 
three) combinations of 2 objects out of 3. 

To see how to count these in general, let’s return to the golf tour-
nament example. Suppose that in addition to winning money, the 
top three finishers of our local tournament will also advance to 
the regional tournament. This is a great honor, and brings with 
it far greater additional winning potential than the local money 
did. Question: how many different possible trios might we send to 
regional competition? 

At first glance, this seems just like the “how many prize money 
allocations” problem from before, except that we’re taking 3 instead 
of 10. But there is a twist. In the former problem, it mattered who 
was first vs. second vs. third. Now the order is irrelevant. If you 
finish in the top three, you advance, period. You don’t “advance 
more forcefully” for finishing first locally instead of third. 

It’s not as obvious how to count this, but of course there is a trick. 
The trick is to count the partial permutations, but then realize how 
much we overcounted, and then compensate for it accordingly. 

If we count the partial permutations of 3 out of 45 golfers, we have 
453 such permutations. One of those partial permutations is: 

1.Phil 2.Bubba 3.Tiger 

Another one is: 

1.Phil 2.Tiger 3.Bubba 
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and yet another is: 

1.Tiger 2.Phil 3.Bubba 

Now the important thing to recognize is that in our present problem 
— counting the possible number of regional-bound golf trios — all 
three of these different partial permutations represent the same 
combination. In all three cases, it’s Bubba, Phil, and Tiger who 
will represent our local golf association in the regional competition. 
So by counting all three of them as separate partial permutations, 
we’ve overcounted the combinations. 

Obviously we want to count Bubba/Phil/Tiger only once. Okay 
then. How many times did we overcount it when we counted partial 
permutations? The answer is that we counted this trio once for 
every way it can be permuted. The three permutations, above, were 
examples of this, and so are these three: 

1.Tiger 2.Bubba 3.Phil 
1.Bubba 2.Tiger 3.Phil 
1.Bubba 2.Phil 3.Tiger 

This makes a total of six times that we (redundantly) counted the 
same combination when we counted the partial permutations. Why 
6? Because that’s the value of 3!, of course. There are 3! different 
ways to arrange Bubba, Phil, and Tiger, since that’s just a straight 
permutation of three elements. And so we find that every threesome 
we want to account for, we have counted 6 times. 

The way to get the correct answer, then, is obviously to correct for 
this overcounting by dividing by 6: 

453 45 × 44 × 43 
= = 14,190 different threesomes. 

3! 6 

And in general, that’s all we have to do. To find the number of 
combinations of k things taken from a total of n things we have: 

kn n! 
= combinations. 

k! (n − k)!k! 



148 CHAPTER 6. COUNTING 

This pattern, too, comes up so often that mathematicians have 
invented (yet) another special notation for it. It looks a bit strange 
at first, almost like a fraction without a horizontal bar: � � 

n n! 
= . 

k (n − k)!k! 

This is pronounced “n-choose-k”. 

Again, examples abound. How many different 5-card poker handso �
52 are there? Ans you’re 5 , since it doesn’t matter what orderwer:

1024dealt the cards, only which five cards you get. If there are 
sectors on our disk, but only 256 cache blocks in memory o � to hold
them, how many different combinations of sectors can be in mem-

1024 ory at one time? 256 . e want to choose 4 or 5 of our topIf w
10 different customers to participate in a focus group, how many o � o �

10 10combinations of participants could we ha +ve? , since we 4 5 
want the number of ways to pick 4 of them plus the number of ways 
to pick 5 of them. And for our late night movie channel, of course,o �

500there are 4 possible movie lineups to attract audiences, if we 
don’t care which film is aired at which time. 

Binomial coefficients o � 
nThe “n-choose-k” notation has another name: values of thisk 

sort are called binomial coefficients. This is because one way 
to generate them, believe it or not, is to repeatedly multiply a 
binomial times itself (or, equivalently, take a binomial to a power.) 

A binomial, recall, is a polynomial with just two terms: 

x + y. 

The coefficients for this binomial are of course 1 and 1, since “x” 
really means “1 · x.” Now if we multiply this by itself, we get: 

2(x + y) · (x + y) = x 2 + 2xy + y . 

The coefficients of the terms being 1, 2, and 1. We do it again: 

2 2 3(x 2 + 2xy + y 2) · (x + y) = x 3 + 3x y + 3xy + y . 
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to get 1, 3, 3, and 1, and do it again: 

2 2 3 2 3 4(x 3 + 3x y + 3xy + y 3) · (x + y) = x 4 + 4x y + 6x y 2 + 4xy + y . 

to get 1, 4, 6, 4, and 1. At this point you might be having flash-
backs to Pascal’s triangle, which perhaps you learned about in grade 
school, in which each entry in a row is the sum of the two entries 
immediately above it (to the left and right), as in Figure 6.1. (If 
you never learned that, don’t worry about it.) 

Figure 6.1: The first six rows of Pascal’s triangle. 

Now you might be wondering where I’m going with this. What do 
fun algebra tricks have to do with counting combinations of items?o � 

nThe answer is that the values of k are precisely the coefficients of 
these multiplied polynomials. Let n be 4, which corresponds to the 
last polynomial we multiplied out. We can then compute all the 
combinations of items taken from a group of four: � � � � � � � � � � 

4 4 4 4 4 
= 1, = 4, = 6, = 4, and = 1. 

0 1 2 3 4 

In other words, there is exactly one way of taking no items out of 
4 (you simply don’t take any). There are four ways of taking one 
item out of 4 — you could take the first, or the second, or the third, 
or the fourth. There are six ways of taking two items out of four; 
namely: 

1. the first and second 
2. the first and third 
3. the first and fourth 
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4. the second and third 
5. the second and fourth 
6. the third and fourth 

And so on. 

Now in some ways we’re on a bit of a tangent, since the fact that 
the “n-choose-k” values happen to work out to be the same as 
the binomial coefficients is mostly just an interesting coincidence. 
But what I really want you to take notice of here — and what 
Pascal’s triangle makes plain — is the symmetry of the coefficients. 
This surprises a lot of students. What if I asked you which of theo � o �

1000 1000following numbers was greater: or ? Most students 18 982 
guess that the second of these numbers is far greater. In actual 

1000!fact, though, they both work out to and are thus exactly the 18!982! o
4
� o

4
� 

same. And in the above example, we see that 0 is equal to 4 ,o
4
� o

4
� 

and that 1 is equal to 3 . o � 
nWhy is this? Well, you can look back at the formula for k and see 

how it works out algebraically. But it’s good to have an intuitive 
feel for it as well. Here’s how I think of it. Go back to the Davies 
kids and the Wii. We said there were three different ways to choose o

3
� 

2 kids to play on the Wii first after school. In other words, 2 = 3. 
Very well. But if you think about it, there must then also be three 
different ways to leave out exactly one kid. If we change what 
we’re counting from “combinations of players” to “combinations 
of non-players” — both of which must be equal, since no matter 
what happens, we’ll be partitioning the Davies kids into players o � 
and non-players — then we see that 3 must also be 3.1 o

500
� 

And this is true across the board. If there are 4 different lineups 
of four movies, then there are the same number of lineups of 496o � o �

500 500movies, since = . Conceptually, in the first case we choose 4 496 
a group of four and show them, and in the second case we choose 
a group of four and show everything but them. 

Also notice that the way to get the greatest number of combinations 
of n items is for k to be half of n. If we have 100 books in our library, 
there are a lot more ways to check out 50 of them then there are 
to check out only 5, or to check out 95. Strange but true. 
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Lastly, make sure you understand the extreme endpoints of thiso � o � 
phenomenon. n 

0 and
n
n are both always 1, no matter what n 

is. That’s because if you’re picking no items, you have no choices 
at all: there’s only one way to come up empty. And if you’re 
picking all the items, you also have no choices: you’re forced to 
pick everything. 

6.4 Summary 

Most of the time, counting problems all boil down to a variation of 
one of the following three basic situations: 

k• — this is when we have k different things, each of which n 
is free to take on one of n completely independent choices. 

nk — this is when we’re taking a sequence of k different things • 
from a set of n, but no repeats are allowed. (A special case 
of this is n!, when k = n.) o 

• 
� 

n
k — this is when we’re taking k different things from a set 
of n, but the order doesn’t matter. 

Sometimes it’s tricky to deduce exactly which of these three situa-
tions apply. You have to think carefully about the problem, and ask 
yourself whether repeated values would be allowed, and whether it 
matters what order the values appear in. This is often subtle. 

As an example, suppose my friend and I work out at the same 
gym. This gym has 18 different weight machines to choose from, 
each of which exercises a different muscle group. Each morning, 
we each do a quick 30-minute workout session divided into six 5-
minute blocks, and we work with one of the machines during each 
block, taking turns spotting each other. One day my friend asks 
me, “hey Stephen, have you ever wondered: how many different 
workout routines are possible for us?” 

I was, of course, wondering exactly that. But the correct answer 
turns out to hinge very delicately on exactly what “a workout rou-
tine” is. If we could select any weight machine for any 5-minute 
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block, then the answer is 186 , since we have 18 choices for our 
first block, 18 choices for our second, and so on. (This comes to 
34,012,224 different routines, if you’re interested). 

However, on further inspection, we might change our mind about 
this. Does it make sense to choose the same machine more than once 
in a 30-minute workout? Would we really complete a workout that 
consisted of “1.Biceps 2.Abs, 3.Pecs, 4.Biceps, 5.Biceps, 6.Biceps?” 
If not (and most trainers would probably recommend against such 
monomaniacal approaches to excercise) then the real answer is only 
186 , since we have 18 choices for our first block, and then only 17 
for the second, 16 for the third, etc. (This reduces the total to 
13,366,080.) 

But perhaps the phrase “a workout routine” means something dif-
ferent even than that. If I tell my physical therapist what “my 
workout routine” consisted of this morning, does he really care 
whether I did triceps first, last, or in the middle? He probably only 
cares about which machines (and therefore which muscle groups) 
I worked out that morning, not what order I did them in. If this 
is true, then our definition of a workout routine is somewhat dif-
ferent than the above. It’s no longer a consecutive sequence of 
machine choices, but rather a set of six machine choices. Thereo

18
� 

would only be 6 of those, or a mere 18,564. So as you can see, 
the answer radically depends on the precise interpretation of the 
concepts, which means that to successfully do combinatorics, you 
have to slow down and think very carefully. 



Chapter 7 

Numbers 

Wow, last chapter was about “counting,” and this one is about 
“numbers.” It sure seems like we’re regressing back to first grade or 
earlier. And indeed, this chapter will contain a repeat of some ele-
mentary school concepts! But this is so we can re-examine the foun-
dations and generalize them somewhat. The mechanical processes 
you’ve always used with numbers — adding, subtracting, compar-
ing, checking whether something divides evenly, working with place 
value — are all correct, but they’re all hard-coded for decimal num-
bers. The word “decimal,” in this chapter, won’t mean “a number 
with a decimal point, like 5.62” but rather a number expressed in 
base 10. And what does “expressed in base 10” mean? It means 
that the digits, from right to left, represent a “one’s place,” a “ten’s 
place,” a “hundred’s place,” and so on. This is what we all learned 
in grade school, and perhaps you thought that’s just how numbers 
“were.” But it turns out that 1, 10, 100, 1000, . . . , is just one choice 
of place values, and that we could equally as well choose many other 
things, like 1, 2, 4, 8, . . . , or 1, 16, 256, 4096, . . . , or even 1, 23, 529, 
12,167, . . . , as long as those values are of a certain type (successive 
powers of the base). 

It’s the concept of bases, and specifically bases other than 10, that 
will cause us to rethink some things. It’ll feel unnatural at first, 
but soon you’ll discover that there are aspects of how you work 
with numbers that are unnecessarily specific, and that it’s freeing 
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to treat them in a more general way. 

7.1 What is a “number?” 

Before we do anything with bases, let’s talk about the concept of 
number, generally. The question “what is a number?” sounds 
like the dumbest question I could possibly ask you. Yet I predict 
that unless you’ve studied this material before, you have a whole 
bunch of tangled thoughts in your head regarding what “numbers” 
are, and those tangled thoughts are of two kinds. Some of them 
are about numbers per se. Others are about base-10 numbers. If 
you’re like most people, you think of these two sets of concepts 
as equally “primary,” to the point where a number seems to be a 
base-10 number. It’s hard to conceive of it in any other way. It’s 
this prejudice that I want to expose and root out at the beginning. 

Most people, if I asked them to name a number, would come up with 
something like “seventeen.” This much is correct. But if I asked 
them what their mental image was of the number “seventeen,” they 
would immediately form the following unalterable picture: 

17 

To them, the number “seventeen” is intrinsically a two-character-
long entity: the digit 1 followed by the digit 7. That is the number. 
If I were to tell them that there are other, equally valid ways of 
representing the number seventeen — using more, less, or the same 
number of digits — they’d be very confused. Yet this is in fact 
the case. And the only reason that the particular two-digit image 
“17” is so baked into our brains is that we were hard-wired from 
an early age to think in decimal numbers. We cranked through our 
times tables and did all our carrying and borrowing in base 10, and 
in the process we built up an incredible amount of inertia that is 
hard to overcome. A big part of your job this chapter will be to 
“unlearn” this dependence on decimal numbers, so that you can 
work with numbers in other bases, particularly those used in the 
design of computers. 
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When you think of a number, I want you to try to erase the sequence 
of digits from your mind. Think of a number as what is is: a 
quantity. Here’s what the number seventeen really looks like: 

It’s just an amount. There are more circles in that picture than in 
some pictures, and less than in others. But in no way is it “two 
digits,” nor do the particular digits “1” and “7” come into play any 
more or less than any other digits. 

Let’s keep thinking about this. Consider this number, which I’ll 
label “A”: 

(A) 

Now let’s add another circle to it, creating a different number I’ll 
call “B”: 

(B) 

And finally, we’ll do it one more time to get “C”: 

(C) 

(Look carefully at those images and convince yourself that I added 
one circle each time.) 
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When going from A to B, I added one circle. When going from B 
to C, I also added one circle. Now I ask you: was going from B 
to C any more “significant” than going from A to B? Did anything 
qualitatively different happen? 

The answer is obviously no. Adding a circle is adding a circle; 
there’s nothing more to it than that. But if you had been writing 
these numbers out as base-10 representations, like you’re used to 
doing, you might have thought differently. You’d have gone from: 

(A) 8 

to 

(B) 9 

to 

(C) 10 

When going from B to C, your “odometer” wrapped around. You 
had to go from a one-digit number to a two-digit number, simply 
because you ran out of room in one digit. This can lead to the 
illusion that something fundamentally different happens when you 
go from B to C. This is completely an illusion. Nothing different 
happens to the number just because the way we write it down 
changes. 

Human beings have a curious habit of thinking that odometer 
changes are significant. When the temperature breaks 100, it sud-
denly feels “more hotter” than it did when it merely rose from 98 to 
99. When the Dow Jones Industrial Average first reached 10,000, 
and when Pete Rose eclipsed 4,000 career hits, and when the year 
2000 dawned, we tended to think that something truly important 
had taken place. But as we’ll see, the point at which these mile-
stones occur is utterly and even laughably aribitrary: it simply has 
to do with what number we’ve chosen as our base. And we quite 
honestly could have chosen any number at all. 
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7.2 Bases 

As I mentioned, a base is simply a number that’s an anchor for 
our place value system. It represents how many distinct symbols 
we will use to represent numbers. This implicitly sets the value of 
the largest quantity we can hold in one digit, before we’d need to 
“roll over” to two digits. 

In base 10 (decimal), we use ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 
8, and 9. Consequently, the number nine is the highest value we 
can hold in a single digit. Once we add another element to a set 
of nine, we have no choice but to add another digit to express it. 
This makes a “ten’s place” because it will represent the number of 
sets-of-10 (which we couldn’t hold in the 1’s place) that the value 
contains. 

Now why is the next place over called the “hundred’s place” instead 
of, say, the “twenty’s place”? Simply because twenty — as well as 
every other number less than a hundred — comfortably fits in two 
digits. We can have up to 9 in the one’s place, and also up to 9 in 
the ten’s place, giving us a total of ninety-nine before we ever have 
to cave in to using three digits. The number one hundred is exactly 
the point at which we must roll over to three digits; therefore, the 
sequence of digits 1-0-0 represents one hundred. 

If the chosen base isn’t obvious from context (as it often won’t be 
in this chapter) then when we write out a sequence of digits we’ll 
append the base as a subscript to the end of the number. So the 
number “four hundred and thirty-seven” will be written as 43710. 

The way we interpret a decimal number, then, is by counting the 
right-most digits as a number of individuals, the digit to its left as 
the number of groups of ten individuals, the digit to its left as the 
number of groups of hundred individuals, and so on. 547210 is just 
a way of writing 5 × 1000 + 4 × 100 + 7 × 10 + 2 × 1. 

If we use exponential notation (remember that anything to the 0th 

power is 1), this is equivalent to: 

547210 = 5 × 103 + 4 × 102 + 7 × 101 + 2 × 100 . 
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By the way, we will often use the term least significant digit to 
refer to the right-most digit (2, in the above example), and most 
significant digit to refer to the left-most (5). “Significant” simply 
refers to how much that digit is “worth” in the overall magnitude 
of the number. Obviously 239 is less than 932, so we say that the 
hundreds place is more significant than the other digits. 

All of this probably seems pretty obvious to you. All right then. 
Let’s use a base other than ten and see how you do. Let’s write 
out a number in base 7. We have seven symbols at our disposal: 
0, 1, 2, 3, 4, 5, and 6. Wait, you ask — why not 7? Because 
there is no digit for seven in a base 7 system, just like there is no 
digit for ten in a base 10 system. Ten is the point where we need 
two digits in a decimal system, and analogously, seven is the point 
where we’ll need two digits in our base 7 system. How will we 
write the value seven? Just like this: 10. Now stare at those two 
digits and practice saying “seven” as you look at them. All your 
life you’ve been trained to say the number “ten” when you see the 
digits 1 and 0 printed like that. But those two digits only represent 
the number ten if you’re using a base 10 system. If you’re using a 
base 34 system, “10” is how you write “thirty-four.” 

Very well, we have our seven symbols. Now how do we interpret a 
number like 61537? It’s this: 

61537 = 6 × 73 + 1 × 72 + 5 × 71 + 3 × 70 . 

That doesn’t look so strange: it’s very parallel to the decimal string 
we expanded, above. It looks weirder when we actually multiply 
out the place values: 

61537 = 6 × 343 + 1 × 49 + 5 × 7 + 3 × 1. 

So in base 7, we have a “one’s place,” a “seven’s place,” a “forty-
nine’s place,” and a “three hundred forty-three’s place.” This seems 
unbelievably bizarre — how could a number system possibly hold 
together with such place values? — but I’ll bet it wouldn’t look 
funny at all if we had been born with 7 fingers. Keep in mind that 
in the equation above, we wrote out the place values as decimal 
numbers! Had we written them as base-7 numbers (as we certainly 
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would have if base 7 was our natural numbering system), we would 
have written: 

61537 = 6 × 10007 + 1 × 1007 + 5 × 107 + 3 × 17. 

This is exactly equivalent numerically. Because after all, 10007 is 
34310. A quantity that looks like an oddball in one base system 
looks like the roundest possible number in another. 

7.3 Hexadecimal (base 16) 

Now objectively speaking, it turns out that ten is a pretty weird 
base too. I know it doesn’t seem like it, but that’s only because 
we’re so used to it. Really, if you’re repeatedly adding little circles 
to a drawing, ten is a funny place to decide to draw the line and go 
to more digits. It’s only divisible by 2 and 5 (of all things), it’s not 
a perfect square, and all this makes it kind of an awkward choice. 

In computer science, it turns out to be very (very) convenient to 
use a base that is a power of two. This means a base that is “two-
to-the-something.” In earlier computing days, octal (base 8) was 
a common choice. But for various reasons, that turns out to be 
less convenient than using base 16, or hexadecimal. 1 Any time 
you’re working with hardware, operating systems, device drivers, 
bit masks, or anything else low level, you’ll encounter numbers 
written in base 16 a heck of a lot. So let’s study this particular 
base in some detail. 

Base 16 will need sixteen digits, of course. Unfortunately, we ten-
fingered people have only invented ten symbols that are obviously 
numerical: the digits 0 through 9. So what do we do for the other 
six? It turns out that the originators of this system took perhaps 
the most obvious approach: repurposing the letters of the alphabet. 
So we add the “digits” A through F (sometimes written as capitals, 
sometimes in lower-case) to our set of symbols. These, then, are 
the quantities that each individual digit represents: 

1Sometimes numbers written in base 16 are called “hex numbers.” 
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0 zero 
1 one 
2 two 
3 three 
4 four 
5 five 
6 six 
7 seven 
8 eight 
9 nine 
A ten 
B eleven 
C twelve 
D thirteen 
E fourteen 
F fifteen 

The inventors of hexadecimal notation didn’t have to use the al-
phabet, of course; they could have chosen a star for ten, a square 
for eleven, a happy face for twelve, etc., but that wouldn’t have 
been very easy to type. So we’re stuck with the letters, for better 
or for worse. Practice staring at that letter A and saying the word 
“ten.” Because that’s what it means. In hexadecimal, the sequence 
of digits 10 does not mean “ten.” It means “sixteen.” 

Those are the symbols. What are the place values? Well, they are 
(from the right) the 160’s place, the 161’s place, the 162’s place, 
and so on. Written decimally, those work out to be the 1’s place, 
the 16’s place, the 256’s place, the 4096’s place, and so on. Again, 
those numbers seem strange only because when they are written 
decimally they don’t come out very “round.” 

The value of a number like 72E3 is computed as: 

72E316 = 7 × 409610 + 2 × 25610 + 14 × 1610 + 3 × 110 = 29,41110. 

Notice we treated the “E” just like another digit, which it is. We 
also called 72E3 “a number,” which it is. Get used to the idea that 
numbers — totally legitimate numbers — can have letters for some 
of their digits. 
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In hexadecimal, what’s the highest value that can fit in one digit? 
Answer: F (which is fifteen.) What’s the highest that can fit in 
two digits? FF (which is two hundred fifty-five.) What about three 
digits? FFF (which is sixty-five thousand five hundred thirty-five.) 
And so on. If you count in hexadecimal, you do the same thing as 
in decimal, only you “roll over the odometer” when you get to F, 
not when you get to 9. 

Converting to and from decimal 

So we know how to take a hexadecimal number (like 72E316) and 
find its decimal equivalent: we just interpret each place’s value as 
1, 16, 256, 4096, and so on. What about going the other way? If we 
had a decimal number, how would we write its value hexadecimally? 

First, let’s learn two operations (if you don’t already know them) 
that come in handy when working with integers. The first is called 
the modulo operator (written “mod”), and simply gives the re-
mainder when dividing two numbers. This is a concept you prob-
ably learned in elementary school but might not have used since 
then. As we get older (and use calculators), we tend to think of a 
division operation like 13 ÷ 3 as being 4.333 . . . . But that’s when 
we want a real-valued (instead of integer-valued) answer. If we only 
want integers, then we say that 13 ÷ 3 is “4 with a remainder of 1.” 
(The “4” is called the quotient.) This means that if you have 13 
objects, you can take four groups of 3’s out of them, and then have 
1 object left over. The way we write this operation mathematically 
is “13 mod 3.” In this case, it turns out that 13 mod 3 = 1. 

Let’s think through what the mod operator yields for different val-
ues. We know that 13 mod 3 = 1. What about 14 mod 3? That 
is equal to 2, since we can (again) take out four groups of 3’s, but 
then we’d have two left over. What about 15 mod 3? That yields 
0, since 3 goes in to 15 evenly, leaving no remainder at all. 16 
mod 3 again gives us 1, just like 13 did. If you think it through, 
you’ll realize that 19 mod 3 will also be 1, as will 22 mod 3 and 25 
mod 3. These numbers that give the same remainder are said to be 
“congruent mod 3.” The numbers 2, 5, 8, 11, 14, etc. are also all 
congruent (to each other) mod 3, since they all give a remainder of 
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2. 

Another observation is that the value of n mod k always gives a 
value between 0 and k − 1. We may not know at a glance what 
407,332,117 mod 3 is, but we know it can’t be 12, or 4, or even 3, 
because if we had that many elements left after taking out groups 
of 3’s, we could still take out another group of 3. The remainder 
only gives us what’s left after taking out groups, so by definition 
there cannot be an entire group (or more) left in the remainder. 

The other operation we need is simply a “round down” operation, 
traditionally called “floor” and written with brackets: “b c”. The 
floor of an integer is itself. The floor of a non-integer is the integer 
just below it. So b7c = 7 and b4.81c = 4. It’s that simple. 

The reason we use the floor operator is just to get the whole number 
of times one number goes into another. b13 ÷ 3c = 4, for example. 
By using mod and floor, we get the quotient and remainder of 
a division, both integers. If our numbers are 25 and 7, we have 
b25 ÷ 7c = 3 and 25 mod 7 = 4. Notice that this is equivalent to 
saying that 25 = 3 × 7 + 4. We’re asking “how many groups of 7 
are in 25?” and the answer is that 25 is equal to 3 groups of 7, plus 
4 extra. 

The general procedure for converting from one base to another is 
to repeatedly use mod and floor to strip out the digits from right 
to left. Here’s how you do it: 

Express a numeric value in a base 

1. Take the number mod the base. Write that digit down. 

2. Divide the number by the base and take the floor: 

a) If you get zero, you’re done. 

b) If you get non-zero, then make this non-zero number 
your new value, move your pencil to the left of the 
digit(s) you’ve already written down, and return to step 1. 

As an example, let’s go backwards to the hex number 72E3 as in 
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our example above, which we already computed was equal to 29,411 
in decimal. Starting with 29,411, then, we follow our algorithm: 

1. (Step 1) We first compute 29,411 mod 16. This turns out to 
be 3. Many scientific calculators can perform this operation, 
as can programming languages like Java and data analysis 
languages like R. Or, you could do long division (459,494 ÷ 
16) by hand and see what the remainder is. Or, you could 
divide on an ordinary calculator and see whether the part 

th ths
after the decimal point is 0, or 1 , or 2 , etc. Or, you 16 16 
could sit there and subtract 16 after 16 after 16 from 29,411 
until there are no more 16’s to take out, and see what the 
answer is. At any rate, the answer is 3. So we write down 3: 

3 

2. (Step 2) We now divide 29,411 by 16 and take the floor. This 
produces b29,411 ÷ 16c = 1838. Since this is not zero, we 
perform step 2b: make 1838 our new value, move our pencil 
to the left of the 3, and go back to step 1. 

3. (Step 1) Now compute 1838 mod 16. This gives us the value 
14, which is of course a base 10 number. The equivalent hex 
digit is E. So we now write down E to the left of the 3: 

E3 

4. (Step 2) Dividing 1838 by 16 and taking the floor gives us 
114. Since this is again not zero, we perform step 2b: make 
114 our new value, move our pencil to the left of the E, and 
go back to step 1. 

5. (Step 1) Next we compute 114 mod 16. This turns out to be 
2, so we write down a 2: 

2E3 
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6. (Step 2) Computing b114÷16c produces 7, which is again not 
zero, so 7 becomes our new value and we go back once again 
to step 2b. 

7. (Step 1) 7 mod 16 is simply 7, so we write it down: 

72E3 

8. (Step 2) Finally, b7 ÷ 16c is zero, so we go to step 2a and 
we’re done. The page has 72E3 written on it in big bold 
letters, which is the correct answer. 

Adding hex numbers 

Suppose we have two hexadecimal numbers, and we want to add 
them together to get a hexadecimal result. How do we do it? One 
way is to first convert them both to decimal, then add them like 
you learned in first grade, then convert the answer back to hex. But 
we can stay “natively hex” as long as we add each pair of digits 
correctly. 

Let’s try it. Suppose we want to compute this sum: 

48D416 

+59 2 516 

?16 

We proceed in the first-grade way from right to left. Adding the 
one’s-place values, we get 4 + 5 = 9: 

48D416 

+59 2 516 

916 

Easy enough. Now we add the next digit to the left (the sixteen’s-
place, mind you, not the ten’s place) and we find D + 2. Now 
what in the world is “D+2”? It’s actually easy: all you have to 
do is the same thing you did when you were a child and you had 
to add something like 4 + 5. You hadn’t memorized the answer 
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yet, and so you started with four fingers held up, and counted off 
“1. . . 2. . . 3. . . 4. . . 5,” sticking up another finger each time. Then, 
you looked at your hands, and behold! nine fingers. 

We’ll do the same thing here: start with the number “D,” and 
count two additional places: “E. . . F.” The answer is F. That is the 
number that’s two greater than D. Lucky for us, it still fits in one 
digit. So now we have: 

48D416 

+59 2 516 

F 916 

So far so good. The next pair of digits is 8 + 9. Here’s where 
you want to be careful. You’re liable to look at “8+9” and im-
mediately say “17!” But 8 + 9 is not 17 in hexadecimal. To 
figure out what it is, we start with the number 8, and count: 
“9. . . A. . . B. . . C. . . D. . . E. . . F. . . 10. . . 11. . . ”. The answer is “11,” 
which of course is how you write “seventeen” in hex. So just like 
in grade school, we write down 1 and carry the 1: 

1 

48D416 

+59 2 516 

1F 916 

Finally, our last digit is 4 + 5, plus the carried 1. We start with four 
and count off five: “5. . . 6. . . 7. . . 8. . . 9.” Then we add the carry, and 
count “. . . A.” The answer is A, with no carry, and so we have our 
final answer: 

1 

4 8D416 

+5 9 2 516 

A1F916 

7.4 Binary (base 2) 

The other base we commonly use in computer science is base 2, or 
binary. This is because the basic unit of information in a computer 
is called a bit, which has only two values, conventionally called 
either “true” and “false” or “1” and “0”. Numbers (as well as 

https://9...A...B...C...D...E...F...10...11
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everything else) are ultimately represented as colossal sequences of 
1’s and 0’s, which are of course binary numbers. 

The rules for interpreting place value are the same: 

1101012 = 1 × 25 + 1      × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= 1 × 32 + 1 × 16 + 0 × 8 + 1 × 4 + 0 × 2 + 1 × 1 

= 5310. 

So in binary we have a one’s-place, a two’s-place, a four’s-place, 
an eight’s-place, and so on. We call the right-most place the least 
significant bit (LSB) and the left-most the most significant 
bit (MSB). 

Counting up from zero is really just the same as any other base, 
although it feels a little strange in binary because you “roll over” 
so often: 

02 zero 
12 one 

102 two 
112 three 

1002 four 
1012 five 
1102 six 
1112 seven 

10002 eight 
10012 nine 

. . . . . . 

Converting to and from decimal 

Converting from binary to decimal was demonstrated above (with 
1101012 = 5310.) To go the other way, we follow the algorithm from 
page 162. Let’s try it for the decimal number 49: 

1. (Step 1) We first compute 49 mod 2. Doing “mod 2” is easy: 
you just see whether the number is even or odd. In this case, 
it’s odd, so the remainder is a 1: 
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1 

2. (Step 2) Now divide 49 by 2 and take the floor, which gives 
b49 ÷ 2c = 24. It’s not zero, so we perform step 2b: make 24 
our new value, move our pencil to the left of the 1, and go 
back to step 1. 

3. (Step 1) Compute 24 mod 2. Since 24 is even, this is zero, 
which we write down to the left of the 1: 

01 

4. (Step 2) Divide 24 by 2 and take the floor, which gives b24 ÷ 
2c = 12. Make 12 our new value, move our pencil to the left 
of the 0, and go back to step 1. 

5. (Step 1) Compute 12 mod 2. Since 12 is even, this is zero, 
which we write down: 

001 

6. (Step 2) Divide 12 by 2 and take the floor, which gives b12 ÷ 
2c = 6. Make 6 our new value, move our pencil to the left of 
the 0, and go back to step 1. 

7. (Step 1) Compute 6 mod 2. Since 6 is even, this is zero, which 
we write down: 

0001 

8. (Step 2) Divide 6 by 2 and take the floor, which gives b6÷2c = 
3. Make 3 our new value, move our pencil to the left of the 
0, and go back to step 1. 

9. (Step 1) Compute 3 mod 2. Since 3 is odd, this is one, which 
we write down: 
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10001 

10. (Step 2) Divide 3 by 2 and take the floor, which gives b3÷2c = 
1. This still isn’t zero, so make 1 our new value, move our 
pencil to the left of the 0, and go back to step 1. 

11. (Step 1) Compute 1 mod 2. Since 1 is odd, this is one, which 
we write down: 

110001 

12. (Step 2) Divide 1 by 2 and take the floor, which gives b1÷2c = 
0. We’re done. The final answer is 1100012. Double-checking 
our work, we verify that indeed one 32 plus one 16 plus one 
1 gives 49, which is what we started with. 

Converting to and from hex 

That was pretty tedious. But converting back and forth from bi-
nary to hex is a snap. That’s because 16 is exactly 24 , and so one 
hex digit is exactly equal to four binary digits. This isn’t the case 
with base 10, where one decimal digit is equal to three binary dig-
its. . . plus a little extra. This “not quite a whole number of digits” 
thing is what makes converting from decimal to binary (or decimal 
to hex, for that matter) so awkward. 

We most commonly deal with sets of eight bits at a time, which is 
called a byte. (This is the fundamental unit of storage on pretty 
much every computer on earth.) Suppose I had the following byte: 

100001102 

Because one hex digit is exactly equal to four bits, this byte is 
exactly equal to: 

8616 
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This is because the byte can be neatly split into two parts: 1000, 
which corresponds to the hex digit 8, and 0110, which corresponds 
to the hex digit 6. These two halves are called nibbles — one byte 
has two nibbles, and each nibble is one hex digit. At a glance, there-
fore, with no multiplying or adding, we can convert from binary to 
hex. 

Going the other direction is just as easy. If we have: 

3E16 

we just convert each hex digit into the corresponding nibble: 

001111102 

After you do this a while, you get to the point where you can 
instantly recognize which hex digit goes with which nibble value. 
Until then, though, here’s a handy table: 

nibble hex digit 
0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 8 
1001 9 
1010 A 
1011 B 
1100 C 
1101 D 
1110 E 
1111 F 

In case you’re wondering, yes this is worth memorizing. 
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Adding binary numbers 

Adding two binary numbers is the same as adding in decimal, hex-
adecimal, or any other base: you just have to know when to “roll 
over the odometer,” which in this case is almost instantly, since the 
highest value a bit can hold is 1! Let’s give it a shot: 

1110012 

+0110102 

?2 

A child could follow the rules: when we add two zeroes, we get zero. 
Adding a one to a zero gives one. Adding two ones gives zero, and 
a carry to the next significant digit. And adding two ones plus a 
carry gives a one and a carry. See if you can follow the flow: 

11 

1110012 

+0110102 

10100112 

Capacity 

How large a value can a byte store? There are 8 bits, and each 
one can independently have either of two values (0 or 1), so by the 
Fundamental Theorem of Counting, there are 28 different combi-
nations. This works out to 256, but we can’t actually store the 
number 256 in a byte if we’re using the bit pattern 000000002 (or 
0016) to represent zero. The highest value would be111111112 (or 
FF16), which is 25610. 

How do we store a number larger than that? Simply use more than 
one byte, of course. If we used two bytes of memory, and treated 
them as concatenated one after the other, that would give us 16 bits, 
allowing us to store up to the number 00000000000000002 = FFFF16 

= 65,53510. We’d call one of these bytes — the one representing 
the 20’s place up to the 27’s place — the least significant byte, 
and the other one — containing places 28 through 215 — the most 
significant byte. Extending to more than two bytes to accommodate 
even larger numbers is done in the obvious way. 
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Binary representation schemes 

That’s mostly all there is to it. But there’s one thing we haven’t 
discussed yet, and that’s negative numbers. We know how to rep-
resent any positive number (or zero) with an ordinary place value 
scheme. But how do we store a number like −5? 

There are three different schemes for treating negative numbers, 
each with its strengths and weaknesses. 

Unsigned 

The simplest scheme is called unsigned, and it simply means that 
we don’t allow negative numbers. For one byte, we have 256 dif-
ferent bit patterns at our disposal, and we might just choose to 
allocate them all to represent positive numbers, so as to get the 
widest range. This makes sense for, say, a C++ program variable 
called heightInInches which we know can never meaningfully be 
negative (no one has a negative height). 

The advantage of this scheme is simply that we can represent the 
greatest possible range of positive numbers, which is sometimes the 
goal. Each of the alternative schemes carves off a chunk of these 
available bit patterns and devotes them to representing negative 
numbers, leaving fewer left over for positive numbers. There’s no 
free lunch: you have to decide how you want to “spend” your avail-
able bit patterns depending on what values you need to represent. 

Sign-magnitude 

The sign-magnitude scheme is probably the first thing you’d 
think of to solve the negative number representation problem. We 
need to store the sign of the number somehow, and a sign is in-
herently a two-valued thing (either positive or negative), so why 
not peel off one of the bits and use it to represent the sign? The 
remaining bits can then be used in the ordinary way to represent 
the magnitude of the number. 

The way this is most often done is to take the left-most bit and 
use it as the sign bit. This bit now has no other meaning. It 



172 CHAPTER 7. NUMBERS 

can’t “double” as the 128’s place, because then there’d be no way 
to distinguish between, say, 129 and −129 (each would be repre-
sented with 10000001.) No, the sign bit must be considered “spent 
money,” and its expressive power cannot be reclaimed to also rep-
resent part of the magnitude. By convention, if the sign bit is 0 
this represents a positive number, and a sign bit of 1 represents 
a negative number. (That might seem counterintuitive, but hey, 
that’s the way it is.) 

So this number in sign-magnitude: 

00100110 

represents the decimal number 38. That’s because the sign bit 
(bolded, on the far left) is 0, which means the number is positive. 
The magnitude of the number is contained in the other 7 bits, which 
gives 32 + 4 + 2 = 38. This number, on the other hand: 

10100110 

represents −38. The magnitude is the same, but the sign bit is 1 
so this pattern now “means” a negative number. 

Clearly we have reduced our range of positive numbers in exchange 
for the ability to also store negatives. We have 7 bits of range 
instead of 8, so instead of 255, our highest possible value is merely 
127. On the other end, the lowest possible value is −127. 

If you have sharp eyes, you may have noticed a discrepancy in the 
counting. With the sign-magnitude approach, we can hold numbers 
in the range −127 to 127. But wait: that’s only 255 different 
values, not 256! Why did we lose one value of expressive power? 
The answer is that the sign-magnitude scheme has two ways of 
representing zero. The bit pattern 00000000 is obviously zero, but 
so is 10000000 (which you might call “negative zero.”) Using two 
different patterns to represent the same value is a little wasteful, 
but the situation is actually worse than that. Having to account 
for both patterns means that computer hardware using the sign-
magnitude scheme is inevitably more complicated. To compare two 
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bytes to see if they’re equal, you’d think we’d just compare each bit 
position, and if they were all the same, the bytes would be declared 
equal, otherwise no. Alas, this is no longer quite that simple. The 
two zero patterns must be considered numerically equal, so our 
digital logic now has to contain a special case. “To be equal, all the 
bits have to be the same. . . oh, but actually not if the right-most 
seven are all zeroes in both bytes. In that case, it doesn’t matter 
what the left-most bit contains.” Maddening. 

Two’s-complement 

This shortcoming in the sign-magnitude scheme is remedied with 
the two’s-complement scheme, which is the one actually used 
most often in practice. It’ll seem weird at first — certainly not as 
intuitive as the first two — but it leads to a critically important 
feature that we’ll look at shortly. 

First, the rules. To interpret a two’s-complement number, you: 

1. Look at the left-most bit (just like in sign-magnitude). If 
it’s a 0, you have a positive number. If it’s a 1, you have a 
negative number. 

2. If it’s a positive number, the other 7 bits give you the mag-
nitude (just like in sign-magnitude). 

3. If, however, it’s a negative number, then to discover the mag-
nitude of that negative number you must flip all the bits and 
add one. This will give you a positive number which is the 
absolute value of your negative number. 

Easy example: take the byte 00100110. The left-most bit is a 0, 
which means it’s a positive number, and as we discovered above, 
the remaining 7 bits give a magnitude of 38. So this is the number 
38. 

Harder example: take the byte 10100110. The left-most bit is a 1, 
which means it’s negative. Okay: negative what? How do we find 
the magnitude? Well, we “flip” all the bits (i.e., invert each one 
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from 0 to 1 or vice versa) to get: 

01011001 

and then add one to the result: 

1 

01011001 
+ 1 
01011010 

This black magic produces the value 010110102, which converts 
to 9010. This means that the original number, 10100110, 
corresponds to the value –90. 

“Flipping all the bits and adding one” is the cookbook procedure 
for taking the complement (negative) of a number in the two’s-
complement scheme. It works in reverse, too. Let’s start with 90 
this time and crank through the process again, making sure we get 
–90. 

Start with the binary representation of 9010: 

01011010 

Flip all the bits to get: 
10100101 

and finally add one to the result: 

1 

10100101 
+ 1 
10100110 

We get 10100110, which was precisely the number we originally 
began with, and which we have already determined represents –90. 

Now you may ask what we gain from all this. Surely this scheme 
is considerably more convoluted than the simple idea of reserving 
one bit as a sign bit, and treating the rest as a magnitude. But 
it turns out there is indeed a method to the madness. Strange as 



175 7.4. BINARY (BASE 2) 

it sounds, a two’s-complement representation scheme allows us to 
perform addition and subtraction with a single operation. 

In first grade (or so), you learned the procedure for adding multi-
digit numbers, which we’ve followed several times in this chap-
ter. It involves adding the digits right-to-left and possibly “carry-
ing.” Then in second grade (or so), you learned the procedure for 
subtracting multi-digit numbers. It involves subtracting the digits 
right-to-left and possibly “borrowing.” If you’re like me, you found 
adding easier than subtracting. It’s easy to just carry the one, but 
to borrow requires looking at the digit to the left, making sure 
that you can borrow from it (i.e., that it’s not already 0), borrow-
ing from further left until you actually find an available non-zero 
value, hoping the number on the bottom is actually less than the 
one on the top (because otherwise you have to switch the order 
and then add a negative sign to the result), and keeping all of that 
straight as you march down the line. 

Even if you didn’t find subtracting more difficult than adding, 
though, you can’t argue that it’s still a completely different al-
gorithm, with different rules to follow. In computer hardware, we 
have to implement different circuitry to perform each operation, 
which is more difficult, costly, error-prone, and power-draining. 

The wonderful thing about two’s-complement, however, is that with 
this scheme we actually never need to use the subtraction algorithm. 
If we want to subtract two numbers — say, 24 − 37 — we can 
instead take the complement of the second number and then add 
them. Instead of 24 − 37 we compute 24 + (−37). 

Let’s see it in action. Using conversion procedures, we can figure 
out that 2410 is: 

00011000 

and that positive 3710 is: 

00100101 

If we wanted to compute 24 + 37, we’d just add these. But instead 
we’re looking for 24 − 37, so we’ll take the complement of 37 to find 
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−37. Flip all the bits of 37: 

11011010 

and add one: 
11011010 
+ 1 
11011011 

and so now we’ve determined that in the two’s-complement scheme, 
−37 is represented by 110110112. 

We’re now ready to compute 24 + (−37): 

11 

00011000 ← this is 2410 

+11011011 ← this is −3710 

11110011 

So we have our two’s-complement answer, 11110011. What value 
does that correspond to? Well, the left-most bit is a 1, so it’s a 
negative number. To find out what it’s the negative of, flip all the 
bits and add one: 

00001100 ← flip the bits to get 
+ 1 ← add one 
00001101 

This is positive 13, which means the number we inverted to get it 
— 11110011 — must represent −13. And that is indeed the correct 
answer, for 24 − 37 = −13. 

One last word on two’s-complement: what is the range of numbers 
we can represent? It turns out to be -128 to 127. The highest value 
is 01111111, which is 127. You might think the lowest value would 
be represented as 11111111, but if you work it out, you’ll find that 
this is actually the number −1. The lowest number is actually the 
bit pattern 10000000, which is −128. 

Overflow 

One last sticky detail we need to cover has to do with overflow. 
When we add two numbers, there is the possibility that the result 
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will contain one more digit than the original numbers did. You’ve 
probably seen this on a hand calculator when you press “=” and get 
an “E” (for “error”) in the display. If there are only ten digits on 
your display, adding two ten-digit numbers will (sometimes) result 
in an eleven-digit number that your calculator can’t display, and 
it’s alerting you to that fact so you don’t misinterpret the result. 
Here, we might add two 8-bit quantities and end up with a 9-bit 
quantity that can’t fit in one byte. This situation is called overflow, 
and we need to detect when it occurs. 

The rules for detecting overflow are different depending on the 
scheme. For unsigned numbers, the rule is simple: if a 1 is car-
ried out from the MSB (far left-side), then we have overflow. So if 
I were to try to add 15510 and 10810: 

1111 

10011011 ← 15510 

+01101100 ← 10810 

1 00001111 

then I get a carry out left into the 9th digit. Since we can only hold 
eight digits in our result, we would get a nonsensical answer (1510), 
which we can detect as bogus because the carry out indicated over-
flow. 

Sign-magnitude works the same way, except that I have one fewer 
bit when I’m adding and storing results. (Instead of a byte’s worth 
of bits representing magnitude, the left-end bit has been reserved 
for a special purpose: indicating the number’s sign. Therefore, if I 
add the remaining 7-bit quantities and get a carry out left into the 
eighth digit, that would indicate overflow.) 

Now with two’s-complement, things are (predictably) not that easy. 
But it turns out they’re almost as easy. There’s still a simple rule 
to detect overflow, it’s just a different rule. The rule is: if the carry 
in to the last (left-most) bit is different than the carry out from 
the last bit, then we have overflow. 

Let’s try adding 10310 and 9510 in two’s-complement, two numbers 
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which fit in our -128 to 127 range, but whose sum will not: 

carry-in → 1111111 

01100111 ← 10310 

+ 01011111 ← 9510 

carry-out → 011000110 

The carry-in to the last bit was 1, but the carry-out was 0, so for 
two’s-complement this means we detected overflow. It’s a good 
thing, too, since 11000110 in two’s-complement represents −5710, 
which is certainly not 103 + 95. 

Essentially, if the carry-in is not equal to the carry-out, that means 
we added two positive numbers and came up with a negative num-
ber, or that we added two negatives and got a positive. Clearly 
this is an erroneous result, and the simple comparison tells us that. 
Just be careful to realize that the rule for detecting overflow de-
pends totally on the particular representation scheme we’re using. 
A carry-out of 1 always means overflow. . . in the unsigned scheme. 
For two’s-complement, we can easily get a carry-out of 1 with no 
error at all, provided the carry-in is also 1. 

“It’s all relative” 

Finally, if we come up for air out of all this mass of details, it’s worth 
emphasizing that there is no intrinsically “right” way to interpret 
a binary number. If I show you a bit pattern — say, 11000100 
— and ask you what value it represents, you can’t tell me without 
knowing how to interpret it. 

If I say, “oh, that’s an unsigned number,” then you’d treat each 
bit as a digit in a simple base 2 numbering scheme. You’d add 
27 + 26 + 22 to get 196, then respond, “ah, then that’s the number 
19610.” And you’d be right. 

But if I say, “oh, that’s a sign-magnitude number,” you’d first look 
at the leftmost bit, see that it’s a 1, and realize you have a negative 
number. Then you’d take the remaining seven bits and treat them 
as digits in a simple base 2 numbering scheme. You’d add 26 + 22 

to get 68, and then respond, “ah, then that’s the number −6810.” 
And you’d be right. 
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But then again, if I say, “oh, that’s a two’s-complement number,” 
you’d first look at the leftmost bit, see that it’s a 1, and realize 
you’re dealing with a negative number. What is it the negative of? 
You’d flip all the bits and add one to find out. This would give 
you 00111100, which you’d interpret as a base 2 number and get 
6010. You’d then respond, “ah, then that’s the number −6010.” 
And you’d be right. 

So what does 11000100 represent then?? Is it 196, −68, or −60? 
The answer is any of the three, depending on what representation 
scheme you’re using. None of the data in computers or information 
systems has intrinsic meaning: it all has to be interpreted according 
to the syntactic and semantic rules that we invent. In math and 
computer science, anything can be made to mean anything: after 
all, we invent the rules. 





Chapter 8 

Logic 

To a great extent, logic governs the way your mind works, even 
among so-called “irrational people.” If we want to capture logical 
processes and represent them in a computer program, we need a 
way to express these thoughts in a form suitable for automated 
reasoning. This is primarily why computer scientists study logic. 

Interestingly, the material in this chapter covers the very bottom 
and the very top of the technology stack. At the bottom, we have 
actual physical hardware that consists of circuits turning bits on 
and off. The rules that govern when we want to turn which bits 
on and off are based on “logic gates,” or tiny physical devices that 
implement the logical principles of this chapter on a micro scale. At 
the other end of the spectrum, we have highly abstract programs 
aiming towards “artificial intelligence.” These systems are centered 
around a “knowledge base” of accumulated facts, and regularly 
examine those known facts to make decisions and draw additional 
conclusions. What does a knowledge base consist of? You guessed 
it: logical statements that are described in this chapter. 

8.1 Propositional logic 

The simpler — but less powerful — of the two logic systems we’ll 
study is called propositional logic. It has this name because the 
core building block is the proposition. A proposition is simply a 

181 



182 CHAPTER 8. LOGIC 

statement that has a “truth value,” which means that it is either 
true or false. The statement “all plants are living beings” could 
be a proposition, as could “Barack Obama was the first African-
American President” and “Kim Kardashian will play the title role in 
the upcoming Batman Reborn.” By contrast, questions like “are you 
okay?” cannot be propositions, nor can commands like “hurry up 
and answer already!” or phrases like “Lynn’s newborn schnauzer,” 
because they are not statements that can be true or false. (Linguis-
tically speaking, propositions have to be in the indicative mood.) 

We normally use capital letters (what else?) to denote propositions, 
like: 

Let A be the proposition that UMW is in Virginia. 

Let B be the proposition that the Queen of England is male. 

Let C be the proposition that dogs are carnivores. 

Don’t forget that a proposition doesn’t have to be true in order to 
be a valid proposition (B is still a proposition, for example). It just 
matters that it is labeled and that it has the potential to be true 
or false. 

Propositions are considered atomic. This means that they are in-
divisible: to the logic system itself, or to a computer program, they 
are simply an opaque chunk of truth (or falsity) called “A” or what-
ever. When we humans read the description of A, we realize that 
it has to do with the location of a particular institution of higher 
education, and with the state of the union that it might reside (or 
not reside) in. All this is invisible to an artificially intelligent agent, 
however, which treats “A” as nothing more than a stand-in label 
for a statement that has no further discernible structure. 

So things are pretty boring so far. We can define and label propo-
sitions, but none of them have any connections to the others. We 
change that by introducing logical operators (also called logical 
connectives) with which we can build up compound constructions 
out of multiple propositions. The six connectives we’ll learn are: 
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∧ — “and” ¬ — “not” 
∨ — “or” ⇒ — “implies” (or “if. . . then . . . ”) 
⊕ — “xor” (exclusive “or”) ⇔ — “equiv” (equivalent) 

Just as the ordinary algebraic operators (+, -, etc.) can be used 
to join numbers and produce another number, and just as the set 
operators can be used to join sets and produce another set, the log-
ical operators can be used to join propositions and produce another 
proposition. The expression “34 + 59” produces the number 93. 
The expression “{X,Y}∪{Y,Z}” produces the set {X,Y,Z}. And 
the expression “A ∧ B” produces the value false, since although 
UMW is located in Virginia, the Queen is female. 

Let’s run through the six operators, some of which are intuitive and 
some of which are not: 

∧ (“and”) The proposition X∧Y is true when both X and Y are 
true propositions. “A∧C” represents the proposition “UMW 
is in Virginia and dogs are carnivores,” which has a truth 
value of true since both components are true. This opera-
tion is sometimes called a conjunction. Notice that the “∧” 
sign somewhat resembles the “∩” sign for set intersection. 
This is not an accident. An element is in the intersection 
of two sets if it is a member of the first and the second set. 
Hence mathematicians have chosen symbols which reinforce 
this connection. 

∨ (“or”) The proposition X∨Y is true when either X or Y (or 
both) are true propositions. “B∨C” represents the proposi-
tion “The Queen of England is male or dogs are carnivores,” 
which has a truth value of true since the second component is 
true. This operation is sometimes called a disjunction. The 
∨ looks somewhat like the “∪” sign for set union, since an el-
ement is in the union of two sets if it is an element of the first 
set or the second set (or both). This operator is sometimes 
called an “inclusive or” since it is true if both propositions 
are true. 
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⊕ (“xor”) The ⊕ operator is just like ∨ except that it’s exclusive: 
the proposition X⊕Y is true when either X or Y (but not 
both) are true propositions. “B∨C” and “B⊕C” are both 
true, but “A⊕C” is false, since UMW is in Virginia and dogs 
are carnivores. 

¬ (“not”) This operator is different from the others in that it’s 
unary, which means that it only operates on one proposition 
instead of two. All it does is flip the value from true to false 
(or vice versa.) The proposition “A” is true, but the propo-
sition “¬A” is false. “¬B,” on the other hand, is true. This 
operation is sometimes called a negation. 

⇒ (“implies”) Okay, now for the toughest one. We’re going to 
spend significant time thinking through this one carefully, be-
cause it’s both important (in some ways, the most important 
of the operators) and also potentially baffling. I’ve studied 
this stuff for years, and I still sometimes get stuck when try-
ing to figure out ⇒. 

If we say “X⇒Y,” we’re claiming that “if X is true, then Y 
is true.” Note carefully that we are not claiming that X itself 
is true. We’re simply asserting that if it’s true, then Y must 
necessarily also be true. We call the first part of a ⇒ proposi-
tion the premise, and the second part the conclusion. Here, 
X is the premise and Y the conclusion. 

So far, it seems easy. It gets tougher when you realize that 
X⇒Y is true whenever either X is false or Y is true (or both). 
For example, A⇒C is a true proposition, believe it or not. In 
English, it says “UMW being in Virginia implies that dogs are 
carnivores.” The proposition B⇒A is also true: “The Queen 
of England being male implies that UMW is in Virginia.” 
What possible sense can we make out of these nonsensical 
claims? 

The key to understanding it, for me at least, is twofold. First, 
remember that to a computer (or a logic system), there is no 
meaning to the propositions: they’re simply atomic building 
blocks, each of which is true or false. So the fact that to a 
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human, the content of the propositions might have nothing to 
do with each other — English Queens and dogs — is irrelevant 
to a computer: it just thinks indifferently in terms of “X” and 
“Y,” and has no idea what real-world entities any of this refers 
to. Second, think in terms of ruling out counterexamples. 
When I assert X⇒Y, what I’m saying is “it’s impossible for X 
to be true and Y false, because X’s truthfulness would imply 
Y’s truthfulness.” Just as when I assert X∨Y I’m promising 
that either X or Y is true (or both), when I assert X⇒Y I’m 
promising that either X is true or Y is false (or both). 

In this way, it starts to make sense when someone says, “Iowa 
being in the Southern hemisphere implies that Batman’s cape 
is red.” That assertion is like a promise: “if it turns out 
that Iowa is in the Southern hemisphere, then I guarantee 
Batman’s cape is red.” But since Iowa isn’t in the Southern 
hemisphere, all bets are off. The conclusion was conditional 
on the premise. 

The reason this operator is so important is that in artificial 
intelligence, the name of the game is concluding new facts 
from known existing facts, so that knowledge is increased. 
Every time a ’bot learns that X⇒Y is true, and then also 
learns that the premise (X) is true, it can conclude that the 
conclusion (Y) is true, even if it was never explicitly told that 
Y was true. This rule of logic is called modus ponens, and is 
the workhorse of automated knowledge bases. 

⇔ (“equiv”) Finally, the proposition X⇔Y is true whenever X 
and Y have the same value: they’re either both true, or both 
false. This can be seen as “implies in both directions,” since 
X⇔Y means “if X is true, then Y is true; and if Y is true, 
then X is true.” This operator is also the inverse of ⊕, since 
X⊕Y is true only if X and Y are different, and X⇔Y is true 
only if they’re the same. 

These operators, which each produce another proposition (called 
a compound proposition) from the proposition(s) they operate 
on, can be combined to form complex expressions. For instance: 
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• ¬B is the proposition that the Queen of England is not male. 
(This is true.) 

• A ∧ ¬B is the proposition that UMW is in Virginia and the 
Queen of England is not male. (This is also true.) 

• C ⊕ (A ∧ ¬ B) is the proposition that either dogs are car-
nivores or UMW is in Virginia and the Queen of England is 
not male. (This is false, because both halves of the xor are 
true.) 

• (C ⊕ (A ∧¬ B)) ⇒ ¬A is the proposition that if either dogs 
are carnivores or UMW resides in Virginia and the Queen of 
England is not male, then UMW must not reside in Virginia. 
(This is true, since dogs are carnivores and UMW resides 
in Virginia and the Queen of England is not male, so the 
left-hand side of the ⇒ is false, which means that the entire 
expression is true regardless of the truth value of the right-
hand side (which is also false, since UMW doesn’t not reside 
in Virginia.) 

• Etc. 

Truth tables 

Several times in this book, we’ve drawn the distinction between 
intension — the inner, conceptual meaning — and extension — 
the exhaustive list of examples. A set can have both an inten-
sion like “the prime numbers less than ten” and an extension like 
{2,3,5,7}. A relation can have an intension like “isDaughterOf ” and 
an extension like “{(Lisa,Homer), (Lisa,Marge), (Maggie,Homer), 
(Maggie,Marge)}.” So, too, with the logical connectives. When we 
say that the “∧” operator means “both propositions must be true,” 
we’re specifying the conceptual meaning of the “and” operator. An-
other way to describe it, however, would be to just list its value for 
all the possible inputs. 

Such an exhaustive list is called a truth table. We specify every 
possible combination of inputs, and list the output for each one of 
them. Here’s the truth table for “∧”: 
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X Y X∧Y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

We use “1” to represent true and “0” for false, just to make the table 
more compact. The “∧” operator works on two propositions, either 
of which can have a truth value or 0 or 1. There are therefore, by the 
Fundamental Theorem of Counting, four different combinations of 
inputs, and so our truth table has four rows. The right-most column 
shows the output for each of these sets of inputs. It indicates that 
X∧Y is 1 only when both inputs are 1, and 0 otherwise. Even if we 
didn’t grasp the simple concept that “∧” is supposed to represent 
the concept of “and,” we could just look up the value of X∧Y if we 
knew the truth values of X and Y. 

Sometimes we show more than one output in a truth table. For in-
stance, this truth table shows the values for the other five operators: 

X Y X∨Y X⊕Y ¬X X⇒Y X⇔Y 
0 0 0 0 1 1 1 
0 1 1 1 1 1 0 
1 0 1 1 0 0 0 
1 1 1 0 0 1 1 

Take a moment and look carefully through the entries in that table, 
and make sure you agree that this correctly represents the outputs 
for the five operators. (Note that “¬”, being a unary operator, only 
has X as an input, which means that the value of Y is effectively 
ignored for that column.) 

Now sometimes we have a more complex expression (like the (C ⊕ 
(A ∧¬B)) ⇒ ¬A example from above) and we want to know the 
truth value of the entire expression. Under what circumstances — 
i.e., for what truth values of A, B, and C — is that expression true? 
We can use truth tables to calculate this piece by piece. 
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Let’s work through that example in its entirety. First, we set up 
the inputs for our truth table: 

A B C 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

In this case, there are three inputs to the expression (A, B, and C) 
and so we  have 23, or eight, rows in the truth table. 

Now we work our way through the expression inside out, writing 
down the values of intermediate parts of the expression. We need 
to know the value of ¬B to figure some other things out, so let’s 
start with that one: 

A B C ¬B 
0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 0 
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Now we can compute A ∧¬B, a component of the expression: 

A B C ¬B A∧¬B 
0 0 0 1 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 1 0 0 
1 0 0 1 1 
1 0 1 1 1 
1 1 0 0 0 
1 1 1 0 0 

This produces a 1 only for rows where A is true and B is false. 
Knowing this allows us to compute the value of (C ⊕ (A ∧¬B)): 

A B C ¬B A∧¬B (C⊕(A∧¬B)) 
0 0 0 1 0 0 
0 0 1 1 0 1 
0 1 0 0 0 0 
0 1 1 0 0 1 
1 0 0 1 1 1 
1 0 1 1 1 0 
1 1 0 0 0 0 
1 1 1 0 0 1 

which is true only when the value of C is different than the value 
of (A ∧¬B). We’re almost there now. All we need is ¬A: 

A B C ¬B A∧¬B (C⊕(A∧¬B)) ¬A 
0 0 0 1 0 0 1 
0 0 1 1 0 1 1 
0 1 0 0 0 0 1 
0 1 1 0 0 1 1 
1 0 0 1 1 1 0 
1 0 1 1 1 0 0 
1 1 0 0 0 0 0 
1 1 1 0 0 1 0 
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and we can finally obtain our answer: 

A B C ¬B A∧¬B (C⊕(A∧¬B)) ¬A (C⊕(A∧¬B))⇒¬A 
0 0 0 1 0 0 1 1 
0 0 1 1 0 1 1 1 
0 1 0 0 0 0 1 1 
0 1 1 0 0 1 1 1 
1 0 0 1 1 1 0 0 
1 0 1 1 1 0 0 1 
1 1 0 0 0 0 0 1 
1 1 1 0 0 1 0 0 

That last step is the hardest one. We look at the third output 
column (C⊕(A∧¬B) and the fourth (¬A) and mark down a 1 for 
each row in which the third is 0 or the fourth is 1. (Review the 
truth table for the “⇒” operator if you have doubts about this.) 
The final result is that our complex expression is true for all possible 
values of A, B, and C, except when they have the values 1, 0, and 
0, or else 1, 1, and 1, respectively. In our original example, we 
know that UMW is in Virginia, the Queen is not male, and dogs 
are carnivores, so our input values are 1, 0, and 1 for A, B, and C. 
Therefore, for those inputs, this expression is true. 

Tautologies 

Let’s work through this process for a different example. Suppose 
I want to know under what circumstances the expression ¬Z ∧ (X 
⇔ Y) ∧ (X ⊕ Z) ⇒ (X ∧ ¬ Z) evaluates to true. When we follow 
the above procedure, it yields the following truth table: 
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X Y Z ¬Z X⇔Y ¬Z∧(X⇔Y) X⊕Z A1 (X∧¬Z) B1 

0 0 0 1 1 1 0 0 0 1 
0 0 1 0 1 0 1 0 0 1 
0 1 0 1 0 0 0 0 0 1 
0 1 1 0 0 0 1 0 0 1 
1 0 0 1 0 0 1 0 1 1 
1 0 1 0 0 0 0 0 0 1 
1 1 0 1 1 1 1 1 1 1 
1 1 1 0 1 0 0 0 0 1 

(If you’re looking for some practice, cranking through this example 
on your own and then comparing your answers to the above truth 
table isn’t a bad idea at all.) 

You’ll notice that the “answer” column has all 1’s. This means 
that the expression is always true, no matter what the values of 
the individual propositions are. Such an expression is called a tau-
tology: it’s always true. The word “tautology” has a negative 
connotation in regular English usage: it refers to a statement so 
obvious as to not tell you anything, like “all triangles have three 
sides,” or “the fatal overdose was deadly.” But in logic, tautologies 
are quite useful, since they represent reliable identities. 

The tautology above was a contrived example, and not useful in 
practice. Here are some important others, though: 

X ¬X X∨¬X 
0 1 1 
1 0 1 

Sometimes called the law of the excluded middle, this identity 
states that either a proposition or its negative will always be true. 
(There is no third option.) 

1Here, “A” stands for ¬Z∧(X⇔Y)∧(X⊕Z) and “B” is 
“¬Z∧(X⇔Y)∧(X⊕Y)⇒(X∧¬Z),” which were too long to fit in the table 
heading. 
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X Y X∨Y ¬(X∨Y) ¬X ¬Y ¬X∧¬Y ¬(X∨Y)⇔(¬X∧¬Y) 
0 0 0 1 1 1 1 1 
0 1 1 0 1 0 0 1 
1 0 1 0 0 1 0 1 
1 1 1 0 0 0 0 1 

This is one of De Morgan’s Laws, which we’ve seen previously 
with regards to sets (p. 21). Here is the other: 

X Y X∧Y ¬(X∧Y) ¬X ¬Y ¬X∨¬Y ¬(X∧Y)⇔(¬X∨¬Y) 
0 0 0 1 1 1 1 1 
0 1 0 1 1 0 1 1 
1 0 0 1 0 1 1 1 
1 1 1 0 0 0 0 1 

The first can be expressed as “the negation of the disjunction is 
equal to the conjunction of the negations,” and the second as “the 
negation of the conjunction is equal to the disjunction of the nega-
tions.” If that helps at all. 

One last identity is this one: 

X Y Z Y∨Z X∧(Y∨Z) X∧Y X∧Z (X∧Y)∨(X∧Z) A2 

0 0 0 0 0 0 0 0 1 
0 0 1 1 0 0 0 0 1 
0 1 0 1 0 0 0 0 1 
0 1 1 1 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 0 1 1 1 0 1 1 1 
1 1 0 1 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 

This is none other than the distributive law, which we also saw 
for set union and intersection (p. 20) and which you should also 
remember from introductory algebra: x · (y + z) = x · y + x · z. 

It’s interesting, actually, when you compare the distributive law 
from algebra to the distributive law for logic: 

x · (y + z) = x · y + x · z 

X ∧ (Y ∨ Z) ⇔ (X ∧ Y ) ∨ (X ∧ Z) 

2Here, “A” is X∧(Y∨Z)⇔(X∧Y)∨(X∧Z). 
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The “∧” operator is analogous to “·” (times), while “∨” corresponds 
to “+” (plus). In fact, if you look at the truth tables for these two 
operators again, you’ll see an uncanny resemblance: 

X Y 
0 0 
0 1 
1 0 
1 1 

X∧Y X∨Y 
0 0 
0 1 
0 1 
1 (1) 

Except for the (1) that I put in parentheses, this truth table is 
exactly what you’d get if you mathematically multiplied (∧) and 
added (∨) the inputs! At some level, logically “and-ing” is multi-
plying, while “or-ing” is adding. Fascinating. 

8.2 Predicate logic 

Propositional logic can represent a lot of things, but it turns out to 
be too limiting to be practically useful. And that has to do with the 
atomic nature of propositions. Every proposition is its own opaque 
chunk of truthhood or falsity, with no way to break it down into 
constituent parts. Suppose I wanted to claim that every state in 
the union had a governor. To state this in propositional logic, I’d 
have to create a brand new proposition for each state: 

Let G1 be the proposition that Alabama has a governor. 

Let G2 be the proposition that Alaska has a governor. 

Let G3 be the proposition that Arizona has a governor. 

. . . 

and then, finally, I could assert: 

G1 ∧ G2 ∧ G3 ∧ · · · ∧ G50. 

That’s a lot of work just to create a whole bunch of individual 
propositions that are essentially the same. What we need is some 
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kind of proposition template, with which we can “mint” new propo-
sitions of a similar form by plugging in new values. 

This is exactly what a predicate is, which forms the basis for 
predicate logic, or “first-order predicate logic,” to be more ex-
act.3 A predicate is a formula that yields a proposition for each 
value of its inputs. For instance, I can define a predicate called 
“HasGovernor” as follows: 

Let HasGovernor(x) be the proposition that x is a state that 
has a governor. 

Then I can assert: 

HasGovernor(Virginia) 

to state that Virginia has a governor. This mechanism alleviates 
the need to define fifty nearly-identical propositions. Instead, we 
define one predicate. 

If you’re a programmer, you can think of a predicate as a function 
that returns a boolean. Whether you’re a programmer or not, you 
can think of a predicate as a function (in the chapter 3 sense) 
mapping objects to propositions: 

HasGovernor : Ω → P, 

where P is the set of all propositions. Note that the domain of 
this function is Ω, the entire domain of discourse. This means that 
you can give any input at all to the predicate. For instance, we can 
assert: 

¬HasGovernor(mayonnaise) 

3Or, if you want to sound really nerdy, you can call it first-order predicate 
calculus, which is a synonym. 
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which is perfectly true.4 

You may recall the word “predicate” from your middle school gram-
mar class. Every sentence, remember, has a subject and a predicate. 
In “Billy jumps,” “Billy” is the subject, and “jumps” the predicate. 
In “The lonely boy ate spaghetti with gusto,” we have “the lonely 
boy” as the subject and “ate spaghetti with gusto” as the predi-
cate. Basically, a predicate is anything that can describe or affirm 
something about a subject. Imagine asserting “Jumps(Billy)” and 
“AteSpaghettiWithGusto(lonely boy).” 

A predicate can have more than one input. Suppose we define the 
predicate IsFanOf as follows: 

Let IsFanOf(x, y) be the proposition that x digs the music of 
rock band y. 

Then I can assert: 

IsFanOf(Stephen, Led Zeppelin) 

IsFanOf(Rachel, The Beatles) 

IsFanOf(Stephen, The Beatles) 

¬IsFanOf(Stephen, The Rolling Stones) 

We could even define TraveledToByModeInYear with a bunch 
of inputs: 

Let TraveledToByModeInYear(p, d, m, y) be the propo-
sition that person p traveled to destination d by mode m in year 
y. 

The following statements are then true: 

TraveledToByModeInYear(Stephen, Richmond, car, 2007) 

4By the way, when I say you can give any input at all to a predicate, I 
mean any individual element from the domain of discourse. I don’t mean that 
a set of elements can be an input. This limitation is why it’s called “first-
order” predicate logic. If you allow sets to be inputs to predicates, it’s called 
“second-order predicate logic,” and can get quite messy. 
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TraveledToByModeInYear(Rachel, Austria, plane, 2010) 

¬TraveledToByModeInYear(Johnny, Mars, spaceship, 1776) 

Defining multiple inputs gives us more precision in defining rela-
tionships. Imagine creating the predicate “AteWithAttitude” 
and then asserting: 

AteWithAttitude(lonely boy, spaghetti, gusto) 

¬AteWithAttitude(Johnny, broccoli, gusto) 

AteWithAttitude(Johnny, broccoli, trepidation) 

Predicates and relations 

The astute reader may have noticed that the IsFanOf predicate, 
above, seems awfully similar to an isFanOf relation defined between 
sets P (the set of people) and R (the set of rock bands), where 
isFanOf ⊆ P × R. In both cases, we have pairs of people/bands for 
which it’s true, and pairs for which it’s false. 

Indeed these concepts are identical. In fact, a relation can be de-
fined as the set of ordered pairs (or tuples) for which a predicate is 
true. Saying “IsFanOf(Rachel, The Beatles)” and “¬IsFanOf(Stephen, 
The Rolling Stones)” is really just another way of saying “Rachel 
isFanOf The Beatles” and “Stephen isFanOf The Rolling Stones.” 

Quantifiers 

One powerful feature of predicate logic is the ability to make grandiose 
statements about many things at once. Suppose we did want to 
claim that every state had a governor. How can we do it? 

We’ll add to our repertoire the notion of quantifiers. There are 
two kinds of quantifiers in predicate logic, the first of which is called 
the universal quantifier. It’s written “∀” and pronounced “for 
all.” Here’s an example: 

∀x HasGovernor(x). 
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This asserts that for every x, HasGovernor is true. Actually, 
this isn’t quite right, for although Michigan and California have 
governors, mayonnaise does not. To be precise, we should say: 

∀x ∈ S HasGovernor(x), 

where S is the set of all fifty states in the U.S. 

We can use a quantifier for any complex expression, not just a 
simple predicate. For instance, if H is the set of all humans, then: 

∀h ∈ H Male(h) ⊕ Female(h) 

states that every human is either male or female, but not both. 
Another (more common) way to write this is to dispense with sets 
and define another predicate Human. Then we can say: 

∀h Human(h) ⇒ Male(h) ⊕ Female(h). 

Think this through carefully. We’re now asserting that this expres-
sion is true for all objects, whether they be Brad Pitt, Lady Gaga, 
or a bowl of oatmeal. To see that it’s true for all three, let h first 
be equal to Brad Pitt. We substitute Brad Pitt for h and get: 

Human(Brad Pitt) ⇒ Male(Brad Pitt) ⊕ Female(Brad Pitt) 

true ⇒ true ⊕ false 

true ⇒ true 

true X 

Remember that “implies” (⇒) is true as long as the premise (left-
hand side) is false and/or the conclusion (right-hand side) is true. In 
this case, they’re both true, so we have a true end result. Something 
similar happens for Lady Gaga: 

Human(Lady Gaga) ⇒ Male(Lady Gaga) ⊕ Female(Lady Gaga) 

true ⇒ false ⊕ true 

true ⇒ true 

true X 
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So these two cases both result in true. But perhaps surprisingly, 
we also get true for oatmeal: 

Human(oatmeal) ⇒ Male(oatmeal) ⊕ Female(oatmeal) 

false ⇒ false ⊕ false 

false ⇒ false 

true X 

Whoa, how did true pop out of that? Simply because the premise 
was false, and so all bets were off. We effectively said “if a bowl 
of oatmeal is human, then it will either be male or female. But it’s 
not, so never mind.” Put another way, the bowl of oatmeal did not 
turn out to be a counterexample, and so we’re confident claiming 
that this expression is true “for all h”: ∀h. 

The other kind of quantifier is called the existential quantifier. 
As its name suggests, it asserts the existence of something. We 
write it “∃” and pronounce it “there exists.” For example, 

∃x HasGovernor(x) 

asserts that there is at least one state that has a governor. This 
doesn’t tell us how many states this is true for, and in fact despite 
their name, quantifiers really aren’t very good at “quantifying” 
things for us, at least numerically. As of 2008, the statement 

∃x President(x) ∧ African-American(x) 

is true, and always will be, no matter how many more African-
American U.S. presidents we have. Note that in compound expres-
sions like this, a variable (like x) always stands for a single en-
tity wherever it appears. For hundreds of years there have existed 
African-Americans, and there have existed Presidents, so the ex-
pression above would be ridiculously obvious if it meant only “there 
have been Presidents, and there have been African-Americans.” But 
the same variable x being used as inputs to both predicates is what 
seals the deal and makes it represent the much stronger statement 
“there is at least one individual who is personally both African-
American and President of the United States at the same time.” 
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It’s common practice to negate quantifiers, both universal and ex-
istential. As of 2012, the following statement is still true: 

¬∃p President(p) ∧ Female(p). 

This conveys that there does not exist a female president. As an-
other example, if one day Missouri overhauls its government struc-
ture and replaces it with a mobocracy, perhaps we’ll state: 

¬∀x HasGovernor(x). 

Interchanging quantifiers 

Some illuminating themes can be seen when we examine the re-
lationship that the two types of quantifiers have to each other. 
Consider this one first: 

∀x P (x) ⇔ ¬∃x ¬P (x), (8.1) 

where P is any predicate (or for that matter, any expression involv-
ing many predicates). That’s sensible. It states: “if P is true of all 
things, then there does not exist anything that it isn’t true for.” 
Three other equivalences come to light: 

¬∀x P (x) ⇔ ∃x ¬P (x) (8.2) 

∀x ¬P (x) ⇔ ¬∃x P (x) (8.3) 

¬∀x ¬P (x) ⇔ ∃x P (x) (8.4) 

In words, identity 8.2 says “if it’s not true for everything, then it 
must be false for something.” Identity 8.3 says “if it’s false for every-
thing, then there’s nothing it’s true for.” And identity 8.4 says “if 
it’s not false for everything, then it must be true for something.” All 
of these are eminently logical, I think you’ll agree. They also imply 
that there are nearly always multiple correct ways to state some-
thing. In our apocalyptic vision of Missouri, for example, we stated 
“¬∀x HasGovernor(x),” but we could just as well have stated 
“∃x ¬HasGovernor(x),” which amounts to the same thing. 
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Order matters 

When you’re facing an intimidating morass of ∀’s and ∃’s and ∨’s 
and ⇒’s and God knows what else, it’s easy to get lost in the sauce. 
But you have to be very careful to dissect the expression to find 
out what it means. Consider this one: 

∀x ∈ R∃y ∈ R x + 1 = y. (8.5) 

This statement is true. It says that for every single real number 
(call it x), it’s true that you can find some other number (call it 
y) that’s one greater than it. If you generate some examples it’s 
easy to see this is true. Suppose we have the real number x = 5. 
Is there some other number y that’s equal to x + 1? Of course, the 
number 6. What if x = −32.4? Is there a number y that satisfies 
this equation? Of course, y = −31.4. Obviously no matter what 
number x we choose, we can find the desired number y just by 
adding one. Hence this statement is true for all x, just like it says. 

What happens, though, if we innocently switch the order of the 
quantifiers? Let’s try asserting this: 

∃y ∈ R∀x ∈ R x + 1 = y. (8.6) 

Is this also true? Look carefully. It says “there exists some magic 
number y that has the following amazing property: no matter what 
value of x you choose, this y is one greater than x!” Obviously this 
is not true. There is no such number y. If I choose y = 13, that 
works great as long as I choose x = 12, but for any other choice of 
x, it’s dead in the water. 

The lesson learned here is that the order of quantifiers matters. 
You have to take each quantifier/variable pair in turn, and think to 
yourself, “okay, this statement is asserting that once I choose the 
first variable, the rest of the expression is true for that choice.” 

The value of precision 

This fluency with the basic syntax and meaning of predicate logic 
was our only goal in this chapter. There are all kinds of logical 
rules that can be applied to predicate logic statements in order to 
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deduce further statements, and you’ll learn about them when you 
study artificial intelligence later on. Most of them are formalized 
versions of common sense. “If you know A is true, and you know 
A⇒B is true, then you can conclude B is true.” Or “if you know 
X∧Y is false, and then you discover that Y is true, you can then 
conclude that X is false.” Etc. The power to produce new truth 
from existing truth is the hallmark of AI systems, and why this 
stuff really matters. 

If you can imagine a program doing this sort of automated rea-
soning, it will become clear why the precision of something like 
predicate logic — instead of the sloppiness of English — becomes 
important. English is a beautiful and poetic language, but its am-
biguity is notorious. For example, back in chapter 3 we used the 
phrase “some employee belongs to every department” when de-
scribing relations. Now consider that English sentence. What does 
“some employee belongs to every department” actually mean? Does 
it mean that there is some special employee who happens to hold 
membership in every department in the company? Or does it mean 
that no department is empty: all departments have at least one per-
son in them, for crying out loud? The English could mean either. 
In predicate logic, we’re either asserting: 

∃x Employee(x) ∧ ∀y BelongsTo(x, y) 

or 
∀y ∃x Employee(x) ∧ BelongsTo(x, y) 

These are two very different things. A human being would realize 
that it’s the second one the speaker means, drawing from a whole 
range of experience and common sense and context clues. But a ’bot 
has available none of these, and so it demands that the language 
clearly and unambiguously state exactly what’s meant. 

English is rife with these ambiguities, especially involving pronouns. 
“After John hit George he ran away.” What happened? Did John 
run away after striking George, fearing that George would retaliate? 
Or did George run away after getting hit, fearing additional abuse? 
It’s unclear what “he” refers to, so we can’t say from the sentence 
alone. 
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Here’s a funny one I’ll end with. Consider the sentence “He made 
her duck.” What is intended here? Did he reach out with his hand 
and forcefully push her head down out of the way of a screaming 
projectile? Or did he prepare a succulent dish of roasted fowl to 
celebrate her birthday? Oh, if the computer could only know. 



Chapter 9 

Proof 

We’ve seen a lot of pretty sights on our cool brisk walk. We’ve 
caught a glimpse of the simple elegance of sets and relations, the 
precision of probabilistic reasoning, the recursive structure of trees, 
the explosive nature of combinatorics, and much more. None of 
these things have we plumbed to the depths, but we’ve appreciated 
their beauty and taken note of where they stood along our blazed 
trail. You’ll remember this hike when you run into such concepts 
again and again in future computer science and math courses, and 
in your career beyond academics. 

Now we have one more stop to make before returning to the trail-
head, and that deals with the notion of proof. As we’ve studied 
these various mathematical entities, I’ve pointed out certain of their 
properties. A free tree has one more vertex than edge, for example. 
The cardinality of the union of two sets is at least as big as each 
of their individual unions. If you flip-all-the-bits-and-add-one in a 
two’s complement scheme, and then perform that flip-and-add op-
eration again, you’ll return to the original number. But with a few 
exceptions, we haven’t proven any of these things. I’ve just stated 
them, and you’ve taken them on faith. 

In order to establish reliable truth, of course, professional mathe-
maticians aren’t satisfied with unsubstantiated statements. They 
need to be convinced that the claims we make do truly hold, and 
provably so, in all circumstances. What they seek is a proof of a 

203 



204 CHAPTER 9. PROOF 

claim: an irrefutable sequence of logical steps that leads inescapably 
from our premises to our conclusion. There are several ways to con-
struct a convincing proof, and this chapter will highlight some of 
them. 

Most authors of discrete math texts, by the way, interweave the 
concept of proof throughout the entire book. I’m taking a radical 
departure by deferring this fundamental idea until the very end. 
Why did I make this choice? A couple of reasons. First, as I said 
at the very beginning, my target audience for this book is future 
practitioners, not theoretical researchers. I think most practicing 
computer scientists need fluency with the tools of discrete math, 
not the ability to devise new fundamental theorems about them. 
We mostly need to use, not to prove. The second reason is that I’ve 
found that interspersing proofs throughout the presentation often 
distracts the reader from the concepts at hand, since the focus shifts 
slightly from the concept being discussed (the function, the directed 
graph, what have you) to the proof about the concept. When the 
proof itself takes center stage, it forces the actual subject matter to 
share the limelight. And with technical material like this, we need 
all the light we can get. 

9.1 Proof concepts 

A proof is essentially a chain of reasoning, in which each step can 
be logically deduced from the ones that preceded it. It’s a way of 
putting your thought process on display so it can be scrutinized to 
make sure it holds water. Any step of your reasoning which was un-
warranted will be exposed, and perhaps reveal that the conclusion 
you thought was true isn’t necessarily dependable after all. 

Here’s an example from everyday life. I’m driving home from work 
one afternoon, and I believe that my wife and children will be gone 
when I arrive. I’ll be coming home to an empty house. 

Now why do I believe this? Well, if I unravel my reasoning, it goes 
like this. First, today is Wednesday. On Wednesday nights, my wife 
and children normally go to church for dinner and service. Second, 
my wife likes to call me ahead of time if this plan changes. My cell 



205 9.1. PROOF CONCEPTS 

phone is in my pocket, and has not rung, and so I conclude that 
the plan has not changed. I look at my watch, and it reads 5:17pm, 
which is after the time they normally leave, so I know I’m not going 
to catch them walking out the door. This is, roughly speaking, my 
thought process that justifies the conclusion that the house will be 
empty when I pull into the garage. 

Notice, however, that this prediction depends precariously on sev-
eral facts. What if I spaced out the day of the week, and this is 
actually Thursday? All bets are off. What if my cell phone battery 
has run out of charge? Then perhaps she did try to call me but 
couldn’t reach me. What if I set my watch wrong and it’s actually 
4:17pm? Etc. Just like a chain is only as strong as its weakest link, 
a whole proof falls apart if even one step isn’t reliable. 

Knowledge bases in artificial intelligence systems are designed to 
support these chains of reasoning. They contain statements ex-
pressed in formal logic that can be examined to deduce only the 
new facts that logically follow from the old. Suppose, for instance, 
that we had a knowledge base that currently contained the follow-
ing facts: 

1. A⇒C 

2. ¬(C∧D) 

3. (F∨¬E)⇒D 

4. A∨B 

These facts are stated in propositional logic, and we have no idea 
what any of the propositions really mean, but then neither does the 
computer, so hey. Fact #1 tells us that if proposition A (whatever 
that may mean) is true, then we know C is true as well. Fact #2 
tells us that we know C∧D is false, which means at least one of the 
two must be false. And so on. Large knowledge bases can contain 
thousands or even millions of such expressions. It’s a complete 
record of everything the system “knows.” 

Now suppose we learn an additional fact: ¬B. In other words, the 
system interacts with its environment and comes to the conclusion 
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that proposition B must be false. What else, if anything, can now 
be safely concluded from this? 

It turns out that we can now conclude that F is also false. How do 
we know this? Here’s how: 

1. Fact #4 says that either A or B (or both) is true. But we 
just discovered that B was false. So if it ain’t B, it must be 
A, and therefore we conclude that A must be true. (For 
the curious, this rule of common sense is called a “disjunctive 
syllogism.”) 

2. Now if A is true, we know that C must also be true, because 
fact #1 says that A implies C. So we conclude that C is true. 
(This one goes by the Latin phrase “modus ponens.”) 

3. Fact #2 says that C∧D must be false. But we just found 
out that C was true, so it must be D that’s false in order to 
make the conjunction false. So we conclude that D is false. 
(This is a disjunctive syllogism in disguise, combined with De 
Morgan’s law.) 

4. Finally, fact #3 tells us that if either F were true or E were 
false, then that would imply that D would be true. But we 
just found out that D is false. Therefore, neither F nor ¬E 
can be true. (This step combines “modus tollens” with “dis-
junction elimination.”) So we conclude that F must be false. 
Q.E.D. 

(The letters “Q.E.D.” at the end of a proof stand for a Latin phrase 
meaning, “we just proved what we set out to prove.” It’s kind of a 
way to flex your muscles as you announce that you’re done.) 

Not all proofs are performed in formal logic like this; some use 
algebra, set theory, or just plain English. But the idea is the same: 
start with what you know, procede to derive new knowledge using 
only legal operations, and end with your conclusion. 

The things we’re allowed to start with are called axioms (or pos-
tulates). An axiom is a presupposition or definition that is given 
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to be true, and so it is legal grounds from which to start. A proof 
can’t even get off the ground without axioms. For instance, in step 1 
of the above proof, we noted that either A or B must be true, and 
so if B isn’t true, then A must be. But we couldn’t have taken 
this step without knowing that disjunctive syllogism is a valid form 
of reasoning. It’s not important to know all the technical names 
of the rules that I included in parentheses. But it is important to 
see that we made use of an axiom of reasoning on every step, and 
that if any of those axioms were incorrect, it could lead to a faulty 
conclusion. 

When you create a valid proof, the result is a new bit of knowledge 
called a theorem which can be used in future proofs. Think of 
a theorem like a subroutine in programming: a separate bit of 
code that does a job and can be invoked at will in the course of 
doing other things. One theorem we learned in chapter 2 was the 
distributive property of sets; that is, that X ∩ (Y ∪ Z) = (X ∩ Y) 
∪ (X ∩ Z). This can be proven through the use of Venn diagrams, 
but once you’ve proven it, it’s accepted to be true, and can be used 
as a “given” in future proofs. 

9.2 Types of proof 

There are a number of accepted “styles” of doing proofs. Here are 
some important ones: 

Direct proof 

The examples we’ve used up to now have been direct proofs. 
This is where you start from what’s known and proceed directly by 
positive steps towards your conclusion. 

Direct proofs remind me of a game called “word ladders,” invented 
by Lewis Carroll, that you might have played as a child: 

WARM 
|||| 
???? 
|||| 
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COLD 

You start with one word (like WARM) and you have to come up with 
a sequence of words, each of which differs from the previous by only 
one letter, such that you eventually reach the ending word (like 
COLD). It’s sort of like feeling around in the dark: 

WARM 
WART 
WALT 
WILT 
WILD 
|||| 
.... 

This attempt seemed promising at first, but now it looks like it’s 
going nowhere. (“WOLD?” “CILD?” Hmm....) After starting over 
and playing around with it for a while, you might stumble upon: 

WARM 
WORM 
WORD 
CORD 
COLD 

This turned out to be a pretty direct path: for each step, the letter 
we changed was exactly what we needed it to be for the target 
word COLD. Sometimes, though, you have to meander away from 
the target a little bit to find a solution, like going from BLACK to 
WHITE: 

BLACK 
CLACK 
CRACK 
TRACK 
TRICK 
TRICE 
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TRITE 
WRITE 
WHITE 

Here, we had to temporarily change our first letter three different 
times — two of which seemingly brought us no nearer to WHITE — 
in order to successfully forge a path through the tangled forest. 

Knowing which direction to set out on is a matter of intuition plus 
trial and error. Given the axioms of any system (whether algebra, 
predicate logic, sets, etc.) there are an unfathomable number of 
different ways to proceed. The vast majority of them are bound to 
lead to dead ends. This is why a valid proof, when it is finished, 
is often an elegant and beautiful thing. It’s a thin braid of jewels 
glistening in the midst of a whole lot of mud. 

Indirect proof 

Also known as a proof by contradiction or reductio ad absur-
dum , the indirect proof starts in a completely opposite way. It 
says, “okay, I’m trying to prove X. Well, suppose for the sake of 
argument I assume that the opposite — not X — is true. Where 
would that lead me?” If you follow all the rules and it leads you to 
a contradiction, this tells you that the original assumption of ¬X 
must have been false. And this in turn proves that X must be true. 

We do this all the time in our thinking. Say you’re driving down 
the highway. How do you know that the alternator in your car 
engine is working? A direct proof would require that you open the 
hood and examine the part, testing to ensure it works properly. 
An indirect proof simply says, “well, suppose it weren’t working 
properly. Then, my car engine wouldn’t operate. But here I am, 
driving down the road, and the engine obviously does operate, so 
that tells me that the alternator must be working properly.” 

One of the most famous indirect proofs dates from Euclid’s Ele-
ments in 300 B.C. It proves that the square root of 2 is an irrational 
number, a great surprise to mathematicians at the time (most of 
whom doubted the very existence of irrational numbers). Remem-
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ber that an irrational number is one that cannot be expressed as 
the ratio of two integers, no matter what the integers are. 

Proving this directly seems pretty hard, since how do you prove that√ 
there aren’t any two integers whose ratio is 2, no matter how hard 
you looked? I mean, 534,927 and 378,250 are pretty dang close: 

!2 
534, 927 

= 2.000005. 
378, 250 

How could we possibly prove that no matter how hard we look, we 
can never find a pair that will give it to us exactly? 

√ 
One way is to assume that 2 is a rational number, and then prove√ 
that down that path lies madness. It goes like this. Suppose 2 
is rational, after all. That means that there must be two integers, √ 
call them a and b, whose ratio is exactly equal to 2: 

a √ 
= 2. 

b 

This, then, is the starting point for our indirect proof. We’re going 
to proceed under this assumption and see where it leads us. 

By the way, it’s clear that we could always reduce this fraction to 
lowest terms in case it’s not already. For instance, if a = 6 and 

6 3b = 4, then our fraction would be 4 , which is the same as 2 , so 
we could just say a = 3 and b = 2 and start over. Bottom line: if√ 
2 is rational, then we can find two integers a and b that have no 

common factor (if they do have a common factor, we’ll just divide 
it out of both of them and go with the new numbers) whose ratio√ 
is 2. 

Okay then. But now look what happens. Suppose we square both 
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sides of the equation (a perfectly legal thing to do): 

a √ 
= 2 !b 2 

a √ 
= ( 2)2 

b 

2a 
= 2 

b2 

2 a = 2b2 . 

Now if a2 equals 2 times something, then a2 is an even number. 
But a2 can’t be even unless a itself is even. (Think hard about 
that one.) This proves, then, that a is even. Very well. It must be 
equal to twice some other integer. Let’s call that c. We know that 
a = 2c, where c is another integer. Substitute that into the last 
equation and we get: 

(2c)2 = 2b2 

4c 2 = 2b2 

22c = b2 . 

So it looks like b2 must be an even number as well (since it’s equal 
to 2 times something), and therefore b is also even. But wait a 
minute. We started by saying that a and b had no common factor. 
And now we’ve determined that they’re both even numbers! This 
means they both have a factor of 2, which contradicts what we 
started with. The only thing we introduced that was questionable 
was the notion that there are two integers a and b whose ratio was √ 
equal to 2 to begin with. That must be the part that’s faulty √ 
then. Therefore, 2 is not an irrational number. Q.E.D. 

9.3 Proof by induction 

One of the most powerful methods of proof — and one of the most 
difficult to wrap your head around — is called mathematical in-
duction, or just “induction” for short. I like to call it “proof by 
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recursion,” because this is exactly what it is. Remember that we 
discussed recursion in the context of rooted trees (see p.5.2). A 
tree can be thought of as a node with several children — each of 
which are, in turn, trees. Each of them is the root node of a tree 
comprised of yet smaller trees, and so on and so forth. If you flip 
back to the left-hand side of Figure 5.16 on p.5.2, you’ll see that 
A is the root of one tree, and its two children, F and B, are roots 
of their own smaller trees in turn. If we were to traverse this tree 
in (say) pre-order, we’d visit the root, then visit the left and right 
subtrees in turn, treating each of them as their own tree. In this 
way we’ve broken up a larger problem (traversing the big tree) into 
smaller problems (traversing the smaller trees F and B). The A 
node has very little to do: it just visits itself, then defers all the 
rest of the work onto its children. This idea of pawning off most of 
the work onto smaller subproblems that you trust will work is key 
to the idea of inductive proofs. 

Mathematical induction is hard to wrap your head around because 
it feels like cheating. It seems like you never actually prove any-
thing: you defer all the work to someone else, and then declare 
victory. But the chain of reasoning, though delicate, is strong as 
iron. 

Casting the problem in the right form 

Let’s examine that chain. The first thing you have to be able to 
do is express the thing you’re trying to prove as a predicate about 
natural numbers. In other words, you need to form a predicate that 
has one input, which is a natural number. You’re setting yourself 
up to prove that the predicate is true for all natural numbers. (Or 
at least, all natural numbers of at least a certain size.) 

Suppose I want to prove that in the state of Virginia, all legal 
drinkers can vote. Then I could say “let Vote(n) be the proposition 
that a citizen of age n can vote.” P x x(x+1)If I want to prove an algebraic identity, like i = , then I i=1 2 
have to figure out which variable is the one that needs to vary across 
the natural numbers. In this case it’s the x variable in my equation. P n n(n+1)So I’ll say “let P(n) be the proposition that i=1 i = 2 .” (The 
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choice of the letter “n” isn’t important here — it just needs to be 
a letter that stands for a number. We could have chosen anything, 
even sticking with x. Later, we’ll use “k” as a stand-in, so keep 
your eyes peeled for that.) 

If I want to prove that the number of leaves in a perfect binary tree 
is one more than the number of internal nodes, I’d have to think 
about which quantity I can parameterize on (i.e., which quantity I 
can use for my n.) In this case, I’d probably use the height of the 
tree. I’d say “let P(n) be the proposition that the number of leaves 
in a perfect binary tree of height n is one more than the number of 
internal nodes.” 

These are just examples. In any case, you need to cast your proof in 
a form that allows you to make statements in terms of the natural 
numbers. Then you’re ready to begin the process of proving by 
induction that your predicate is true for all the natural numbers. 

Proof by induction: weak form 

There are actually two forms of induction, the weak form and the 
strong form. Let’s look at the weak form first. It says: 

1. If a predicate is true for a certain number, 

2. and its being true for some number would reliably mean that 
it’s also true for the next number (i.e., one number greater), 

3. then it’s true for all numbers. 

All you have to do is prove those two things, and you’ve effectively 
proven it for every case. 

The first step is called the base case, and the “certain number” 
we pick is normally either 0 or 1. The second step, called the in-
ductive step, is where all the trouble lies. You have to look really, 
really carefully at how it’s worded, above. We are not assum-
ing that the predicate is true for any old number! We are simply 
considering, if it’s true for any old number, whether that would 
necessarily imply it’s also true for the next number. In terms of 
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the predicate, we’re asking “does P(k) imply P(k + 1)?” In other 
words: “we aren’t sure if P(k) is true. But if it does — a big “if,” 
of course — would that logically demand that P(k + 1) was also 
true?” If you can prove that it does, then you’re in business. 

The whole thing is set up like a row of dominos. If one domino 
falls, then the one after it will also fall. And if that one falls, then 
so will the next. All that is needed is a base case to tip over the 
first domino, and by this trail of causality, all the dominos will fall. 

One terminology note: the entire second step is called the inductive 
step, but the first half of it (the part where we assume that P(k) 
is true) is called the inductive hypothesis. We never prove the 
inductive hypothesis; rather, we assume it, and then see if that 
allows us to deduce that P(k + 1) would also be true. 

Example 1 

Let’s work this out for the drinking/voting example. Let Vote(n) 
be the proposition that a citizen of age n can vote. Our proof goes 
like this: 

1. base case. Vote(21) is true, because a 21-year old is old 
enough to vote in the state and national elections. 

2. inductive step. Vote(k)⇒Vote(k+1). Why? Because 
nobody’s gettin’ any younger. If you can vote in a particular 
year, then you’re also old enough to vote next year. Unless 
the laws change, there will never be a case when someone old 
enough to vote this year turns out to be too young to vote 
next year. 

3. Wow. We’re done. Q.E.D. and all that. 

The only specific example we showed was true was Vote(21). And 
yet we managed to prove Vote(n) for any number n ≥ 21. 

Let’s look back at that inductive step, because that’s where all 
the action is. It’s crucial to understand what that step does not 
say. It doesn’t say “Vote(k) is true for some number k.” If it did, 
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then since k’s value is arbitrary at that point, we would basically 
be assuming the very thing we were supposed to prove, which is 
circular reasoning and extremely unconvincing. But that’s not what 
we did. Instead, we made the inductive hypothesis and said, “okay 
then, let’s assume for a second a 40-year-old can vote. We don’t 
know for sure, but let’s say she can. Now, if that’s indeed true, can 
a 41-year-old also vote? The answer is yes.” We might have said, 
“okay then, let’s assume for a second a 7-year-old can vote. We 
don’t know for sure, but let’s say she can. Now, if that’s indeed 
true, can an 8-year-old also vote? The answer is yes.” Note carefully 
that we did not say that 8-year-olds can vote! We merely said that 
if 7-year-olds can, why then 8-year-olds must be able to as well. 
Remember that X⇒Y is true if either X is false or Y is true (or 
both). In the 7/8-year-old example, the premise X turns out to be 
false, so this doesn’t rule out our implication. 

The result is a row of falling dominos, up to whatever number we 
wish. Say we want to verify that a 25-year-old can vote. Can we 
be sure? Well: 

1. If a 24-year-old can vote, then that would sure prove it (by 
the inductive step). 

2. So now we need to verify that a 24-year-old can vote. Can he? 
Well, if a 23-year-old can vote, then that would sure prove it 
(by the inductive step). 

3. Now everything hinges on whether a 23-year-old can vote. 
Can he? Well, if a 22-year-old can vote, then that would sure 
prove it (by the inductive step). 

4. So it comes down to whether a 22-year-old can vote. Can he? 
Well, if a 21-year-old can vote, then that would sure prove it 
(by the inductive step). 

5. And now we need to verify whether a 21-year-old can vote. 
Can he? Yes (by the base case). 
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Example 2 

A famous story tells of Carl Friedrich Gauss, perhaps the most 
brilliant mathematician of all time, getting in trouble one day as 
a schoolboy. As punishment, he was sentenced to tedious work: 
adding together all the numbers from 1 to 100. To his teacher’s 
astonishment, he came up with the correct answer in a moment, not 
because he was quick at adding integers, but because he recognized 
a trick. The first number on the list (1) and the last (100) add up 
to 101. So do the second number (2) and the second-to-last (99). 
So do 3 and 98, and so do 4 and 97, etc., all the way up to 50 and 
51. So really what you have here is 50 different sums of 101 each, so 
the answer is 50 × 101 = 5050. In general, if you add the numbers 

xfrom 1 to x, where x is any integer at all, you’ll get 2 sums of x +1 
x(x+1)each, so the answer will be 2 . 

Now, use mathematical induction to prove that Gauss was right P x x(x+1)(i.e., that i = ) for all numbers x.i=1 2 

First we have to cast our problem as a predicate about natural 
numbers. This is easy: we say “let P(n) be the proposition thatP n n(n+1)i = .”i=1 2 

Then, we satisfy the requirements of induction: 

1. base case. We prove that P(1) is true simply by plugging it 
in. Setting n = 1 we have 

1X 
? 1(1 + 1) 

i = 
2 

i=1 

? 1(2)
1 = 

2 
1 = 1 X 

2. inductive step. We now must prove that P(k)⇒P(k + 1). 
Put another way, we assume P(k) is true, and then use that 
assumption to prove that P(k + 1) is also true. 
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Let’s be crystal clear where we’re going with this. Assuming 
that P(k) is true means we can count on the fact that 

k(k + 1) 
1 + 2 + 3 + · · · + k = . 

2 

What we need to do, then, is prove that P(k + 1) is true, 
which amounts to proving that 

(k + 1)((k + 1) + 1) 
1 + 2 + 3 + · · · + (k + 1) = . 

2 

Very well. First we make the inductive hypothesis, which 
allows us to assume: 

k(k + 1) 
1 + 2 + 3 + · · · + k = . 

2 

The rest is just algebra. We add k + 1 to both sides of the 
equation, then multiply things out and factor it all together. 
Watch carefully: 

k(k + 1) 
1 + 2 + 3 + · · · + k + (k + 1) = + (k + 1) 

2 
1 1 

= k2 + k + k + 1 
2 2 
1 3 

= k2 + k + 1 
2 2 
k2 + 3k + 2 

= 
2 

(k + 1)(k + 2) 
= 

2 
(k + 1)((k + 1) + 1) 

= . X 
2 

Therefore, ∀n ≥ 1 P(n). 

Example 3 

Another algebra one. You learned in middle school that (ab)n = 
nbna . Prove this by mathematical induction. 

nbnSolution: Let P(n) be the proposition that (ab)n = a . 
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1. base case. We prove that P(1) is true simply by plugging it 
in. Setting n = 1 we have 

? 1b1(ab)1 == a 

ab = ab X 

2. inductive step. We now must prove that P(k)⇒P(k + 1). 
Put another way, we assume P(k) is true, and then use that 
assumption to prove that P(k + 1) is also true. 

Let’s be crystal clear where we’re going with this. Assuming 
that P(k) is true means we can count on the fact that 

kbk(ab)k = a . 

What we need to do, then, is prove that P(k + 1) is true, 
which amounts to proving that 

(ab)k+1 k+1bk+1 = a . 

Now we know by the very definition of exponents that: 

(ab)k+1 = ab(ab)k . 

Adding in our inductive hypothesis then lets us determine: 

(ab)k+1 = ab(ab)k 

kbk = ab · a 

= a · a k · b · bk 

k+1bk+1 = a X 

Therefore, ∀n ≥ 1 P(n). 
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Example 4 

Let’s switch gears and talk about structures. Prove that the number 
of leaves in a perfect binary tree is one more than the number of 
internal nodes. 

Solution: let P(n) be the proposition that a perfect binary tree of 
height n has one more leaf than internal node. That is, if lk is 
the number of leaves in a tree of height k, and ik is the number 
of internal nodes in a tree of height k, let P(n) be the proposition 
that ln = in + 1. 

1. base case. We prove that P(0) is true simply by inspection. 
If we have a tree of height 0, then it has only one node (the 
root). This sole node is a leaf, and is not an internal node. So 
this tree has 1 leaf, and 0 internal nodes, and so l0 = i0 + 1. 
X 

2. inductive step. We now must prove that P(k)⇒P(k + 1). 
Put another way, we assume P(k) is true, and then use that 
assumption to prove that P(k + 1) is also true. 

Let’s be crystal clear where we’re going with this. Assuming 
that P(k) is true means we can count on the fact that 

lk = ik + 1. 

What we need to do, then, is prove that P(k + 1) is true, 
which amounts to proving that 

lk+1 = ik+1 + 1. 

We begin by noting that the number of nodes on level k of 
a perfect binary tree is 2k . This is because the root is only 
one node, it has two children (giving 2 nodes on level 1), both 
those children have two children (giving 4 nodes on level 2), 
all four of those children have two children (giving 8 nodes on 

= 2k+1level 3), etc. Therefore, lk = 2
k , and lk+1 . 

Further, we observe that ik+1 = ik + lk: this is just how trees 
work. In words, suppose we have a perfect binary tree of 
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height k, and we add another level of nodes to it, making it a 
perfect binary tree of height k + 1. Then all of the first tree’s 
nodes (whether internal or leaves) become internal nodes of 
bigger tree. 

Combining these two facts, we have ik+1 = ik + 2
k . By the 

inductive hypothesis, we assume that 2k = ik +1, and we now 
must prove that 2k+1 = ik+1 + 1. Here goes: 

nk+1 = nk + 2
k (property of trees) 

nk+1 = 2
k − 1 + 2k (using inductive hypothesis) 

nk+1 + 1 = 2
k + 2k 

nk+1 + 1 = 2(2k) 

nk+1 + 1 = 2
k+1 . X 

Therefore, ∀n ≥ 0 P(n). 

Proof by induction: strong form 

Now sometimes we actually need to make a stronger assumption 
than just “the single proposition P(k) is true” in order to prove that 
P(k + 1) is true. In all the examples above, the k + 1 case flowed 
directly from the k case, and only the k case. But sometimes, you 
need to know that all the cases less than k + 1 are true in order to 
prove the k + 1 case. In those situations, we use the strong form 
of mathematical induction. It says: 

1. If a predicate is true for a certain number, 

2. and its being true for all numbers up to and including some 
number would reliably mean that it’s also true for the next 
number (i.e., one number greater), 

3. then it’s true for all numbers. 

It’s exactly the same as the weak form, except that the inductive 
hypothesis is stronger. Instead of having to prove 
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P(k)⇒P(k + 1), 

we get to prove 

(∀i ≤ k P(i))⇒P(k + 1). 

At first glance that might not seem any easier. But if you look 
carefully, you can see that we’ve added information to the left hand 
side of the implication. No longer do we need to rely on the single 
fact that P(5) is true in order to prove P(6). Now we get to take 
advantage of the fact that P(1), P(2), P(3), P(4), and P(5) are all 
known to be true when we try to prove P(6). And that can make 
a world of difference. 

Example 1 

The Fundamental Theorem of Arithmetic says that every natural 
number (greater than 2) is expressible as the product of one or more 
primes. For instance, 6 can be written as “2 · 3”, where 2 and 3 are 
primes. The number 7 is itself prime, and so can be written as “7.” 
The number 9,180 can be written as “2 · 2 · 3 · 3 · 3 · 5 · 17,” all of 
which are primes. How can we prove that this is always possible, 
no matter what the number? 

Let P(n) be the proposition that the number n can be expressed as 
a product of prime numbers. Our proof goes like this: 

1. base case. P(2) is true, since 2 can be written as “2,” and 2 
is a prime number. (Note we didn’t use 0 or 1 as our base case 
here, since actually neither of those numbers is expressible as 
a product of primes. Fun fact.) 

2. inductive step. We now must prove that (∀i ≤ k P(k))⇒P(k+ 
1). Put another way, we assume that P(i) is true for every 
number up to k, and then use that assumption to prove that 
P(k + 1) is true as well. 

Regarding the number k + 1, there are two possibilities: ei-
ther it’s prime, or it’s not. If it is, then we’re done, because 
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it can obviously be written as just itself, which is the product 
of one prime. (23 can be written as “23.”) But suppose it’s 
not. Then, it can be broken down as the product of two num-
bers, each less than itself. (21 can be broken down as 7 · 3; 
24 can be broken down as 6 · 4 or 12 · 2 or 8 · 3, take your 
pick.) Now we know nothing special about those two num-
bers. . . except the fact that the inductive hypothesis tells us 
that all numbers less than k + 1 are expressible as the prod-
uct of one or more primes! So these two numbers, whatever 
they may be, are expressible as the product of primes, and 
so when you multiply them together to get k + 1, you will 
have a longer string of primes multiplied together. Therefore, 
(∀i ≤ k P(k))⇒P(k + 1). 

Therefore, by the strong form of mathematical induction, ∀n ≥ 2 
P(n). 

You can see why we needed the strong form here. If we wanted to 
prove that 15 is expressible as the product of primes, knowing that 
14 is expressible as the product of primes doesn’t do us a lick of 
good. What we needed to know was that 5 and 3 were expressible 
in that way. In general, the strong form of induction is useful 
when you have to break something into smaller parts, but there’s 
no guarantee that the parts will be “one less” than the original. 
You only know that they’ll be smaller than the original. A similar 
example follows. 

Example 2 

Earlier (p.111) we stated that every free tree has one less edge than 
node. Prove it. 

Let P(n) be the proposition that a free tree with n nodes has n − 1 
edges. 

1. base case. P(1) is true, since a free tree with 1 node is just 
a single lonely node, and has no edges. 

2. inductive step. We now must prove that (∀i ≤ k P(k))⇒P(k+ 
1). Put another way, we assume that all trees smaller than 
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the one we’re looking at have one more node than edge, and 
then use that assumption to prove that the tree we’re looking 
at also has one more node than edge. 

We proceed as follows. Take any free tree with k + 1 nodes. 
Removing any edge gives you two free trees, each with k nodes 
or less. (Why? Well, if you remove any edge from a free tree, 
the nodes will no longer be connected, since a free tree is 
“minimally connected” as it is. And we can’t break it into 
more than two trees by removing a single edge, since the edge 
connects exactly two nodes and each group of nodes on the 
other side of the removed edge are still connected to each 
other.) 

Now the sum of the nodes in these two smaller trees is still 
k + 1. (This is because we haven’t removed any nodes from 
the original free tree — we’ve simply removed an edge.) If 
we let k1 be the number of nodes in the first tree, and k2 the 
number of nodes in the second, we have k1 + k2 = k + 1. 

Okay, but how many edges does the first tree have? Answer: 
k1 − 1. How do we know that? By the inductive hypothesis. 
We’re assuming that any tree smaller than k + 1 nodes has 
one less edge than node, and so we’re taking advantage of 
that (legal) assumption here. Similarly, the second tree has 
k2 − 1 edges. 

The total number of edges in these two trees is thus k1 − 1 + 
k2 − 1, or k1 + k2 − 2. Remember that k + 1 = k1 + k2 (no 
nodes removed), and so this is a total of k + 1 − 2 = k − 1 
edges. 

Bingo. Removing one edge from our original tree of k + 1 
nodes gave us a total of k − 1 edges. Therefore, that original 
tree must have had k edges. We have now proven that a tree 
of k + 1 nodes has k edges, assuming that all smaller trees 
also have one less edge than node. 

Therefore, by the strong form of mathematical induction, ∀n ≥ 1 
P(n). 



224 CHAPTER 9. PROOF 

9.4 Final word 

Finding proofs is an art. In some ways, it’s like programming: you 
have a set of building blocks, each one defined very precisely, and 
your goal is to figure out how to assemble those blocks into a struc-
ture that starts with only axioms and ends with your conclusion. 
It takes skill, patience, practice, and sometimes a little bit of luck. 

Many mathematicians spend years pursuing one doggedly difficult 
proof, like Appel and Haken who finally cracked the infamous four-
color map problem in 1976, or Andrew Wiles who solved Fermat’s 
Last Theorem in 1994. Some famous mathematical properties may 
never have proofs, such as Christian Goldbach’s 1742 conjecture 
that every even integer is the sum of two primes, or the most elusive 
and important question in computing theory: does P=NP? (Put 
very simply: does the class of problems where it’s easy to verify a 
solution once you have it but crazy hard to find one actually have 
an easy algorithm for finding them we just haven’t figured out yet? 
Most computer scientists think “no,” but despite a mind-boggling 
number of hours invested by the brightest minds in the world, no 
one has ever been able to prove it one way or the other.) 

Most practicing computer scientists spend time taking advantage of 
the known results about mathematical objects and structures, and 
rarely if ever have to construct a water-tight proof about them. 
For the more theoretically-minded student, however, who enjoys 
probing the basis behind the tools and speculating about additional 
properties that might exist, devising proofs is an essential skill that 
can also be very rewarding. 
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