
A Cool Brisk Walk
Through Discrete Mathematics

version 1.4

Stephen Davies, Ph.D.
Computer Science Department
University of Mary Washington

1

Copyright c 2019 Stephen Davies.

University of Mary Washington
Department of Computer Science
Trinkle Hall
1301 College Avenue
Fredericksburg, VA 22401

Permission is granted to copy, distribute, transmit and adapt this
work under a Creative Commons Attribution-ShareAlike 4.0 Inter-
national License:

http://creativecommons.org/licenses/by-sa/4.0/

The accompanying materials at www.allthemath.org are also un-
der this license.

If you are interested in distributing a commercial version of this
work, please contact the author at stephen@umw.edu.

The LATEXsource for this book is available from: https://github.
com/rockladyeagles/cool-brisk-walk.

Cover art copyright c 2014 Elizabeth M. Davies.

http://creativecommons.org/licenses/by-sa/4.0/
www.allthemath.org
https://github.com/rockladyeagles/cool-brisk-walk
https://github.com/rockladyeagles/cool-brisk-walk
mailto:stephen@umw.edu

Contents at a glance

Contents at a glance i

Preface iii

1 Meetup at the trailhead 1

2 Sets 7

3 Relations 35

4 Probability 59

5 Structures 85

6 Counting 133

7 Numbers 153

8 Logic 181

9 Proof 203

Also be sure to check out the forever-free-and-open-source instructional
videos that accompany this series, at www.allthemath.org!

i

www.allthemath.org

Preface

Discrete math is a popular book topic — start Googling around
and you’ll find a zillion different textbooks about it. Take a closer
look, and you’ll discover that most of these are pretty thick, dense
volumes packed with lots of equations and proofs. They’re prin-
cipled approaches, written by mathematicians and (seemingly) to
mathematicians. I speak with complete frankness when I say I’m
comforted to know that the human race is well covered in this area.
We need smart people who can derive complex expressions and
prove theorems from scratch, and I’m glad we have them.

Your average computer science practitioner, however, might be bet-
ter served by a different approach. There are elements to the dis-
crete math mindset that a budding software developer needs ex-
perience with. This is why discrete math is (properly, I believe)
part of the mandatory curriculum for most computer science un-
dergraduate programs. But for future programmers and engineers,
the emphasis should be different than it is for mathematicians and
researchers in computing theory. A practical computer scientist
mostly needs to be able to use these tools, not to derive them.
She needs familiarity, and practice, with the fundamental concepts
and the thought processes they involve. The number of times the
average software developer will need to construct a proof in graph
theory is probably near zero. But the times she’ll find it useful to
reason about probability, logic, or the properties of collections are
frequent.

I believe the majority of computer science students benefit most
from simply gaining an appreciation for the richness and rigor of

iii

iv PREFACE

this material, what it means, and how it impacts their discipline.
Becoming an expert theorem prover is not required, nor is deriving
closed-form expressions for the sizes of trees with esoteric proper-
ties. Basic fluency with each topic area, and an intuition about
when it can be applied, is the proper aim for most of those who
would go forward and build tomorrow’s technology.

To this end, the book in your hands is a quick guided tour of
introductory-level discrete mathematics. It’s like a cool, brisk walk
through a pretty forest. I point out the notable features of the
landscape and try to instill a sense of appreciation and even of awe.
I want the reader to get a feel for the lay of the land, and a little
exercise. If the student acquires the requisite vocabulary, gets some
practice playing with the toys, and learns to start thinking in terms
of the concepts here described, I will count it as a success.

Chapter 1

Meetup at the trailhead

Before we set out on our “cool, brisk walk,” let’s get oriented. What
is discrete mathematics, anyway? Why is it called that? What does
it encompass? And what is it good for?

Let’s take the two words of the subject, in reverse order. First,
math. When most people hear “math,” they think “numbers.”
After all, isn’t math the study of quantity? And isn’t that the class
where we first learned to count, add, and multiply?

Mathematics certainly has its root in the study of numbers —
specifically, the “natural numbers” (the integers from 1 on up) that
fascinated the ancient Greeks. Yet math is broader than this, al-
most to the point where numbers can be considered a special case
of something deeper. In this book, when we talk about trees, sets,
or formal logic, there might not be a number in sight.

Math is about abstract, conceptual objects that have prop-
erties, and the implications of those properties. An “object”
can be any kind of “thought material” that we can define and reason
about precisely. Much of math deals with questions like, “suppose
we defined a certain kind of thing that had certain attributes. What
would be the implications of this, if we reasoned it all the way out?”
The “thing” may or may not be numerical, whatever it turns out to
be. Like a number, however, it will be crisply defined, have certain
known aspects to it, and be capable of combining with other things
in some way.

1

2 CHAPTER 1. MEETUP AT THE TRAILHEAD

Fundamental to math is that it deals with the abstract. Abstract,
which is the opposite of concrete, essentially means something that
can’t be perceived with the senses. A computer chip is concrete:
you can touch it, you can see it. A number is not; nor is a function,
a binary tree, or a logical implication. The only way to perceive
these things is with the power of the mind. We will write expres-
sions and draw pictures of many of our mathematical structures in
order to help visualize them, and nearly everything we study will
have practical applications whereby the abstractness gets grounded
in concreteness for some useful purpose. But the underlying math-
ematical entity remains abstract and ethereal — only accessible
to the mind’s eye. We may use a pencil to form the figure “5”
on a piece of paper, but that is only a concrete manifestation of
the underlying concept of “five-ness.” Don’t mistake the picture or
the symbol for the thing itself, which always transcends any mere
physical representation.

The other word in the name of our subject is “discrete” (not to
be confused with “discreet,” which means something else entirely).
The best way to appreciate what discrete means is to contrast it
with its opposite, continuous. Consider the following list:

Discrete Continuous
whole numbers (Z) real numbers (R)

int double
digital analog
quantum continuum
counting measuring

number theory analysisR
Σ

d – dx

What do the left-hand entries have in common? They describe
things that are measured in crisp, distinct intervals, rather than
varying smoothly over a range. Discrete things jump suddenly from
position to position, with rigid precision. If you’re 5 feet tall, you
might some day grow to 5.3 feet; but though there might be 5

3

people in your family, there will never be 5.3 (although there could
be 6 someday).

The last couple of entries on this list are worth a brief comment.
They are math symbols, some of which you may be familiar with.R
On the right side — in the continuous realm — are and d

dx ,
which you’ll remember if you’ve taken calculus. They stand for
the two fundamental operations of integration and differentiation.
Integration, which can be thought of as finding “the area under
a curve,” is basically a way of adding up a whole infinite bunch
of numbers over some range. When you “integrate the function
x2 from 3 to 5,” you’re really adding up all the tiny, tiny little
vertical slivers that comprise the area from x = 3 on the left to
x = 5 on the right. Its corresponding entry in the left-column of
the table is Σ, which is just a short-hand for “sum up a bunch of
things.” Integration and summation are equivalent operations, it’s
just that when you integrate, you’re adding up all the (infinitely
many) slivers across the real-line continuum. When you sum, you’re
adding up a fixed sequence of entries, one at a time, like in a loop. R
Σ is just the discrete “version” of .

The same sort of relationship holds between ordinary subtraction
(“–”) and differentiation (d). If you’ve plotted a bunch of discretedx
points on x-y axes, and you want to find the slope between two of
them, you just subtract their y values and divide by the (x) distance
between them. If you have a smooth continuous function, on the
other hand, you use differentiation to find the slope at a point:
this is essentially subtracting the tiny tiny difference between two
supremely close points and then dividing by the distance between
them. Thus subtraction is just the discrete “version” of d

dx .

Don’t worry, you don’t need to have fully understood any of the
integration or differentiation stuff I just talked about, or even to
have taken calculus yet. I’m just trying to give you some feel for
what “discrete” means, and how the dichotomy between discrete
and continuous really runs through all of math and computer sci-
ence. In this book, we will mostly be focusing on discrete values
and structures, which turn out to be of more use in computer sci-
ence. That’s partially because as you probably know, computers

4 CHAPTER 1. MEETUP AT THE TRAILHEAD

themselves are discrete, and can only store and compute discrete
values. There can be many of them — megabytes, gigabytes, ter-
abytes — but each value stored is fundamentally comprised of bits,
each of which has a value of either 0 or 1. This is unlike the human
brain, by the way, whose neuronal synapses communicate based on
the continuous quantities of chemicals present in their axons. So I
guess “computer” and “brain” are another pair of entries we could
add to our discrete vs. continuous list.

There’s another reason, though, why discrete math is of more use
to computer scientists than continuous math is, beyond just the
bits-and-bytes thing. Simply put, computers operate algorithmi-
cally. They carry out programs in step-by-step, iterative fashion.
First do this, then do that, then move on to something else. This
mechanical execution, like the ticking of a clock, permeates every-
thing the computer can do, and everything we can tell it to do.
At a given moment in time, the computer has completed step 7,
but not step 8; it has accumulated 38 values, but not yet 39; its
database has exactly 15 entries in it, no more and no less; it knows
that after accepting this friend request, there will be exactly 553
people in your set of friends. The whole paradigm behind reasoning
about computers and their programs is discrete, and that’s why we
computer scientists find different problems worth thinking about
than most of the world did a hundred years ago.

But it’s still math. It’s just discrete math. There’s a lot to come,
so limber up and let me know when you’re ready to hit the road.

1.1 Exercises

Use an index card or a piece of paper folded lengthwise, and cover
up the right-hand column of the exercises below. Read each exercise
in the left-hand column, answer it in your mind, then slide the index
card down to reveal the answer and see if you’re right! For every
exercise you missed, figure out why you missed it before moving on.

5 1.1. EXERCISES

6. If

1. What’s the opposite
of concrete?

Abstract.

2. What’s the opposite
of discrete?

Continuous.

3. Consider a quantity
of water in a glass.
Would you call it ab-
stract, or concrete?
Discrete, or continu-
ous?

Concrete, since it’s a real entity you can ex-
perience with the senses. Continuous, since
it could be any number of ounces (or liters,
or tablespoons, or whatever). The amount
of water certainly doesn’t have to be an in-
teger. (Food for thought: since all matter
is ultimately comprised of atoms, are even
substances like water discrete?)

4. Consider the number
27. Would you call it
abstract, or concrete?
Discrete, or continu-
ous?

Abstract, since you can’t see or touch
or smell “twenty-seven.” Probably discrete,
since it’s an integer, and when we think of
whole numbers we think “discrete.” (Food
for thought: in real life, how would you know
whether I meant the integer “27” or the dec-
imal number “27.0?” And does it matter?)

5. Consider a bit in a
computer’s memory.
Would you call it ab-
stract, or concrete?
Discrete, or continu-
ous?

Clearly it’s discrete. Abstract vs. concrete,
though, is a little tricky. If we’re talking
about the actual transistor and capacitor
that’s physically present in the hardware,
holding a tiny charge in some little chip,
then it’s concrete. But if we’re talking about
the value “1” that is conceptually part of the
computer’s currently executing state, then
it’s really abstract just like 27 was. In this
book, we’ll always be talking about bits in
this second, abstract sense.

math isn’t just
about numbers, what
else is it about?

Any kind of abstract object that has prop-
erties we can reason about.

Chapter 2

Sets

The place from which we’ll start our walk is a body of mathematics
called “set theory.” Set theory has an amazing property: it’s so
simple and applicable that almost all the rest of mathematics can
be based on it! This is all the more remarkable because set theory
itself came along pretty late in the game (as things go) — it was
singlehandedly invented by one brilliant man, Georg Cantor, in the
1870’s. That may seem like a long time ago, but consider that
by the time Cantor was born, mankind had already accumulated
an immense wealth of mathematical knowledge: everything from
geometry to algebra to calculus to prime numbers. Set theory was
so elegant and universal, though, that after it was invented, nearly
everything in math was redefined from the ground up to be couched
in the language of sets. It turns out that this simple tool is an
amazingly powerful way to reason about mathematical concepts of
all flavors. Thus everything else in this book stands on set theory
as a foundation.

Cantor, by the way, went insane as he tried to extend set theory to
fully encompass the concept of infinity. Don’t let that happen to
you.

7

8 CHAPTER 2. SETS

2.1 The idea of a set

A set is a selection of certain things out of a (normally larger)
group. When we talk about a set, we’re declaring that certain
specific items from that group are in the set, and certain items are
not in the set. There’s no shades of gray: every element is either
in or out.

For instance, maybe the overall group I’m considering is my family,
which consists of five people: Dad, Mom, Lizzy, T.J., and Johnny.
We could define one set — call it A — that contains Dad and Lizzy,
but not the other three. Another set B might have Lizzy, T.J., and
Johnny in it, but not the two parents. The set C might have Dad
and only Dad in it. The set D might have all five Davieses, and
the set E might have nobody at all. Etc. You can see that every
set is just a way of specifying which elements are in and which are
out.

Normally a set will be based on some property of its members,
rather than just being some random assortment of elements. That’s
what makes it worth thinking about. For example, the set P (for
“parents”) might be “all the Davieses who are parents”: this set
would contain Dad and Mom, and no one else. The set F (for
“female”) might be declared as the female members, and contain
Mom and Lizzy. The set H (for “humans”) would contain all five
elements of the group. And so on.

As with most of math, it turns out to be useful to define symbols for
these concepts, because then we can talk about them more precisely
and concisely. We normally list the members of a set using curly
braces, like this:

A = { Dad, Lizzy }

or

B = { Lizzy, T.J., Johnny }

Note that it doesn’t matter what order you list the members in.
The set F of females contains Mom and Lizzy, but it’s not like
Mom is the “first” female or anything. That doesn’t even make
any sense. There is no “first.” A set’s members are all equally

9 2.1. THE IDEA OF A SET

members. So P is the same whether we write it like this:

P = { Dad, Mom }

or this:
P = { Mom, Dad }.

Those are just two different ways of writing the same thing.

The set E that had nobody in it can be written like this, of course:

E = { }

but we sometimes use this special symbol instead:

E = ∅.

However you write it, this kind of set (one that has no elements) is
referred to as an empty set.

The set H, above, contained all the members of the group under
consideration. Sometimes we’ll refer to “the group under consider-
ation” as the “domain of discourse.” It too is a set, and we usually
use the symbol Ω to refer to it.1 So in this case,

Ω = { Mom, Johnny, T.J., Dad, Lizzy }.

Another symbol we’ll use a lot is “∈”, which means “is a member
of.” Since Lizzy is a female, we can write:

Lizzy ∈ F

to show that Lizzy is a member of the F set. Conversely, we write:

T.J. ∈/ F

to show that T.J. is not.

As an aside, I mentioned that every item is either in, or not in, a
set: there are no shades of gray. Interestingly, researchers have de-
veloped another body of mathematics called (I kid you not) “fuzzy

1Some authors use the symbol U for this, and call it the “universal set.”

10 CHAPTER 2. SETS

set theory.” Fuzzy sets change this membership assumption: items
can indeed be “partially in” a set. One could declare, for instance,
that Dad is “10% female,” which means he’s only 10% in the F set.
That might not make much sense for gender, but you can imagine
that if we defined a set T of “the tall people,” such a notion might
be useful. At any rate, this example illustrates a larger principle
which is important to understand: in math, things are the way they
are simply because we’ve decided it’s useful to think of them that
way. If we decide there’s a different useful way to think about them,
we can define new assumptions and proceed according to new rules.
It doesn’t make any sense to say “sets are (or aren’t) really fuzzy”:
because there is no “really.” All mathematics proceeds from what-
ever mathematicians have decided is useful to define, and any of it
can be changed at any time if we see fit.

2.2 Defining sets

There are two ways to define a set: extensionally and intension-
ally2 . I’m not saying there are two kinds of sets: rather, there are
simply two ways to specify a set.

To define a set extensionally is to list its actual members. That’s
what we did when we said P = { Dad, Mom }, above. In this case,
we’re not giving any “meaning” to the set; we’re just mechanically
spelling out what’s in it. The elements Dad and Mom are called
the extension of the set P .

The other way to specify a set is intensionally, which means to
describe its meaning. Another way to think of this is specifying a
rule by which it can be determined whether or not a given element is
in the set. If I say “Let P be the set of all parents,” I am defining
P intensionally. I haven’t explicitly said which specific elements
of the set are in P . I’ve just given the meaning of the set, from
which you can figure out the extension. We call “parent-ness” the
intension of P .

2Spelling nit: “intensionally” has an ‘s’ in it. “Intentionally,” meaning
“deliberately,” is a completely different word.

11 2.2. DEFINING SETS

Note that two sets with different intensions might nevertheless have
the same extension. Suppose O is “the set of all people over 25
years old” and R is “the set of all people who wear wedding rings.”
If our Ω is the Davies family, then O and R have the same ex-
tension (namely, Mom and Dad). They have different intensions,
though: conceptually speaking, they’re describing different things.
One could imagine a world in which older people don’t all wear wed-
ding rings, or one in which some younger people do. Within the
domain of discourse of the Davies family, however, the extensions
happen to coincide.

Fact: we say two sets are equal if they have the same extension.
This might seem unfair to intensionality, but that’s the way it is.
So it is totally legit to write:

O = R

since by the definition of set equality, they are in fact equal. I
thought this was weird at first, but it’s really no weirder than saying
“the number of years the Civil War lasted = Brett Favre’s jersey
number when he played for the Packers.” The things on the left
and right side of that equals sign refer conceptually to two very
different things, but that doesn’t stop them from both having the
value 4, and thus being equal.

By the way, we sometimes use the curly brace notation in combi-
nation with a colon to define a set intensionally. Consider this:

M = { k : k is between 1 and 20, and a multiple of 3 }.

When you reach a colon, pronounce it as “such that.” So this says
“M is the set of all numbers k such that k is between 1 and 20, and
a multiple of 3.” (There’s nothing special about k, here; I could
have picked any letter.) This is an intensional definition, since we
haven’t listed the specific numbers in the set, but rather given a
rule for finding them. Another way to specify this set would be to
write

M = { 3, 6, 9, 12, 15, 18 }

which is an extensional definition of the same set.

12 CHAPTER 2. SETS

Interesting thought experiment: what happens if you enlarge the
intension of a set by adding conditions to it? Answer: increasing
the intension decreases the extension. For example, suppose M is
initially defined as the set of all males (in the Davies family). Now
suppose I decide to add to that intension by making it the set of
all adult males. By adding to the intension, I have now reduced
the extension from { Dad, T.J., Johnny } to just { Dad }. The
reverse is true as well: trimming down the intension by removing
conditions effectively increases the extension of the set. Changing
“all male persons” to just “all persons” includes Mom and Lizzy in
the mix.

2.3 Finite and infinite sets

Sets can have an infinite number of members. That doesn’t make
sense for the Davies family example, but for other things it does,
of course, like:

I = { k : k is a multiple of 3 }.

Obviously there are infinitely many multiples of 3, and so I has
an unlimited number of members. Not surprisingly, we call I an
infinite set. More surprisingly, it turns out that there are different
sizes of infinite sets, and hence different kinds of infinity. For in-
stance, even though there are infinitely many whole numbers, and
also infinitely many real (decimal) numbers, there are nevertheless
more real numbers than whole numbers. This is the thing that
drove Cantor insane, so we won’t discuss it more here. For now,
just realize that every set is either finite or infinite.

You might think, by the way, that there’s no way to define an
infinite set extensionally, since that would require infinite paper.
This isn’t true, though, if we creatively use an ellipsis:

I = { 3, 6, 9, 12, 15, . . . }

This is an extensional definition of I, since we’re explicitly listing
all the members. It could be argued, though, that it’s really in-
tensional, since the interpretation of “. . . ” requires the reader to

13 2.4. SETS ARE NOT ARRAYS

figure out the rule and mentally apply it to all remaining numbers.
Perhaps in reality we are giving an intensional definition, cloaked
in an extensional-looking list of members. I’m on the fence here.

2.4 Sets are not arrays

If you’ve done some computer programming, you might see a re-
semblance between sets and the collections of items often used in
a program: arrays, perhaps, or linked lists. To be sure, there are
some similarities. But there are also some very important differ-
ences, which must not be overlooked:

• No order. As previously mentioned, there is no order to the
members of a set. “{Dad, Mom}” is the same set as “{Mom,
Dad}”. In a computer program, of course, most arrays or lists
have first, second, and last elements, and an index number
assigned to each.

• No duplicates. Suppose M is the set of all males. What
would it possibly mean to say M = {T.J., T.J., Johnny}?
Would that mean that “T.J. is twice the man that Johnny
is”? This is obviously nonsensical. The set M is based on a
property: maleness. Each element of Ω is either male, or it
isn’t. It can’t be “male three times.” Again, in an array or
linked list, you could certainly have more than one copy of
the same item in different positions.

• Infinite sets. ’Nuff said. I’ve never seen an array with in-
finitely many elements, and neither will you.

• Untyped. Most of the time, an array or other collection in a
computer program contains elements of only a single type: it’s
an array of integers, or a linked list of Customer objects, for
example. This is important because the program often needs
to treat all elements in the collection the same way. Perhaps
it needs to loop over the array to add up all the numbers,
or iterate through a customer list and search for customers
who have not placed an order in the last six months. The

14 CHAPTER 2. SETS

program would run into problems if it tried to add a string of
text to its cumulative total, or encountered a Product object
in the middle of its list of Customers. Sets, though, can be
heterogeneous, meaning they can contain different kinds of
things. The Davies family example had all human beings, but
nothing stops me from creating a set X = { Jack Nicholson,
Kim Kardashian, Universal Studios, 5786, F }.
I don’t press this point too hard for a couple of reasons. First,
most programming languages do allow heterogeneous collec-
tions of some sort, even if they’re not the most natural thing
to express. In Java, you can define an ArrayList as a non-
generic so that it simply holds items of class “Object.” In C,
you can have an array of void *’s — pointers to some un-
specified type — which allows your array to point to different
kinds of things. Unless it’s a loosely-typed language, though
(like Perl or JavaScript), it sort of feels like you’re bending
over backwards to do this. The other reason I make this dis-
tinction lightly is that when we’re dealing with sets, we often
do find it useful to deal with things of only one type, and so
our Ω ends up being homogeneous anyway.

Perhaps the biggest thing to remember here is that a set is a purely
abstract concept, whereas an array is a concrete, tangible, explicit
list. When we talk about sets, we’re reasoning in general about
large conceptual things, whereas when we deal with arrays, we’re
normally iterating through them for some specific purpose. You
can’t iterate through a set very easily because (1) there’s no order
to the members, and (2) there might well be infinitely many of them
anyway.

2.5 Sets are not ordered pairs (or tuples)

You’ll remember from high school algebra the notion of an ordered
pair (x, y). We dealt with those when we wanted to specify a point
to plot on a graph: the first coordinate gave the distance from
the origin on the x-axis, and the second coordinate on the y-axis.
Clearly an ordered pair is not a set, because as the name implies it is

15 2.6. SETS OF SETS

ordered: (3, −4) 6= (−4, 3). For this reason, we’ll be very careful to
use curly braces to denote sets, and parentheses to denote ordered
pairs.

By the way, although the word “coordinate” is often used to de-
scribe the elements of an ordered pair, that’s really a geometry-
centric word that implies a visual plot of some kind. Normally we
won’t be plotting elements like that, but we will still have use to
deal with ordered pairs. I’ll just call the constituent parts “ele-
ments” to make it more general.

Three-dimensional points need ordered triples (x, y, z), and it
doesn’t take a rocket scientist to deduce that we could extend this
to any number of elements. The question is what to call them,
and you do sort of sound like a rocket scientist (or other generic
nerd) when you say tuple. (Some people rhyme this word with
“Drupal,” and others with “couple,” by the way, and there seems
to be no consensus). If you have an ordered-pair-type thing with
5 elements, therefore, it’s a 5-tuple (or a quintuple). If it has 117
elements, it’s a 117-tuple, and there’s really nothing else to call
it. The general term (if we don’t know or want to specify how
many elements) is n-tuple. In any case, it’s an ordered sequence
of elements that may contain duplicates, so it’s very different than
a set.

2.6 Sets of sets

Sets are heterogeneous — a single set can contain four universities,
seven integers, and an ahi tuna — and so it might occur to you
that they can contain other sets as well. This is indeed true, but
let me issue a stern warning: you can get in deep water very quickly
when you start thinking about “sets of sets.” In 1901, in fact, the
philosopher Bertrand Russell pointed out that this idea can lead
to unresolvable contradictions unless you put some constraints on
it. What became known as “Russell’s Paradox” famously goes as
follows: consider the set R of all sets that do not have themselves

16 CHAPTER 2. SETS

 as members3. Now is R a member of itself, or isn’t it? Either way
you answer turns out to be wrong (try it!) which means that this
whole setup must be flawed at some level.

The good news is that as long as you don’t deal with this kind of
self-referential loop (“containing yourself as a member”) then it’s
pretty safe to try at home. Consider this set:

V = { 3, 5, { 5, 4 }, 2 }.

This set has four (not five) members. Three of V ’s members are
integers: 2, 3, and 5. The other one is a set (with no name given).
That other set, by the way, has two members of its own: 4 and 5.
If you were asked, “is 4 ∈ V ”? the answer would be no.

As a corollary to this, there’s a difference between

∅

and
{ ∅ }.

The former is a set with no elements. The latter is a set with one
element: and that element just happens to be a set with nothing
in it.

2.7 Cardinality

When we talk about the number of elements in a set, we use the
word cardinality. You’d think we could just call it the “size” of
the set, but mathematicians sometimes like words that sound cool.
The cardinality of M (the set of males, where the Davies family is
the domain of discourse) is 3, because there are three elements in
it. The cardinality of the empty set ∅ is 0. The cardinality of the
set of all integers is ∞. Simple as that.

3For instance, the set Z of all zebras is a member of R, since Z itself is a
set (not a zebra) and so Z ∈/ Z. The set S, on the other hand, defined as “the
set of all sets mentioned in this book,” is not a member of R, since S contains
itself as a member.

17 2.8. SOME SPECIAL SETS

The notation we use for cardinality is vertical bars, like with abso-
lute value. So we write: |M | = 3.

To restate the example immediately above, |∅| = 0, but |{∅}| = 1.

2.8 Some special sets

In addition to the empty set, there are symbols for some other
common sets, including:

• Z — the integers (positive, negative, and zero)

• N — the natural numbers (positive integers and zero)

• Q — the rational numbers (all numbers that can be expressed
as an integer divided by another integer)

• R — the real numbers (all numbers that aren’t imaginary,
even decimal numbers that aren’t rational)

The cardinality of all these sets is infinity, although as I alluded
to previously, |R| is in some sense “greater than” |N|. For the
curious, we say that N is a countably infinite set, whereas |R| is
uncountably infinite. Speaking very loosely, this can be thought
of this way: if we start counting up all the natural numbers 0, 1,
2, 3, 4, . . . , we will never get to the end of them. But at least we
can start counting. With the real numbers, we can’t even get off
the ground. Where do you begin? Starting with 0 is fine, but then
what’s the “next” real number? Choosing anything for your second
number inevitably skips a lot in between. Once you’ve digested this,
I’ll spring another shocking truth on you: |Q| is actually equal to
|N|, not greater than it as |R| is. Cantor came up with an ingenious
numbering scheme whereby all the rational numbers — including
− 4 3, 9, , and −1517 — can be listed off regularly, in order, just17 29

like the integers can. And so |Q| = |N| = |R|. This kind of stuff
can blow your mind.

6

18 CHAPTER 2. SETS

2.9 Combining sets

Okay, so we have sets. Now what can we do with them? When
you first learn about numbers back before kindergarten, the next
thing you learn is how to combine numbers using various operations
to produce other numbers. These include +, −, ×, ÷, exponents,
roots, etc. Sets, too, have operations that are useful for combining
to make other sets. These include:

• Union (∪). The union of two sets is a set that includes the
elements that either (or both) of them have as members. For
instance, if A = { Dad, Lizzy }, and B = { Lizzy, T.J., Johnny
}, then A ∪ B = { Dad, Lizzy, T.J., Johnny }. Note that an
element is in the union if it is in A or B. For this reason,
there is a strong relationship between the union operator of
sets and the “or” (∨) operator of boolean logic that we’ll see
later.

• Intersection (∩). The intersection of two sets is a set that
includes the elements that both of them have as members. In
the above example, A ∩ B = { Lizzy }. There is a strong
connection between intersection and the “and” (∧) boolean
logic operator.

• (Partial) complement (−). Looks like subtraction, but sig-
nificantly different. A − B contains the elements from A that
are not also in B. So you start with A, and then “subtract off”
the contents of B, if they occur. In the above example, A− B
= { Dad }. (Note that T.J. and Johnny didn’t really enter in
to the calculation.) Unlike ∪ and ∩, − is not commutative.
This means it’s not symmetrical: A − B doesn’t (normally)
give the same answer as B − A. In this example, B − A is
{ T.J., Johnny }, whereas if you ever reverse the operands
with union or intersection, you’ll always get the same result
as before.

• (Total) complement (X). Same as the partial complement,
above, except that the implied first operand is Ω. In other
words, A−B is “all the things in A that aren’t in B,” whereas

19 2.9. COMBINING SETS

B is “all the things period that aren’t in B.” Of course, “all
the things period” means “all the things that we’re currently
talking about.” The domain of discourse Ω is very important
here. If we’re talking about the Davies family, we would say
that M = { Mom, Lizzy }, because those are all the Davieses
who aren’t male. If, on the other hand, Ω is “the grand set
of absolutely everything,” then not only is Mom a member of
M , but so is the number 12, the French Revolution, and my
nightmare last Tuesday about a rabid platypus.

• Cartesian product (×). Looks like multiplication, but very
different. When you take the Cartesian product of two sets
A and B, you don’t even get the elements from the sets in
the result. Instead, you get ordered pairs of elements. These
ordered pairs represent each combination of an element from
A and an element from B. For instance, suppose A = { Bob,
Dave } and B = { Jenny, Gabrielle, and Tiffany }. Then:

A × B = { (Bob, Jenny), (Bob, Gabrielle), (Bob, Tiffany),
(Dave, Jenny), (Dave, Gabrielle), (Dave, Tiffany) }.

Study that list. The first thing to realize is that it consists
of neither guys nor girls, but of ordered pairs. (Clearly, for
example, Jenny ∈/ A × B.) Every guy appears exactly once
with every girl, and the guy is always the first element of
the ordered pair. Since we have two guys and three girls,
there are six elements in the result, which is an easy way
to remember the × sign that represents Cartesian product.
(Do not, however, make the common mistake of thinking that
A×B is 6. A×B is a set, not a number. The cardinality of the
set, of course, is 6, so it’s appropriate to write |A × B| = 6.)

Laws of combining sets

There are a bunch of handy facts that arise when combining sets
using the above operators. The important thing is that these are all
easily seen just by thinking about them for a moment. Put another
way, these aren’t facts to memorize; they’re facts to look at and see

20 CHAPTER 2. SETS

for yourself. They’re just a few natural consequences of the way
we’ve defined sets and operations, and there are many others.

• Union and intersection are commutative. As noted
above, it’s easy to see that A ∪ B will always give the same
result as B ∪ A. Same goes for ∩. (Not true for −, though.)

• Union and intersection are associative. “Associative”
means that if you have an operator repeated several times,
left to right, it doesn’t matter which order you evaluate them
in. (A ∪ B) ∪ C will give the same result as A ∪ (B ∪ C). This
means we can freely write expressions like “X ∪ Y ∪ Z” and
no one can accuse us of being ambiguous. This is also true if
you have three (or more) intersections in a row. Be careful,
though: associativity does not hold if you have unions and
intersections mixed together. If I write A ∪ B ∩ C it matters
very much whether I do the union first or the intersection
first. This is just how it works with numbers: 4 + 3 × 2
gives either 10 or 14 depending on the order of operations.
In algebra, we learned that × has precedence over +, and
you’ll always do that one first in the absence of parentheses.
We could establish a similar order for set operations, but we
won’t: we’ll always make it explicit with parens.

• Union and intersection are distributive. You’ll recall
from basic algebra that a · (b + c) = ab + ac. Similarly with
sets,

X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z).

It’s important to work this out for yourself rather than just
memorize it as a rule. Why does it work? Well, take a con-
crete example. Suppose X is the set of all female students, Y
is the set of all computer science majors, and Z is the set of
all math majors. (Some students, of course, double-major in
both.) The left-hand side of the equals sign says “first take
all the math and computer science majors and put them in
a group. Then, intersect that group with the women to ex-
tract only the female students.” The result is “women who are
either computer science majors or math majors (or both).”

21 2.9. COMBINING SETS

Now look at the right-hand side. The first pair of parentheses
encloses only female computer science majors. The right pair
encloses female math majors. Then we take the union of the
two, to get a group which contains only females, and specif-
ically only the females who are computer science majors or
math majors (or both). Clearly, the two sides of the equals
sign have the same extension.

The distributive property in basic algebra doesn’t work if you
flip the times and plus signs (normally a+b·c = (a+b)·(a+c)),
but remarkably it does here:

X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z).

Using the same definitions of X, Y , and Z, work out the
meaning of this one and convince yourself it’s always true.

• Identity laws. Simplest thing you’ve learned all day: X ∪
∅ = X and X ∩ Ω = X. You don’t change X by adding
nothing to it, or taking nothing away from it.

• Domination laws. The flip side of the above is that X ∪Ω =
Ω and X ∩ ∅ = ∅. If you take X, and then add everything
and the kitchen sink to it, you get everything and the kitchen
sink. And if you restrict X to having nothing, it of course
has nothing.

• Complement laws. X ∪ X = Ω. This is another way of
saying “everything (in the domain of discourse) is either in,
or not in, a set.” So if I take X, and then I take everything
not in X, and smoosh the two together, I get everything.
In a similar vein, X ∩ X = ∅, because there can’t be any
element that’s both in X and not in X: that would be a
contradiction. Interestingly, the first of these two laws has
become controversial in modern philosophy. It’s called “the
law of the excluded middle,” and is explicitly repudiated in
many modern logic systems.

• De Morgan’s laws. Now these are worth memorizing, if
only because (1) they’re incredibly important, and (2) they

6

22 CHAPTER 2. SETS

may not slip right off the tongue the way the previous prop-
erties do. The first one can be stated this way:

X ∪ Y = X ∩ Y .

Again, it’s best understood with a specific example. Let’s
say you’re renting a house, and want to make sure you don’t
have any surly characters under the roof. Let X be the set of
all known thieves. Let Y be the set of all known murderers.
Now as a landlord, you don’t want any thieves or murderers
renting your property. So who are you willing to rent to?
Answer: if Ω is the set of all people, you are willing to rent
to X ∪ Y .

Why that? Because if you take X ∪ Y , that gives you all the
undesirables: people who are either murderers or thieves (or
both). You don’t want to rent to any of them. In fact, you
want to rent to the complement of that set; namely, “anybody
else.” Putting an overbar on that expression gives you all the
non-thieves and non-murderers.

Very well. But now look at the right hand side of the equation.
X gives you the non-thieves. Y gives you the non-murderers.
Now in order to get acceptable people, you want to rent only
to someone who’s in both groups. Put another way, they have
to be both a non-thief and a non-murderer in order for you to
rent to them. Therefore, they must be in the intersection of
the non-thief group and the non-murderer group. Therefore,
the two sides of this equation are the same.

The other form of De Morgan’s law is stated by flipping the
intersections and unions:

X ∩ Y = X ∪ Y .

Work this one out for yourself using a similar example, and
convince yourself it’s always true.

Augustus De Morgan, by the way, was a brilliant 19th cen-
tury mathematician with a wide range of interests. His name

23 2.10. SUBSETS

will come up again when we study logic and mathematical
induction.

2.10 Subsets

We learned that the “∈” symbol is used to indicate set membership:
the element on the left is a member of the set on the right. A related
but distinct notion is the idea of a subset. When we say X ⊆ Y
(pronounced “X is a subset of Y ”), it means that every member
of X is also a member of Y . The reverse is not necessarily true,
of course, otherwise “⊆” would just mean “=”. So if A = { Dad,
Lizzy } and K = { Dad, Mom, Lizzy }, then we can say A ⊆ K.

Be careful about the distinction between “∈” and “⊆”, which are
often confused. With ∈, the thing on the left is an element, whereas
with ⊆, the thing on the left is a set. This is further complicated
by the fact that the element on the left-hand side of ∈ might well
be a set.

Let’s give some examples. Suppose that Q is the set { 4, { 9, 4 },
2 }. Q has three elements here, one of which is itself a set. Now
suppose that we let P be the set { 4, 9 }. Question: is P ∈ Q? The
answer is yes: the set { 4, 9 } (which is the same as the set { 9,
4 }, just written a different way) is in fact an element of the set Q.
Next question: is P ⊆ Q? The answer is no, P 6⊆ Q. If P were a
subset of Q, that would imply that every member of P (there are
two of them: 9 and 4) is also an element of Q, whereas in fact, only
4 is a member of Q, not 9. Last question: if R is defined to be
{ 2, 4 }, is R ⊆ Q? The answer is yes, since both 2 and 4 are also
members of Q.

Notice that by the definition, every set is a subset of itself. Some-
times, though, it’s useful to talk about whether a set is really a
subset of another, and you don’t want it to “count” if the two sets
are actually equal. This is called a proper subset, and the sym-
bol for it is ⊂. You can see the rationale for the choice of symbol,
because “⊆” is kind of like “≤” for numbers, and “⊂” is like “<”.

Every set is a subset (not necessarily a proper one) of Ω, because

24 CHAPTER 2. SETS

our domain of discourse by definition contains everything that can
come up in conversation. Somewhat less obviously, the empty set
is a subset of every set. It’s weird to think that ∅ ⊆ Q when Q has
several things in it, but the definition does hold. “Every” member
of ∅ (there are none) is in fact also a member of Q.

One note about reading this notation that I found confusing at first.
Sometimes the expression “a ∈ X” is pronounced “a is an element
of X,” but other times it is read “a, which is an element of X”.
This may seem like a subtle point, and I guess it is, but if you’re
not ready for it it can be a extra stumbling block to understanding
the math (which is the last thing we need). Take this hypothetical
(but quite typical) excerpt from a mathematical proof:

“Suppose k ∈ N < 10 . . . ”

If you read this as “Suppose k is a natural number is less than 10,”
it’s ungrammatical. It really should be understood as “Suppose k
(which is a natural number) is less than 10.” This is sometimes true
of additional clauses as well. For instance, the phrase “Suppose
k ∈ R > 0 is the x-coordinate of the first point” should be read
“Suppose k, which is a real number greater than zero, is the x-
coordinate of the first point.”

I’ll leave you with a statement about numbers worth pondering and
understanding:

∅ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ Ω.

2.11 Power sets

Power set is a curious name for a simple concept. We talk about
the power set “of” another set, which is the set of all subsets of that
other set. Example: suppose A = { Dad, Lizzy }. Then the power
set of A, which is written as “P(A)” is: { { Dad, Lizzy }, { Dad },
{ Lizzy }, ∅ }. Take a good look at all those curly braces, and

25 2.11. POWER SETS

don’t lose any. There are four elements to the power set of A, each
of which is one of the possible subsets. It might seem strange to
talk about “all of the possible subsets” — when I first learned this
stuff, I remember thinking at first that there would be no limit to
the number of subsets you could make from a set. But of course
there is. To create a subset, you can either include, or exclude, each
one of the original set’s members. In A’s case, you can either (1)
include both Dad and Lizzy, or (2) include Dad but not Lizzy, or
(3) include Lizzy but not Dad, or (4) exclude both, in which case
your subset is ∅. Therefore, P(A) includes all four of those subsets.

Now what’s the cardinality of P(X) for some set X? That’s an
interesting question, and one well worth pondering. The answer
ripples through the heart of a lot of combinatorics and the binary
number system, topics we’ll cover later. And the answer is right
at our fingertips, if we just extrapolate from the previous example.
To form a subset of X, we have a choice to either include, or else
ex clude, each of its elements. So there’s two choices for the first
element4 , and then whether we choose to include or exclude that
first element, there are two choices for the second. Regardless of
what we choose for those first two, there are two choices for the
third, etc. So if |X| = 2 (recall that this notation means “X has
two elements” or “X has a cardinality of 2”), then its power set
has 2 × 2 members. If |X| = 3, then its power set has 2 × 2 × 2
members. In general:

|P(X)| = 2|X|.

As a limiting case (and a brain-bender) notice that if X is the
empty set, then P(X) has one (not zero) members, because there
is in fact one subset of the empty set: namely, the empty set itself.
So |X| = 0, and |P(X)| = 1. And that jives with the above formula.

4I know there’s really no “first” element, but work with me here.

26 CHAPTER 2. SETS

2.12 Partitions

Finally, there’s a special variation on the subset concept called a
partition. A partition is a group of subsets of another set that
together are both collectively exhaustive and mutually exclu-
sive. This means that every element of the original set is in one
and only one of the sets in the partition. Formally, a partition of
X is a group of sets X1, X2, . . . , Xn such that:

X1 ∪ X2 ∪ · · · ∪ Xn = X,

and

Xi ∩ Xj = ∅ for all i, j.

So let’s say we’ve got a group of subsets that are supposedly a
partition of X. The first line, above, says that if we combine the
contents of all of them, we get everything that’s in X (and nothing
more). This is called being collectively exhaustive. The second line
says that no two of the sets have anything in common: they are
mutually exclusive.

As usual, an example is worth a thousand words. Suppose the set
D is { Dad, Mom, Lizzy, T.J., Johnny. } A partition is any way of
dividing D up into subsets that meet the above conditions. One
such partition is:

{ Lizzy, T.J. }, { Mom, Dad }, and { Johnny }.

Another one is:

{ Lizzy }, { T.J. }, { Mom }, and { Johnny, Dad }.

Yet another is:

∅, ∅, { Lizzy, T.J., Johnny, Mom, Dad }, and ∅.

27 2.12. PARTITIONS

All of these are ways of dividing up the Davies family into groups
so that no one is in more than one group, and everyone is in some
group. The following is not a partition:

{ Mom, Lizzy, T.J. }, and { Dad }

because it leaves out Johnny. This, too, is not a partition:

{ Dad }, { Mom, T.J. }, and { Johnny, Lizzy, Dad }

because Dad appears in two of the subsets.

By the way, realize that every set (S) together with its (total) com-
plement (S) forms a partition of the entire domain of discourse Ω.
This is because every element either is, or is not, in any given set.
The set of males and non-males are a partition of Ω because ev-
erything is either a male or a non-male, and never both (inanimate
objects and other nouns are non-males, just as women are). The set
of prime numbers and the set of everything-except-prime-numbers
are a partition. The set of underdone cheeseburgers and the set of
everything-except-underdone-cheeseburgers form a partition of Ω.
By pure logic, this is true no matter what the set is.

You might wonder why partitions are an important concept. The
answer is that they come up quite a bit, and when they do, we can
make some important simplifications. Take S, the set of all students
at UMW. We can partition it in several different ways. If we divide
S into the set of males and the set of females, we have a partition:
every student is either male or female, and no student is both. If
we divide them into freshmen, sophomores, juniors, and seniors, we
again have a partition. But dividing them into computer science
majors and English majors does not give us a partition. For one
thing, not everyone is majoring in one of those two subjects. For
another, some students might be double-majoring in both. Hence
this group of subsets is neither mutually exclusive nor collectively
exhaustive.

Question: is the number of students |S| equal to the number of
male students plus the number of female students? Obviously yes.

28 CHAPTER 2. SETS

But why? The answer: because the males and the females form
a partition. If we added up the number of freshmen, sophomores,
juniors, and seniors, we would also get |S|. But adding up the
number of computer science majors and English majors would al-
most certainly not be equal to |S|, because some students would be
double-counted and others counted not at all. This is an example
of the kind of beautiful simplicity that partitions provide.

29 2.13. EXERCISES

2.13 Exercises

Use an index card or a piece of paper folded lengthwise, and cover
up the right-hand column of the exercises below. Read each exercise
in the left-hand column, answer it in your mind, then slide the index
card down to reveal the answer and see if you’re right! For every
exercise you missed, figure out why you missed it before moving on.

1. Is the set { Will, Smith }
the same as the set { Smith,
Will }?

Yes indeed.

2. Is the ordered pair (Will,
Smith) the same as (Smith,
Will)?

No. Order matters with
pairs (hence the name), and
size tuple for that matter.

ordered
with any

No. For instance, the first set has

3.

4.

5.

Is the set { { Luke, Leia },
Han } the same as the set
{ Luke, { Leia, Han } }?

Han as a member but the second set
does not. (Instead, it has another
set as a member, and that inner set
happens to include Han.)

What’s the first element of
the set { Cowboys, Redskins,
Steelers }?

The question doesn’t make sense.
There is no “first element” of a set.
All three teams are equally members
of the set, and could be listed in any
order.

Let G be { Matthew, Mark,
Luke, John }, J be { Luke,
Obi-wan, Yoda }, S be the set
of all Star Wars characters,

No.

and F be the four gospels
from the New Testament.

6.

7.

Now then. Is J ⊆ G?

Is J ⊆ S?
Yes.

Is Yoda ∈ J?
Yes.

30 CHAPTER 2. SETS

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Is Yoda ⊆ J?
No.
be a

Yoda isn’t even a set,
subset of anything.

so it can’t

Is { Yoda } ⊆ J?

Yes.
tains
J .

The
only

(unnamed) set that con-
Yoda is in fact a subset of

Is { Yoda } ∈ J?

No. Yoda is one of the elements of J ,
but { Yoda } is not. In other words,
J contains Yoda, but J does not con-
tain a set which contains Yoda (nor
does it contain any sets at all, in
fact).

Is S ⊆ J?
No.

Is G ⊆ F ?
Yes, since the two sets are equal.

Is G ⊂ F ?

No, since
so neither
other.

the
is a

two sets are
proper subset

equal,
of the

Is ∅ ⊆ S?
Yes, since the
of every set.

empty set is a subset

Is ∅ ⊆ ∅?
Yes, since the
of every set.

empty set is a subset

Is F ⊆ Ω?
Yes, since every set is

a subset of Ω.

Is F ⊂ Ω?
Yes,
and

since every set is
F is certainly not

a subset
 equal to

of
Ω.
Ω,

Yes and yes. The empty set is an el-
ement of X because it’s one of the

18.

19.

20.

Suppose X = { Q, ∅, { Z }
}. Is ∅ ∈ X? Is ∅ ⊆ X?

elements, and it’s also a subset of
X because it’s a subset of every set.
Hmmm.

Let A be { Macbeth, Hamlet,
Othello }, B be { Scrabble,
Monopoly, Othello }, and T
be { Hamlet, Village, Town }.
What’s A ∪ B?

{ Macbeth, Hamlet, Othello, Scrab-
ble, Monopoly }. (The elements can
be listed in any order.)

What’s A ∩ B?
{ Othello }.

31 2.13. EXERCISES

21.

22.

23.

What’s A ∩ B?
{ Macbeth, Hamlet }.

What’s B ∩ T ?
∅.

What’s B ∩ T ?
B. (which
Othello }.)

is { Scrabble, Monopoly,

24.

25.

26.

27.

28.

What’s A ∪ (B ∩ T)?
{ Hamlet, Othello, Macbeth }.

What’s (A ∪ B) ∩ T ?

{ Hamlet
answer as
parens are

}. (Note: not the same
in item 24 now that the
placed differently.)

What’s A − B?
{ Macbeth, Hamlet }.

What’s T − B?
Simply
nothing

T ,
in
since the
common.

two sets have

What’s T × A?

{ (Hamlet, Macbeth), (Hamlet,
Hamlet), (Hamlet, Othello), (Vil-
lage, Macbeth), (Village, Hamlet),
(Village, Othello), (Town, Macbeth),
(Town, Hamlet), (Town, Othello) }.
The order of the ordered pairs within
the set is not important; the order
of the elements within each ordered

29.

pair is important.

What’s (B ∩ B) × (A ∩ T)?
{ (Scrabble, Hamlet), (Monopoly,
Hamlet), (Othello, Hamlet) }.

30. What’s |A ∪ B ∪ T |?
7.

31. What’s |A ∩ B ∩ T |?
0.

21. (The first parenthesized expres-
sion gives rise to a set with 7 ele-
ments, and the second to a set with

32. What’s |(A ∪ B ∪ T)
B ∪ B)|?

× (B ∪ three elements (B itself). Each el-
ement from the first set gets paired
with an element from the second, so
there are 21 such pairings.)

32 CHAPTER 2. SETS

33.

34.

35.

36.

37.

Is A an extensional set, or an
intensional set?

The question doesn’t make sense.
Sets aren’t “extensional” or “inten-
sional”; rather, a given set can be
described extensionally or intension-
ally. The description given in item 19
is an extensional one; an intensional
description of the same set would be
“The Shakespeare tragedies Stephen
studied in high school.”

Recall that G was defined
as { Matthew, Mark, Luke,
John }. Is this a partition of
G?

• { Luke, Matthew }
• { John }

No, because the
tively exhaustive

sets are not collec-
(Mark is missing).

Is this a partition of G?

• { Mark, Luke }
• { Matthew, Luke }

No, because the sets are neither col-
lectively exhaustive (John is miss-
ing) nor mutually exclusive (Luke
appears in two of them).

Is this a partition of G?

• { Matthew, Mark,
Luke }

• { John }

Yes. (Trivia: this partitions the
ments into the synoptic gospels
the non-synoptic gospels).

ele-
and

Is this a partition of G?

• { Matthew, Luke }
• { John, Mark }

Yes. (This partitions the ele-
ments into the gospels which feature
a Christmas story and those that
don’t).

33 2.13. EXERCISES

38.

39.

40.

41.

Is this a partition of G?

• { Matthew, John }
• { Luke }
• { Mark }
• ∅

Yes. (This partitions the elements
into the gospels that were written
by Jews, those that were written by
Greeks, those that were written by
Romans, and those that were writ-
ten by Americans).

What’s the power set of { Ri-
hanna }?

{ { Rihanna }, ∅ }.

Is { peanut, jelly } ∈
P({ peanut, butter, jelly }?

Yes, since { peanut,
the eight subsets of
ter, jelly }. (Can you
seven?)

jelly } is one of
{ peanut, but-
name the other

Is it true for every set S that
S ∈ P(S)?

Yep.

Chapter 3

Relations

Sets are fundamental to discrete math, both for what they represent
in themselves and for how they can be combined to produce other
sets. In this chapter, we’re going to learn a new way of combining
sets, called relations.

3.1 The idea of a relation

A relation between a set X and Y is a subset of the Cartesian
product. That one sentence packs in a whole heck of a lot, so spend
a moment thinking deeply about it. Recall that X×Y yields a set of
ordered pairs, one for each combination of an element from X and
an element from Y . If X has 5 elements and Y has 4, then X × Y
is a set of 20 ordered pairs. To make it concrete, if X is the set {
Harry, Ron, Hermione }, and Y is the set { Dr. Pepper, Mt. Dew },
then X × Y is { (Harry, Dr. Pepper), (Harry, Mt. Dew), (Ron,
Dr. Pepper), (Ron, Mt. Dew), (Hermione, Dr. Pepper), (Hermione,
Mt. Dew) }. Convince yourself that every possible combination is
in there. I listed them out methodically to make sure I didn’t miss
any (all the Harry’s first, with each drink in order, then all the
Ron’s, etc.) but of course there’s no order to the members of a set,
so I could have listed them in any order.

Now if I define a relation between X and Y , I’m simply specifying
that certain of these ordered pairs are in the relation, and certain

35

36 CHAPTER 3. RELATIONS

ones are not. For example, I could define a relation R that contains
only { (Harry, Mt. Dew), (Ron, Mt. Dew) }. I could define an-
other relation S that contains { (Hermione, Mt. Dew), (Hermione,
Dr. Pepper), (Harry, Dr. Pepper) }. I could define another relation
T that has none of the ordered pairs; in other words, T = ∅.

A question that should occur to you is: how many different relations
are there between two sets X and Y ? Think it out: every one of the
ordered pairs in X × Y either is, or is not, in a particular relation
between X and Y . Very well. Since there are a total of |X| · |Y |
ordered pairs, and each one of them can be either present or absent
from each relation, there must be a total of

2|X|·|Y |

different relations between them. Put another way, the set of all
relations between X and Y is the power set of X × Y . I told you
that would come up a lot.

In the example above, then, there are a whopping 26 , or 64 differ-
ent relations between those two teensey little sets. One of those
relations is the empty set. Another one has all six ordered pairs in
it. The rest fall somewhere in the middle. (Food for thought: how
many of these relations have exactly one ordered pair? How many
have exactly five?)

Notation

I find the notation for expressing relations somewhat awkward. But
here it is. When we defined the relation S, above, we had the
ordered pair (Harry, Dr. Pepper) in it. To explicitly state this fact,
we could simply say

(Harry, Dr. Pepper) ∈ S

and in fact we can do so. More often, though, mathematicians
write:

Harry S Dr. Pepper.

37 3.2. DEFINING RELATIONS

which is pronounced “Harry is S-related-to Dr. Pepper.” Told you
it was awkward.

If we want to draw attention to the fact that (Harry, Mt. Dew) is
not in the relation S, we could strike it through to write

Harry S Mt. Dew

3.2 Defining relations

Just as with sets, we can define a relation extensionally or intension-
ally. To do it extensionally, it’s just like the examples above — we
simply list the ordered pairs: { (Hermione, Mt. Dew), (Hermione,
Dr. Pepper), (Harry, Dr. Pepper) }.

Most of the time, however, we want a relation to mean something.
In other words, it’s not just some arbitrary selection of the possible
ordered pairs, but rather reflects some larger notion of how the
elements of the two sets are related. For example, suppose I wanted
to define a relation called “hasTasted” between the sets X and Y ,
above. This relation might have the five of the possible six ordered
pairs in it:

(Harry, Dr. Pepper)
(Ron, Dr. Pepper)
(Ron, Mt. Dew)

(Hermione, Dr. Pepper)
(Hermione, Mt. Dew)

Another way of expressing the same information would be to write:

Harry hasTasted Dr. Pepper
Harry hasTasted Mt. Dew
Ron hasTasted Dr. Pepper
Ron hasTasted Mt. Dew

Hermione hasTasted Dr. Pepper
Hermione hasTasted Mt. Dew

38 CHAPTER 3. RELATIONS

Both of these are extensional definitions. But of course the meaning
behind the relation “hasTasted” is that if x hasTasted y, then in
real life, the person x has given a can of y a try. We’re using this
relation to state that although Ron and Hermione have sampled
both drinks, Harry (perhaps because of his persecuted childhood
at the Dursleys) has not.

We can of course define other relations on the same two sets. Let’s
define a relation “likes” to contain { (Harry, Dr. Pepper), (Ron,
Dr. Pepper), (Hermione, Dr. Pepper), (Hermione, Mt. Dew) }. This
states that while everybody likes Dr. Pepper, Hermione herself has
broad tastes and also likes Mt. Dew.

Another relation, “hasFaveDrink,” might indicate which drink is
each person’s favorite. Maybe the extension is { (Harry, Dr. Pep-
per), (Ron, Dr. Pepper) }. There’s no ordered pair with Hermione
in it, perhaps because she actually prefers iced tea.

Yet another relation, “ownsStockIn,” represents which people own
stock in which beverage companies. In this case, ownsStockIn = ∅
since all of the members of X are too busy studying potions to be
stock owners in anything.

Bottom line is: when we talk about a relation, we’re simply desig-
nating certain elements of one set to “go with” or “be associated
with” certain elements of another set. Normally this corresponds
to something interesting in the real world — like which people have
tasted which drinks, or which people own stock in which companies.
Even if it doesn’t, though, it still “counts” as a relation, and we can
simply list the ordered pairs it contains, one for each association.

3.3 Relations between a set and itself

In the above example, the two sets contained different kinds of
things: people, and drinks. But many relations are defined in which
the left and right elements are actually drawn from the same set.
Such a relation is called (don’t laugh) an endorelation.

Consider the relation “hasACrushOn” between X and X, whose
intensional meaning is that if (x, y) ∈ hasACrushOn, then in real

39 3.4. FINITE AND INFINITE RELATIONS

life x is romantically attracted to y. The extension is probably only
{ (Ron, Hermione), (Hermione, Ron) }, although who knows what
goes through teenagers’ minds.

Another example would be the relation “hasMoreCaloriesThan”
between Y and Y : this relation’s extension is { (Mt. Dew, Dr. Pep-
per) }. (Fun fact: Dr. Pepper has only 150 calories per can, whereas
Mt. Dew has 170.)

Note that just because a relation’s two sets are the same, that
doesn’t necessarily imply that the two elements are the same for
any of its ordered pairs. Harry clearly doesn’t have a crush on
himself, nor does anyone else have a self-crush. And no soda has
more calories than itself, either — that’s impossible. That being
said, though, an ordered pair can have the same two elements.
Consider the relation “hasSeen” between X and X. Surely all three
wizards have looked in a mirror at some point in their lives, so in
addition to ordered pairs like (Ron, Harry) the hasSeen relation also
contains ordered pairs like (Ron, Ron) and (Hermione, Hermione).

3.4 Finite and infinite relations

Sets can be infinite, and relations can be too. An infinite rela-
tion is simply a relation with infinitely many ordered pairs in it.
This might seem strange at first, since how could we ever hope to
specify all the ordered pairs? But it’s really no different than with
sets: we either have to do it intensionally, or else have a rule for
systematically computing the extension.

As an example of the first, consider the relation “isGreaterThan”
between Z and Z. (Recall that “Z” is just a way of writing “the
set of integers.”) This relation contains ordered pairs like (5, 2) and
(17, –13), since 5 isGreaterThan 2 and 17 isGreaterThan –13, but
not (7, 9) or (11, 11). Clearly it’s an infinite relation. We couldn’t
list all the pairs, but we don’t need to, since the name implies the
underlying meaning of the relation.

As an example of the second, consider the relation “isLuckierThan”
between N and N. (The “N” means “the natural numbers.”) We

40 CHAPTER 3. RELATIONS

specify it extensionally as follows:

{ (1, 13), (2, 13), (3, 13), . . . (12, 13), (14, 13), (15, 13), (16, 13),
. . . }

Here we’re just saying “every number is luckier than 13 (except for
13 itself, of course).”

3.5 Properties of endorelations

As I mentioned, lots of the relations we care about are endorelations
(relations between a set and itself). Some endorelations have one
or more of the following simple properties which are useful to talk
about. Throughout this section, assume that R is the relation in
question, and it’s defined from set A to set A.

• Reflexivity. A relation R is reflexive if xRx for every x ∈ A.
Other ordered pairs can also be in the relation, of course, but
if we say it’s reflexive we’re guaranteeing that every element is
in there with itself. “hasSeen” is almost certainly a reflexive
relation, presuming that mirrors are relatively widespread in
the world. “thinksIsBeautiful” is not reflexive, however: some
people think themselves beautiful, and others do not.

• Symmetry. A relation is symmetric if xRy whenever yRx
and vice versa. This doesn’t mean that (x, y) is in the relation
for every x and y — only that if (x, y) is in the relation, then
(y, x) is guaranteed to also be in the relation. An example
would be “hasShakenHandsWith.” If I’ve shaken hands with
you, then you’ve shaken hands with me, period. It doesn’t
make sense otherwise.

• Antisymmetry. A relation is antisymmetric if xRy when-
ever yRx and vice versa (unless x and y are the same.) Put
another way, if (x, y) is in the relation, fine, but then (y, x)
can’t be. An example would be “isTallerThan.” If I’m taller
than you, then you can’t be taller than me. We could in fact

3.5. PROPERTIES OF ENDORELATIONS 41

be the same height, in which case neither the pair (you, me)
nor (me, you) would be in the relation, but in any event the
two cannot co-exist.

Note carefully that antisymmetric is very different from asymmetric.
An asymmetric relation is simply one that’s not symmetric:
in other words, there’s some (x, y) in there without a match-
ing (y, x). An antisymmetric relation, on the other hand, is
one in which there are guaranteed to be no matching (y, x)’s
for any (x, y).

If you have trouble visualizing this, here’s another way to
think about it: realize that most relations are neither sym-
metric nor antisymmetric. It’s kind of a coincidence for a
relation to be symmetric: that would mean for every single
(x, y) it contains, it also contains a (y, x). (What are the
chances?) Similarly, it’s kind of a coincidence for a relation
to be antisymmetric: that would mean for every single (x, y)
it contains, it doesn’t contain a (y, x). (Again, what are the
chances?) Your average Joe relation is going to contain some
(x, y) pairs that have matching (y, x) pairs, and some that
don’t have matches. Such relations (the vast majority) are
simply asymmetric: that is, neither symmetric nor antisym-
metric.

Shockingly, it’s actually possible for a relation to be both
symmetric and antisymmetric! (but not asymmetric.) For
instance, the empty relation (with no ordered pairs) is both
symmetric and antisymmetric. It’s symmetric because for ev-
ery ordered pair (x, y) in it (of which there are zero), there’s
also the corresponding (y, x).1 And similarly, for every or-
dered pair (x, y), the corresponding (y, x) is not present. An-
other example is a relation with only “doubles” in it — say,

1Wait — how can I say that? How can there be ”the corresponding” ordered
pair in a relation that has no ordered pairs?! The answer has to do with the first
clause: for every ordered pair (x, y) in it. There are none of these, therefore,
no (y, x)’s are required. The condition is trivially satisfied. This is common in
mathematics: we say that A requires B, but this means that if A is not true,
then B is not forced.

42 CHAPTER 3. RELATIONS

{ (3,3), (7,7), (Fred, Fred) }. This, too, is both symmetric
and antisymmetric (work it out!)

• Transitivity. A relation is transitive if whenever xRy and
yRz, then it’s guaranteed that xRz. The “isTallerThan” re-
lation we defined is transitive: if you tell me that Bob is taller
than Jane, and Jane is taller than Sue, then I know Bob must
be taller than Sue, without you even having to tell me that.
That’s just how “taller than” works. An example of a non-
transitive relation would be “hasBeaten” with NFL teams.
Just because the Patriots beat the Steelers this year, and the
Steelers beat the Giants, that does not imply that the Pa-
triots necessarily beat the Giants. The Giants might have
actually beaten the-team-who-beat-the-team-who-beat-them
(such things happen), or heck, the two teams might not even
have played each other this year.

All of the above examples were defined intensionally. Just for prac-
tice, let’s look at some extensionally defined relations as well. Using
our familiar Harry Potter set as A, consider the following relation:

(Harry, Ron)
(Ron, Hermione)
(Ron, Ron)

(Hermione, Ron)
(Ron, Harry)

(Hermione, Hermione)

Consider: is this relation reflexive? No. It has (Ron, Ron) and
(Hermione, Hermione), but it’s missing (Harry, Harry), so it’s not
reflexive. Is it symmetric? Yes. Look carefully at the ordered
pairs. We have a (Harry, Ron), but also a matching (Ron, Harry).
We have a (Hermione, Ron), but also a matching (Ron, Hermione).
So every time we have a (x, y) we also have the matching (y, x),
which is the definition of symmetry. Is it antisymmetric? No,
because (among other things) both (Harry, Ron) and (Ron, Harry)
are present. Finally, is it transitive? No. We have (Harry, Ron)

43 3.5. PROPERTIES OF ENDORELATIONS

and (Ron, Hermione), which means that if it’s transitive we would
have to also have (Harry, Hermione) in there, which we don’t. So
it’s not transitive. Remember: to meet any of these properties,
they have to fully apply. “Almost” only counts in horseshoes.

Let’s try another example:

(Ron, Harry)
(Ron, Ron)
(Harry, Harry)

(Hermione, Hermione)
(Harry, Hermione)
(Hermione, Harry)

Is this one reflexive? Yes. We’ve got all three wizards appear-
ing with themselves. Is it symmetric? No, since (Ron, Harry)
has no match. Is it antisymmetric? No, since (Harry, Hermione)
does have a match. Is it transitive? No, since the presence of
(Ron, Harry) and (Harry, Hermione) implies the necessity of (Ron,
Hermione), which doesn’t appear, so no dice.

Partial orders and posets

A couple of other fun terms: an endorelation which is (1) reflexive,
(2) antisymmetric, and (3) transitive is called a partial order.
And a set together with a partial order is called a partially or-
dered set, or “poset” for short. The name “partial order” makes
sense once you think through an example.

You may have noticed that when dogs meet each other (especially
male dogs) they often circle each other and take stock of each other
and try to establish dominance as the so-called “alpha dog.” This
is a pecking order of sorts that many different species establish.
Now suppose I have the set D of all dogs, and a relation “isAtLeas-
tAsToughAs” between them. The relation starts off with every
reflexive pair in it: (Rex, Rex), (Fido, Fido), etc. This is because
obviously every dog is at least as tough as itself. Now every time
two dogs x and y encounter each other, they establish dominance
through eye contact or physical intimidation, and then one of the

44 CHAPTER 3. RELATIONS

following ordered pairs is added to the relation: either (x, y) or
(y, x), but never both.

I contend that in this toy example, “isAtLeastAsToughAs” is a
partial order, and D along with isAtLeastAsToughAs together form
a poset. I reason as follows. It’s reflexive, since we started off by
adding every dog with itself. It’s antisymmetric, since we never add
both (x, y) and (y, x) to the relation. And it’s transitive, because
if Rex is tougher than Fido, and Fido is tougher than Cuddles,
this means that if Rex and Cuddles ever met, Rex would quickly
establish dominance. (I’m no zoologist, and am not sure if the last
condition truly applies with real dogs. But let’s pretend it does.)

It’s called a “partial order” because it establishes a partial, but
incomplete, hierarchy among dogs. If we ask, “is dog X tougher
than dog Y?” the answer is never ambiguous. We’re never going to
say, “well, dog X was superior to dog A, who was superior to dog Y
. . . but then again, dog Y was superior to dog B, who was superior
to dog X, so there’s no telling which of X and Y is truly toughest.”
No. A partial order, because of its transitivity and antisymmetry,
guarantees we never have such an unreconcilable conflict.

However, we could have a lack of information. Suppose Rex has
never met Killer, and nobody Rex has met has ever met anyone
Killer has met. There’s no chain between them. They’re in two
separate universes as far as we’re concerned, and we’d have no way
of knowing which was toughest. It doesn’t have to be that extreme,
though: Suppose Rex established dominance over Cuddles, and
Killer also established dominance over Cuddles, but those are the
only ordered pairs in the relation. Again, there’s no way to tell
whether Rex or Killer is the tougher dog. They’d either need to
encounter a common opponent that only one of them can beat, or
else get together for a throw-down.

So a partial order gives us some semblance of structure — the
relation establishes a directionality, and we’re guaranteed not to
get wrapped up in contradictions — but it doesn’t completely order
all the elements. If it does, it’s called a total order.

45 3.6. FUNCTIONS

3.6 Functions

One very, very important type of relation is called a function.
Some mathematicians treat functions totally separately from rela-
tions, but I think it’s more useful to think of a function as a special
kind of relation. Many of the ideas are the same, as you’ll see.

Think back to the relations between wizards and soft drinks. One
such relation (we called it R) had (Harry, Mt. Dew) and (Ron,
Mt. Dew) in it. Another one (S) contained (Hermione, Mt. Dew),
(Hermione, Dr. Pepper), and (Harry, Dr. Pepper). Since there were
three wizards and two soft drinks, we calculated that there were 26

such relations.

Now some of those relations have exactly one ordered pair for each
wizard. For instance, the relation F which contains { (Harry,
Dr. Pepper), (Ron, Mt. Dew), (Hermione, Mt. Dew) }. This kind
of relation is a function. It associates each element of the first
set with exactly one element of the second set. Obviously not
all relations are functions: R, for example, is not (there’s no pair
with Hermione) and neither is S (there’s more than one pair with
Hermione). But those that do form a very special class of interest,
and warrant a whole new terminology.

When we have a function F between a set X and Y , we write
F : X → Y to indicate this. The set X is called the domain of the
function, and the set Y is called the codomain. The colon and the
arrow are just there to complete the syntax. The rule with functions
is very simple: every element of the domain is related to exactly one
element of the codomain. Sometimes we say that a domain element
is “mapped” to its corresponding codomain element. Note very
carefully that the reverse is not necessarily true. In fact, with the
wizards-and-drinks example, it can’t possibly be true: there are
fewer drinks than wizards, so some drink is bound to be related to
more than one wizard. (Think about it.) It’s also perfectly legit
to have a function like { (Harry, Dr. Pepper), (Ron, Dr. Pepper),
(Hermione, Dr. Pepper) }, where some element(s) of the codomain
are left out altogether.

One of the things that makes functions useful is that we can ask

46 CHAPTER 3. RELATIONS

“which element of Y goes with X?” and we will always get back
a well-defined answer. We can’t really do that with relations in
general, because the answer might be “none” or “several.” Take a
look back at the R and S examples, above: what answer would we
get if we asked “which drink goes Hermione map to?” for either
relation? Answer: there is no answer.

But with functions, I can freely ask that question because I know
I’ll get a kosher answer. With F , I can ask, “which drink does
Hermione map to?” and the answer is “Mt. Dew.” In symbols, we
write this as follows:

F (Hermione) = Mt. Dew

This will look familiar to computer programmers, since it resembles
a function call. In fact, it is a function call. That’s exactly what
it is. “Functions” in languages like C++ and Java were in fact
named after this discrete math notion. And if you know anything
about programming, you know that in a program I can “call the
F() function” and “pass it the argument ‘Hermione’” and “get the
return value ‘Mt.Dew.’” I never have to worry about getting more
than one value back, or getting none at all.

You might also remember discussing functions in high school math,
and the so-called “vertical line test.” When you plotted the values
of a numerical function on a graph, and there was no vertical (up-
and-down) line that intersected more than one point, you could
safely call the plot a “function.” That’s really exactly the same
thing as the condition I just gave for functions, stated graphically.
If a plot passes the vertical line test, then there is no x value for
which there’s more than one y value. This means it makes sense
to ask “which is the value of y for a particular value of x?” You’ll
always get one and only one answer. (There’s no such thing, of
course, as a “horizontal line test,” since functions are free to map
more than one x value to the same y value. They just can’t do the
reverse.)

The difference between the functions of high school math and the
functions we’re talking about here, by the way, is simply that our

47 3.6. FUNCTIONS

functions aren’t necessarily numeric. Sometimes we do draw “plots”
of sorts, though, like this one: /pagebreak

Figure 3.1: A function represented graphically.

This simply shows which elements of the domain map to which ele-
ments of the codomain. The left blob is the domain, the right blob
is the codomain, and there’s an arrow representing each mapping.

Now as with relations, functions normally have “meaning.” We
could define a function called “firstTasted” that associates each wiz-
ard with the soft drink he or she first sampled as a child. We could
define another called “faveDrink” that maps each wizard to his or
her favorite — presuming that every wizard has a favorite drink in
the set (Hermione will have to overlook her iced tea and choose
among the options provided). A third function called “would-
ChooseWithMexicanFood” provides information about which drink
each wizard provides with that type of cuisine. Here are Ron’s val-
ues for each of the three functions:

firstTasted(Ron) = Mt. Dew
faveDrink(Ron) = Mt. Dew

wouldChooseWithMexicanFood(Ron) = Dr. Pepper

These values indicate that Mt. Dew was the soda pop that Ron

48 CHAPTER 3. RELATIONS

first sipped, and it has been his favorite ever since, although at La
Estrellita he prefers a Pepper.

Functions can be defined intensionally or extensionally, just as with
relations. Intensionally, we provide the conceptual meaning of what
the function represents. Extensionally, we list the values for each
element of the domain.

One other term that applies to every function is its range. A
function’s range is the subset of the codomain that at least one
element the domain actually maps to. It’s the part of the codomain
that’s “reachable.” For instance, if the function G : X → Y is {
(Harry, Dr. Pepper), (Ron, Dr. Pepper), (Hermione, Dr. Pepper) },
then even though the codomain is { Dr. Pepper, Mt. Dew } the
range is merely { Dr. Pepper }. That’s because there isn’t any
ordered pair that contains Mt. Dew, so it’s left out of the range.
You can’t “reach” Mt. Dew via the G function by starting with any
of its inputs, so it’s left out in the cold.

By the way, a function’s range is sometimes called its image. These
terms are synonymous.

3.7 Properties of functions

As with relations, there are certain simple properties that some
(not all) functions have, and it’s useful to reason about them. A
function can be:

• Injective. An injective function is not only a function, but
also kind of a “function in reverse”: i.e., not only does no x
map to two different y’s (which is the case for all functions),
but no two x’s map to the same y. In graphical terms, it
does pass a “horizontal line test” in addition to the vertical.
Note that this can’t happen if the domain is larger than the
codomain (as with wizards & soft drinks), since there aren’t
enough y values to accommodate all the x values uniquely. So
there is no injective function between wizards and soft drinks
to be found, no matter how hard we try.

49 3.7. PROPERTIES OF FUNCTIONS

The function phoneExtension — with employees as the do-
main and four-digit numbers as the codomain — is an exam-
ple of an injective function. One mapping of this function
would be “phoneExtension(Sally) = 1317”, indicating that
Sally can be reached at x1317. Some of the available exten-
sions may be currently unused, but every employee does have
one (and only one) which makes it a function. But since no
two employees have the same extension, it is also an injective
function.

Injective functions are sometimes called one-to-one func-
tions. (One-to-one and injective are exact synonyms.)

• Surjective. A surjective function is one that reaches all the
elements of its codomain: some x does in fact reach every y.
Another way of saying this is: for a surjective function, the
range equals the entire codomain. You can see that this is
impossible if the domain is smaller than the codomain, since
there wouldn’t be enough x values to reach all the y values. If
we added Pepsi and Barq’s Root Beer to our Y set, we would
thereby eliminate the possibility of any surjective functions
from X to Y (unless we also added wizards, of course).

The function worksIn — with employees as the domain and
departments as the codomain — is an example of an sur-
jective function. One mapping of this function would be
“worksIn(Sid) = Marketing”, indicating that Sid works in the
Marketing department. Each employee works for one depart-
ment, which makes it a function. But at least one employee
works in every department (i.e., there are no empty depart-
ments with no people in them) which makes it surjective.

Surjective functions are sometimes called “onto” functions.
(Onto and surjective are exact synonyms.)

• Bijective. Finally, a bijective function is simply one that
is both injective and surjective. With an injective function,
every y is mapped to by at most one x; with a surjective
function, every y is mapped to by at least one x; so with
a bijective function, every y is mapped to by exactly one x.

50 CHAPTER 3. RELATIONS

Needless to say, the domain and the codomain must have the
same cardinality for this to be possible.

The function employeeNumber — with employees as the do-
main and employee numbers as the codomain — is a bijective
function. Every employee has an employee number, and ev-
ery employee number goes with exactly one employee. As a
corollary of this, there are the same number of employees as
employee numbers.

Finally, a few extensionally-defined examples. With X = { Harry,
Ron, Hermione } and Y = { Dr. Pepper, Mt. Dew }, consider the
function f1:

f1(Harry) = Mt. Dew
f1(Ron) = Mt. Dew

f1(Hermione) = Mt. Dew

Is f1 injective? No, since more than one wizard (all of them, in
fact) map to Mt. Dew. Is it surjective? No, since no wizard maps
to Dr. Pepper. Is it bijective? No, duh, since to be bijective it
must be both injective and surjective.

Now for f2, change Ron to map to Dr. Pepper instead:

f2(Harry) = Mt. Dew
f2(Ron) = Dr. Pepper

f2(Hermione) = Mt. Dew

Is f2 injective? Still no, since more than one wizard maps to
Mt. Dew. (And of course no function between these two sets can
be injective, since there aren’t enough soft drinks for each wizard
to have his/her own.) But is it surjective? Yes, it is now surjective,
since every soft drink has at least one wizard mapping to it. (Still
not bijective for obvious reasons.)

Now let’s add Pepsi and Barqs Root Beer to our set of soft drinks
Y , so that it now has four elements: { Dr. Pepper, Mt. Dew, Pepsi,
Barqs Root Beer }. Consider the function f3:

51 3.7. PROPERTIES OF FUNCTIONS

f3(Harry) = Pepsi
f3(Ron) = Pepsi

f3(Hermione) = Mt. Dew

Is f3 injective? No, since more than one wizard maps to Pepsi. Is
it surjective? No, since no wizard maps to Dr. Pepper or Barqs.
(And of course no function between these two sets can be surjective,
since there aren’t enough wizards for each drink to have one.) And
of course not bijective.

Now for f4, change Ron to map to Dr. Pepper instead:

f4(Harry) = Pepsi
f4(Ron) = Dr. Pepper

f4(Hermione) = Mt. Dew

Still not surjective, of course, but now it is injective, since no drink
has more than one wizard. (Still of course not bijective.)

Finally, let’s add one more wizard (Neville) to the mix for two more
examples. Let f5 be:

f5(Harry) = Barqs Root Beer
f5(Ron) = Dr. Pepper

f5(Hermione) = Mt. Dew
f5(Neville) = Dr. Pepper

Is f5 injective? No, since Dr. Pepper has two wizards. Is it surjec-
tive? No, since Pepsi has none. Struck out on all counts. However,
one small change and everything falls into place:

f6(Harry) = Barqs Root Beer
f6(Ron) = Pepsi

f6(Hermione) = Mt. Dew
f6(Neville) = Dr. Pepper

Is this last function injective, surjective, bijective? Yes to all three!
Every wizard gets his/her own soft drink, every soft drink gets its

52 CHAPTER 3. RELATIONS

own wizard, and no soft drinks (or wizards) are left out. How
exciting. This is a perfectly bijective function, also called a bijec-
tion. Again, the only way to get a bijection is for the domain and
codomain to be the same size (although that alone does not guaran-
tee a bijection; witness f5, above). Also observe that if they are the
same size, then injectivity and surjectivity go hand-in-hand. Vio-
late one, and you’re bound to violate the other. Uphold the one,
and you’re bound to uphold the other. There’s a nice, pleasing,
symmetrical elegance to the whole idea.

53 3.8. EXERCISES

3.8 Exercises

1.

2.

3.

4.

5.

6.

Let A be the set { Chuck,
Julie, Sam } and S be the set
{ basketball, volleyball }.
Is { (Julie, basketball), (Sam,
basketball), (Julie, volley-
ball) } a relation between A
and S?

Yes it is, since it is a subset of A × S.

Is the above relation an en-
dorelation?

No,
one
sets

because an endorelation
set with itself, not two
(like A and S are.)

 involves
different

Is { (Chuck, basketball),
(basketball, volleyball) } a re-
lation between A and S?

No,
the
A.

since the first element of
ordered pairs is not from

one of
the set

Is ∅ a relation between A and
S?

Yes it is, since it is a subset of A × S.

How large could a relation be-
tween A and S be?

The maximum cardinality is 6, if
all three athletes played all three
sports. (I’m assuming that the
meaning of the relation is “plays”
instead of “isAFanOf ” or “know-
sTheRulesFor” or something else. In
any case, the maximum cardinality is
6.)

Let T be the set { Spock,
Kirk, McCoy, Scotty,
Uhura }. Let O be an
endorelation on T , defined
as follows: { (Kirk, Scotty),
(Spock, Scotty), (Kirk,
Spock), (Scotty, Spock) }.

Is T reflexive?
No, since
elements
selves.

it
of
doesn’t have
T appearing

any
with

of the
them-

54 CHAPTER 3. RELATIONS

7.

8.

9.

10.

Is T symmetric?
No,
but

since it contains (Kirk,
not (Scotty, Kirk).

Scotty)

Is T antisymmetric?
No,
and

since it contains (Spock,
also (Scotty, Spock).

Scotty)

Is T transitive?

Yes, since for every (x, y) and (y, z)
present, the corresponding (x, z) is
also present. (The only example
that fits this is x=Kirk, y=Spock,
z=Scotty, and the required ordered
pair is indeed present.)

Let H be an endorelation
on T , defined as follows:

11.

12.

13.

14.

{ (Kirk, Kirk), (Spock,
Spock), (Uhura, Scotty),
(Scotty, Uhura), (Spock,
McCoy), (McCoy, Spock),
(Scotty, Scotty), (Uhura,
Uhura) }.

Is H reflexive?
No, since
Coy).

it’s missing (McCoy, Mc-

Is H symmetric?

Yes, since for every (x, y) it
tains, the corresponding (y, x) is
present.

con-
also

Is H antisymmetric?
No,
and

since it contains (Uhura,
also (Scotty, Uhura).

Scotty)

Is H transitive?

Yes, since there aren’t any examples
of (x, y) and (y, z) pairs both being
present.

Let outranks be an endore-
lation on the set of all crew
members of the Enterprise,
where (x, y) ∈ outranks if
character x has a higher Star
Fleet rank than y.

Is outranks reflexive?
No, since
him/herself.

no officer outranks

55 3.8. EXERCISES

No, since an officer cannot out-

15. Is outranks symmetric?
rank an officer
him/her.

who in turn outranks

Yes, since if one officer outranks a

16. Is outranks antisymmetric?
second, the second one
outrank the first.

cannot also

Yes, since if one officer outranks a
second, and that officer outranks a

17.

18.

19.

Is outranks transitive? third, the first obviously also out-
ranks the third.

Is outranks a partial order?

No, but close. It satisfies antisym-
metry and transitivity, which are
crucial. The only thing it doesn’t
satisfy is reflexivity, since none of
the members appear with them-
selves. If we changed this relation
to ranksAtLeastAsHighAs, then we
could include these “double” pairs
and have ourselves a partial order.

Let sameShirtColor be an
endorelation on the set of
all crew members of the
Enterprise, where (x, y) ∈
sameShirtColor if character
x ordinarily wears the same
shirt color as character y.

Is sameShirtColor reflexive?
Yes, since you
the same shirt
ing.

can’t
color

but help
as you’re

wear
wear-

Yes, since if a crew member wears
the same shirt color as another, then
that second crew member also wears

20.

21.

Is sameShirtColor symmet-
ric?

the same shirt color as the first. If
Scotty and Uhura both wear red,
then Uhura and Scotty both wear
red, duh.

Is sameShirtColor antisym-
metric?

No, for probably obvious reasons.

56 CHAPTER 3. RELATIONS

22.

23.

24.

25.

26.

27.

28.

Is sameShirtColor transitive?

Yes.
color
wear
Kirk
wear

If Kirk and Sulu wear the same
(yellow), and Sulu and Chekov
the same color (yellow), then
and Chekov most certainly will
the same color (yellow).

Above, we defined A as the
set { Chuck, Julie, Sam } and
S as the set { basketball, vol-
leyball }. Then we defined
the relation { (Julie, bas-
ketball), (Sam, basketball),
(Julie, volleyball) }.

Is this relation a function?
No, because
tirely.

it’s missing Chuck en-

Suppose we added the or-
dered pair (Chuck, basket-
ball) to it. Now is it a func-
tion?

No, because Julie appears twice,
mapping to two different values.

Okay. Suppose we then re-
move (Julie, volleyball). We
now have { (Julie, bas-
ketball), (Sam, basketball),
(Chuck, basketball) }. Is this
a function?

Yes. Congratulations.

Let’s call this function
“faveSport,” which suggests
that its meaning is to in-
dicate which sport is each
athlete’s favorite. What’s
the domain of faveSport?

{ Julie, Chuck, Sam }.

What’s the codomain of
faveSport?

{ basketball, volleyball }.

What’s the range of faveS-
port?

{ basketball }.

57 3.8. EXERCISES

29.

30.

31.

32.

33.

34.

35.

36.

Is faveSport injective?

No, because Julie and Sam (and
Chuck) all map to the same value
(basketball). For a function to be
injective, there must be no two do-
main elements that map to the same
codomain element.

Is there any way to make it
injective?

Not without altering the underlying
sets. There are three athletes and
two sports, so we can’t help but map
multiple athletes to the same sport.

Fine. Is faveSport surjective?
No,
ball.

because no one maps to volley-

Is there any way to make it
surjective?

Sure, for instance change Sam from
basketball to volleyball. Now both
of the codomain elements are “reach-
able” by some domain element, so
it’s surjective.

Is faveSport now also bijec-
tive?

No, because it’s still not injective.

How can we alter things so
that it’s bijective?

One way is to add a third sport —
say, kickboxing — and move either
Julie or Chuck over to kickboxing.
If we have Julie map to kickboxing,
Sam map to volleyball, and Chuck
map to basketball, we have a bijec-
tion.

How do we normally write
the fact that “Julie maps to
kickboxing”?

faveSport(Julie) = kickboxing.

What’s another name for “in- one-to-one.

37.

jective?”

What’s another name for onto.

38.

“surjective?”

What’s another name for image.
“range?”

Chapter 4

Probability

Probability is the study of uncertainty. This may seem like a hope-
less endeavor, sort of like knowing the unknowable, but it’s not.
The study of probability gives us tools for taming the uncertain
world we live and program in, and for reasoning about it in a pre-
cise and helpful way.

We may not know exactly how long a particular visitor is willing to
wait for our webpage to load in their browser, but we can use prob-
ability to estimate how much traffic we’ll lose if this takes longer
than a certain average duration. We may not know which specific
passwords a hacker will try as he attempts to break our security
protocol, but we can use probability to estimate how feasible this
approach will be for him. We may not know exactly when a certain
program will run out of RAM and have to swap its data out to
virtual memory, but we can predict how often this is likely to occur
— and how painful it will be for us — given a certain system load
and user behavior.

The trick is to use the tools we’ve already built — sets, relations,
functions — to characterize and structure our notions of the rela-
tive likelihood of various outcomes. Once those underpinnings are
secured, a layer of deductive reasoning will help us make good use
of that information to begin to predict the future.

59

60 CHAPTER 4. PROBABILITY

4.1 Outcomes and events

Since life is uncertain, we don’t know for sure what is going to
happen. But let’s start by assuming we know what things might
happen. Something that might happen is called an outcome. You
can think of this as the result of an experiment if you want to,
although normally we won’t be talking about outcomes that we
have explicitly manipulated and measured via scientific means. It’s
more like we’re just curious how some particular happening is going
to turn out, and we’ve identified the different ways it can turn out
and called them outcomes.

Now we’ve been using the symbol Ω to refer to “the domain of dis-
course” or “the universal set” or “all the stuff we’re talking about.”
We’re going to give it yet another name now: the sample space.
Ω, the sample space, is simply the set of all possible outcomes. Any
particular outcome — call it O — is an element of this set, just
like in chapter 1 every conceivable element was a member of the
domain of discourse.

If a woman is about to have a baby, we might define Ω as { boy,
girl }. Any particular outcome o is either boy or girl (not both), but
both outcomes are in the sample space, because both are possible.
If we roll a die, we’d define Ω as { 1, 2, 3, 4, 5, 6 }. If we’re interested
in motor vehicle safety, we might define Ω for a particular road trip
as { safe, accident }. The outcomes don’t have to be equally likely,
an important point we’ll return to soon.

In probability, we define an event as a subset of the sample space.
In other words, an event is a group of related outcomes (though
an event might contain just one outcome, or even zero). I always
thought this was a funny definition for the word “event”: it’s not
the first thing that word brings to mind. But it turns out to be
a useful concept, because sometimes we’re not interested in any
particular outcome necessarily, but rather in whether the outcome
— whatever it is — has a certain property. For instance, suppose
at the start of some game, my opponent and I each roll the die,
agreeing that the highest roller gets to go first. Suppose he rolls a
2. Now it’s my turn. The Ω for my die roll is of course { 1, 2, 3,

61 4.2. PROBABILITY MEASURES

4, 5, 6 }. But in this case, it doesn’t necessarily matter what my
specific outcome is; only whether I beat a 2. So I could define the
event M (for “me first”) to be the set { 3, 4, 5, 6 }. I could define
the event H (“him first”) to be the set { 1 } (notice H is still a set,
even though it has only one element.) Then I could define the event
T (“tie”) as the set { 2 }. I’ve now effectively collapsed a larger
set of outcomes into only the groups of outcomes I’m interested in.
Now I’m all ready to reason about the likelihood that each of these
events actually occurs.

By the way, “the set of all outcomes” is simply Ω, since an outcome
is an element of Ω. But an event is a subset of Ω, not a single
element. What, then, is “the set of all events?” If you think it
through, you’ll realize that it’s P(Ω) (the power set of the sample
space). Put another way, when defining an event, I can choose any
subset of the possible outcomes, and so I can choose any set from
P(Ω).

4.2 Probability measures

Okay, we’ve defined sample spaces and events, but when do quan-
titative notions like “the odds of” and “percent chance” come into
play? They enter the scene when we define a probability mea-
sure. A probability measure is simply a function from the domain
of events to the codomain of real numbers. We’ll normally use the
letters “Pr” for our probability measure. In symbols, Pr : P(Ω) → R
(since the set of all events is the power set of the sample space, as
per above). There’s actually another constraint, though, which is
that Pr’s values must be in the range 0 to 1, inclusive. So it’s
more correct to write: Pr : P(Ω) → [0, 1]. (You may recall from a
previous math course that ‘[’ and ‘]’ are used to describe a closed
interval in which the endpoints are included in the interval.)

The “meaning” of the probability measure is intuitive enough: it
indicates how likely we think each event is to occur. In the baby
example, if we say Pr({boy}) = .5, it means there’s a .5 probability
(a.k.a., a 50% chance) that a male child will be born. In the game
example, if we say Pr(M) = .667, if means there’s a two-thirds

62 CHAPTER 4. PROBABILITY

chance of me winning the right to go first. In all cases, a probability
of 0 means “impossible to occur” and a probability of 1 means
“absolutely certain to occur.” In colloquial English, we most often
use percentages to talk about these things: we’ll say “there’s a
60% chance Obama will win the election” rather than “there’s a
.6 probability of Obama winning.” The math’s a bit clumsier if we
deal with percentages, though, so from now on we’ll get in the habit
of using probabilities rather than ‘percent chances,’ and we’ll use
values in the 0 to 1 range rather than 0 to 100.

I find the easiest way to think about probability measures is to start
with the probabilities of the outcomes, not events. Each outcome
has a specific probability of occuring. The probabilities of events
logically flow from that just by using addition, as we’ll see in a
moment.

For example, let’s imagine that Fox Broadcasting is producing a
worldwide television event called All-time Idol, in which the yearly
winners of American Idol throughout its history all compete against
each other to be crowned the “All-time American Idol champion.”
The four contestants chosen for this competition, along with their
musical genres, and age when originally appearing on the show, are
as follows:

Kelly Clarkson (20): pop, rock, R&B
Fantasia Barrino (20): pop, R&B
Carrie Underwood (22): country

David Cook (26): rock

Entertainment shows, gossip columns, and People magazine are all
abuzz in the weeks preceding the competition, to the point where
a shrewd analyst can estimate the probabilities of each contestant
winning. Our current best estimates are: Kelly .2, Fantasia .2,
Carrie .1, and David .5.

Computing the probability for a specific event is just a matter of
adding up the probabilities of its outcomes. Define F as the event
that a woman wins the competition. Clearly Pr(F) = .5, since
Pr({Kelly}) = .2, Pr({Fantasia}) = .2, and Pr({Carrie}) = .1. If
P is the event that a rock singer wins, Pr(P) = .7, since this is the
sum of Kelly’s and David’s probabilities.

63 4.2. PROBABILITY MEASURES

Now it turns out that not just any function will do as a probability
measure, even if the domain (events) and codomain (real numbers
in the range[0,1]) are correct. In order for a function to be a “valid”
probability measure, it must satisfy several other rules:

1. Pr(Ω) = 1

2. Pr(A) ≥ 0 for all A ⊆ Ω

3. Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B)

Rule 1 basically means “something has to happen.” If we create
an event that includes every possible outcome, then there’s a prob-
ability of 1 (100% chance) the event will occur, because after all
some outcome has got to occur. (And of course Pr(Ω) can’t be
greater than 1, either, because it doesn’t make sense to have any
probability over 1.) Rule 2 says there’s no negative probabilities:
you can’t define any event, no matter how remote, that has a less
than zero chance of happening.

Rule 3 is called the “additivity property,” and is a bit more difficult
to get your head around. A diagram works wonders. Consider Fig-
ure 4.1, called a “Venn diagram,” which visually depicts sets and
their contents. Here we have defined three events: F (as above) is
the event that the winner is a woman; R is the event that the win-
ner is a rock musician (perhaps in addition to other musical genres);
and U is the event that the winner is underage (i.e., becomes a mul-
timillionare before they can legally drink). Each of these events is
depicted as a closed curve which encloses the outcomes that belong
to it. There is obviously a great deal of overlap.

Now back to rule 3. Suppose I ask “what’s the probability that
the All-time Idol winner is underage or a rock star?” Right away
we face an irritating ambiguity in the English language: does “or”
mean “either underage or a rock star, but not both?” Or does it
mean “underage and/or rock star?” The former interpretation is
called an exclusive or and the latter an inclusive or. In computer
science, we will almost always be assuming an inclusive or, unless
explicitly noted otherwise.

64 CHAPTER 4. PROBABILITY

Figure 4.1: Various events, and their overlap.

Very well then. What we’re really asking here is “what’s Pr(U ∪
R)?” We want the union of the two events, since we’re asking for the
probability that either (or both) of them occurs. You might first
think that we’d add the two probabilities for the two events and
be done with it, but a glance at the diagram tells you this means
trouble. Pr(U) is .4, and Pr(R) is .7. Even if we weren’t very smart,
we’d know something was wrong as soon as we added .4 + .7 = 1.1
to get a probability of over 1 and violate rule 1. But we are smart,
and looking at the diagram it’s easy to see what happened: we
double-counted Kelly’s probability. Kelly was a member of both
groups, so her .2 got counted in there twice. Now you can see the
rationale for rule 3. To get Pr(U ∪ R) we add Pr(U) and Pr(R),
but then we have to subtract back out the part we double-counted.
And what did we double-count? Precisely the intersection U ∩ R.

As a second example, suppose we want the probability of an un-
derage or female winner? Pr(U) = .4, and Pr(F) = .5, so the first
step is to just add these. Then we subtract out the intersection,
which we double counted. In this case, the intersection U ∩ F is
just U (check the diagram), and so subtract out the whole .4. The
answer is .5, as it should be.

By the way, you’ll notice that if the two sets in question are mutu-

4. Pr(∅) = 0

5. Pr(A) = 1−Pr(A) (recall the “total complement” operator
from p. 18.)

6. Pr(A) ≤ Pr(B) if A ⊆ B

|A|
Pr(A) = .

N

65 4.2. PROBABILITY MEASURES

ally exclusive, then there is no intersection to subtract out. That’s
a special case of rule 3. For example, suppose I defined the event C
as a country singer winning the competition. In this case, C con-
tains only one outcome: Carrie. Therefore U and C are mutually
exclusive. So if I asked “what’s the probability of an underage or
country winner?” we’d compute Pr(U ∪ C) as

Pr(U ∪ C) = Pr(U) + Pr(C) − Pr(U ∩ C)

= .4 + .1 − 0

= .5.

We didn’t double-count anything, so there was no correction to
make.

Here are a few more pretty obvious rules for probability measures,
which follow logically from the first 3:

Finally, let me draw attention to a common special case of the above
rules, which is the situation in which all outcomes are equally likely.
This usually happens when we roll dice, flip coins, deal cards, etc.
since the probability of rolling a 3 is (normally) the same as rolling
a 6, and the probability of being dealt the 10♠ is the same as the
Q♦. It may also happen when we generate encryption keys, choose
between alternate network routing paths, or determine the initial
positions of baddies in a first-person shooter level.

In this case, if there are N possible outcomes (note N = |Ω|) then
the probability of any event A is:

|F |
Pr(F) =

N

|{K♠,K♥,K♦, · · · , J♣}|
=

52

12
= = .231.
52

66 CHAPTER 4. PROBABILITY

It’s the size (cardinality) of the event set that matters, and the
ratio of this number to the total number of events is the probability.
For example, if we deal a card from a fair deck, the probability of
drawing a face card is

Please realize that this shortcut only applies when the probability
of each outcome is the same. We certainly couldn’t say, for example,
that the probability of a user’s password starting with the letter q
is just 1 , because passwords surely don’t contain all letters with 26
equal frequency. (At least, I’d be very surprised if that were the
case.) The only way to solve a problem like this is to know how
often each letter of the alphabet occurs.

4.3 Philosophical interlude

Which brings me to an important question. How do we get these
probability numbers, anyway? Everything so far has assumed that
the numbers have been dropped into our lap.

The answer depends somewhat on your interpretation of what prob-
ability means. If we say “the probability of getting heads on a coin
flip is .5,” what are we really saying? There have traditionally been
two opposing answers to this question, called the frequentist view
and the Bayesian view. It’s interesting to compare their claims.

The frequentist view is that we derive probabilities by simply run-
ning many trials, and counting the results. The proportions of
various outcomes yield a good idea of their probabilities, particu-
larly if the sample size is large. Consider flipping a coin. If we flip
a coin ten times and count three heads, we might not have a great

4.3. PHILOSOPHICAL INTERLUDE 67

idea of how often heads will occur in the long run. But if we flip it
a million times and get 500,372 heads, we can confidently say that
the probability of getting a head on a single flip is approximately
.500.

This much isn’t controversial: it’s more like common sense. But the
frequentist philosophy states that this is really the only way that
probability can be defined. It’s what probability is: the frequency
with which we can expect certain outcomes to occur, based on our
observations of their past behavior. Probabilities only make sense
for things that are repeatable, and reflect a known, reliable trend
in how often they produce certain results. Historical proponents
of this philosophy include John Venn, the inventor of the afore-
mentioned Venn diagram, and Ronald Fisher, one of the greatest
biologists and statisticians of all time.

If frequentism is thus on a quest for experimental objectivity, Bayesian-
ism might be called “subjective.” This isn’t to say it’s arbitrary
or sloppy. It simply has a different notion of what probability
ultimately means. Bayesians interpret probability as a quantita-
tive personal assessment of the likelihood of something happening.
They point out that for many (most) events of interest, trials are
neither possible nor sensible. Suppose I’m considering asking a girl
out to the prom, and I’m trying to estimate how likely it is she’ll
go with me. It’s not like I’m going to ask her a hundred times and
count how many times she says yes, then divide by 100 to get a
probability. There is in fact no way to perform a trial or use past
data to guide me, and at any rate she’s only going to say yes or no
once. So based on my background knowledge and my assumptions
about her, myself, and the world, I form an opinion which could be
quantified as a “percent chance.”

Once I’ve formed this opinion (which of course involves guesswork
and subjectivity) I can then reason about it mathematically, using
all the tools we’ve been developing. Of special interest to Bayesians
is the notion of updating probabilities when new information comes
to light, a topic we’ll return to in a moment. For the Bayesian,
the probability of some hypothesis being true is between 0 and 1,
and when an agent (a human, or a bot) makes decisions, he/she/it

68 CHAPTER 4. PROBABILITY

does so on the most up-to-date information he/she/it has, always
revising beliefs in various hypotheses when confirming or refuting
evidence is encountered. Famous Bayesians include Pierre-Simon
Laplace, sometimes called “the French Isaac Newton” for his sci-
entific brilliance, and 18th century theologian Thomas Bayes, for
whom the theory is named.

I won’t try to conceal that my own thinking on this topic is pretty
Bayesian. But I find this whole topic fascinating because it shows
how brilliant people, who unanimously agree on the rules and equa-
tions, can have such radically different interpretations of what it all
means.

4.4 Conditional probability

I mentioned that Bayesians are especially concerned with the idea
of revising estimates about probability based on new information
that may come to light. This notion can be crystallized in the idea
of conditional probability. When we talk about the conditional
probability of an event A, we mean “what’s the probability that A
occurs, given that I know some other event K has also occurred?”
Think of K as “background knowledge”: it’s additional information
which, when known, may influence how likely we think A is to have
occurred. It can be mathematically computed as follows:

Pr(A ∩ K)
Pr(A|K) =

Pr(K)

We pronounce Pr(A|K) as “the probability of A given K.” It is the
conditional probability of A, or “the probability of A conditioned
on K.” We’ll sometimes call plain old Pr(A) the a priori prob-
ability, or the prior probability if we don’t want to sound Latin.
The prior is simply the original unadjusted probability, if we aren’t
privy to the background information K.

Let’s go back to American Idol. We know that the probability of
an underage winner is only .4, because U = { Kelly, Fantasia }, and
we estimate that each of them has a .2 probability of winning. So
it seems more likely than not that our winner will be over 21. But

69 4.4. CONDITIONAL PROBABILITY

wait: suppose we had some additional information. Just before the
outcome is announced, news is leaked through a Rupert Murdoch
news source that the winner is a woman! If we believe this reporter,
does that change our expectation about how old the winner is likely
to be?

Indeed it does. Knowing that the winner is female eliminates Dave
from consideration. Looking back at Figure 4.1, we can see that
once we know Dave is out of the running, the remaining pool con-
sists of just F , which includes Kelly, Fantasia, and Carrie. The
question is, how do we update our probability from .4 to reflect the
fact that only these three ladies are

In this case F is the background knowledge: we know that the event
F has occurred. And we want to know how likely U is to also have
occurred. This is found easily:

Pr(U ∩ F)
Pr(U |F) =

Pr(F)
Pr({Kelly,Fantasia})

=
Pr({Kelly,Fantasia,Carrie})
.4

= = .8.
.5

Our estimated chance of an underage winner doubled once we found
out she was female (even though we don’t yet know which female).

If you stare at the equation and diagram, you’ll see the rationale for
this formula. Kelly and Fantasia originally had only .4 of the entire
probability between them. But once David was axed, the question
became: “what percentage of the remaining probability do Kelly
and Fantasia have?” The answer was no longer .4 out of 1, but .4
out of .5, since only .5 of the whole was left post-David. This is
why we divided by Pr(F): that’s what we know remains given our
background fact.

Now in this case, the conditional probability was higher than the
original probability. Could it ever be lower? Easily. Consider the
probability of a rock-star winner, Pr(R). A priori, it’s .7. But

Pr(R ∩ F)
Pr(R|F) =

Pr(F)
Pr({Kelly})

=
Pr({Kelly,Fantasia,Carrie})
.2

= = .4.
.5

70 CHAPTER 4. PROBABILITY

again, let’s say we had information leaked to us that the winner,
whoever she may be, is female. We can now update our estimate:

You see, once we find out that David is no longer a possibility, our
only remaining hope for a rock star is Kelly. And she has only 40%
of the probability that’s left over. Note that this is a higher chance
for her personally — she’s got to be excited by the press leak —
but it’s lower for rock stars, of which she is only one (and evidently,
not the predicted strongest).

Background knowledge can even peg our probability estimate to an
extreme: all the way to 0, or to 1. What’s Pr(U |C), the probability
of an underage winner, given that he/she is a country singer? The
intersection of U and C is zero, so this makes Pr(U |C) = 0. In
words: a country winner eliminates any possibility of an underage
winner. And what’s Pr(F |U), the probability that a woman wins,
given that we know the winner to be underage? Well, F ∩ U and

 Pr(F ∩U) U are the same (check me), so = .4 = 1. Therefore, anPr(U) .4
underage winner guarantees a female winner.

The way I think about conditional probability is this: look at the
diagram, consider the events known to have occurred, and then
mentally block out everything except that. Once we know the back-
ground fact(s), we’re essentially dealing with a restricted world.
Take the example of the known female winner. Once we know
that event F in fact occurred, we can visually filter out David,
and look at the F blob as though that were our entire world. In
this restricted female-only view, the underage elements comprise a
greater percentage of the total than they did before. And half of
the rock-star elements have now been obscured, leaving only Kelly
as the one-of-the-remaining-three.

71 4.5. TOTAL PROBABILITY

Many psychologists, by the way, claim that we’re constantly doing
this sort of thing in our minds: gathering facts, then revising our
beliefs about the world in light of those facts. We start by believ-
ing that Pr(X) is approximately some value. Then we learn K1 has
occurred, and we update this to Pr(X|K1). Then we learn that K2

has also occurred, and so now we have Pr(X|K1 ∩K2). (Can you see
why it’s the intersection?) The more we learn, the more we revise
our estimate up or down, presumably getting more accurate as we
go. Another way of looking at it is that every time we learn some-
thing new is true, we also learn that its opposite is not true, and
therefore we can eliminate some parts of the theoretically-possible
universe that we have now ruled out. The denominator gets smaller
and smaller as we eliminate possibilities.

Keep in mind, by the way, that unlike union and intersection, con-
ditional probability is not commutative. In other words, Pr(X|Y)
6= Pr(Y |X) in general. To take just one example, look again at
the F and U sets from All-time Idol. Pr(F |U), as we already com-
puted, is equal to 1 since if U has occurred, we automatically know
that F has also occurred (there aren’t any underage contestants
except females). But the reverse is certainly not true: just because
we have a female winner doesn’t mean we have an underage win-
ner, since the winner might be Carrie. Working it out, Pr(U |F) =
Pr(U∩F) .4 = = .8. Higher than Pr(U), but not 1.Pr(F) .5

4.5 Total probability

There’s a very useful fact that goes by the grandiose name “The
Law of Total Probability.” It goes like this. If there’s an event
whose probability we’d like to know, we can split it up into pieces
and add up their probabilities, as long as we do it in the right way.

“The right way” bit is the key, of course. And it has to do with
partitions. Recall from section 2.12 that a partition of a set is
a mutually exclusive and collectively exhaustive group of subsets.
One example is that every set and its complement together form a
partition of Ω. By the same token, for any sets A and B, these two
sets together form a partition of A:

A ∩ B

A ∩ B

Pr(A) = Pr(A ∩ B) + Pr(A ∩ B)

= Pr(A|B)Pr(B) + Pr(A|B)Pr(B)

72 CHAPTER 4. PROBABILITY

This is worth taking a moment to understand completely. Suppose
A is the set of all WWE professional wrestling fans, and B is the
set of all people born in southern states. The first set listed above,
A ∩ B contains professional wrestling fans born in southern states,
and the second set, A ∩ B, the wrestling fans not born in southern
states. Clearly, every wrestling fan is in one of these two sets, and
no fan is in both. So it’s a partition of A. This works for any two
sets A and B: A ∩ B and A ∩ B are a partition of A. We’re just
dividing up the A’s into the A’s that are also B’s, and the A’s that
are not B’s. Every A is in one (and just one) of those groups.

This idea can be extended to more than two sets. Let C1 be the
set of all people born in southern states, C2 the set of people born
in western states, and C3 those not born in either region. (The
set C3 includes lots of things: people born in Ohio, people born in
Taiwan, and ham sandwiches, among others.) The following three
sets, then, together form another partition of A: A∩C1, A∩C2, and
A ∩ C3. This is because every professional wrestling fan is either
born in the south, or born in the west, or neither one.

Okay, now back to probability. In the two-set case, no matter what
the event A is, we can divide up its probability like this:

where B is any other event. The last step makes use of the condi-
tional probability definition from above. We’re dividing up A into
the B’s and the non-B’s, in a strategy to determine A’s probability.
In the general case, if N sets named Ck (where k is a number from
1 to N) make up a partition of Ω, then:

Pr(Avengers) = 2000 = .5712000+500+1000

Pr(BlackSwan) = 500 = .1432000+500+1000

Pr(Lorax) = 1500 = .2862000+500+1000

4.5. TOTAL PROBABILITY 73

Pr(A) = Pr(A ∩ C1) + Pr(A ∩ C2) + · · · + Pr(A ∩ CN)

= Pr(A|C1)Pr(C1) + Pr(A|C2)Pr(C2) + · · · + Pr(A|CN)Pr(CN)
NX

= Pr(A|Ck)Pr(Ck)
k=1

 is the formula.1

Let’s take an example of this approach. Suppose that as part of
a promotion for Muvico Cinemas movie theatre, we’re planning to
give a door prize to the 1000th customer this Saturday afternoon.
We want to know, though, the probability that this person will be
a minor. Figuring out how many patrons overall will be under 18
might be difficult. But suppose we’re showing these three films on
Saturday: The Avengers, Black Swan, and Dr. Seuss’s The Lorax.
We can estimate the fraction of each movie’s viewers that will be
minors: .6, .01, and .95, respectively. We can also predict how
many tickets will be sold for each film: 2,000 for the Avengers, 500
for Black Swan, and 1,000 for Lorax.

Applying frequentist principles, we can compute the probability
that a particular visitor will be seeing each of the movies:

1If you’re not familiar with the notation in that last line, realize that Σ
(a capital Greek “sigma”) just represents a sort of loop with a counter. The
“k = 1” under the sign means that the counter is k and starts at 1; the “N”
above the sign means the counter goes up to N , which is its last value. And
what does the loop do? It adds up a cumulative sum. The thing being added to
the total each time through the loop is the expression to the right of the sign.
The last line with the Σ is just a more compact way of expressing the preceding
line.

74 CHAPTER 4. PROBABILITY

To be clear: this is saying that if we select a visitor at random on
Saturday, the probability that they will be seeing The Avengers is
.571.

But (and this is the trick) we can also compute the conditional
probability that an attendee of each of these films will be a minor:

Pr(minor|Avengers) = .6

Pr(minor|BlackSwan) = .01

Pr(minor|Lorax) = .95

In words: “If we know that a visitor is coming to see The Avengers,
there’s a .6 probability that they’ll be a minor.” We’re using the
background knowledge to determine the conditional probability. It
might be hard to figure out the probability of minors in general,
but easier to figure out the probability of minors watching a specific
movie.

Now, it’s just a matter of stitching together the parts:

Pr(minor) = Pr(minor|Avengers) Pr(Avengers)+

Pr(minor|BlackSwan) Pr(BlackSwan)+

Pr(minor|Lorax) Pr(Lorax)
= .6 · .571 + .01 · .143 + .95 · .286
= .343 + .00143 + .272 ≈ .616

In words, there are three different ways for a visitor to be a minor:
they could be an Avengers fan and a minor (pretty likely, since
there’s lots of Avengers fans), or a Black Swan fan and a minor
(not likely), or a Lorax fan and a minor (fairly likely, since although
there’s not a ton of Lorax fans overall, most of them are minors).
Adding up these probabilities is legit only because the three movies
form a partition of the visitors (i.e., every visitor is there to see one
and only one movie).

75 4.6. BAYES’ THEOREM

The Law of Total Probability comes in handy in scenarios where
there’s more than one “way” for an event to occur. It lets you break
that event apart into the different ways, then apply your knowledge
of the likelihood of each of those ways in order to compute the
grand, overall probability of the event.

4.6 Bayes’ Theorem

Another trick that helps compute probabilities in practice is Bayes’
Pr(A∩K)Theorem. We’ve defined Pr(A|K) as , and by swapping Pr(K)

Pr(K∩A)the letters we get Pr(K|A) = . Combining these with aPr(A)
little bit of algebra yields:

Pr(K|A) Pr(A)
Pr(A|K) =

Pr(K)

Now this is a very, very powerful equation that has a multitude of
uses throughout computer science and statistics. What makes it
powerful is that it allows us to express Pr(A|K), a quantity often
very difficult to estimate, in terms of Pr(K|A), which is often much
easier.

A simple and commonly cited example is that of interpreting medi-
cal exam results for the presence of a disease. If your doctor recom-
mends that you undergo a blood test to see if you have some rare
condition, you might test positive or negative. But suppose you do
indeed test positive. What’s the probability that you actually have
the disease? That, of course, is the key point.

In symbols, we’re looking for Pr(D|T), where D is the event that
you actually have the disease in question, and T is the event that
you test positive for it. But this is hard to approximate with avail-
able data. For one thing, most people who undergo this test don’t
test positive, so we don’t have a ton of examples of event T occur-
ring whereby we could count the times D also occurred. But worse,
it’s hard to tell whether a patient has the disease, at least before
advanced symptoms develop — that, after all, is the purpose of our
test!

76 CHAPTER 4. PROBABILITY

Bayes’ Theorem, however, lets us rewrite this as:

Pr(T |D) Pr(D)
Pr(D|T) = .

Pr(T)

Now we have Pr(D|T), the hard quantity to compute, in terms of
three things we can get data for. To estimate Pr(T |D), the proba-
bility of a person who has the disease testing positive, we can ad-
minister the test to unfortunate patients with advanced symptoms
and count how many of them test positive. To estimate Pr(D), the
prior probability of having the disease, we can divide the number
of known cases by the population as a whole to find how prevalent
it is. And getting Pr(T), the probability of testing positive, is easy
since we know the results of the tests we’ve administered.

In numbers, suppose our test is 99% accurate — i.e., if someone
actually has the disease, there’s a .99 probability they’ll test positive
for it, and if they don’t have it, there’s a .99 probability they’ll test
negative. Let’s also assume that this is a very rare disease: only
one in a thousand people contracts it.

When we interpret those numbers in light of the formula we’re
seeking to populate, we realize that Pr(T |D) = .99, and Pr(D) =
1 The other quantity we need is Pr(T), and we’re all set. But1000 .
how do we figure out Pr(T), the probability of testing positive?

Answer: use the Law of Total Probability. There are two differ-
ent “ways” to test positive: (1) to actually have the disease, and
(correctly) test positive for it, or (2) to not have the disease, but
incorrectly test positive for it anyway because the test was wrong.
Let’s compute this:

Pr(T) = Pr(T |D) Pr(D) + Pr(T |D) Pr(D)
1 999

= .99 · + .01 ·
1000 1000

= .00099 + .00999 = .01098 (4.1)

77 4.6. BAYES’ THEOREM

See how that works? If I do have the disease (and there’s a 1 in 1,000
chance of that), there’s a .99 probability of me testing positive. On
the other hand, if I don’t have the disease (a 999 in 1,000 chance of
that), there’s a .01 probability of me testing positive anyway. The
sum of those two mutually exclusive probabilities is .01098.

Now we can use our Bayes’ Theorem formula to deduce:

Pr(T |D) Pr(D)
Pr(D|T) =

Pr(T)
1 .99 · 1000 = ≈ .0902

.01098

Wow. We tested positive on a 99% accurate medical exam, yet we
only have about a 9% chance of actually having the disease! Great
news for the patient, but a head-scratcher for the math student.
How can we understand this? Well, the key is to look back at that
Total Probability calculation in equation 4.1. Remember that there
were two ways to test positive: one where you had the disease, and
one where you didn’t. Look at the contribution to the whole that
each of those two probabilities produced. The first was .00099,
and the second was .00999, over ten times higher. Why? Simply
because the disease is so rare. Think about it: the test fails once
every hundred times, but a random person only has the disease
once every thousand times. If you test positive, it’s far more likely
that the test screwed up than that you actually have the disease,
which is rarer than blue moons.

Anyway, all the stuff about diseases and tests is a side note. The
main point is that Bayes’ Theorem allows us to recast a search for
Pr(X|Y) into a search for Pr(Y |X), which is often far easier to find
numbers for.

One of many computer science applications of Bayes’ Theorem is
in text mining. In this field, we computationally analyze the words
in documents in order to automatically classify them or form sum-
maries or conclusions about their contents. One goal might be to
identify the true author of a document, given samples of the writ-
ing of various suspected authors. Consider the Federalist Papers,

78 CHAPTER 4. PROBABILITY

the group of highly influential 18th century essays that argued for
ratifying the Constitution. These essays were jointly authored by
Alexander Hamilton, James Madison, and John Jay, but it was un-
certain for many years which of these authors wrote which specific
essays.

Suppose we’re interested in determining which of these three Found-
ing Fathers actually wrote essay #84 in the collection. To do this,
the logical approach is to find Pr(Hamilton|essay84), Pr(Madison|
essay84), and Pr(Jay|essay84), and then choose the author with the
highest probability. But how can we possibly find out Pr(Hamilton|
essay84)? “Given that essay #84 has these words in this order,
what’s the probability that Hamilton wrote it?” Impossible to know.

But with Bayes’ Theorem, we can restructure this in terms of
Pr(essay84|Hamilton) instead. That’s a horse of a different color.
We have lots of known samples of Hamilton’s writing (and Madi-
son’s, and Jay’s), so we can ask, “given that Hamilton wrote an
essay, what’s the probability that he would have chosen the words
that appear in essay #84?” Perhaps essay #84 has a turn of phrase
that is very characteristic of Hamilton, and contains certain vo-
cabulary words that Madison never used elsewhere, and has fewer
sentences per paragraph than is typical of Jay’s writing. If we can
identify the relevant features of the essay and compare them to
the writing styles of the candidates, we can use Bayes’ Theorem
to estimate the relative probabilities that each of them would have
produced that kind of essay. I’m glossing over a lot of details here,
but this trick of exchanging one conditional probability for the other
is the backbone of this whole technique.

4.7 Independence

We’ve seen that a particular problem can involve multiple different
events. In the All-time Idol example, we considered the probabil-
ity of a female winner, a country singer winner, and an underage
winner, among other things.

Now one question that often arises concerns the independence of
events. Two events A and B are called independent if the prior

79 4.7. INDEPENDENCE

probability is the same as the conditional probability; that is, if
Pr(A|B) = Pr(A).

If you reflect on what this means, you’ll see that with independent
events, knowing that one of them occurred tells you nothing (either
for or against) about whether the other one also occurred.

For example, let S be the event that Strike For Gold wins the
Kentucky Derby next May. Let R be the event that it rains that
day. If I say that S and R are independent, I’m claiming that rain
(or the absence thereof) would have no impact either way on the
horse’s chances. If you were able to see the future, and reveal to me
the weather on Derby Day, that’s fine but it wouldn’t help me in my
betting. Knowing Pr(R) wouldn’t give me any helpful information,
because Pr(S|R) is the same as just plain old Pr(S) anyway.

That’s a conceptual explanation. In the end, it boils down to
numbers. Suppose we have the following contingency table that
shows the results of a survey we conducted at UMW on dominant
handedness:

Male Female
Left-handed 20 26
Right-handed 160 208

The data is self-explanatory. Obviously there were a lot more right-
handers who took our survey than left, and slightly more women
than men. Now consider: if this data is reflective of the popula-
tion as a whole, what’s Pr(L), where L is the event that a ran-
domly chosen person is left-handed? We surveyed 160+208=368
right-handers and only 20+26=46 southpaws, so we’ll estimate that
Pr(L) = 46 ≈ .111. If you pick a random person on campus,368+46
our best guess is that there’s a .111 probability of them being left-
handed.

Suppose I told you, however, before you knew anything about
the randomly chosen person’s handedness, that she was a woman.
Would that influence your guess? In this case, you’d have extra
information that the F event had occurred (F being the event of
a female selection), and so you want to revise your estimate as

80 CHAPTER 4. PROBABILITY

Pr(L|F). Considering only the women, then, you compute Pr(L|F)
26 = ≈ .111 from the data in the table.234

Wait a minute. That’s exactly what we had before. Learning that
we had chosen a woman told us nothing useful about her handed-
ness. That’s what we mean by saying that the L and F events are
independent of each other.

The shrewd reader may object that this was a startling coincidence:
the numbers worked out exactly perfectly to produce this result.
The proportion of left-handed females was precisely the same as
that of left-handed males, down to the penny. Is this really likely
to occur in practice? And if not, isn’t independence so theoretical
as to be irrelevant?

There are two ways of answering that question. The first is to admit
that in real life, of course, we’re bound to get some noise in our data,
just because the sample is finite and there are random fluctuations
in who we happened to survey. For the same reason, if we flipped an
ordinary coin 1,000 times, we aren’t likely to get exactly 500 heads.
But that doesn’t mean we should rush to the conclusion that the
coin is biased. Statisticians have sophisticated ways of answering
this question by computing how much the experimental data needs
to deviate from what we’d expect before we raise a red flag. Suffice
to say here that even if the contingency table we collect isn’t picture
perfect, we may still conclude that two events are independent if
they’re “close enough” to independence.

The other response, though, is that yes, the burden of proof is in-
deed on independence, rather than on non-independence. In other
words, we shouldn’t start by cavalierly assuming all the events we’re
considering are in fact independent, and only changing our mind if
we see unexpected correlations between them. Instead, we should
always be suspicious that two events will affect each other in some
way, and only conclude they’re independent if the data we collect
works out more or less “evenly” as in the example above. To say
that Pr(A|B) is the same as Pr(A) is an aggressive statement, out-
side the norm, and we shouldn’t assume it without strong evidence.

One more point on the topic of independence: please don’t make

81 4.7. INDEPENDENCE

the mistake that mutually exclusive events are independent ! This
is by no means the case, and in fact, the opposite is true. If two
events are mutually exclusive, they are extremely dependent on
each other! Consider the most trivial case: I choose a random
person on campus, and define M as the event that they’re male,
and F as the event that they’re female. Clearly these events are
mutually exclusive. But are they independent? Of course not!
Think about it: if I told you a person was male, would that tell
you anything about whether they were female? Duh. In a mutual
exclusive case like this, event M completely rules out F (and vice
versa), which means that although Pr(M) might be .435, Pr(M |F)
is a big fat zero. Pr(A|B) is most certainly not going to be equal
to Pr(A) if the two events are mutually exclusive, because learning
about one event tells you everything about the other.

82 CHAPTER 4. PROBABILITY

4.8 Exercises

1.

2.

3.

4.

5.

6.

7.

At a swim meet, the competitors in
the 100-m freestyle are Ben, Chad,
Grover, and Tim. These four swim-
mers make up our sample space Ω for
the winner of this heat.
Is Chad ∈ Ω? Yes.

Is Tim an outcome?
Yes.

Is Ben an event?

No, since outcomes are ele-
ments of the sample space,
while events are subsets of the
sample space.

Is { Chad, Grover } an event?
Yes.

Is { Ben } an event?
Yes.

Suppose I told you that
Pr({Ben})=.1, Pr({Chad})=.2,
Pr({Grover})=.3, and
Pr({Tim})=.3. Would you be-
lieve me?

Better not. This is not
a valid probability measure,
since the sum of the proba-
bilities of all the outcomes,
Pr(Ω), is not equal to 1.

Suppose I told you that Pr({Ben,
Chad})=.3, and Pr({Ben, Tim})=.4,
and Pr({Grover})=.4. Could you
tell me the probability that Ben wins
the heat?

Yes. If Pr({Ben, Chad})=.3
and Pr({Grover})=.4, that
leaves .3 probability left over
for Tim. And if Pr({Ben,
Tim})=.4, this implies that
Pr({Ben})=.1.

83 4.8. EXERCISES

8.

9.

And what’s the probability that
someone besides Chad wins?

Pr({Chad}) =
1−Pr({Chad}), so we
just need to figure out
the probability that Chad
wins, and take one minus
that. Clearly if Pr({Ben,
Chad})=.3 (as we were
told), and Pr({Ben})=.1
(as we computed), then
Pr({Chad})=.2, and the
probability of a non-Chad
winner is .8.

Okay, so we have the probabilities
of our four swimmers Ben, Chad,
Grover, and Tim each winning the
heat at .1, .2, .4, and .3, respectively.
Now suppose Ben, Chad, and
Grover are UMW athletes, Tim
is from Marymount, Ben and
Tim are juniors, and Chad and
Grover are sophomores. We’ll
define U={Ben,Chad,Grover},
M={Tim}, J={Ben,Tim}, and
S={Chad,Grover}.
What’s Pr(U)? .7.

Chapter 5

Structures

Much of computer science deals with representing and manipulat-
ing information. To do this, people have devised various struc-
tures for organizing chunks of data in a way that makes it easy to
store, search, and retrieve. There’s a whole course in most com-
puter science curricula called “data structures” which covers how to
implement these structures in code. In this book, we won’t be talk-
ing about the code, but rather the abstract structures themselves.
This chapter has a lot of pictures in it, which depict examples of
the various structures in a very general way. The concepts here
map directly to code when you need to put them into practice.

There are all kinds of data structures — arrays, linked lists, queues,
stacks, hashtables, and heaps, to name a few — but they almost all
boil down to one of two fundamental kinds of things: graphs, and
trees. These are the two structures we’ll focus on in this chapter.
A graph is just about the most general structure you can envision:
a bunch of scattered data elements that are related to each other
in some way. Almost every data structure imaginable can be recast
as a type of graph. Trees are sort of a special case of graphs, but
also sort of a topic in their own right, kind of like functions were
a special type of relation, but also kind of different. A tree can be
seen as a type of graph that imposes extra special conditions which
give some navigational benefit.

85

86 CHAPTER 5. STRUCTURES

5.1 Graphs

In many ways, the most elegant, simple, and powerful way of rep-
resenting knowledge is by means of a graph. A graph is composed
of a bunch of little bits of data, each of which may (or may not)
be attached to each of the others. An example is in Figure 5.1.
Each of the labeled ovals is called a vertex (plural: vertices),
and the lines between them are called edges. Each vertex does,
or does not, contain an edge connecting it to each other vertex.
One could imagine each of the vertices containing various descrip-
tive attributes — perhaps the John Wilkes Booth oval would have
information about Booth’s birthdate, and Washington, DC infor-
mation about its longitude, latitude, and population — but these
are typically not shown on the diagram. All that really matters,
graph-wise, is what vertices it contains, and which ones are joined
to which others.

Figure 5.1: A graph (undirected).

Cognitive psychologists, who study the internal mental processes of
the mind, have long identified this sort of structure as the principal
way that people mentally store and work with information. After
all, if you step back a moment and ask “what is the ‘stuff’ that’s in
my memory?” a reasonable answer is “well I know about a bunch
of things, and the properties of those things, and the relationships
between those things.” If the “things” are vertices, and the “prop-
erties” are attributes of those vertices, and the “relationships” are
the edges, we have precisely the structure of a graph. Psychologists
have given this another name: a semantic network. It is thought
that the myriad of concepts you have committed to memory —

87 5.1. GRAPHS

Abraham Lincoln, and bar of soap, and my fall schedule, and per-
haps millions of others — are all associated in your mind in a vast
semantic network that links the related concepts together. When
your mind recalls information, or deduces facts, or even drifts ran-
domly in idle moments, it’s essentially traversing this graph along
the various edges that exist between vertices.

That’s deep. But you don’t have to go near that deep to see the
appearance of graph structures all throughout computer science.
What’s MapQuest, if not a giant graph where the vertices are trav-
elable locations and the edges are routes between them? What’s
Facebook, if not a giant graph where the vertices are people and
the edges are friendships? What’s the World Wide Web, if not a
giant graph where the vertices are pages and the edges are hyper-
links? What’s the Internet, if not a giant graph where the vertices
are computers or routers and the edges are communication links
between them? This simple scheme of linked vertices is powerful
enough to accommodate a whole host of applications, which is why
it’s worth studying.

Graph terms

The study of graphs brings with it a whole bevy of new terms which
are important to use precisely:

vertex. Every graph contains zero or more vertices.1 (These are
also sometimes called nodes, concepts, or objects.)

edge. Every graph contains zero or more edges. (These are also
sometimes called links, connections, associations, or relation-
ships.) Each edge connects exactly two vertices, unless the
edge connects a vertex to itself, which is possible, believe it
or not. An edge that connects a vertex to itself is called a
loop.

1The phrase “zero or more” is common in discrete math. In this case, it
indicates that the empty graph, which contains no vertices at all, is still a
legitimate graph.

88 CHAPTER 5. STRUCTURES

path. A path is a sequence of consecutive edges that takes you
from one vertex to the other. In Figure 5.1, there is a path
between Washington, DC and John Wilkes Booth (by means
of Ford’s Theatre) even though there is no direct edge between
the two. By contrast, no path exists between President and
Civil War. Don’t confuse the two terms edge and path: the
former is a single link between two nodes, while the second
can be a whole step-by-step traversal. (A single edge does
count as a path, though.)

directed/undirected. In some graphs, relationships between nodes
are inherently bidirectional: if A is linked to B, then B is
linked to A, and it doesn’t make sense otherwise. Think of
Facebook: friendship always goes both ways. This kind of
graph is called an undirected graph, and like the Abraham
Lincoln example in Figure 5.1, the edges are shown as straight
lines. In other situations, an edge from A to B doesn’t neces-
sarily imply one in the reverse direction as well. In the World
Wide Web, for instance, just because webpage A has a link on
it to webpage B doesn’t mean the reverse is true (it usually
isn’t). In this kind of directed graph, we draw arrowheads
on the lines to indicate which way the link goes. An example
is Figure 5.2: the vertices represent famous boxers, and the
directed edges indicate which boxer defeated which other(s).
It is possible for a pair of vertices to have edges in both di-
rections — Muhammad Ali and Joe Frazier each defeated the
other (in separate bouts, of course) — but this is not the
norm, and certainly not the rule, with a directed graph.

weighted. Some graphs, in addition to merely containing the pres-
ence (or absence) of an edge between each pair of vertices,
also have a number on each edge, called the edge’s weight.
Depending on the graph, this can indicate the distance, or
cost, between vertices. An example is in Figure 5.3: in true
MapQuest fashion, this graph contains locations, and the
mileage between them. A graph can be both directed and
weighted, by the way. If a pair of vertices in such a graph is
attached “both ways,” then each of the two edges will have

89 5.1. GRAPHS

Figure 5.2: A directed graph.

its own weight.

Figure 5.3: A weighted (and undirected) graph.

adjacent. If two vertices have an edge between them, they are said
to be adjacent.

connected. The word connected has two meanings: it applies
both to pairs of vertices and to entire graphs.

We say that two vertices are connected if there is at least one
path between them. Each vertex is therefore “reachable” from
the other. In Figure 5.1, President and actor are connected,
but Ford’s Theatre and Civil War are not.

“Connected” is also used to describe entire graphs, if every
node can be reached from all others. It’s easy to see that Fig-

90 CHAPTER 5. STRUCTURES

ure 5.3 is a connected graph, whereas Figure 5.1 is not (be-
cause Civil War and Gettysburg are isolated from the other
nodes). It’s not always trivial to determine whether a graph
is connected, however: imagine a tangled morass of a mil-
lion vertices, with ten million edges, and having to figure out
whether or not every vertex is reachable from every other.
(And if that seems unrealistically large, consider Facebook,
which has over a billion nodes.)

degree. A vertex’s degree is simply the number of edges that con-
nect to it. Virginia Beach has degree 2, and Fredericksburg
3. In the case of a directed graph, we sometimes distinguish
between the number of incoming arrows a vertex has (called
its in-degree) and the number of outgoing arrows (the out-
degree). Muhammad Ali had a higher out-degree (3) than
in-degree (1) since he won most of the time.

cycle. A cycle is a path that begins and ends at the same vertex.2

In Figure 5.3, Richmond–to–Virginia Beach–to–Fredericksburg–
to–Richmond is a cycle. Any loop is a cycle all by itself. For
directed graphs, the entire loop must comprise edges in the
“forward” direction: no fair going backwards. In Figure 5.2,
Frazier–to–Ali–to–Foreman–to–Frazier is a cycle, as is the
simpler Ali–to–Frazier–to–Ali.

DAG (directed, acyclic graph). One common use of graphs is
to represent flows of dependencies, for instance the prerequi-
sites that different college courses have for one another. An-
other example is project management workflows: the tasks
needed to complete a project become vertices, and then the
dependencies they have on one another become edges. The
graph in Figure 5.4 shows the steps in making a batch of
brownies, and how these steps depend on each other. The
eggs have to be cracked before the ingredients can be mixed,

2We’ll also say that a cycle can’t repeat any edges or vertices along the
way, so that it can’t go back and forth repeatedly and pointlessly between two
adjacent nodes. Some mathematicians call this a simple cycle to distinguish
it from the more general cycle, but we’ll just say that no cycles can repeat like
this.

91 5.1. GRAPHS

and the oven has to be preheated before baking, but the pan
can be greased any old time, provided that it’s done before
pouring the brown goop into it.

Figure 5.4: A DAG.

A graph of dependencies like this must be both directed
and acyclic, or it wouldn’t make sense. Directed, of course,
means that task X can require task Y to be completed before
it, without the reverse also being true. If they both depended
on each other, we’d have an infinite loop, and no brownies
could ever get baked! Acyclic means that no kind of cycle
can exist in the graph, even one that goes through multiple
vertices. Such a cycle would again result in an infinite loop,
making the project hopeless. Imagine if there were an arrow
from bake for 30 mins back to grease pan in Figure 5.4. Then,
we’d have to grease the pan before pouring the goop into it,
and we’d have to pour the goop before baking, but we’d also
have to bake before greasing the pan! We’d be stuck right
off the bat: there’d be no way to complete any of those tasks
since they’d all indirectly depend on each other. A graph
that is both directed and acyclic (and therefore free of these
problems) is sometimes called a DAG for short.

92 CHAPTER 5. STRUCTURES

Spatial positioning

One important thing to understand about graphs is which aspects
of a diagram are relevant. Specifically, the spatial positioning of the
vertices doesn’t matter. In Figure 5.2 we drew Muhammad Ali in
the mid-upper left, and Sonny Liston in the extreme upper right.
But this was an arbitrary choice, and irrelevant. More specifically,
this isn’t part of the information the diagram claims to represent.
We could have positioned the vertices differently, as in Figure 5.5,
and had the same graph. In both diagrams, there are the same
vertices, and the same edges between them (check me). Therefore,
these are mathematically the same graph.

Figure 5.5: A different look to the same graph as Figure 5.2.

This might not seem surprising for the prize fighter graph, but for
graphs like the MapQuest graph, which actually represent physical
locations, it can seem jarring. In Figure 5.3 we could have drawn
Richmond north of Fredericksburg, and Virginia Beach on the far
west side of the diagram, and still had the same graph, provided
that all the nodes and links were the same. Just remember that
the spatial positioning is designed for human convenience, and isn’t
part of the mathematical information. It’s similar to how there’s
no order to the elements of a set, even though when we specify a set
extensionally, we have to list them in some order to avoid writing
all the element names on top of each other. On a graph diagram,
we have to draw each vertex somewhere, but where we put it is
simply aesthetic.

93 5.1. GRAPHS

Relationship to sets

We seem to have strayed far afield from sets with all this graph
stuff. But actually, there are some important connections to be
made to those original concepts. Recall the wizards set A from
chapter 3 that we extended to contain { Harry, Ron, Hermione,
Neville }. Now consider the following endorelation on A:

(Harry, Ron)
(Ron, Harry)

(Ron, Hermione)
(Ron, Neville)

(Hermione, Hermione)
(Neville, Harry)

This relation, and all it contains, is represented faithfully by the
graph in Figure 5.6. The elements of A are the vertices of course,
and each ordered pair of the relation is reflected in an edge of the
graph. Can you see how exactly the same information is represented
by both forms?

Figure 5.6: A graph depicting a endorelation.

Figure 5.6 is a directed graph, of course. What if it were an undi-
rected graph? The answer is that the corresponding relation would
be symmetric. An undirected graph implies that if there’s an edge
between two vertices, it goes “both ways.” This is really identical

94 CHAPTER 5. STRUCTURES

to saying a relation is symmetric: if an (x, y) is in the relation, then
the corresponding (y, x) must also be. An example is Figure 5.7,
which depicts the following symmetric relation:

(Harry, Ron)
(Ron, Harry)

(Ron, Hermione)
(Hermione, Ron)
(Harry, Harry)
(Neville, Neville)

Figure 5.7: A graph depicting a symmetric endorelation.

Notice how the loops (edges from a node back to itself) in these
diagrams represent ordered pairs in which both elements are the
same.

Another connection between graphs and sets has to do with parti-
tions. Figure 5.7 was not a connected graph: Neville couldn’t be
reached from any of the other nodes. Now consider: isn’t a graph
like this similar in some ways to a partition of A — namely, this
one?

{ Harry, Ron, Hermione } and { Neville }.

We’ve simply partitioned the elements of A into the groups that
are connected. If you remove the edge between Harry and Ron in
that graph, you have:

{ Harry }, { Ron, Hermione }, and { Neville }.

95 5.1. GRAPHS

Then add one between Hermione and Neville, and now you have:

{ Harry } and { Ron, Hermione, Neville }.

In other words, the “connectedness” of a graph can be represented
precisely as a partition of the set of vertices. Each connected sub-
set is in its own group, and every vertex is in one and only one
group: therefore, these isolated groups are mutually exclusive and
collectively exhaustive. Cool.

Graph traversal

If you had a long list — perhaps of phone numbers, names, or
purchase orders — and you needed to go through and do something
to each element of the list — dial all the numbers, scan the list for
a certain name, add up all the orders — it’d be pretty obvious how
to do it. You just start at the top and work your way down. It
might be tedious, but it’s not confusing.

Iterating through the elements like this is called traversing the
data structure. You want to make sure you encounter each element
once (and only once) so you can do whatever needs to be done with
it. It’s clear how to traverse a list. But how to traverse a graph?
There is no obvious “first” or “last” node, and each one is linked to
potentially many others. And as we’ve seen, the vertices might not
even be fully connected, so a traversal path through all the nodes
might not even exist.

There are two different ways of traversing a graph: breadth-first,
and depth-first. They provide different ways of exploring the nodes,
and as a side effect, each is able to discover whether the graph is
connected or not. Let’s look at each in turn.

Breadth-first traversal

With breadth-first traversal, we begin at a starting vertex (it
doesn’t matter which one) and explore the graph cautiously and
delicately. We probe equally deep in all directions, making sure

96 CHAPTER 5. STRUCTURES

we’ve looked a little ways down each possible path before exploring
each of those paths a little further.

To do this, we use a very simple data structure called a queue. A
queue is simply a list of nodes that are waiting in line. (In Britain,
I’m told, instead of saying “line up” at the sandwich shop, they
say “queue up.”) When we enter a node into the queue at the tail
end, we call it enqueueing the node, and when we remove one
from the front, we call it dequeueing the node. The nodes in the
middle patiently wait their turn to be dealt with, getting closer to
the front every time the front node is dequeued.

An example of this data structure in action is shown in Figure 5.8.
Note carefully that we always insert nodes at one end (on the right)
and remove them from the other end (the left). This means that
the first item to be enqueued (in this case, the triangle) will be the
first to be dequeued. “Calls will be answered in the order they were
received.” This fact has given rise to another name for a queue: a
“FIFO,” which stands for “first-in-first-out.”

Start with an empty queue: |
Enqueue a triangle, and we have: |4
Enqueue a star, and we have: |4F
Enqueue a heart, and we have: |4F♥
Dequeue the triangle, and we have: |F♥
Enqueue a club, and we have: |F♥♣
Dequeue the star, and we have: |♥♣
Dequeue the heart, and we have: |♣
Dequeue the club. We’re empty again: |

Figure 5.8: A queue in action. The vertical bar marks the “front
of the line,” and the elements are waiting to be dequeued in order
from left to right.

Now here’s how we use a queue to traverse a graph breadth-first.
We’re going to start at a particular node, and put all of its adjacent
nodes into a queue. This makes them all safely “wait in line” until
we get around to exploring them. Then, we repeatedly take the
first node in line, do whatever we need to do with it, and then put

97 5.1. GRAPHS

all of its adjacent nodes in line. We keep doing this until the queue
is empty.

Now it might have occurred to you that we can run into trouble if
we encounter the same node multiple times while we’re traversing.
This can happen if the graph has a cycle: there will be more than
one path to reach some nodes, and we could get stuck in an infinite
loop if we’re not careful. For this reason, we introduce the concept
of marking nodes. This is kind of like leaving a trail of bread-
crumbs: if we’re ever about to explore a node, but find out it’s
marked, then we know we’ve already been there, and it’s pointless
to search it again.

So there are two things we’re going to do to nodes as we search:

• To mark a node means to remember that we’ve already en-
countered it in the process of our search.

• To visit a node means to actually do whatever it is we need
to do to the node (call the phone number, examine its name
for a pattern match, add the number to our total, whatever.)

Now then. Breadth-first traversal (BFT) is an algorithm, which is
just a step-by-step, reliable procedure that’s guaranteed to produce
a result. In this case, it’s guaranteed to visit every node in the graph
that’s reachable from the starting node, and not get stuck in any
infinite loops in the process. Here it is:

Breadth-first traversal (BFT)

1. Choose a starting node.
2. Mark it and enqueue it on an empty queue.
3. While the queue is not empty, do these steps:

a) Dequeue the front node of the queue.
b) Visit it.
c) Mark and enqueue all of its unmarked adjacent
nodes (in any order).

98 CHAPTER 5. STRUCTURES

Let’s run this algorithm in action on a set of Facebook users. Fig-
ure 5.1 depicts eleven users, and the friendships between them.
First, we choose Greg as the starting node (not for any particular
reason, just that we have to start somewhere). We mark him (in
grey on the diagram) and put him in the queue (the queue contents
are listed at the bottom of each frame, with the front of the queue
on the left). Then, we begin our loop. When we take Greg off the
queue, we visit him (which means we “do whatever we need to do to
Greg”) and then mark and enqueue his adjacent nodes Chuck and
Izzy. It does not matter which order we put them into the queue,
just as it did not matter what node we started with. In pane 3,
Chuck has been dequeued, visited, and his adjacent nodes put on
the queue. Only one node gets enqueued here — Adrian — because
obviously Greg has already been marked (and even visited, no less)
and this marking allows us to be smart and not re-enqueue him.

It’s at this point that the “breadth-first” feature becomes apparent.
We’ve just finished with Chuck, but instead of exploring Adrian
next, we resume with Izzy. This is because she has been waiting
patiently on the queue, and her turn has come up. So we lay
Adrian aside (in the queue, of course) and visit Izzy, enqueueing
her neighbor Elaine in the process. Then, we go back to Adrian.
The process continues, in “one step on the top path, one step on
the bottom path” fashion, until our two exploration paths actually
meet each other on the back end. Visiting Jackie causes us to
enqueue Brittany, and then when we take Kim off the queue, we do
not re-enqueue Brittany because she has been marked and so we
know she’s already being taken care of.

For space considerations, Figure 5.1 leaves off at this point, but
of course we would continue visiting nodes in the queue until the
queue was empty. As you can see, Hank and Danielle will not be
visited at all in this process: this is because apparently nobody they
know knows anybody in the Greg crowd, and so there’s no way to
reach them from Greg. This is what I meant earlier by saying that
as a side effect, the BFT algorithm tells us whether the graph is
connected or not. All we have to do is start somewhere, run BFT,
and then see whether any nodes have not been marked and visited.
If there are any, we can continue with another starting point, and

5.1. GRAPHS 99

then repeat the process.

Figure 5.9: The stages of breadth-first traversal. Marked nodes are
grey, and visited nodes are black. The order of visitation is: G, C,
I, A, E, J, K, F, B.

Depth-first traversal (DFT)

With depth-first traversal, we explore the graph boldly and reck-
lessly. We choose the first direction we see, and plunge down it all
the way to its depths, before reluctantly backing out and trying the
other paths from the start.

The algorithm is almost identical to BFT, except that instead of
a queue, we use a stack. A stack is the same as a queue except

100 CHAPTER 5. STRUCTURES

Start with an empty stack:
Push a triangle, and we have:

Push a star, and we have:

Push a heart, and we have:

Pop the heart, and we have:

♥
F
4

F
4

F
4

4

♣
Push a club, and we have:

Pop the club, and we have:

Pop the star, and we have:

F
4
F
4
4

Pop the triangle. We’re empty again:

Figure 5.10: A stack in action. The horizontal bar marks the bot-
tom of the stack, and the elements are pushed and popped from
the top.

that instead of putting elements on one end and taking them off the
other, you add and remove to the same end. This “end” is called
the top of the stack. When we add an element to this end, we say
we push it on the stack, and when we remove the top element, we
say we pop it off.

You can think of a stack as...well, a stack, whether of books or
cafeteria trays or anything else. You can’t get anything out of the
middle of a stack, but you can take items off and put more items
on. Figure 5.10 has an example. The first item pushed is always
the last one to be popped, and the most recent one pushed is always
ready to be popped back off, and so a stack is also sometimes called
a “LIFO” (last-in-first-out.)

The depth-first traversal algorithm itself looks like déjà vu all over
again. All you do is replace “queue” with “stack”:

101 5.1. GRAPHS

Depth-first traversal (DFT)

1. Choose a starting node.
2. Mark it and push it on an empty stack.
3. While the stack is not empty, do these steps:

a) Pop the top node off the stack.
b) Visit it.
c) Mark and push all of its unmarked adjacent nodes
(in any order).

The algorithm in action is shown in Figure 5.11. The stack really
made a difference! Instead of alternately exploring Chuck’s and
Izzy’s paths, it bullheadedly darts down Chuck’s path as far as it
can go, all the way to hitting Izzy’s back door. Only then does it
back out and visit Izzy. This is because the stack always pops off
what it just pushed on, whereas whatever got pushed first has to
wait until everything else is done before it gets its chance. That
first couple of pushes was critical: if we had pushed Chuck before
Izzy at the very beginning, then we would have explored Izzy’s
entire world before arriving at Chuck’s back door, instead of the
other way around. As it is, Izzy got put on the bottom, and so she
stayed on the bottom, which is inevitable with a stack.

DFT identifies disconnected graphs in the same way as BFT, and
it similarly avoids getting stuck in infinite loops when it encounters
cycles. The only difference is the order in which it visits the nodes.

Finding the shortest path

We’ll look at two other important algorithms that involve graphs,
specifically weighted graphs. The first one is called Dijkstra’s
shortest-path algorithm. This is a procedure for finding the
shortest path between two nodes, if one exists. It was invented in
1956 by the legendary computer science pioneer Edsger Dijkstra,
and is widely used today by, among other things, network routing
protocols.

102 CHAPTER 5. STRUCTURES

Figure 5.11: The stages of depth-first traversal. Marked nodes are
grey, and visited nodes are black. The order of visitation is: G, C,
A, J, B, K, F, E, I.

103 5.1. GRAPHS

Consider Figure 5.12, a simplified map of France circa November
1944. Fresh U.S. troops are arriving by ship at the port town of
Bordeaux, and need to reach Strasbourg as quickly as possible to
assist the Allies in pushing Nazi squadrons back into Germany.
The vertices of this graph are French cities, and the edge weights
represent marching distances in kilometers. Although D-Day was
successful, the outcome of the War may depend on how quickly
these reinforcements can reach the front.

Figure 5.12: A weighted graph, through which we desire to find the
shortest path from Bordeaux to Strasbourg.

The question, obviously, is which path the troops should take so
as to reach Strasbourg the soonest. With a graph this small, you
might be able to eyeball it. (Try it!) But Dijksta’s algorithm
systematically considers every possible path, and is guaranteed to
find the one with the shortest total distance.

The way it works is to assign each node a tentative lowest distance,
along with a tentative path from the start node to it. Then, if
the algorithm encounters a different path to the same node as it
progresses, it updates this tentative distance with the new, lower
distance, and replaces the “best path to it” with the new one. Di-
jkstra’s algorithm finds the shortest distance from the start node to
the end node, but as a bonus, it actually finds the shortest distance
from the start node to every node as it goes. Thus you are left with
the best possible path from your start node to every other node in
the graph.

Here’s the algorithm in full:

104 CHAPTER 5. STRUCTURES

Dijkstra’s shortest-path algorithm

1. Choose a starting node and an ending node.
2. Mark the tentative distance for the starting nodes as 0,
and all other nodes as ∞.

3. While there are still unvisited nodes, do these steps:
a) Identify the unvisited node with the smallest tenta-
tive distance. (If this is ∞, then we’re done. All
other nodes are unreachable.) Call this node the
“current node.”

b) For each unvisited neighbor of the current node, do
these steps:
i. Compute the sum of the current node’s tentative
distance and the distance from the current node
to its neighbor.

ii. Compare this total to the neighbor’s current
tentative distance. If it’s less than the cur-
rent tentative distance, update the tentative dis-
tance with this new value, and mark an arrow on
the path from the current node to the neighbor
(erasing any other arrow to the neighbor.)

iii. Mark the current node as visited. (Its distance
and best path are now fixed.)

Don’t worry, this isn’t as hard as it sounds. But you do have to have
your wits about you and carefully update all the numbers. Let’s
see it in action for WWII France. In the first frame of Figure 5.13,
we’ve marked each node with a diamond containing the tentative
shortest distance to it from Bordeaux. This is 0 for Bordeaux itself
(since it’s 0 kilometers away from itself, duh), and infinity for all
the others, since we haven’t explored anything yet, and we want to
start off as pessimistic as possible. We’ll update this distances to
lower values as we find paths to them.

We start with Bordeaux as the “current node,” marked in grey. In
frame 2, we update the best-possible-path and the distance-of-that-

105 5.1. GRAPHS

path for each of Bordeaux’s neighbors. Nantes, we discover, is no
longer “infinity away,” but a mere 150 km away, since there is a
direct path to it from Bordeaux. Vichy and Toulouse are similarly
updated. Note the heavy arrowed lines on the diagram, showing
the best path (so far) to each of these cities from Bordeaux.

Step 3a tells us to choose the node with the lowest tentative distance
as the next current node. So for frame 3, Nantes fits the bill with a
(tentative) distance of 150 km. It has only one unmarked neighbor,
Paris, which we update with 450 km. Why 450? Because it took us
150 to get from the start to Nantes, and another 300 from Nantes
to Paris. After updating Paris, Nantes is now set in stone — we
know we’ll never encounter a better route to it than from Bordeaux
directly.

Frame 4 is our first time encountering a node that already has a
non-infinite tentative distance. In this case, we don’t further update
it, because our new opportunity (Bordeaux–to–Toulouse–to–Vichy)
is 500 km, which is longer than going from Bordeaux to Toulouse
direct. Lyon and Marseille are updated as normal.

We now have two unmarked nodes that tie for shortest tentative
distance: Paris, and Vichy (450 km each). In this case, it doesn’t
matter which we choose. We’ll pick Vichy for no particular reason.
Frame 5 then shows some interesting activity. We do not update
the path to Paris, since it would be 800 km through Vichy, whereas
Paris already had a much better 450 km path. Lille is updated from
infinity to 850 km, since we found our first path to it. But Lyon
is the really interesting case. It already had a path — Bordeaux–
to–Toulouse–to–Lyon — but that path was 800 km, and we have
just found a better path: Bordeaux–to–Vichy–to–Lyon, which only
costs 450 + 250 = 700. This means we remove the arrow from
Toulouse to Lyon and draw a new arrow from Vichy to Lyon. Note
that the arrow from Bordeaux to Toulouse doesn’t disappear, even
though it was part of this apparently-not-so-great path to Lyon.
That’s because the best route to Toulouse still is along that edge.
Just because we wouldn’t use it to go to Lyon doesn’t mean we
don’t want it if we were going simply to Toulouse.

In frame 6, we take up the other 450 node (Paris) which we tem-

106 CHAPTER 5. STRUCTURES

porarily neglected when we randomly chose to continue with Vichy
first. When we do, we discover a better path to Lille than we had
before, and so we update its distance (to 800 km) and its path
(through Nantes and Paris instead of through Vichy) accordingly.

When we consider Marseille in frame 7, we find another better path:
this time to Lyon. Forget that through–Vichy stuff; it turns out
to be a bit faster to go through Toulouse and Marseille. In other
news, we found a way to Nice.

Hopefully you get the pattern. We continue selecting the unmarked
node with the lowest tentative distance, updating its neighbors’ dis-
tances and paths, then marking it “visited,” until we’re done with
all the nodes. The last frame shows the completed version (with all
nodes colored white again so you can read them). The verdict is:
our troops should go from Bordeaux through Toulouse, Marseille,
Lyon, and Briançon on their way to the fighting in Strasborg, for a
total of 1,250 kilometers. Who knew? All other paths are longer.
Note also how in the figure, the shortest distance to every node is
easily identified by looking at the heavy arrowed lines.

Finding the minimal connecting edge set

So we’ve figured out the shortest path for our troops. But our
field generals might also want to do something different: establish
supply lines. A supply line is a safe route over which food, fuel,
and machinery can be delivered, with smooth travel and protection
from ambush. Now we have military divisions stationed in each of
the eleven French cities, and so the cities must all be connected to
each other via secure paths. Safeguarding each mile of a supply
line takes resources, though, so we want to do this in the minimal
possible way. How can we get all the cities connected to each other
so we can safely deliver supplies between any of them, using the
least possible amount of road?

This isn’t just a military problem. The same issue came up in
ancient Rome when aqueducts had to reach multiple cities. More
recently, supplying neighborhoods and homes with power, or net-
working multiple computers with Ethernet cable, involves the same
question. In all these cases, we’re not after the shortest route be-

107 5.1. GRAPHS

tween two points. Instead, we’re sort of after the shortest route
“between all the points.” We don’t care how each pair of nodes is
connected, provided that they are connected. And it’s the total
length of the required connections that we want to minimize.

To find this, we’ll use Prim’s algorithm, a technique named for
the somewhat obscure computer scientist Robert Prim who devel-
oped it in 1957, although it had already been discovered much
earlier (1930, by the Czech mathematician Vojtech Jarnik). Prim’s
algorithm turns out to be much easier to carry out than Dijkstra’s
algorithm, which I find surprising, since it seems to be solving a
problem that’s just as hard. But here’s all you do:

Prim’s minimal connecting edge set algorithm

1. Choose a node, any node.
2. While not all the nodes are connected, do these steps:

a) Identify the node closest to the already-connected
nodes, and connect it to those nodes via the shortest
edge.

That’s it. Prim’s algorithm is an example of a greedy algorithm,
which means that it always chooses the immediately obvious short-
term best choice available. Non-greedy algorithms can say, “al-
though doing X would give the highest short-term satisfaction, I
can look ahead and see that choosing Y instead will lead to a bet-
ter overall result in the long run.” Greedy algorithms, by contrast,
always gobble up what seems best at the time. That’s what Prim’s
algorithm is doing in step 2a. It looks for the non-connected node
that’s immediately closest to the connected group, and adds it with-
out a second thought. There’s no notion of “perhaps I’ll get a
shorter overall edge set if I forego connecting this temptingly close
node right now.”

Sometimes, a greedy algorithm turns out to give an optimal result.
Often it does not, and more sophisticated approaches can find bet-
ter solutions. In this case, it happens to work out that the greedy
approach does work! Prim’s algorithm will always find the set of

108 CHAPTER 5. STRUCTURES

edges that connects all the nodes and does so with the lowest possi-
ble total distance. It’s amazing that it can do so, especially since it
never backtracks or revises its opinion the way Dijkstra’s algorithm
does.

Let’s follow the algorithm’s progress in the WWII example. We can
start with any node, so we’ll pick Vichy just at random. Frame 1
of Figure 5.14 shows what happens when the algorithm begins with
Vichy: we simply examine all its neighbors, and connect the one
that’s closest to it. Nothing could be simpler. In this case, Lyon is
a mere 250 km away, which is closer than anything else is to Vichy,
so we connect it and add the Vichy–Lyon edge to our edge set. The
figure shows a heavy black line between Vichy and Lyon to show
that it will officially be a supply line.

And so it goes. In successive frames, we add Marseille, Nice, and
Briançon to the set of connected nodes, since we can do no better
than 150 km, 150 km, and 250 km, respectively. Note that in
frame 5 we do not darken the edge between Lyon and Briançon,
even though 200 km is the shortest connected edge, because those
nodes have already been previously connected. Note also that the
algorithm can jump around from side to side — we aren’t looking
for the shortest edge from the most recently added node, but rather
the shortest edge from any connected node.

The final result is shown in the last frame. This is the best way
to connect all the cities to each other, if “best” means “least total
supply line distance.” But if you look carefully, you’ll notice a fas-
cinating thing. This network of edges does not contain the shortest
path from Bordeaux to Strasbourg! I find that result dumbfound-
ing. Wouldn’t you think that the shortest path between any two
nodes would land right on this Prim network? Yet if you compare
Figure 5.14 with Figure 5.13 you’ll see that the quickest way to
Strasborg is directly through Marseille, not Vichy.

So we end up with the remarkable fact that the shortest route
between two points has nothing whatsoever to do with the shortest
total distance between all points. Who knew?

5.2. TREES 109

Figure 5.13: The stages of Dijkstra’s shortest-path algorithm. The
“current node” is shown in grey, with visited nodes (whose best
paths and shortest distances have been unalterably determined) in
black. The diamond next to each node shows the tentative shortest
distance to that node from Bordeaux.

110 CHAPTER 5. STRUCTURES

Figure 5.14: The stages of Prim’s minimal connecting edge set
algorithm. Heavy lines indicate edges that have been (irrevocably)
added to the set.

5.2. TREES 111

5.2 Trees

A tree is really nothing but a simplification of a graph. There are
two kinds of trees in the world: free trees, and rooted trees.3

Free trees

A free tree is just a connected graph with no cycles. Every node
is reachable from the others, and there’s only one way to get any-
where. Take a look at Figure 5.15. It looks just like a graph (and
it is) but unlike the WWII France graph, it’s more skeletal. This is
because in some sense, a free tree doesn’t contain anything “extra.”

Figure 5.15: A free tree.

If you have a free tree, the following interesting facts are true:

1. There’s exactly one path between any two nodes. (Check it!)
2. If you remove any edge, the graph becomes disconnected.
(Try it!)

3. If you add any new edge, you end up adding a cycle. (Try it!)
4. If there are n nodes, there are n − 1 edges. (Think about it!)

3There appears to be no consensus as to which of these concepts is the most
basic. Some authors refer to a free tree simply as a “tree” — as though this
were the “normal” kind of tree — and use the term rooted tree for the other
kind. Other authors do the opposite. To avoid confusion, I’ll try to always use
the full term (although I admit I’m one who considers rooted trees to be the
more important, default concept).

112 CHAPTER 5. STRUCTURES

So basically, if your goal is connecting all the nodes, and you have a
free tree, you’re all set. Adding anything is redundant, and taking
away anything breaks it.

If this reminds you of Prim’s algorithm, it should. Prim’s algorithm
produced exactly this: a free tree connecting all the nodes — and
specifically the free tree with shortest possible total length. Go back
and look at the final frame of Figure 5.14 and convince yourself that
the darkened edges form a free tree.

For this reason, the algorithm is often called Prim’s minimal
spanning tree algorithm. A “spanning tree” just means “a free
tree that spans (connects) all the graph’s nodes.”

Keep in mind that there are many free trees one can make with the
same set of vertices. For instance, if you remove the edge from A
to F, and add one from anything else to F, you have a different free
tree.

Rooted trees

Now a rooted tree is the same thing as a free tree, except that
we elevate one node to become the root. It turns out this makes
all the difference. Suppose we chose A as the root of Figure 5.15.
Then we would have the rooted tree in the left half of Figure 5.16.
The A vertex has been positioned at the top, and everything else is
flowing under it. I think of it as reaching into the free tree, carefully
grasping a node, and then lifting up your hand so the rest of the
free tree dangles from there. Had we chosen (say) C as the root
instead, we would have a different rooted tree, depicted in the right
half of the figure. Both of these rooted trees have all the same edges
as the free tree did: B is connected to both A and C, F is connected
only to A, etc. The only difference is which node is designated the
root.

Up to now we’ve said that the spatial positioning on graphs is irrel-
evant. But this changes a bit with rooted trees. Vertical positioning
is our only way of showing which nodes are “above” others, and the
word “above” does indeed have meaning here: it means closer to
the root. The altitude of a node shows how many steps it is away

5.2. TREES 113

Figure 5.16: Two different rooted trees with the same vertices and
edges.

from the root. In the right rooted tree, nodes B, D, and E are all
one step away from the root (C), while node F is three steps away.

The key aspect to rooted trees — which is both their greatest ad-
vantage and greatest limitation — is that every node has one and
only one path to the root. This behavior is inherited from free trees:
as we noted, every node has only one path to every other.

Trees have a myriad of applications. Think of the files and folders
on your hard drive: at the top is the root of the filesystem (perhaps
“/” on Linux/Mac or “C:\\” on Windows) and underneath that are
named folders. Each folder can contain files as well as other named
folders, and so on down the hierarchy. The result is that each
file has one, and only one, distinct path to it from the top of the
filesystem. The file can be stored, and later retrieved, in exactly
one way.

An “org chart” is like this: the CEO is at the top, then underneath
her are the VP’s, the Directors, the Managers, and finally the rank-
and-file employees. So is a military organization: the Commander
in Chief directs generals, who command colonels, who command
majors, who command captains, who command lieutenants, who
command sergeants, who command privates.

114 CHAPTER 5. STRUCTURES

The human body is even a rooted tree of sorts: it contains skeletal,
cardiovascular, digestive, and other systems, each of which is com-
prised of organs, then tissues, then cells, molecules, and atoms. In
fact, anything that has this sort of part-whole containment hierar-
chy is just asking to be represented as a tree.

In computer programming, the applications are too numerous to
name. Compilers scan code and build a “parse tree” of its un-
derlying meaning. HTML is a way of structuring plain text into
a tree-like hierarchy of displayable elements. AI chess programs
build trees representing their possible future moves and their oppo-
nent’s probable responses, in order to “see many moves ahead” and
evaluate their best options. Object-oriented designs involve “inher-
itance hierarchies” of classes, each one specialized from a specific
other. Etc. Other than a simple sequence (like an array), trees
are probably the most common data structure in all of computer
science.

Rooted tree terminology

Rooted trees carry with them a number of terms. I’ll use the tree
on the left side of Figure 5.16 as an illustration of each:

root. The node at the top of the tree, which is A in our example.
Note that unlike trees in the real world, computer science
trees have their root at the top and grow down. Every tree has
a root except the empty tree, which is the “tree” that has
no nodes at all in it. (It’s kind of weird thinking of “nothing”
as a tree, but it’s kind of like the empty set ∅, which is still
a set.)

parent. Every node except the root has one parent: the node im-
mediately above it. D’s parent is C, C’s parent is B, F’s
parent is A, and A has no parent.

child. Some nodes have children, which are nodes connected di-
rectly below it. A’s children are F and B, C’s are D and E,
B’s only child is C, and E has no children.

5.2. TREES 115

sibling. A node with the same parent. E’s sibling is D, B’s is F,
and none of the other nodes have siblings.

ancestor. Your parent, grandparent, great-grandparent, etc., all
the way back to the root. B’s only ancestor is A, while E’s
ancestors are C, B, and A. Note that F is not C’s ancestor,
even though it’s above it on the diagram: there’s no connec-
tion from C to F, except back through the root (which doesn’t
count).

descendant. Your children, grandchildren, great-grandchildren, etc.,
all the way the leaves. B’s descendants are C, D and E, while
A’s are F, B, C, D, and E.

leaf. A node with no children. F, D, and E are leaves. Note that
in a (very) small tree, the root could itself be a leaf.

internal node. Any node that’s not a leaf. A, B, and C are the
internal nodes in our example.

depth (of a node). A node’s depth is the distance (in number of
nodes) from it to the root. The root itself has depth zero.
In our example, B is of depth 1, E is of depth 3, and A is of
depth 0.

height (of a tree). A rooted tree’s height is the maximum depth
of any of its nodes; i.e., the maximum distance from the root
to any node. Our example has a height of 3, since the “deep-
est” nodes are D and E, each with a depth of 3. A tree with
just one node is considered to have a height of 0. Bizarrely,
but to be consistent, we’ll say that the empty tree has height
-1! Strange, but what else could it be? To say it has height
0 seems inconsistent with a one-node tree also having height
0. At any rate, this won’t come up much.

level. All the nodes with the same depth are considered on the
same “level.” B and F are on level 1, and D and E are on
level 3. Nodes on the same level are not necessarily siblings.
If F had a child named G in the example diagram, then G and
C would be on the same level (2), but would not be siblings

116 CHAPTER 5. STRUCTURES

because they have different parents. (We might call them
“cousins” to continue the family analogy.)

subtree. Finally, much of what gives trees their expressive power
is their recursive nature. This means that a tree is made up
of other (smaller) trees. Consider our example. It is a tree
with a root of A. But the two children of A are each trees
in their own right! F itself is a tree with only one node. B
and its descendants make another tree with four nodes. We
consider these two trees to be subtrees of the original tree.
The notion of “root” shifts somewhat as we consider subtrees
— A is the root of the original tree, but B is the root of the
second subtree. When we consider B’s children, we see that
there is yet another subtree, which is rooted at C. And so on.
It’s easy to see that any subtree fulfills all the properties of
trees, and so everything we’ve said above applies also to it.

Binary trees (BT’s)

The nodes in a rooted tree can have any number of children. There’s
a special type of rooted tree, though, called a binary tree which
we restrict by simply saying that each node can have at most two
children. Furthermore, we’ll label each of these two children as
the “left child” and “right child.” (Note that a particular node
might well have only a left child, or only a right child, but it’s still
important to know which direction that child is.)

The left half of Figure 5.16 is a binary tree, but the right half is not
(C has three children). A larger binary tree (of height 4) is shown
in Figure 5.17.

Traversing binary trees

There were two ways of traversing a graph: breadth-first, and
depth-first. Curiously, there are three ways of traversing a tree:
pre-order, post-order, and in-order. All three begin at the
root, and all three consider each of the root’s children as subtrees.
The difference is in the order of visitation.

5.2. TREES 117

Figure 5.17: A binary tree.

To traverse a tree pre-order, we:

1. Visit the root.
2. Treat the left child and all its descendants as a subtree,
and traverse it in its entirety.

3. Do the same with the right child.

It’s tricky because you have to remember that each time you “treat
a child as a subtree” you do the whole traversal process on that
subtree. This involves remembering where you were once you finish.

Follow this example carefully. For the tree in Figure 5.17, we be-
gin by visiting G. Then, we traverse the whole “K subtree.” This
involves visiting K itself, and then traversing its whole left subtree
(anchored at D). After we visit the D node, we discover that it
actually has no left subtree, so we go ahead and traverse its right
subtree. This visits O followed by I (since O has no left subtree
either) which finally returns back up the ladder.

It’s at this point where it’s easy to get lost. We finish visiting I,
and then we have to ask “okay, where the heck were we? How
did we get here?” The answer is that we had just been at the K
node, where we had traversed its left (D) subtree. So now what is

118 CHAPTER 5. STRUCTURES

it time to do? Traverse the right subtree, of course, which is M.
This involves visiting M, C, and E (in that order) before returning
to the very top, G.

Now we’re in the same sort of situation where we could have gotten
lost before: we’ve spent a lot of time in the tangled mess of G’s left
subtree, and we just have to remember that it’s now time to do G’s
right subtree. Follow this same procedure, and the entire order of
visitation ends up being: G, K, D, O, I, M, C, E, H, A, B, F, N, L.
(See Figure 5.18 for a visual.)

Figure 5.18: The order of node visitation in pre-order traversal.

To traverse a tree post-order, we:

1. Treat the left child and all its descendants as a subtree,
and traverse it in its entirety.

2. Do the same with the right child.
3. Visit the root.

It’s the same as pre-order, except that we visit the root after the
children instead of before. Still, despite its similarity, this has al-
ways been the trickiest one for me. Everything seems postponed,
and you have to remember what order to do it in later.

For our sample tree, the first node visited turns out to be I. This
is because we have to postpone visiting G until we finish its left
(and right) subtree; then we postpone K until we finish its left

5.2. TREES 119

(and right) subtree; postpone D until we’re done with O’s subtree,
and postpone O until we do I. Then finally, the thing begins to
unwind...all the way back up to K. But we can’t actually visit K
itself yet, because we have to do its right subtree. This results in
C, E, and M, in that order. Then we can do K, but we still can’t
do G because we have its whole right subtree’s world to contend
with. The entire order ends up being: I, O, D, C, E, M, K, A, F,
L, N, B, H, and finally G. (See Figure 5.19 for a visual.)

Note that this is not remotely the reverse of the pre-order visitation,
as you might expect. G is last instead of first, but the rest is all
jumbled up.

Figure 5.19: The order of node visitation in post-order traversal.

Finally, to traverse a tree in-order, we:

1. Treat the left child and all its descendants as a subtree,
and traverse it in its entirety.

2. Visit the root.
3. Traverse the right subtree in its entirety.

So instead of visiting the root first (pre-order) or last (post-order)
we treat it in between our left and right children. This might seem
to be a strange thing to do, but there’s a method to the madness
which will become clear in the next section.

120 CHAPTER 5. STRUCTURES

For the sample tree, the first visited node is D. This is because it’s
the first node encountered that doesn’t have a left subtree, which
means step 1 doesn’t need to do anything. This is followed by O
and I, for the same reason. We then visit K before its right subtree,
which in turn visits C, M, and E, in that order. The final order is:
D, O, I, K, C, M, E, G, A, H, F, B, L, N. (See Figure 5.20.)

If your nodes are spaced out evenly, you can read the in-order
traversal off the diagram by moving your eyes left to right. Be
careful about this, though, because ultimately the spatial position
doesn’t matter, but rather the relationships between nodes. For
instance, if I had drawn node I further to the right, in order to
make the lines between D–O–I less steep, that I node might have
been pushed physically to the right of K. But that wouldn’t change
the order and have K visited earlier.

Figure 5.20: The order of node visitation in in-order traversal.

Finally, it’s worth mentioning that all of these traversal methods
make elegant use of recursion. Recursion is a way of taking a
large problem and breaking it up into similar, but smaller, sub-
problems. Then, each of those subproblems can be attacked in the
same way as you attacked the larger problem: by breaking them
up into subproblems. All you need is a rule for eventually stopping
the “breaking up” process by actually doing something.

Every time one of these traversal processes treats a left or right
child as a subtree, they are “recursing” by re-initiating the whole
traversal process on a smaller tree. Pre-order traversal, for instance,

5.2. TREES 121

after visiting the root, says, “okay, let’s pretend we started this
whole traversal thing with the smaller tree rooted at my left child.
Once that’s finished, wake me up so I can similarly start it with my
right child.” Recursion is a very common and useful way to solve
certain complex problems, and trees are rife with opportunities.

Sizes of binary trees

Binary trees can be any ragged old shape, like our Figure 5.17 ex-
ample. Sometimes, though, we want to talk about binary trees with
a more regular shape, that satisfy certain conditions. In particular,
we’ll talk about three special kinds:

full binary tree. A full binary tree is one in which every node
(except the leaves) has two children. Put another way, every
node has either two children or none: no stringiness allowed.
Figure 5.17 is not full, but it would be if we added the three
blank nodes in Figure 5.21.

Figure 5.21: A full binary tree.

By the way, it isn’t always possible to have a full binary tree
with a particular number of nodes. For instance, a binary
tree with two nodes, can’t be full, since it inevitably will have
a root with only one child.

complete binary tree. A complete binary tree is one in which
every level has all possible nodes present, except perhaps for
the deepest level, which is filled all the way from the left.

122 CHAPTER 5. STRUCTURES

Figure 5.21 is not full, but it would be if we fixed it up as in
Figure 5.22.

Figure 5.22: A complete binary tree.

Unlike full binary trees, it is always possible to have a com-
plete binary tree no matter how many nodes it contains. You
just keep filling in from left to right, level after level.

perfect binary tree. Our last special type has a rather audacious
title, but a “perfect” tree is simply one that is exactly bal-
anced: every level is completely filled. Figure 5.22 is not per-
fect, but it would be if we either added nodes to fill out level
4, or deleted the unfinished part of level 3 (as in Figure 5.23.)

Figure 5.23: A “perfect” binary tree.

Perfect binary trees obviously have the strictest size restric-
tions. It’s only possible, in fact, to have perfect binary trees
with 2h+1 − 1 nodes, if h is the height of the tree. So there
are perfect binary trees with 1, 3, 7, 15, 31, ... nodes, but
none in between. In each such tree, 2h of the nodes (almost
exactly half) are leaves.

5.2. TREES 123

Now as we’ll see, binary trees can possess some pretty amazing
powers if the nodes within them are organized in certain ways.
Specifically, a binary search tree and a heap are two special kinds
of binary trees that conform to specific constraints. In both cases,
what makes them so powerful is the rate at which a tree grows as
nodes are added to it.

Suppose we have a perfect binary tree. To make it concrete, let’s
say it has height 3, which would give it 1+2+4+8=15 nodes, 8 of
which are leaves. Now what happens if you increase the height of
this tree to 4? If it’s still a “perfect” tree, you will have added
16 more nodes (all leaves). Thus you have doubled the number of
leaves by simply adding one more level. This cascades the more
levels you add. A tree of height 5 doubles the number of leaves
again (to 32), and height 6 doubles it again (to 64).

If this doesn’t seem amazing to you, it’s probably because you don’t
fully appreciate how quickly this kind of exponential growth can
accumulate. Suppose you had a perfect binary tree of height 30 —
certainly not an awe-inspiring figure. One could imagine it fitting
on a piece of paper...height-wise, that is. But run the numbers and
you’ll discover that such a tree would have over half a billion leaves,
more than one for every person in the United States. Increase the
tree’s height to a mere 34 — just 4 additional levels — and suddenly
you have over 8 billion leaves, easily greater than the population of
planet Earth.

The power of exponential growth is only fully reached when the
binary tree is perfect, since a tree with some “missing” internal
nodes does not carry the maximum capacity that it’s capable of.
It’s got some holes in it. Still, as long as the tree is fairly bushy
(i.e., it’s not horribly lopsided in just a few areas) the enormous
growth predicted for perfect trees is still approximately the case.

The reason this is called “exponential” growth is that the quantity
we’re varying — the height — appears as an exponent in the number
of leaves, which is 2h . Every time we add just one level, we double
the number of leaves.

So the number of leaves (call it l) is 2h , if h is the height of the

124 CHAPTER 5. STRUCTURES

tree. Flipping this around, we say that h = lg(l). The function
“lg” is a logarithm, specifically a logarithm with base-2. This is
what computer scientists often use, rather than a base of 10 (which
is written “log”) or a base of e (which is written “ln”). Since 2h

grows very, very quickly, it follows that lg(l) grows very, very slowly.
After our tree reaches a few million nodes, we can add more and
more nodes without growing the height of the tree significantly at
all.

The takeaway message here is simply that an incredibly large num-
ber of nodes can be accommodated in a tree with a very mod-
est height. This makes it possible to, among other things, search
a huge amount of information astonishingly quickly...provided the
tree’s contents are arranged properly.

Binary search trees (BST’s)

Okay, then let’s talk about how to arrange those contents. A bi-
nary search tree (BST) is any binary tree that satisfies one addi-
tional property: every node is “greater than” all of the nodes in its
left subtree, and “less than (or equal to)” all of the nodes in its right
subtree. We’ll call this the BST property. The phrases “greater
than” and “less than” are in quotes here because their meaning is
somewhat flexible, depending on what we’re storing in the tree. If
we’re storing numbers, we’ll use numerical order. If we’re storing
names, we’ll use alphabetical order. Whatever it is we’re storing,
we simply need a way to compare two nodes to determine which
one “goes before” the other.

An example of a BST containing people is given in Figure 5.24.
Imagine that each of these nodes contains a good deal of infor-
mation about a particular person — an employee record, medical
history, account information, what have you. The nodes themselves
are indexed by the person’s name, and the nodes are organized ac-
cording to the BST rule. Mitch comes after Ben/Jessica/Jim and
before Randi/Owen/Molly/Xander in alphabetical order, and this
ordering relationship between parents and children repeats itself all
the way down the tree. (Check it!)

Be careful to observe that the ordering rule applies between a node

5.2. TREES 125

Figure 5.24: A binary search tree.

and the entire contents of its subtrees, not merely to its immediate
children. This is a rookie mistake that you want to avoid. Your
first inclincation, when glancing at Figure 5.25, below, is to judge
it a BST. It is not a binary search tree, however! Jessica is to the
left of Mitch, as she should be, and Nancy is to the right of Jessica,
as she should be. It seems to check out. But the problem is that
Nancy is a descendant of Mitch’s left subtree, whereas she must
properly be placed somewhere in his right subtree. And yes, this
matters. So be sure to check your BST’s all the way up and down.

Figure 5.25: NOT a binary search tree, though it looks like one at
first glance. (Notice Nancy and Mitch)

The power of BST’s

All right, so what’s all the buzz about BST’s, anyway? The key
insight is to realize that if you’re looking for a node, all you have
to do is start at the root and go the height of the tree down making

126 CHAPTER 5. STRUCTURES

one comparison at each level. Let’s say we’re searching Figure 5.24
for Molly. By looking at Mitch (the root), we know right away that
Molly must be in the right subtree, not the left, because she comes
after Mitch in alphabetical order. So we look at Randi. This time,
we find that Molly comes before Randi, so she must be somewhere
in Randi’s left branch. Owen sends us left again, at which point we
find Molly.

With a tree this size, it doesn’t seem that amazing. But suppose
its height were 10. This would mean about 2000 nodes in the
tree — customers, users, friends, whatever. With a BST, you’d
only have to examine ten of those 2000 nodes to find whatever
you’re looking for, whereas if the nodes were just in an ordinary
list, you’d have to compare against 1000 or so of them before you
stumbled on the one you were looking for. And as the size of the
tree grows, this discrepancy grows (much) larger. If you wanted to
find a single person’s records in New York City, would you rather
search 7 million names, or 24 names?? Because that’s the difference
you’re looking at.

It seems almost too good to be true. How is such a speedup pos-
sible? The trick is to realize that with every node you look at,
you effectively eliminate half of the remaining tree from consider-
ation. For instance, if we’re looking for Molly, we can disregard
Mitch’s entire left half without even looking at it, then the same
for Randi’s entire right half. If you discard half of something, then
half of the remaining half, then half again, it doesn’t take you long
before you’ve eliminated almost every false lead.

There’s a formal way to describe this speedup, called “Big-O nota-
tion.” The subtleties are a bit complex, but the basic idea is this.
When we say that an algorithm is “O(n)” (pronounced “oh–of–n”),
it means that the time it takes to execute the algorithm is propor-
tional to the number of nodes. This doesn’t imply any specific
number of milliseconds or anything — that is highly dependent on
the type of computer hardware, you have, the programming lan-
guage, and a myriad of other things. But what we can say about
an O(n) algorithm is that if you double the number of nodes, you’re
going to approximately double the running time. If you quadruple

5.2. TREES 127

the number of nodes, you’re going to quadruple the running time.
This is what you’d expect.

Searching for “Molly” in a simple unsorted list of names is an O(n)
prospect. If there’s a thousand nodes in the list, on average you’ll
find Molly after scanning through 500 of them. (You might get
lucky and find Molly at the beginning, but then of course you might
get really unlucky and not find her until the end. This averages out
to about half the size of the list in the normal case.) If there’s a
million nodes, however, it’ll take you 500,000 traversals on average
before finding Molly. Ten times as many nodes means ten times as
long to find Molly, and a thousand times as many means a thousand
times as long. Bummer.

Looking up Molly in a BST, however, is an O(lg n) process. Recall
that “lg” means the logarithm (base-2). This means that doubling
the number of nodes gives you a miniscule increase in the running
time. Suppose there were a thousand nodes in your tree, as above.
You wouldn’t have to look through 500 to find Molly: you’d only
have to look through ten (because lg(1000) ≈ 10). Now increase
it to a million nodes. You wouldn’t have to look through 500,000
to find Molly: you’d only have to look through twenty. Suppose
you had 6 billion nodes in your tree (approximately the population
of the earth). You wouldn’t have to look through 3 billion nodes:
you’d only have to look through thirty-three. Absolutely mind-
boggling.

Adding nodes to a BST

Finding things in a BST is lightning fast. Turns out, so is adding
things to it. Suppose we acquire a new customer named Jennifer,
and we need to add her to our BST so we can retrieve her account
information in the future. All we do is follow the same process we
would if we were looking for Jennifer, but as soon as we find the
spot where she would be, we add her there. In this case, Jennifer
comes before Mitch (go left), and before Jessica (go left again), and
after Ben (go right). Ben has no right child, so we put Jessica in
the tree right at that point. (See Figure 5.26.)

This adding process is also an O(lg n) algorithm, since we only need

128 CHAPTER 5. STRUCTURES

Figure 5.26: The BST after adding Jennifer.

look at a small number of nodes equal to the height of the tree.

Note that a new entry always becomes a leaf when added. In fact,
this allows us to look at the tree and reconstruct some of what
came before. For instance, we know that Mitch must have been the
first node originally inserted, and that Randi was inserted before
Owen, Xander, or Molly. As an exercise, add your own name to
this tree (and a few of your friends’ names) to make sure you get
the hang of it. When you’re done the tree must of course obey the
BST property.

Removing nodes from a BST

Removing nodes is a bit trickier than adding them. How do we
delete an entry without messing up the structure of the tree? It’s
easy to see how to delete Molly: since she’s just a leaf, just remove
her and be done with it. But how to delete Jessica? Or for that
matter, Mitch?

Your first inclination might be to eliminate a node and promote
one of its children to go up in its place. For instance, if we delete
Jessica, we could just elevate Ben up to where Jessica was, and then
move Jennifer up under Ben as well. This doesn’t work, though.
The result would look like Figure 5.27, with Jennifer in the wrong
place. The next time we look for Jennifer in the tree, we’ll search
to the right of Ben (as we should), completely missing her. Jennifer
has effectively been lost.

One correct way (there are others) to do a node removal is to re-

5.2. TREES 129

Figure 5.27: An incorrect would-be-BST after removing Jessica
incorrectly.

place the node with the left-most descendant of its right subtree.
(Or, equivalently, the right-most descendant of its left subtree).
Figure 5.28 shows the result after removing Jessica. We replaced
her with Jim, not because it’s okay to blindly promote the right
child, but because Jim had no left descendants. If he had, promot-
ing him would have been just as wrong as promoting Ben. Instead,
we would have promoted Jim’s left-most descendant.

Figure 5.28: The BST after removing Jessica correctly.

As another example, let’s go whole-hog and remove the root node,
Mitch. The result is as shown in Figure 5.29. It’s rags-to-riches for
Molly: she got promoted from a leaf all the way to the top. Why
Molly? Because she was the left-most descendant of Mitch’s right
subtree.

To see why this works, just consider that Molly was immediately
after Mitch in alphabetical order. The fact that he was a king and
she a peasant was misleading. The two of them were actually very

130 CHAPTER 5. STRUCTURES

Figure 5.29: The BST after removing Mitch.

close: consecutive, in fact, with in-order traversal. So replacing
Mitch with Molly avoids shuffling anybody out of alphabetical or-
der, and preserves the all-important BST property.

Balancedness

Finally, recall that this amazingly fast lookup is critically depen-
dent on the tree being “bushy.” Otherwise, the approximation that
h = lg(l) breaks down. As a laughably extreme example, consider
Figure 5.30, which contains the same nodes we’ve been using. This
is a legitimate binary search tree! (Check it!) Yet looking up a
node in this monstrosity is obviously not going to be any faster
than looking it up in a plain-old list. We’re back to O(n) perfor-
mance.

Figure 5.30: An incredibly bad, but still technically legit, BST.

In practice, there are three ways of dealing with this. One approach
is to simply not worry about it. After all, as long as we’re insert-
ing and removing nodes randomly, with no discernable pattern, the

131 5.3. FINAL WORD

chances of obtaining a tree as lopsided as Figure 5.30 are astronom-
ically small. It’s as likely as throwing a deck of cards up in the air
and having it land all in a neat stack. The law of entropy tells us
that we’re going to get a mix of short branches and long branches,
and that in a large tree, the unbalancedness will be minimal.

A second approach is to periodically rebalance the tree. If our
website goes offline for maintenance every once in a while anyway,
we could rebuild our tree from the ground up by inserting the nodes
into a fresh tree in a beneficial order. What order should we insert
them in? Well, remember that whichever node is inserted first will
be the root. This suggests that we’d want to insert the middle
node first into our tree, so that Molly becomes the new root. This
leaves half the nodes for her left subtree and half for her right.
If you follow this process logically (and recursively) you’ll realize
that we’d next want to insert the middle nodes of each half. This
would equate to Jennifer and Randi (in either order). I think of
it like the markings on a ruler: first you insert half an inch, then
and inches, then , and inches, etc. This restores to

us a perfectly balanced tree at regular intervals, making any large
imbalances even more improbably (and short-lived).

Thirdly, there are specialized data structures you may learn about
in future courses, such as AVL trees and red-black trees, which are
binary search trees that add extra rules to prevent imbalancing.
Basically, the idea is that when a node is inserted (or removed),
certain metrics are checked to make sure that the change didn’t
cause too great an imbalance. If it did, the tree is adjusted so as
to minimize the imbalance. This comes at a slight cost every time
the tree is changed, but prevents any possibility of a lopsided tree
that would cause slow lookups in the long run.

5.3 Final word

Whew, that was a lot of information about structures. Before we
continue our walk in the next chapter with a completely different
topic, I’ll leave you with this summary thought. Let BST be the
set of Binary Search Trees, and BT be the set of Binary Trees. Let

7531
88,8,844

31

132 CHAPTER 5. STRUCTURES

RT be the set of rooted trees, and T be the set of trees (free or
rooted). Finally, let CG be the set of connected graphs, and G the
set of all graphs. Then we have:

BST ⊂ BT ⊂ RT ⊂ T ⊂ CG ⊂ G.

It’s a beautiful thing.

Chapter 6

Counting

If the title of this chapter seems less than inspiring, it’s only because
the kind of counting we learned as children was mostly of a straight-
forward kind. In this chapter, we’re going to learn to answer some
more difficult questions like “how many different semester schedules
could a college student possibly have?” and “how many different
passwords can a customer choose for this e-commerce website?”
and “how likely is this network buffer to overflow, given that its
packets are addressed to three different destinations?”

The more impressive-sounding name for this topic is combina-
torics. In combinatorics, we focus on two tasks: counting things
(to find out how many there are), and enumerating things (to sys-
tematically list them as individuals). Some things turn out to be
hard to count but easy to enumerate, and vice versa.

133

134 CHAPTER 6. COUNTING

6.1 The Fundamental Theorem

We start with a basic rule that goes by the audacious name of The
Fundamental Theorem of Counting. 1 It goes like this:

If a whole can be divided into k parts, and there’s ni choices
for the ith part, then there’s n1 × n2 × n3 × · · · × nk ways of
doing the whole thing.

Example: Jane is ordering a new Lamborghini. She has twelve
different paint colors to choose from (including Luscious Red and
Sassy Yellow), three different interiors (Premium Leather, Bonded
Leather, or Vinyl), and three different stereo systems. She must
also choose between automatic and manual transmission, and she
can get power locks & windows (or not). How many different con-
figurations does Jane have to choose from? Put another way, how
many different kinds of cars could come off the line for her?

The key is that every one of her choices is independent of all the
others. Choosing an Envious Green exterior doesn’t constrain her
choice of transmission, stereo, or anything else. So no matter which
of the 12 paint colors she chooses, she can independently choose any
of the three interiors, and no matter what these first two choices
were, she can freely choose any of the stereos, etc. It’s a mix-and-
match. Therefore the answer is:

12 × 3 × 3 × 2 × 2 = 432 choices.

Here’s an alternate notation you’ll run into for this, by the way:

1How many other “Fundamental Theorems” of math do you know? Here are
a few: the Fundamental Theorem of Arithmetic says that any natural number
can be broken down into its prime factors in only one way. The Fundamental
Theorem of Algebra says that the highest power of a polynomial is how many
roots (zeroes) it has. The Fundamental Theorem of Linear Algebra says that
the row space and the column space of a matrix have the same dimension. The
Fundamental Theorem of Calculus says that integration and differentiation are
the inverse of each other.

135 6.1. THE FUNDAMENTAL THEOREM

kY
ni

i=1

which is just a shorter way of writing

n1 × n2 × n3 × · · · × nk.

As mentioned in section 4.5, the Σ notation is essentially a loop with
a counter, and it says to add up the expression to the right of it
for each value of the counter. The Π notation is exactly the same,
only instead of adding the expressions together for each value of
the counter, we’re multiplying them. (The reason mathematicians
chose the symbols Σ (sigma) and Π (pi) for this, by the way, is
that “sigma” and “pi” start with the same letter as “sum” and
“product,” respectively.)

We can actually get a lot of leverage just with the fundamental
theorem. How many different PINs are possible for an ATM card?
There are four digits, each of which can be any value from 0 to 9
(ten total values), so the answer is:

10 × 10 × 10 × 10 = 10, 000 different PINs.

So a thief at an ATM machine frantically entering PINs at random
(hoping to break your account before you call and stop your debit
card) would have to try about 5,000 of them on average before
cracking the code.

What about middle school bullies who are trying to break into your
locker? Well, most combination locks are opened by a three-number
sequence, each number of which is anything from 0 to 39. So there
are:

40 × 40 × 40 = 64, 000 different combinations.

That’s probably slightly overstated, since I’ll bet consecutive repeat
numbers are not allowed (Master probably doesn’t manufacture a

136 CHAPTER 6. COUNTING

lock with a combination of 17–17–23, for example.) But it does
seem at least as secure as a PIN number.

Every car in the state of Virginia must be issued its own license
plate number. That’s a lot of cars. How many different license
plate combinations are available?

This one requires a bit more thought, since not all licenses numbers
have the same number of characters. In addition to “SED4756” and
“PXY1927” you can also have “DAWG” or “LUVME” or even “U2”. How
can we incorporate these?

The trick is to divide up our set into mutually exclusive subsets,
and then add up the cardinalities of the subsets. If only 7 characters
fit on a license plate, then clearly every license plate number has
either 1, 2, 3, 4, 5, 6, or 7 characters. And no license plate has two
of these (i.e., there is no plate that is both 5 characters long and 6
characters long). Therefore they’re mutually exclusive subsets, and
safe to add. This last point is often not fully appreciated, leading
to errors. Be careful not to cavalierly add the cardinalities of non-
mutually-exclusive sets! You’ll end up double-counting items.

So we know that the number of possible license plates is equal to:

the # of 7-character plates +
the # of 6-character plates +
the # of 5-character plates +

· · · +
the # of 1-character plates.

Very well. We can now figure out each one separately. How do
we know how many 7-character plates there are? Well, if every
character must be either a letter or a digit, then we have 26 + 10
= 36 choices for each character. This implies 367 different possible
7-character license plates. The total number of plates is therefore:

367 + 366 + 365 + 364 + 363 + 362 + 36 = 80,603,140,212 plates

which is about ten times the population of the earth, so I think
we’re safe for now.

137 6.1. THE FUNDAMENTAL THEOREM

Here’s an interesting thought experiment to test your intuition
about numbers. Look at the above calculation, and ask yourself:
“what if the state of Virginia decided, for purposes of consistency,
that all license plates had to have the full 7 characters? Would
that significantly reduce the total number of possible plates?” My
first inclination would be to say “yes,” because we’re adding seven
things in that equation, and if we mandated 7-character plates for
everyone we’d eliminate 6 out of the 7. Surely we’d be in danger of
running out of license plates to give to all the cars! But in fact the
new total number of plates would turn out to be:

367 = 78,364,164,096 plates.

Wow. We’ve hardly lost anything by scrapping all the less-than-7-
character plates. Turns out that in comparison with the 7-character
plates, all the other lengths were a drop in the bucket. This is a
powerful illustration of exponential growth. When you modify the
exponent, going from something like 366 to 367 , you get astronom-
ically larger very, very quickly. This is a good thing to know when
all you want is an approximation of some quantity. How many
passwords are possible in a system that mandates 6-10 characters
per password? Well, you can pretty much ignore all the 6-9 charac-
ter passwords and just count the 10-character passwords, because
there are so many more of those.

One last tweak to the license plate example before we move on.
Suppose (again, for the sake of consistency) that Virginia out-
lawed personalized plates and gave everyone a randomly gener-
ated 7-character plate. Furthermore, the last four characters of
the plate had to be digits instead of letters, so that something like
“RFP-6YQ7” would be impossible. Now how many possible plates
would there be?

In this case, not each of the k parts of n have an equal number of
choices. n1 through n3 are still 36, but now n4 through n7 are just
10. So this gives us:

36 × 36 × 36 × 10 × 10 × 10 × 10 = 466,560,000 plates

138 CHAPTER 6. COUNTING

or only about .006 times as many as before. Better stick with
alphanumeric characters for all seven positions.

A simple trick

Sometimes we have something difficult to count, but we can turn
it around in terms of something much easier. Often this involves
counting the complement of something, then subtracting from the
total.

For instance, suppose a certain website mandated that user pass-
words be between 6-10 characters in length — every character being
an uppercase letter, lowercase letter, digit, or special character (*,
#, @, % or &) — but it also required each password to have at least
one digit or special character. How many passwords are possible?

Without the “at least one digit or special character” part, it’s pretty
easy: there are 26 + 26 + 10 + 5 = 67 different choices for each
character, so we have

6710 + 679 + 678 + 677 + 676 = 1,850,456,557,795,600,384 strings.

But how do we handle the “at least one” part?

One way would be to list all the possible ways of having a password
with at least one non-alpha character. The non-alpha could appear
in the first position, or the second, or the third, . . . , or the tenth,
but of course this only works for 10-digit passwords, and in any
event it’s not like the other characters couldn’t also be non-alpha.
It gets messy really fast.

There’s a simple trick, though, once you realize that it’s easy to
count the passwords that don’t satisfy the extra constraint. Ask
yourself this question: out of all the possible strings of 6-10 charac-
ters, how many of them don’t have at least one non-alpha character?
(and are therefore illegal, according to the website rules?)

It turns out that’s the same as asking “how many strings are there
with 6-10 alphabetic (only) characters?” which is of course:

10 9 8 7 652 + 52 + 52 + 52 + 52 = 147,389,519,403,536,384 (illegal) passwords.

6.2. PERMUTATIONS 139

Now, all we have to do is subtract to get

total # of strings – # of illegal passwords = # of legit passwords

1,850,456,557,795,600,384 – 147,389,519,403,536,384 = 1,708,735,865,301,022,720

legitimate passwords. Looks like we don’t lose much by requiring
the non-alpha character.

The lesson learned is that if counting the elements in some set
involves accounting for a lot of different sticky scenarios, it’s worth
a try to count the elements not in the set instead, and see if that’s
easier.

6.2 Permutations

When we’re counting things, we often run into permutations. A
permutation of n distinct objects is an arrangement of them in
a sequence. For instance, suppose all three Davies kids need to
brush their teeth, but only one of them can use the sink at a time.
What order will they brush in? One possibility is Lizzy, then T.J.,
then Johnny. Another possibility is T.J., then Lizzy, then Johnny.
Another is Johnny, then Lizzy, then T.J. These are all different
permutations of the Davies kids. Turns out there are six of them
(find all 6 for yourself!)

Counting the number of permutations is just a special application
of the Fundamental Theorem of Counting. For the teeth brushing
example, we have n = 3 different “parts” to the problem, each of
which has ni choices to allocate to it. There are three different
Davies kids who could brush their teeth first, so n1 = 3. Once that
child is chosen, there are then two remaining children who could
brush second, so n2 = 2. Then, once we’ve selected a first-brusher
and a second-brusher, there’s only one remaining choice for the
third-brusher, so n3 = 1. This means the total number of possible
brushing orders is:

3 × 2 × 1 = 6.

140 CHAPTER 6. COUNTING

This pattern comes up so much that mathematicians have estab-
lished a special notation for it:

n × (n − 1) × (n − 2) × · · · × 1 = n! (“n-factorial”)

We say there are “3-factorial” different brushing orders for the
Davies kids. For our purposes the notion of factorial will only
apply for integers, so there’s no such thing as 23.46! or π!. (In
advanced computer science applications, however, mathematicians
sometimes do define factorial for non-integers.) We also define 0! to
be 1, which might surprise you.

This comes up a heck of a lot. If I give you a jumbled set of letters
to unscramble, like “KRIBS” (think of the Jumble
R word game in
the newspaper), how many different unscramblings are there? The
answer is 5!, or 120, one of which is BRISK. Let’s say I shuffle a deck

 of cards before playing War.2 How many different games of War are
there? The answer is 52!, since any of the cards in the deck might
be shuffled on top, then any but that top card could be second,
then any but those two could be third, etc. Ten packets arrive
near-simultaneously at a network router. How many ways can they
be queued up for transmission? 10! ways, just like a larger Davies
family.

The factorial function grows really, really fast, by the way, even
faster than exponential functions. A five letter word like “BRISK”
has 120 permutations, but “AMBIDEXTROUSLY” has 87,178,291,200,
ten times the population of the earth. The number of ways to
shuffle a deck is

80,658,175,170,944,942,408,940,349,866,698,506,766,127,860,028,660,283,290,685,487,972,352

so I don’t think my boys will end up playing the same War game
twice any time soon, nor my wife and I the same bridge hand.

2“War” is a mindless card game which involves no strategy or decision-
making on the part of the players. Once you shuffle the initial deck, the entire
outcome of the game is fixed.

RISK
IRSK
ISRK
ISKR
RIKS
IRKS
IKRS
IKSR
RSIK
· · ·

141 6.2. PERMUTATIONS

Enumerating permutations

We’ve discovered that there are 120 permutations of BRISK, but
how would we go about listing them all? You can play around with
the Davies kids and stumble upon all 6 permutations, but for larger
numbers it’s harder. We need a systematic way.

Two of the easiest ways to enumerate permutations involve recur-
sion. Here’s one:

Algorithm #1 for enumerating permutations

1. Begin with a set of n objects.

a) If n = 1, there is only one permutation; namely, the
object itself.

b) Otherwise, remove one of the objects, and find the per-
mutations of the remaining n − 1 objects. Then, insert
the removed object at every possible position, creating
another permutation each time.

As always with recursion, solving a bigger problem depends on
solving smaller problems. Let’s start with RISK. We’ve already dis-
covered from the toothbrushing example that the permutations of
ISK are ISK, IKS, SIK, SKI, KIS, and KSI. So to find the permuta-
tions of RISK, we insert an R into each possible location for each of
these ISK-permutations. This gives us:

142 CHAPTER 6. COUNTING

and so on. Once we have the RISK permutations, we can generate
the BRISK permutations in the same way:

BRISK
RBISK
RIBSK
RISBK
RISKB
BIRSK
IBRSK
IRBSK
IRSBK
IRSKB
BRSIK
· · ·

Another algorithm to achieve the same goal (though in a different
order) is as follows:

Algorithm #2 for enumerating permutations

1. Begin with a set of n objects.

a) If n = 1, there is only one permutation; namely, the
object itself.

b) Otherwise, remove each of the objects in turn, and prepend
that object to the permutations of all the others, creat-
ing another permutation each time.

I find this one a little easier to get my head around, but in the
end it’s personal preference. The permutations of BRISK are: “B
followed by all the permutations of RISK, plus R followed by all the
permutations of BISK, plus I followed by all the permutations of
BRSK, etc.” So the first few permutations of a 4-letter word are: �

R I S K�� �
R I K S�� �
R S I K� �

143 6.2. PERMUTATIONS

R
R
R
I
I
I
I
I
I
S

�
S��
K��
K��
R��
R��
S��
S��
K��
K��
R�

K
I
S
S
K
R
K
R
S
I

I
S
I
K
S
K
R
S
R
K

 � � � � � � � � � �
· · ·

Then, for the 5-letter word:

�
B R I S K�� �
B R I K S�� �
B R S I K�� �
B R S K I�� �
B R K I S�� �
B R K S I�� �
B I R S K�� �
B I R K S� �

· · ·

Partial permutations

Sometimes we want to count the permutations of a set, but only
want to choose some of the items each time, not all of them. For
example, consider a golf tournament in which the top ten finishers
(out of 45) all receive prize money, with the first place winner re-
ceiving the most, the second place finisher a lesser amount, and so
on down to tenth place, who receives a nominal prize. How many
different finishes are possible to the tournament?

In this case, we want to know how many different orderings of
golfers there are, but it turns out that past tenth place, we don’t
care what order they finished in. All that matters is the first ten
places. If the top ten are 1.Tiger, 2.Phil, 3.Lee, 4.Rory, . . . , and

144 CHAPTER 6. COUNTING

10.Bubba, then it doesn’t matter whether Jason finished 11th or
45th .

It’s easy to see that there are 45 possible winners, then for each
winner there are 44 possible second-placers, etc., so that this total
turns out to be:

45×44×43×42×41×40×39×38×37×36 = 11,576,551,623,436,800 finishes.

Each of the finishes is called a partial permutation. It’s a per-
mutation of k items chosen from n total, and is denoted pn,k. The
number of such permutations works out to

n × (n − 1) × (n − 2) × · · · × (n − k + 1).

The “n − k + 1” bit can be confusing, so take your time and think
it through. For the golf tournament case, our highest term was 45
and our lowest term was 36. This is because n was 45 and k was
10, and so we only wanted to carry out the multiplication to 36
(not 35), and 36 is 45-10+1.

This can be expressed more compactly in a few different ways.
First, we can use factorials to represent it:

n × (n − 1) × (n − 2) × · · · × (n − k + 1) =

n × (n − 1) × (n − 2) × · · · × 1 n!
= .

(n − k) × (n − k − 1) × (n − k − 2) × · · · × 1 (n − k)!

Too, we could use our compact product notation:

k−1Y
n × (n − 1) × (n − 2) × · · · × (n − k + 1) = (n − i).

i=0

Finally, as with (non-partial) permutations, this comes up so much
that the professionals have invented a special notation for it. It
looks like a power, but has an underline under the exponent:

k n × (n − 1) × (n − 2) × · · · × (n − k + 1) = n .

This is pronounced “n-to-the-k-falling,” and was invented by one
of the most brilliant computer scientists in history, Donald Knuth.

145 6.3. COMBINATIONS

To keep straight what nk means, think of it as the same as plain ex-
ponentiation, except that the product diminishes instead of staying
the same. For example, “17-to-the-6th” is

176 = 17 · 17 · 17 · 17 · 17 · 17

but “17-to-the-6th-falling” is

176 = 17 · 16 · 15 · 14 · 13 · 12.

In both cases, you’re multiplying the same number of terms, it’s
just that in the second case, these terms are “falling.”

Anyway, notation aside, partial permutations abound in practice.
A late night movie channel might show four classic films back to
back every evening. If there are 500 films in the studio’s library,
how many nightly TV schedules are possible? Answer: 5004 , since
there are 500 choices of what to show at 7pm, then 499 choices for
9pm, 498 for 11pm, and 497 for the 1am late show.

The fastest 41 auto racers will qualify for Sunday’s race, and will be
placed from Pole Position on down depending on their qualifying
time. If 60 cars participate in the qualifying heat, then there are
6041 different possible starting configurations for Sunday.

Middle schoolers entering sixth grade will be assigned a semester
schedule that consists of five “blocks” (periods), each of which will
have one of thirteen classes (science, math, orchestra, study hall,
etc.) How many schedules are possible? You guessed it, 135 . Notice
that this is the correct answer only because no repeats are allowed:
we don’t want to schedule any student for American History more
than once. If a student could take the same class more than once
in a day, then there would be 135 (not “falling”) different possible
schedules.

6.3 Combinations

All the stuff with permutations has emphasized order. Somebody
gets first place in the golf tournament, and somebody else gets
second, and you bet your bottom dollar that it matters which is

146 CHAPTER 6. COUNTING

which. What if it turns out we don’t care about the order, though?
Maybe we don’t care who got what place, but just which golfers
were in the top ten. Maybe we don’t care which film is showing in
which time slot, but only which films are in tonight’s movie lineup.

This counting scenario involves something called combinations rather
than permutations. A combination of k objects out of a possible
n is a choice of any set of k of them, without regard to order. For
instance, suppose all three Davies kids want to play on the Wii, but
only two can play at a time. Who will get to play first after school?
One possibility is Lizzy and T.J., another is Lizzy and Johnny, and
the last one is T.J. and Johnny. These are the three (and only
three) combinations of 2 objects out of 3.

To see how to count these in general, let’s return to the golf tour-
nament example. Suppose that in addition to winning money, the
top three finishers of our local tournament will also advance to
the regional tournament. This is a great honor, and brings with
it far greater additional winning potential than the local money
did. Question: how many different possible trios might we send to
regional competition?

At first glance, this seems just like the “how many prize money
allocations” problem from before, except that we’re taking 3 instead
of 10. But there is a twist. In the former problem, it mattered who
was first vs. second vs. third. Now the order is irrelevant. If you
finish in the top three, you advance, period. You don’t “advance
more forcefully” for finishing first locally instead of third.

It’s not as obvious how to count this, but of course there is a trick.
The trick is to count the partial permutations, but then realize how
much we overcounted, and then compensate for it accordingly.

If we count the partial permutations of 3 out of 45 golfers, we have
453 such permutations. One of those partial permutations is:

1.Phil 2.Bubba 3.Tiger

Another one is:

1.Phil 2.Tiger 3.Bubba

147 6.3. COMBINATIONS

and yet another is:

1.Tiger 2.Phil 3.Bubba

Now the important thing to recognize is that in our present problem
— counting the possible number of regional-bound golf trios — all
three of these different partial permutations represent the same
combination. In all three cases, it’s Bubba, Phil, and Tiger who
will represent our local golf association in the regional competition.
So by counting all three of them as separate partial permutations,
we’ve overcounted the combinations.

Obviously we want to count Bubba/Phil/Tiger only once. Okay
then. How many times did we overcount it when we counted partial
permutations? The answer is that we counted this trio once for
every way it can be permuted. The three permutations, above, were
examples of this, and so are these three:

1.Tiger 2.Bubba 3.Phil
1.Bubba 2.Tiger 3.Phil
1.Bubba 2.Phil 3.Tiger

This makes a total of six times that we (redundantly) counted the
same combination when we counted the partial permutations. Why
6? Because that’s the value of 3!, of course. There are 3! different
ways to arrange Bubba, Phil, and Tiger, since that’s just a straight
permutation of three elements. And so we find that every threesome
we want to account for, we have counted 6 times.

The way to get the correct answer, then, is obviously to correct for
this overcounting by dividing by 6:

453 45 × 44 × 43
= = 14,190 different threesomes.

3! 6

And in general, that’s all we have to do. To find the number of
combinations of k things taken from a total of n things we have:

kn n!
= combinations.

k! (n − k)!k!

148 CHAPTER 6. COUNTING

This pattern, too, comes up so often that mathematicians have
invented (yet) another special notation for it. It looks a bit strange
at first, almost like a fraction without a horizontal bar: � �

n n!
= .

k (n − k)!k!

This is pronounced “n-choose-k”.

Again, examples abound. How many different 5-card poker handso �
52 are there? Ans you’re 5 , since it doesn’t matter what orderwer:

1024dealt the cards, only which five cards you get. If there are
sectors on our disk, but only 256 cache blocks in memory o � to hold
them, how many different combinations of sectors can be in mem-

1024 ory at one time? 256 . e want to choose 4 or 5 of our topIf w
10 different customers to participate in a focus group, how many o � o �

10 10combinations of participants could we ha +ve? , since we 4 5
want the number of ways to pick 4 of them plus the number of ways
to pick 5 of them. And for our late night movie channel, of course,o �

500there are 4 possible movie lineups to attract audiences, if we
don’t care which film is aired at which time.

Binomial coefficients o �
nThe “n-choose-k” notation has another name: values of thisk

sort are called binomial coefficients. This is because one way
to generate them, believe it or not, is to repeatedly multiply a
binomial times itself (or, equivalently, take a binomial to a power.)

A binomial, recall, is a polynomial with just two terms:

x + y.

The coefficients for this binomial are of course 1 and 1, since “x”
really means “1 · x.” Now if we multiply this by itself, we get:

2(x + y) · (x + y) = x 2 + 2xy + y .

The coefficients of the terms being 1, 2, and 1. We do it again:

2 2 3(x 2 + 2xy + y 2) · (x + y) = x 3 + 3x y + 3xy + y .

149 6.3. COMBINATIONS

to get 1, 3, 3, and 1, and do it again:

2 2 3 2 3 4(x 3 + 3x y + 3xy + y 3) · (x + y) = x 4 + 4x y + 6x y 2 + 4xy + y .

to get 1, 4, 6, 4, and 1. At this point you might be having flash-
backs to Pascal’s triangle, which perhaps you learned about in grade
school, in which each entry in a row is the sum of the two entries
immediately above it (to the left and right), as in Figure 6.1. (If
you never learned that, don’t worry about it.)

Figure 6.1: The first six rows of Pascal’s triangle.

Now you might be wondering where I’m going with this. What do
fun algebra tricks have to do with counting combinations of items?o �

nThe answer is that the values of k are precisely the coefficients of
these multiplied polynomials. Let n be 4, which corresponds to the
last polynomial we multiplied out. We can then compute all the
combinations of items taken from a group of four: � � � � � � � � � �

4 4 4 4 4
= 1, = 4, = 6, = 4, and = 1.

0 1 2 3 4

In other words, there is exactly one way of taking no items out of
4 (you simply don’t take any). There are four ways of taking one
item out of 4 — you could take the first, or the second, or the third,
or the fourth. There are six ways of taking two items out of four;
namely:

1. the first and second
2. the first and third
3. the first and fourth

150 CHAPTER 6. COUNTING

4. the second and third
5. the second and fourth
6. the third and fourth

And so on.

Now in some ways we’re on a bit of a tangent, since the fact that
the “n-choose-k” values happen to work out to be the same as
the binomial coefficients is mostly just an interesting coincidence.
But what I really want you to take notice of here — and what
Pascal’s triangle makes plain — is the symmetry of the coefficients.
This surprises a lot of students. What if I asked you which of theo � o �

1000 1000following numbers was greater: or ? Most students 18 982
guess that the second of these numbers is far greater. In actual

1000!fact, though, they both work out to and are thus exactly the 18!982! o
4
� o

4
�

same. And in the above example, we see that 0 is equal to 4 ,o
4
� o

4
�

and that 1 is equal to 3 . o �
nWhy is this? Well, you can look back at the formula for k and see

how it works out algebraically. But it’s good to have an intuitive
feel for it as well. Here’s how I think of it. Go back to the Davies
kids and the Wii. We said there were three different ways to choose o

3
�

2 kids to play on the Wii first after school. In other words, 2 = 3.
Very well. But if you think about it, there must then also be three
different ways to leave out exactly one kid. If we change what
we’re counting from “combinations of players” to “combinations
of non-players” — both of which must be equal, since no matter
what happens, we’ll be partitioning the Davies kids into players o �
and non-players — then we see that 3 must also be 3.1 o

500
�

And this is true across the board. If there are 4 different lineups
of four movies, then there are the same number of lineups of 496o � o �

500 500movies, since = . Conceptually, in the first case we choose 4 496
a group of four and show them, and in the second case we choose
a group of four and show everything but them.

Also notice that the way to get the greatest number of combinations
of n items is for k to be half of n. If we have 100 books in our library,
there are a lot more ways to check out 50 of them then there are
to check out only 5, or to check out 95. Strange but true.

151 6.4. SUMMARY

Lastly, make sure you understand the extreme endpoints of thiso � o �
phenomenon. n

0 and
n
n are both always 1, no matter what n

is. That’s because if you’re picking no items, you have no choices
at all: there’s only one way to come up empty. And if you’re
picking all the items, you also have no choices: you’re forced to
pick everything.

6.4 Summary

Most of the time, counting problems all boil down to a variation of
one of the following three basic situations:

k• — this is when we have k different things, each of which n
is free to take on one of n completely independent choices.

nk — this is when we’re taking a sequence of k different things •
from a set of n, but no repeats are allowed. (A special case
of this is n!, when k = n.) o

•
�

n
k — this is when we’re taking k different things from a set
of n, but the order doesn’t matter.

Sometimes it’s tricky to deduce exactly which of these three situa-
tions apply. You have to think carefully about the problem, and ask
yourself whether repeated values would be allowed, and whether it
matters what order the values appear in. This is often subtle.

As an example, suppose my friend and I work out at the same
gym. This gym has 18 different weight machines to choose from,
each of which exercises a different muscle group. Each morning,
we each do a quick 30-minute workout session divided into six 5-
minute blocks, and we work with one of the machines during each
block, taking turns spotting each other. One day my friend asks
me, “hey Stephen, have you ever wondered: how many different
workout routines are possible for us?”

I was, of course, wondering exactly that. But the correct answer
turns out to hinge very delicately on exactly what “a workout rou-
tine” is. If we could select any weight machine for any 5-minute

152 CHAPTER 6. COUNTING

block, then the answer is 186 , since we have 18 choices for our
first block, 18 choices for our second, and so on. (This comes to
34,012,224 different routines, if you’re interested).

However, on further inspection, we might change our mind about
this. Does it make sense to choose the same machine more than once
in a 30-minute workout? Would we really complete a workout that
consisted of “1.Biceps 2.Abs, 3.Pecs, 4.Biceps, 5.Biceps, 6.Biceps?”
If not (and most trainers would probably recommend against such
monomaniacal approaches to excercise) then the real answer is only
186 , since we have 18 choices for our first block, and then only 17
for the second, 16 for the third, etc. (This reduces the total to
13,366,080.)

But perhaps the phrase “a workout routine” means something dif-
ferent even than that. If I tell my physical therapist what “my
workout routine” consisted of this morning, does he really care
whether I did triceps first, last, or in the middle? He probably only
cares about which machines (and therefore which muscle groups)
I worked out that morning, not what order I did them in. If this
is true, then our definition of a workout routine is somewhat dif-
ferent than the above. It’s no longer a consecutive sequence of
machine choices, but rather a set of six machine choices. Thereo

18
�

would only be 6 of those, or a mere 18,564. So as you can see,
the answer radically depends on the precise interpretation of the
concepts, which means that to successfully do combinatorics, you
have to slow down and think very carefully.

Chapter 7

Numbers

Wow, last chapter was about “counting,” and this one is about
“numbers.” It sure seems like we’re regressing back to first grade or
earlier. And indeed, this chapter will contain a repeat of some ele-
mentary school concepts! But this is so we can re-examine the foun-
dations and generalize them somewhat. The mechanical processes
you’ve always used with numbers — adding, subtracting, compar-
ing, checking whether something divides evenly, working with place
value — are all correct, but they’re all hard-coded for decimal num-
bers. The word “decimal,” in this chapter, won’t mean “a number
with a decimal point, like 5.62” but rather a number expressed in
base 10. And what does “expressed in base 10” mean? It means
that the digits, from right to left, represent a “one’s place,” a “ten’s
place,” a “hundred’s place,” and so on. This is what we all learned
in grade school, and perhaps you thought that’s just how numbers
“were.” But it turns out that 1, 10, 100, 1000, . . . , is just one choice
of place values, and that we could equally as well choose many other
things, like 1, 2, 4, 8, . . . , or 1, 16, 256, 4096, . . . , or even 1, 23, 529,
12,167, . . . , as long as those values are of a certain type (successive
powers of the base).

It’s the concept of bases, and specifically bases other than 10, that
will cause us to rethink some things. It’ll feel unnatural at first,
but soon you’ll discover that there are aspects of how you work
with numbers that are unnecessarily specific, and that it’s freeing

153

154 CHAPTER 7. NUMBERS

to treat them in a more general way.

7.1 What is a “number?”

Before we do anything with bases, let’s talk about the concept of
number, generally. The question “what is a number?” sounds
like the dumbest question I could possibly ask you. Yet I predict
that unless you’ve studied this material before, you have a whole
bunch of tangled thoughts in your head regarding what “numbers”
are, and those tangled thoughts are of two kinds. Some of them
are about numbers per se. Others are about base-10 numbers. If
you’re like most people, you think of these two sets of concepts
as equally “primary,” to the point where a number seems to be a
base-10 number. It’s hard to conceive of it in any other way. It’s
this prejudice that I want to expose and root out at the beginning.

Most people, if I asked them to name a number, would come up with
something like “seventeen.” This much is correct. But if I asked
them what their mental image was of the number “seventeen,” they
would immediately form the following unalterable picture:

17

To them, the number “seventeen” is intrinsically a two-character-
long entity: the digit 1 followed by the digit 7. That is the number.
If I were to tell them that there are other, equally valid ways of
representing the number seventeen — using more, less, or the same
number of digits — they’d be very confused. Yet this is in fact
the case. And the only reason that the particular two-digit image
“17” is so baked into our brains is that we were hard-wired from
an early age to think in decimal numbers. We cranked through our
times tables and did all our carrying and borrowing in base 10, and
in the process we built up an incredible amount of inertia that is
hard to overcome. A big part of your job this chapter will be to
“unlearn” this dependence on decimal numbers, so that you can
work with numbers in other bases, particularly those used in the
design of computers.

155 7.1. WHAT IS A “NUMBER?”

When you think of a number, I want you to try to erase the sequence
of digits from your mind. Think of a number as what is is: a
quantity. Here’s what the number seventeen really looks like:

It’s just an amount. There are more circles in that picture than in
some pictures, and less than in others. But in no way is it “two
digits,” nor do the particular digits “1” and “7” come into play any
more or less than any other digits.

Let’s keep thinking about this. Consider this number, which I’ll
label “A”:

(A)

Now let’s add another circle to it, creating a different number I’ll
call “B”:

(B)

And finally, we’ll do it one more time to get “C”:

(C)

(Look carefully at those images and convince yourself that I added
one circle each time.)

156 CHAPTER 7. NUMBERS

When going from A to B, I added one circle. When going from B
to C, I also added one circle. Now I ask you: was going from B
to C any more “significant” than going from A to B? Did anything
qualitatively different happen?

The answer is obviously no. Adding a circle is adding a circle;
there’s nothing more to it than that. But if you had been writing
these numbers out as base-10 representations, like you’re used to
doing, you might have thought differently. You’d have gone from:

(A) 8

to

(B) 9

to

(C) 10

When going from B to C, your “odometer” wrapped around. You
had to go from a one-digit number to a two-digit number, simply
because you ran out of room in one digit. This can lead to the
illusion that something fundamentally different happens when you
go from B to C. This is completely an illusion. Nothing different
happens to the number just because the way we write it down
changes.

Human beings have a curious habit of thinking that odometer
changes are significant. When the temperature breaks 100, it sud-
denly feels “more hotter” than it did when it merely rose from 98 to
99. When the Dow Jones Industrial Average first reached 10,000,
and when Pete Rose eclipsed 4,000 career hits, and when the year
2000 dawned, we tended to think that something truly important
had taken place. But as we’ll see, the point at which these mile-
stones occur is utterly and even laughably aribitrary: it simply has
to do with what number we’ve chosen as our base. And we quite
honestly could have chosen any number at all.

7.2. BASES 157

7.2 Bases

As I mentioned, a base is simply a number that’s an anchor for
our place value system. It represents how many distinct symbols
we will use to represent numbers. This implicitly sets the value of
the largest quantity we can hold in one digit, before we’d need to
“roll over” to two digits.

In base 10 (decimal), we use ten symbols: 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9. Consequently, the number nine is the highest value we
can hold in a single digit. Once we add another element to a set
of nine, we have no choice but to add another digit to express it.
This makes a “ten’s place” because it will represent the number of
sets-of-10 (which we couldn’t hold in the 1’s place) that the value
contains.

Now why is the next place over called the “hundred’s place” instead
of, say, the “twenty’s place”? Simply because twenty — as well as
every other number less than a hundred — comfortably fits in two
digits. We can have up to 9 in the one’s place, and also up to 9 in
the ten’s place, giving us a total of ninety-nine before we ever have
to cave in to using three digits. The number one hundred is exactly
the point at which we must roll over to three digits; therefore, the
sequence of digits 1-0-0 represents one hundred.

If the chosen base isn’t obvious from context (as it often won’t be
in this chapter) then when we write out a sequence of digits we’ll
append the base as a subscript to the end of the number. So the
number “four hundred and thirty-seven” will be written as 43710.

The way we interpret a decimal number, then, is by counting the
right-most digits as a number of individuals, the digit to its left as
the number of groups of ten individuals, the digit to its left as the
number of groups of hundred individuals, and so on. 547210 is just
a way of writing 5 × 1000 + 4 × 100 + 7 × 10 + 2 × 1.

If we use exponential notation (remember that anything to the 0th

power is 1), this is equivalent to:

547210 = 5 × 103 + 4 × 102 + 7 × 101 + 2 × 100 .

158 CHAPTER 7. NUMBERS

By the way, we will often use the term least significant digit to
refer to the right-most digit (2, in the above example), and most
significant digit to refer to the left-most (5). “Significant” simply
refers to how much that digit is “worth” in the overall magnitude
of the number. Obviously 239 is less than 932, so we say that the
hundreds place is more significant than the other digits.

All of this probably seems pretty obvious to you. All right then.
Let’s use a base other than ten and see how you do. Let’s write
out a number in base 7. We have seven symbols at our disposal:
0, 1, 2, 3, 4, 5, and 6. Wait, you ask — why not 7? Because
there is no digit for seven in a base 7 system, just like there is no
digit for ten in a base 10 system. Ten is the point where we need
two digits in a decimal system, and analogously, seven is the point
where we’ll need two digits in our base 7 system. How will we
write the value seven? Just like this: 10. Now stare at those two
digits and practice saying “seven” as you look at them. All your
life you’ve been trained to say the number “ten” when you see the
digits 1 and 0 printed like that. But those two digits only represent
the number ten if you’re using a base 10 system. If you’re using a
base 34 system, “10” is how you write “thirty-four.”

Very well, we have our seven symbols. Now how do we interpret a
number like 61537? It’s this:

61537 = 6 × 73 + 1 × 72 + 5 × 71 + 3 × 70 .

That doesn’t look so strange: it’s very parallel to the decimal string
we expanded, above. It looks weirder when we actually multiply
out the place values:

61537 = 6 × 343 + 1 × 49 + 5 × 7 + 3 × 1.

So in base 7, we have a “one’s place,” a “seven’s place,” a “forty-
nine’s place,” and a “three hundred forty-three’s place.” This seems
unbelievably bizarre — how could a number system possibly hold
together with such place values? — but I’ll bet it wouldn’t look
funny at all if we had been born with 7 fingers. Keep in mind that
in the equation above, we wrote out the place values as decimal
numbers! Had we written them as base-7 numbers (as we certainly

159 7.3. HEXADECIMAL (BASE 16)

would have if base 7 was our natural numbering system), we would
have written:

61537 = 6 × 10007 + 1 × 1007 + 5 × 107 + 3 × 17.

This is exactly equivalent numerically. Because after all, 10007 is
34310. A quantity that looks like an oddball in one base system
looks like the roundest possible number in another.

7.3 Hexadecimal (base 16)

Now objectively speaking, it turns out that ten is a pretty weird
base too. I know it doesn’t seem like it, but that’s only because
we’re so used to it. Really, if you’re repeatedly adding little circles
to a drawing, ten is a funny place to decide to draw the line and go
to more digits. It’s only divisible by 2 and 5 (of all things), it’s not
a perfect square, and all this makes it kind of an awkward choice.

In computer science, it turns out to be very (very) convenient to
use a base that is a power of two. This means a base that is “two-
to-the-something.” In earlier computing days, octal (base 8) was
a common choice. But for various reasons, that turns out to be
less convenient than using base 16, or hexadecimal. 1 Any time
you’re working with hardware, operating systems, device drivers,
bit masks, or anything else low level, you’ll encounter numbers
written in base 16 a heck of a lot. So let’s study this particular
base in some detail.

Base 16 will need sixteen digits, of course. Unfortunately, we ten-
fingered people have only invented ten symbols that are obviously
numerical: the digits 0 through 9. So what do we do for the other
six? It turns out that the originators of this system took perhaps
the most obvious approach: repurposing the letters of the alphabet.
So we add the “digits” A through F (sometimes written as capitals,
sometimes in lower-case) to our set of symbols. These, then, are
the quantities that each individual digit represents:

1Sometimes numbers written in base 16 are called “hex numbers.”

160 CHAPTER 7. NUMBERS

0 zero
1 one
2 two
3 three
4 four
5 five
6 six
7 seven
8 eight
9 nine
A ten
B eleven
C twelve
D thirteen
E fourteen
F fifteen

The inventors of hexadecimal notation didn’t have to use the al-
phabet, of course; they could have chosen a star for ten, a square
for eleven, a happy face for twelve, etc., but that wouldn’t have
been very easy to type. So we’re stuck with the letters, for better
or for worse. Practice staring at that letter A and saying the word
“ten.” Because that’s what it means. In hexadecimal, the sequence
of digits 10 does not mean “ten.” It means “sixteen.”

Those are the symbols. What are the place values? Well, they are
(from the right) the 160’s place, the 161’s place, the 162’s place,
and so on. Written decimally, those work out to be the 1’s place,
the 16’s place, the 256’s place, the 4096’s place, and so on. Again,
those numbers seem strange only because when they are written
decimally they don’t come out very “round.”

The value of a number like 72E3 is computed as:

72E316 = 7 × 409610 + 2 × 25610 + 14 × 1610 + 3 × 110 = 29,41110.

Notice we treated the “E” just like another digit, which it is. We
also called 72E3 “a number,” which it is. Get used to the idea that
numbers — totally legitimate numbers — can have letters for some
of their digits.

161 7.3. HEXADECIMAL (BASE 16)

In hexadecimal, what’s the highest value that can fit in one digit?
Answer: F (which is fifteen.) What’s the highest that can fit in
two digits? FF (which is two hundred fifty-five.) What about three
digits? FFF (which is sixty-five thousand five hundred thirty-five.)
And so on. If you count in hexadecimal, you do the same thing as
in decimal, only you “roll over the odometer” when you get to F,
not when you get to 9.

Converting to and from decimal

So we know how to take a hexadecimal number (like 72E316) and
find its decimal equivalent: we just interpret each place’s value as
1, 16, 256, 4096, and so on. What about going the other way? If we
had a decimal number, how would we write its value hexadecimally?

First, let’s learn two operations (if you don’t already know them)
that come in handy when working with integers. The first is called
the modulo operator (written “mod”), and simply gives the re-
mainder when dividing two numbers. This is a concept you prob-
ably learned in elementary school but might not have used since
then. As we get older (and use calculators), we tend to think of a
division operation like 13 ÷ 3 as being 4.333 But that’s when
we want a real-valued (instead of integer-valued) answer. If we only
want integers, then we say that 13 ÷ 3 is “4 with a remainder of 1.”
(The “4” is called the quotient.) This means that if you have 13
objects, you can take four groups of 3’s out of them, and then have
1 object left over. The way we write this operation mathematically
is “13 mod 3.” In this case, it turns out that 13 mod 3 = 1.

Let’s think through what the mod operator yields for different val-
ues. We know that 13 mod 3 = 1. What about 14 mod 3? That
is equal to 2, since we can (again) take out four groups of 3’s, but
then we’d have two left over. What about 15 mod 3? That yields
0, since 3 goes in to 15 evenly, leaving no remainder at all. 16
mod 3 again gives us 1, just like 13 did. If you think it through,
you’ll realize that 19 mod 3 will also be 1, as will 22 mod 3 and 25
mod 3. These numbers that give the same remainder are said to be
“congruent mod 3.” The numbers 2, 5, 8, 11, 14, etc. are also all
congruent (to each other) mod 3, since they all give a remainder of

162 CHAPTER 7. NUMBERS

2.

Another observation is that the value of n mod k always gives a
value between 0 and k − 1. We may not know at a glance what
407,332,117 mod 3 is, but we know it can’t be 12, or 4, or even 3,
because if we had that many elements left after taking out groups
of 3’s, we could still take out another group of 3. The remainder
only gives us what’s left after taking out groups, so by definition
there cannot be an entire group (or more) left in the remainder.

The other operation we need is simply a “round down” operation,
traditionally called “floor” and written with brackets: “b c”. The
floor of an integer is itself. The floor of a non-integer is the integer
just below it. So b7c = 7 and b4.81c = 4. It’s that simple.

The reason we use the floor operator is just to get the whole number
of times one number goes into another. b13 ÷ 3c = 4, for example.
By using mod and floor, we get the quotient and remainder of
a division, both integers. If our numbers are 25 and 7, we have
b25 ÷ 7c = 3 and 25 mod 7 = 4. Notice that this is equivalent to
saying that 25 = 3 × 7 + 4. We’re asking “how many groups of 7
are in 25?” and the answer is that 25 is equal to 3 groups of 7, plus
4 extra.

The general procedure for converting from one base to another is
to repeatedly use mod and floor to strip out the digits from right
to left. Here’s how you do it:

Express a numeric value in a base

1. Take the number mod the base. Write that digit down.

2. Divide the number by the base and take the floor:

a) If you get zero, you’re done.

b) If you get non-zero, then make this non-zero number
your new value, move your pencil to the left of the
digit(s) you’ve already written down, and return to step 1.

As an example, let’s go backwards to the hex number 72E3 as in

163 7.3. HEXADECIMAL (BASE 16)

our example above, which we already computed was equal to 29,411
in decimal. Starting with 29,411, then, we follow our algorithm:

1. (Step 1) We first compute 29,411 mod 16. This turns out to
be 3. Many scientific calculators can perform this operation,
as can programming languages like Java and data analysis
languages like R. Or, you could do long division (459,494 ÷
16) by hand and see what the remainder is. Or, you could
divide on an ordinary calculator and see whether the part

th ths
after the decimal point is 0, or 1 , or 2 , etc. Or, you 16 16
could sit there and subtract 16 after 16 after 16 from 29,411
until there are no more 16’s to take out, and see what the
answer is. At any rate, the answer is 3. So we write down 3:

3

2. (Step 2) We now divide 29,411 by 16 and take the floor. This
produces b29,411 ÷ 16c = 1838. Since this is not zero, we
perform step 2b: make 1838 our new value, move our pencil
to the left of the 3, and go back to step 1.

3. (Step 1) Now compute 1838 mod 16. This gives us the value
14, which is of course a base 10 number. The equivalent hex
digit is E. So we now write down E to the left of the 3:

E3

4. (Step 2) Dividing 1838 by 16 and taking the floor gives us
114. Since this is again not zero, we perform step 2b: make
114 our new value, move our pencil to the left of the E, and
go back to step 1.

5. (Step 1) Next we compute 114 mod 16. This turns out to be
2, so we write down a 2:

2E3

164 CHAPTER 7. NUMBERS

6. (Step 2) Computing b114÷16c produces 7, which is again not
zero, so 7 becomes our new value and we go back once again
to step 2b.

7. (Step 1) 7 mod 16 is simply 7, so we write it down:

72E3

8. (Step 2) Finally, b7 ÷ 16c is zero, so we go to step 2a and
we’re done. The page has 72E3 written on it in big bold
letters, which is the correct answer.

Adding hex numbers

Suppose we have two hexadecimal numbers, and we want to add
them together to get a hexadecimal result. How do we do it? One
way is to first convert them both to decimal, then add them like
you learned in first grade, then convert the answer back to hex. But
we can stay “natively hex” as long as we add each pair of digits
correctly.

Let’s try it. Suppose we want to compute this sum:

48D416

+59 2 516

?16

We proceed in the first-grade way from right to left. Adding the
one’s-place values, we get 4 + 5 = 9:

48D416

+59 2 516

916

Easy enough. Now we add the next digit to the left (the sixteen’s-
place, mind you, not the ten’s place) and we find D + 2. Now
what in the world is “D+2”? It’s actually easy: all you have to
do is the same thing you did when you were a child and you had
to add something like 4 + 5. You hadn’t memorized the answer

165 7.4. BINARY (BASE 2)

yet, and so you started with four fingers held up, and counted off
“1. . . 2. . . 3. . . 4. . . 5,” sticking up another finger each time. Then,
you looked at your hands, and behold! nine fingers.

We’ll do the same thing here: start with the number “D,” and
count two additional places: “E. . . F.” The answer is F. That is the
number that’s two greater than D. Lucky for us, it still fits in one
digit. So now we have:

48D416

+59 2 516

F 916

So far so good. The next pair of digits is 8 + 9. Here’s where
you want to be careful. You’re liable to look at “8+9” and im-
mediately say “17!” But 8 + 9 is not 17 in hexadecimal. To
figure out what it is, we start with the number 8, and count:
“9. . . A. . . B. . . C. . . D. . . E. . . F. . . 10. . . 11. . . ”. The answer is “11,”
which of course is how you write “seventeen” in hex. So just like
in grade school, we write down 1 and carry the 1:

1

48D416

+59 2 516

1F 916

Finally, our last digit is 4 + 5, plus the carried 1. We start with four
and count off five: “5. . . 6. . . 7. . . 8. . . 9.” Then we add the carry, and
count “. . . A.” The answer is A, with no carry, and so we have our
final answer:

1

4 8D416

+5 9 2 516

A1F916

7.4 Binary (base 2)

The other base we commonly use in computer science is base 2, or
binary. This is because the basic unit of information in a computer
is called a bit, which has only two values, conventionally called
either “true” and “false” or “1” and “0”. Numbers (as well as

https://9...A...B...C...D...E...F...10...11

166 CHAPTER 7. NUMBERS

everything else) are ultimately represented as colossal sequences of
1’s and 0’s, which are of course binary numbers.

The rules for interpreting place value are the same:

1101012 = 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= 1 × 32 + 1 × 16 + 0 × 8 + 1 × 4 + 0 × 2 + 1 × 1

= 5310.

So in binary we have a one’s-place, a two’s-place, a four’s-place,
an eight’s-place, and so on. We call the right-most place the least
significant bit (LSB) and the left-most the most significant
bit (MSB).

Counting up from zero is really just the same as any other base,
although it feels a little strange in binary because you “roll over”
so often:

02 zero
12 one

102 two
112 three

1002 four
1012 five
1102 six
1112 seven

10002 eight
10012 nine

.

Converting to and from decimal

Converting from binary to decimal was demonstrated above (with
1101012 = 5310.) To go the other way, we follow the algorithm from
page 162. Let’s try it for the decimal number 49:

1. (Step 1) We first compute 49 mod 2. Doing “mod 2” is easy:
you just see whether the number is even or odd. In this case,
it’s odd, so the remainder is a 1:

167 7.4. BINARY (BASE 2)

1

2. (Step 2) Now divide 49 by 2 and take the floor, which gives
b49 ÷ 2c = 24. It’s not zero, so we perform step 2b: make 24
our new value, move our pencil to the left of the 1, and go
back to step 1.

3. (Step 1) Compute 24 mod 2. Since 24 is even, this is zero,
which we write down to the left of the 1:

01

4. (Step 2) Divide 24 by 2 and take the floor, which gives b24 ÷
2c = 12. Make 12 our new value, move our pencil to the left
of the 0, and go back to step 1.

5. (Step 1) Compute 12 mod 2. Since 12 is even, this is zero,
which we write down:

001

6. (Step 2) Divide 12 by 2 and take the floor, which gives b12 ÷
2c = 6. Make 6 our new value, move our pencil to the left of
the 0, and go back to step 1.

7. (Step 1) Compute 6 mod 2. Since 6 is even, this is zero, which
we write down:

0001

8. (Step 2) Divide 6 by 2 and take the floor, which gives b6÷2c =
3. Make 3 our new value, move our pencil to the left of the
0, and go back to step 1.

9. (Step 1) Compute 3 mod 2. Since 3 is odd, this is one, which
we write down:

168 CHAPTER 7. NUMBERS

10001

10. (Step 2) Divide 3 by 2 and take the floor, which gives b3÷2c =
1. This still isn’t zero, so make 1 our new value, move our
pencil to the left of the 0, and go back to step 1.

11. (Step 1) Compute 1 mod 2. Since 1 is odd, this is one, which
we write down:

110001

12. (Step 2) Divide 1 by 2 and take the floor, which gives b1÷2c =
0. We’re done. The final answer is 1100012. Double-checking
our work, we verify that indeed one 32 plus one 16 plus one
1 gives 49, which is what we started with.

Converting to and from hex

That was pretty tedious. But converting back and forth from bi-
nary to hex is a snap. That’s because 16 is exactly 24 , and so one
hex digit is exactly equal to four binary digits. This isn’t the case
with base 10, where one decimal digit is equal to three binary dig-
its. . . plus a little extra. This “not quite a whole number of digits”
thing is what makes converting from decimal to binary (or decimal
to hex, for that matter) so awkward.

We most commonly deal with sets of eight bits at a time, which is
called a byte. (This is the fundamental unit of storage on pretty
much every computer on earth.) Suppose I had the following byte:

100001102

Because one hex digit is exactly equal to four bits, this byte is
exactly equal to:

8616

169 7.4. BINARY (BASE 2)

This is because the byte can be neatly split into two parts: 1000,
which corresponds to the hex digit 8, and 0110, which corresponds
to the hex digit 6. These two halves are called nibbles — one byte
has two nibbles, and each nibble is one hex digit. At a glance, there-
fore, with no multiplying or adding, we can convert from binary to
hex.

Going the other direction is just as easy. If we have:

3E16

we just convert each hex digit into the corresponding nibble:

001111102

After you do this a while, you get to the point where you can
instantly recognize which hex digit goes with which nibble value.
Until then, though, here’s a handy table:

nibble hex digit
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

In case you’re wondering, yes this is worth memorizing.

170 CHAPTER 7. NUMBERS

Adding binary numbers

Adding two binary numbers is the same as adding in decimal, hex-
adecimal, or any other base: you just have to know when to “roll
over the odometer,” which in this case is almost instantly, since the
highest value a bit can hold is 1! Let’s give it a shot:

1110012

+0110102

?2

A child could follow the rules: when we add two zeroes, we get zero.
Adding a one to a zero gives one. Adding two ones gives zero, and
a carry to the next significant digit. And adding two ones plus a
carry gives a one and a carry. See if you can follow the flow:

11

1110012

+0110102

10100112

Capacity

How large a value can a byte store? There are 8 bits, and each
one can independently have either of two values (0 or 1), so by the
Fundamental Theorem of Counting, there are 28 different combi-
nations. This works out to 256, but we can’t actually store the
number 256 in a byte if we’re using the bit pattern 000000002 (or
0016) to represent zero. The highest value would be111111112 (or
FF16), which is 25610.

How do we store a number larger than that? Simply use more than
one byte, of course. If we used two bytes of memory, and treated
them as concatenated one after the other, that would give us 16 bits,
allowing us to store up to the number 00000000000000002 = FFFF16

= 65,53510. We’d call one of these bytes — the one representing
the 20’s place up to the 27’s place — the least significant byte,
and the other one — containing places 28 through 215 — the most
significant byte. Extending to more than two bytes to accommodate
even larger numbers is done in the obvious way.

171 7.4. BINARY (BASE 2)

Binary representation schemes

That’s mostly all there is to it. But there’s one thing we haven’t
discussed yet, and that’s negative numbers. We know how to rep-
resent any positive number (or zero) with an ordinary place value
scheme. But how do we store a number like −5?

There are three different schemes for treating negative numbers,
each with its strengths and weaknesses.

Unsigned

The simplest scheme is called unsigned, and it simply means that
we don’t allow negative numbers. For one byte, we have 256 dif-
ferent bit patterns at our disposal, and we might just choose to
allocate them all to represent positive numbers, so as to get the
widest range. This makes sense for, say, a C++ program variable
called heightInInches which we know can never meaningfully be
negative (no one has a negative height).

The advantage of this scheme is simply that we can represent the
greatest possible range of positive numbers, which is sometimes the
goal. Each of the alternative schemes carves off a chunk of these
available bit patterns and devotes them to representing negative
numbers, leaving fewer left over for positive numbers. There’s no
free lunch: you have to decide how you want to “spend” your avail-
able bit patterns depending on what values you need to represent.

Sign-magnitude

The sign-magnitude scheme is probably the first thing you’d
think of to solve the negative number representation problem. We
need to store the sign of the number somehow, and a sign is in-
herently a two-valued thing (either positive or negative), so why
not peel off one of the bits and use it to represent the sign? The
remaining bits can then be used in the ordinary way to represent
the magnitude of the number.

The way this is most often done is to take the left-most bit and
use it as the sign bit. This bit now has no other meaning. It

172 CHAPTER 7. NUMBERS

can’t “double” as the 128’s place, because then there’d be no way
to distinguish between, say, 129 and −129 (each would be repre-
sented with 10000001.) No, the sign bit must be considered “spent
money,” and its expressive power cannot be reclaimed to also rep-
resent part of the magnitude. By convention, if the sign bit is 0
this represents a positive number, and a sign bit of 1 represents
a negative number. (That might seem counterintuitive, but hey,
that’s the way it is.)

So this number in sign-magnitude:

00100110

represents the decimal number 38. That’s because the sign bit
(bolded, on the far left) is 0, which means the number is positive.
The magnitude of the number is contained in the other 7 bits, which
gives 32 + 4 + 2 = 38. This number, on the other hand:

10100110

represents −38. The magnitude is the same, but the sign bit is 1
so this pattern now “means” a negative number.

Clearly we have reduced our range of positive numbers in exchange
for the ability to also store negatives. We have 7 bits of range
instead of 8, so instead of 255, our highest possible value is merely
127. On the other end, the lowest possible value is −127.

If you have sharp eyes, you may have noticed a discrepancy in the
counting. With the sign-magnitude approach, we can hold numbers
in the range −127 to 127. But wait: that’s only 255 different
values, not 256! Why did we lose one value of expressive power?
The answer is that the sign-magnitude scheme has two ways of
representing zero. The bit pattern 00000000 is obviously zero, but
so is 10000000 (which you might call “negative zero.”) Using two
different patterns to represent the same value is a little wasteful,
but the situation is actually worse than that. Having to account
for both patterns means that computer hardware using the sign-
magnitude scheme is inevitably more complicated. To compare two

173 7.4. BINARY (BASE 2)

bytes to see if they’re equal, you’d think we’d just compare each bit
position, and if they were all the same, the bytes would be declared
equal, otherwise no. Alas, this is no longer quite that simple. The
two zero patterns must be considered numerically equal, so our
digital logic now has to contain a special case. “To be equal, all the
bits have to be the same. . . oh, but actually not if the right-most
seven are all zeroes in both bytes. In that case, it doesn’t matter
what the left-most bit contains.” Maddening.

Two’s-complement

This shortcoming in the sign-magnitude scheme is remedied with
the two’s-complement scheme, which is the one actually used
most often in practice. It’ll seem weird at first — certainly not as
intuitive as the first two — but it leads to a critically important
feature that we’ll look at shortly.

First, the rules. To interpret a two’s-complement number, you:

1. Look at the left-most bit (just like in sign-magnitude). If
it’s a 0, you have a positive number. If it’s a 1, you have a
negative number.

2. If it’s a positive number, the other 7 bits give you the mag-
nitude (just like in sign-magnitude).

3. If, however, it’s a negative number, then to discover the mag-
nitude of that negative number you must flip all the bits and
add one. This will give you a positive number which is the
absolute value of your negative number.

Easy example: take the byte 00100110. The left-most bit is a 0,
which means it’s a positive number, and as we discovered above,
the remaining 7 bits give a magnitude of 38. So this is the number
38.

Harder example: take the byte 10100110. The left-most bit is a 1,
which means it’s negative. Okay: negative what? How do we find
the magnitude? Well, we “flip” all the bits (i.e., invert each one

174 CHAPTER 7. NUMBERS

from 0 to 1 or vice versa) to get:

01011001

and then add one to the result:

1

01011001
+ 1
01011010

This black magic produces the value 010110102, which converts
to 9010. This means that the original number, 10100110,
corresponds to the value –90.

“Flipping all the bits and adding one” is the cookbook procedure
for taking the complement (negative) of a number in the two’s-
complement scheme. It works in reverse, too. Let’s start with 90
this time and crank through the process again, making sure we get
–90.

Start with the binary representation of 9010:

01011010

Flip all the bits to get:
10100101

and finally add one to the result:

1

10100101
+ 1
10100110

We get 10100110, which was precisely the number we originally
began with, and which we have already determined represents –90.

Now you may ask what we gain from all this. Surely this scheme
is considerably more convoluted than the simple idea of reserving
one bit as a sign bit, and treating the rest as a magnitude. But
it turns out there is indeed a method to the madness. Strange as

175 7.4. BINARY (BASE 2)

it sounds, a two’s-complement representation scheme allows us to
perform addition and subtraction with a single operation.

In first grade (or so), you learned the procedure for adding multi-
digit numbers, which we’ve followed several times in this chap-
ter. It involves adding the digits right-to-left and possibly “carry-
ing.” Then in second grade (or so), you learned the procedure for
subtracting multi-digit numbers. It involves subtracting the digits
right-to-left and possibly “borrowing.” If you’re like me, you found
adding easier than subtracting. It’s easy to just carry the one, but
to borrow requires looking at the digit to the left, making sure
that you can borrow from it (i.e., that it’s not already 0), borrow-
ing from further left until you actually find an available non-zero
value, hoping the number on the bottom is actually less than the
one on the top (because otherwise you have to switch the order
and then add a negative sign to the result), and keeping all of that
straight as you march down the line.

Even if you didn’t find subtracting more difficult than adding,
though, you can’t argue that it’s still a completely different al-
gorithm, with different rules to follow. In computer hardware, we
have to implement different circuitry to perform each operation,
which is more difficult, costly, error-prone, and power-draining.

The wonderful thing about two’s-complement, however, is that with
this scheme we actually never need to use the subtraction algorithm.
If we want to subtract two numbers — say, 24 − 37 — we can
instead take the complement of the second number and then add
them. Instead of 24 − 37 we compute 24 + (−37).

Let’s see it in action. Using conversion procedures, we can figure
out that 2410 is:

00011000

and that positive 3710 is:

00100101

If we wanted to compute 24 + 37, we’d just add these. But instead
we’re looking for 24 − 37, so we’ll take the complement of 37 to find

176 CHAPTER 7. NUMBERS

−37. Flip all the bits of 37:

11011010

and add one:
11011010
+ 1
11011011

and so now we’ve determined that in the two’s-complement scheme,
−37 is represented by 110110112.

We’re now ready to compute 24 + (−37):

11

00011000 ← this is 2410

+11011011 ← this is −3710

11110011

So we have our two’s-complement answer, 11110011. What value
does that correspond to? Well, the left-most bit is a 1, so it’s a
negative number. To find out what it’s the negative of, flip all the
bits and add one:

00001100 ← flip the bits to get
+ 1 ← add one
00001101

This is positive 13, which means the number we inverted to get it
— 11110011 — must represent −13. And that is indeed the correct
answer, for 24 − 37 = −13.

One last word on two’s-complement: what is the range of numbers
we can represent? It turns out to be -128 to 127. The highest value
is 01111111, which is 127. You might think the lowest value would
be represented as 11111111, but if you work it out, you’ll find that
this is actually the number −1. The lowest number is actually the
bit pattern 10000000, which is −128.

Overflow

One last sticky detail we need to cover has to do with overflow.
When we add two numbers, there is the possibility that the result

177 7.4. BINARY (BASE 2)

will contain one more digit than the original numbers did. You’ve
probably seen this on a hand calculator when you press “=” and get
an “E” (for “error”) in the display. If there are only ten digits on
your display, adding two ten-digit numbers will (sometimes) result
in an eleven-digit number that your calculator can’t display, and
it’s alerting you to that fact so you don’t misinterpret the result.
Here, we might add two 8-bit quantities and end up with a 9-bit
quantity that can’t fit in one byte. This situation is called overflow,
and we need to detect when it occurs.

The rules for detecting overflow are different depending on the
scheme. For unsigned numbers, the rule is simple: if a 1 is car-
ried out from the MSB (far left-side), then we have overflow. So if
I were to try to add 15510 and 10810:

1111

10011011 ← 15510

+01101100 ← 10810

1 00001111

then I get a carry out left into the 9th digit. Since we can only hold
eight digits in our result, we would get a nonsensical answer (1510),
which we can detect as bogus because the carry out indicated over-
flow.

Sign-magnitude works the same way, except that I have one fewer
bit when I’m adding and storing results. (Instead of a byte’s worth
of bits representing magnitude, the left-end bit has been reserved
for a special purpose: indicating the number’s sign. Therefore, if I
add the remaining 7-bit quantities and get a carry out left into the
eighth digit, that would indicate overflow.)

Now with two’s-complement, things are (predictably) not that easy.
But it turns out they’re almost as easy. There’s still a simple rule
to detect overflow, it’s just a different rule. The rule is: if the carry
in to the last (left-most) bit is different than the carry out from
the last bit, then we have overflow.

Let’s try adding 10310 and 9510 in two’s-complement, two numbers

178 CHAPTER 7. NUMBERS

which fit in our -128 to 127 range, but whose sum will not:

carry-in → 1111111

01100111 ← 10310

+ 01011111 ← 9510

carry-out → 011000110

The carry-in to the last bit was 1, but the carry-out was 0, so for
two’s-complement this means we detected overflow. It’s a good
thing, too, since 11000110 in two’s-complement represents −5710,
which is certainly not 103 + 95.

Essentially, if the carry-in is not equal to the carry-out, that means
we added two positive numbers and came up with a negative num-
ber, or that we added two negatives and got a positive. Clearly
this is an erroneous result, and the simple comparison tells us that.
Just be careful to realize that the rule for detecting overflow de-
pends totally on the particular representation scheme we’re using.
A carry-out of 1 always means overflow. . . in the unsigned scheme.
For two’s-complement, we can easily get a carry-out of 1 with no
error at all, provided the carry-in is also 1.

“It’s all relative”

Finally, if we come up for air out of all this mass of details, it’s worth
emphasizing that there is no intrinsically “right” way to interpret
a binary number. If I show you a bit pattern — say, 11000100
— and ask you what value it represents, you can’t tell me without
knowing how to interpret it.

If I say, “oh, that’s an unsigned number,” then you’d treat each
bit as a digit in a simple base 2 numbering scheme. You’d add
27 + 26 + 22 to get 196, then respond, “ah, then that’s the number
19610.” And you’d be right.

But if I say, “oh, that’s a sign-magnitude number,” you’d first look
at the leftmost bit, see that it’s a 1, and realize you have a negative
number. Then you’d take the remaining seven bits and treat them
as digits in a simple base 2 numbering scheme. You’d add 26 + 22

to get 68, and then respond, “ah, then that’s the number −6810.”
And you’d be right.

179 7.4. BINARY (BASE 2)

But then again, if I say, “oh, that’s a two’s-complement number,”
you’d first look at the leftmost bit, see that it’s a 1, and realize
you’re dealing with a negative number. What is it the negative of?
You’d flip all the bits and add one to find out. This would give
you 00111100, which you’d interpret as a base 2 number and get
6010. You’d then respond, “ah, then that’s the number −6010.”
And you’d be right.

So what does 11000100 represent then?? Is it 196, −68, or −60?
The answer is any of the three, depending on what representation
scheme you’re using. None of the data in computers or information
systems has intrinsic meaning: it all has to be interpreted according
to the syntactic and semantic rules that we invent. In math and
computer science, anything can be made to mean anything: after
all, we invent the rules.

Chapter 8

Logic

To a great extent, logic governs the way your mind works, even
among so-called “irrational people.” If we want to capture logical
processes and represent them in a computer program, we need a
way to express these thoughts in a form suitable for automated
reasoning. This is primarily why computer scientists study logic.

Interestingly, the material in this chapter covers the very bottom
and the very top of the technology stack. At the bottom, we have
actual physical hardware that consists of circuits turning bits on
and off. The rules that govern when we want to turn which bits
on and off are based on “logic gates,” or tiny physical devices that
implement the logical principles of this chapter on a micro scale. At
the other end of the spectrum, we have highly abstract programs
aiming towards “artificial intelligence.” These systems are centered
around a “knowledge base” of accumulated facts, and regularly
examine those known facts to make decisions and draw additional
conclusions. What does a knowledge base consist of? You guessed
it: logical statements that are described in this chapter.

8.1 Propositional logic

The simpler — but less powerful — of the two logic systems we’ll
study is called propositional logic. It has this name because the
core building block is the proposition. A proposition is simply a

181

182 CHAPTER 8. LOGIC

statement that has a “truth value,” which means that it is either
true or false. The statement “all plants are living beings” could
be a proposition, as could “Barack Obama was the first African-
American President” and “Kim Kardashian will play the title role in
the upcoming Batman Reborn.” By contrast, questions like “are you
okay?” cannot be propositions, nor can commands like “hurry up
and answer already!” or phrases like “Lynn’s newborn schnauzer,”
because they are not statements that can be true or false. (Linguis-
tically speaking, propositions have to be in the indicative mood.)

We normally use capital letters (what else?) to denote propositions,
like:

Let A be the proposition that UMW is in Virginia.

Let B be the proposition that the Queen of England is male.

Let C be the proposition that dogs are carnivores.

Don’t forget that a proposition doesn’t have to be true in order to
be a valid proposition (B is still a proposition, for example). It just
matters that it is labeled and that it has the potential to be true
or false.

Propositions are considered atomic. This means that they are in-
divisible: to the logic system itself, or to a computer program, they
are simply an opaque chunk of truth (or falsity) called “A” or what-
ever. When we humans read the description of A, we realize that
it has to do with the location of a particular institution of higher
education, and with the state of the union that it might reside (or
not reside) in. All this is invisible to an artificially intelligent agent,
however, which treats “A” as nothing more than a stand-in label
for a statement that has no further discernible structure.

So things are pretty boring so far. We can define and label propo-
sitions, but none of them have any connections to the others. We
change that by introducing logical operators (also called logical
connectives) with which we can build up compound constructions
out of multiple propositions. The six connectives we’ll learn are:

8.1. PROPOSITIONAL LOGIC 183

∧ — “and” ¬ — “not”
∨ — “or” ⇒ — “implies” (or “if. . . then . . . ”)
⊕ — “xor” (exclusive “or”) ⇔ — “equiv” (equivalent)

Just as the ordinary algebraic operators (+, -, etc.) can be used
to join numbers and produce another number, and just as the set
operators can be used to join sets and produce another set, the log-
ical operators can be used to join propositions and produce another
proposition. The expression “34 + 59” produces the number 93.
The expression “{X,Y}∪{Y,Z}” produces the set {X,Y,Z}. And
the expression “A ∧ B” produces the value false, since although
UMW is located in Virginia, the Queen is female.

Let’s run through the six operators, some of which are intuitive and
some of which are not:

∧ (“and”) The proposition X∧Y is true when both X and Y are
true propositions. “A∧C” represents the proposition “UMW
is in Virginia and dogs are carnivores,” which has a truth
value of true since both components are true. This opera-
tion is sometimes called a conjunction. Notice that the “∧”
sign somewhat resembles the “∩” sign for set intersection.
This is not an accident. An element is in the intersection
of two sets if it is a member of the first and the second set.
Hence mathematicians have chosen symbols which reinforce
this connection.

∨ (“or”) The proposition X∨Y is true when either X or Y (or
both) are true propositions. “B∨C” represents the proposi-
tion “The Queen of England is male or dogs are carnivores,”
which has a truth value of true since the second component is
true. This operation is sometimes called a disjunction. The
∨ looks somewhat like the “∪” sign for set union, since an el-
ement is in the union of two sets if it is an element of the first
set or the second set (or both). This operator is sometimes
called an “inclusive or” since it is true if both propositions
are true.

184 CHAPTER 8. LOGIC

⊕ (“xor”) The ⊕ operator is just like ∨ except that it’s exclusive:
the proposition X⊕Y is true when either X or Y (but not
both) are true propositions. “B∨C” and “B⊕C” are both
true, but “A⊕C” is false, since UMW is in Virginia and dogs
are carnivores.

¬ (“not”) This operator is different from the others in that it’s
unary, which means that it only operates on one proposition
instead of two. All it does is flip the value from true to false
(or vice versa.) The proposition “A” is true, but the propo-
sition “¬A” is false. “¬B,” on the other hand, is true. This
operation is sometimes called a negation.

⇒ (“implies”) Okay, now for the toughest one. We’re going to
spend significant time thinking through this one carefully, be-
cause it’s both important (in some ways, the most important
of the operators) and also potentially baffling. I’ve studied
this stuff for years, and I still sometimes get stuck when try-
ing to figure out ⇒.

If we say “X⇒Y,” we’re claiming that “if X is true, then Y
is true.” Note carefully that we are not claiming that X itself
is true. We’re simply asserting that if it’s true, then Y must
necessarily also be true. We call the first part of a ⇒ proposi-
tion the premise, and the second part the conclusion. Here,
X is the premise and Y the conclusion.

So far, it seems easy. It gets tougher when you realize that
X⇒Y is true whenever either X is false or Y is true (or both).
For example, A⇒C is a true proposition, believe it or not. In
English, it says “UMW being in Virginia implies that dogs are
carnivores.” The proposition B⇒A is also true: “The Queen
of England being male implies that UMW is in Virginia.”
What possible sense can we make out of these nonsensical
claims?

The key to understanding it, for me at least, is twofold. First,
remember that to a computer (or a logic system), there is no
meaning to the propositions: they’re simply atomic building
blocks, each of which is true or false. So the fact that to a

185 8.1. PROPOSITIONAL LOGIC

human, the content of the propositions might have nothing to
do with each other — English Queens and dogs — is irrelevant
to a computer: it just thinks indifferently in terms of “X” and
“Y,” and has no idea what real-world entities any of this refers
to. Second, think in terms of ruling out counterexamples.
When I assert X⇒Y, what I’m saying is “it’s impossible for X
to be true and Y false, because X’s truthfulness would imply
Y’s truthfulness.” Just as when I assert X∨Y I’m promising
that either X or Y is true (or both), when I assert X⇒Y I’m
promising that either X is true or Y is false (or both).

In this way, it starts to make sense when someone says, “Iowa
being in the Southern hemisphere implies that Batman’s cape
is red.” That assertion is like a promise: “if it turns out
that Iowa is in the Southern hemisphere, then I guarantee
Batman’s cape is red.” But since Iowa isn’t in the Southern
hemisphere, all bets are off. The conclusion was conditional
on the premise.

The reason this operator is so important is that in artificial
intelligence, the name of the game is concluding new facts
from known existing facts, so that knowledge is increased.
Every time a ’bot learns that X⇒Y is true, and then also
learns that the premise (X) is true, it can conclude that the
conclusion (Y) is true, even if it was never explicitly told that
Y was true. This rule of logic is called modus ponens, and is
the workhorse of automated knowledge bases.

⇔ (“equiv”) Finally, the proposition X⇔Y is true whenever X
and Y have the same value: they’re either both true, or both
false. This can be seen as “implies in both directions,” since
X⇔Y means “if X is true, then Y is true; and if Y is true,
then X is true.” This operator is also the inverse of ⊕, since
X⊕Y is true only if X and Y are different, and X⇔Y is true
only if they’re the same.

These operators, which each produce another proposition (called
a compound proposition) from the proposition(s) they operate
on, can be combined to form complex expressions. For instance:

186 CHAPTER 8. LOGIC

• ¬B is the proposition that the Queen of England is not male.
(This is true.)

• A ∧ ¬B is the proposition that UMW is in Virginia and the
Queen of England is not male. (This is also true.)

• C ⊕ (A ∧ ¬ B) is the proposition that either dogs are car-
nivores or UMW is in Virginia and the Queen of England is
not male. (This is false, because both halves of the xor are
true.)

• (C ⊕ (A ∧¬ B)) ⇒ ¬A is the proposition that if either dogs
are carnivores or UMW resides in Virginia and the Queen of
England is not male, then UMW must not reside in Virginia.
(This is true, since dogs are carnivores and UMW resides
in Virginia and the Queen of England is not male, so the
left-hand side of the ⇒ is false, which means that the entire
expression is true regardless of the truth value of the right-
hand side (which is also false, since UMW doesn’t not reside
in Virginia.)

• Etc.

Truth tables

Several times in this book, we’ve drawn the distinction between
intension — the inner, conceptual meaning — and extension —
the exhaustive list of examples. A set can have both an inten-
sion like “the prime numbers less than ten” and an extension like
{2,3,5,7}. A relation can have an intension like “isDaughterOf ” and
an extension like “{(Lisa,Homer), (Lisa,Marge), (Maggie,Homer),
(Maggie,Marge)}.” So, too, with the logical connectives. When we
say that the “∧” operator means “both propositions must be true,”
we’re specifying the conceptual meaning of the “and” operator. An-
other way to describe it, however, would be to just list its value for
all the possible inputs.

Such an exhaustive list is called a truth table. We specify every
possible combination of inputs, and list the output for each one of
them. Here’s the truth table for “∧”:

187 8.1. PROPOSITIONAL LOGIC

X Y X∧Y
0 0 0
0 1 0
1 0 0
1 1 1

We use “1” to represent true and “0” for false, just to make the table
more compact. The “∧” operator works on two propositions, either
of which can have a truth value or 0 or 1. There are therefore, by the
Fundamental Theorem of Counting, four different combinations of
inputs, and so our truth table has four rows. The right-most column
shows the output for each of these sets of inputs. It indicates that
X∧Y is 1 only when both inputs are 1, and 0 otherwise. Even if we
didn’t grasp the simple concept that “∧” is supposed to represent
the concept of “and,” we could just look up the value of X∧Y if we
knew the truth values of X and Y.

Sometimes we show more than one output in a truth table. For in-
stance, this truth table shows the values for the other five operators:

X Y X∨Y X⊕Y ¬X X⇒Y X⇔Y
0 0 0 0 1 1 1
0 1 1 1 1 1 0
1 0 1 1 0 0 0
1 1 1 0 0 1 1

Take a moment and look carefully through the entries in that table,
and make sure you agree that this correctly represents the outputs
for the five operators. (Note that “¬”, being a unary operator, only
has X as an input, which means that the value of Y is effectively
ignored for that column.)

Now sometimes we have a more complex expression (like the (C ⊕
(A ∧¬B)) ⇒ ¬A example from above) and we want to know the
truth value of the entire expression. Under what circumstances —
i.e., for what truth values of A, B, and C — is that expression true?
We can use truth tables to calculate this piece by piece.

188 CHAPTER 8. LOGIC

Let’s work through that example in its entirety. First, we set up
the inputs for our truth table:

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

In this case, there are three inputs to the expression (A, B, and C)
and so we have 23, or eight, rows in the truth table.

Now we work our way through the expression inside out, writing
down the values of intermediate parts of the expression. We need
to know the value of ¬B to figure some other things out, so let’s
start with that one:

A B C ¬B
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

189 8.1. PROPOSITIONAL LOGIC

Now we can compute A ∧¬B, a component of the expression:

A B C ¬B A∧¬B
0 0 0 1 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 0
1 0 0 1 1
1 0 1 1 1
1 1 0 0 0
1 1 1 0 0

This produces a 1 only for rows where A is true and B is false.
Knowing this allows us to compute the value of (C ⊕ (A ∧¬B)):

A B C ¬B A∧¬B (C⊕(A∧¬B))
0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 0 0 1

which is true only when the value of C is different than the value
of (A ∧¬B). We’re almost there now. All we need is ¬A:

A B C ¬B A∧¬B (C⊕(A∧¬B)) ¬A
0 0 0 1 0 0 1
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 1 0 0 1 1
1 0 0 1 1 1 0
1 0 1 1 1 0 0
1 1 0 0 0 0 0
1 1 1 0 0 1 0

190 CHAPTER 8. LOGIC

and we can finally obtain our answer:

A B C ¬B A∧¬B (C⊕(A∧¬B)) ¬A (C⊕(A∧¬B))⇒¬A
0 0 0 1 0 0 1 1
0 0 1 1 0 1 1 1
0 1 0 0 0 0 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 1 0 0
1 0 1 1 1 0 0 1
1 1 0 0 0 0 0 1
1 1 1 0 0 1 0 0

That last step is the hardest one. We look at the third output
column (C⊕(A∧¬B) and the fourth (¬A) and mark down a 1 for
each row in which the third is 0 or the fourth is 1. (Review the
truth table for the “⇒” operator if you have doubts about this.)
The final result is that our complex expression is true for all possible
values of A, B, and C, except when they have the values 1, 0, and
0, or else 1, 1, and 1, respectively. In our original example, we
know that UMW is in Virginia, the Queen is not male, and dogs
are carnivores, so our input values are 1, 0, and 1 for A, B, and C.
Therefore, for those inputs, this expression is true.

Tautologies

Let’s work through this process for a different example. Suppose
I want to know under what circumstances the expression ¬Z ∧ (X
⇔ Y) ∧ (X ⊕ Z) ⇒ (X ∧ ¬ Z) evaluates to true. When we follow
the above procedure, it yields the following truth table:

191 8.1. PROPOSITIONAL LOGIC

X Y Z ¬Z X⇔Y ¬Z∧(X⇔Y) X⊕Z A1 (X∧¬Z) B1

0 0 0 1 1 1 0 0 0 1
0 0 1 0 1 0 1 0 0 1
0 1 0 1 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 1 1
1 0 1 0 0 0 0 0 0 1
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1

(If you’re looking for some practice, cranking through this example
on your own and then comparing your answers to the above truth
table isn’t a bad idea at all.)

You’ll notice that the “answer” column has all 1’s. This means
that the expression is always true, no matter what the values of
the individual propositions are. Such an expression is called a tau-
tology: it’s always true. The word “tautology” has a negative
connotation in regular English usage: it refers to a statement so
obvious as to not tell you anything, like “all triangles have three
sides,” or “the fatal overdose was deadly.” But in logic, tautologies
are quite useful, since they represent reliable identities.

The tautology above was a contrived example, and not useful in
practice. Here are some important others, though:

X ¬X X∨¬X
0 1 1
1 0 1

Sometimes called the law of the excluded middle, this identity
states that either a proposition or its negative will always be true.
(There is no third option.)

1Here, “A” stands for ¬Z∧(X⇔Y)∧(X⊕Z) and “B” is
“¬Z∧(X⇔Y)∧(X⊕Y)⇒(X∧¬Z),” which were too long to fit in the table
heading.

192 CHAPTER 8. LOGIC

X Y X∨Y ¬(X∨Y) ¬X ¬Y ¬X∧¬Y ¬(X∨Y)⇔(¬X∧¬Y)
0 0 0 1 1 1 1 1
0 1 1 0 1 0 0 1
1 0 1 0 0 1 0 1
1 1 1 0 0 0 0 1

This is one of De Morgan’s Laws, which we’ve seen previously
with regards to sets (p. 21). Here is the other:

X Y X∧Y ¬(X∧Y) ¬X ¬Y ¬X∨¬Y ¬(X∧Y)⇔(¬X∨¬Y)
0 0 0 1 1 1 1 1
0 1 0 1 1 0 1 1
1 0 0 1 0 1 1 1
1 1 1 0 0 0 0 1

The first can be expressed as “the negation of the disjunction is
equal to the conjunction of the negations,” and the second as “the
negation of the conjunction is equal to the disjunction of the nega-
tions.” If that helps at all.

One last identity is this one:

X Y Z Y∨Z X∧(Y∨Z) X∧Y X∧Z (X∧Y)∨(X∧Z) A2

0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 1
0 1 0 1 0 0 0 0 1
0 1 1 1 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 1 1 1 0 1 1 1
1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1

This is none other than the distributive law, which we also saw
for set union and intersection (p. 20) and which you should also
remember from introductory algebra: x · (y + z) = x · y + x · z.

It’s interesting, actually, when you compare the distributive law
from algebra to the distributive law for logic:

x · (y + z) = x · y + x · z

X ∧ (Y ∨ Z) ⇔ (X ∧ Y) ∨ (X ∧ Z)

2Here, “A” is X∧(Y∨Z)⇔(X∧Y)∨(X∧Z).

193 8.2. PREDICATE LOGIC

The “∧” operator is analogous to “·” (times), while “∨” corresponds
to “+” (plus). In fact, if you look at the truth tables for these two
operators again, you’ll see an uncanny resemblance:

X Y
0 0
0 1
1 0
1 1

X∧Y X∨Y
0 0
0 1
0 1
1 (1)

Except for the (1) that I put in parentheses, this truth table is
exactly what you’d get if you mathematically multiplied (∧) and
added (∨) the inputs! At some level, logically “and-ing” is multi-
plying, while “or-ing” is adding. Fascinating.

8.2 Predicate logic

Propositional logic can represent a lot of things, but it turns out to
be too limiting to be practically useful. And that has to do with the
atomic nature of propositions. Every proposition is its own opaque
chunk of truthhood or falsity, with no way to break it down into
constituent parts. Suppose I wanted to claim that every state in
the union had a governor. To state this in propositional logic, I’d
have to create a brand new proposition for each state:

Let G1 be the proposition that Alabama has a governor.

Let G2 be the proposition that Alaska has a governor.

Let G3 be the proposition that Arizona has a governor.

. . .

and then, finally, I could assert:

G1 ∧ G2 ∧ G3 ∧ · · · ∧ G50.

That’s a lot of work just to create a whole bunch of individual
propositions that are essentially the same. What we need is some

194 CHAPTER 8. LOGIC

kind of proposition template, with which we can “mint” new propo-
sitions of a similar form by plugging in new values.

This is exactly what a predicate is, which forms the basis for
predicate logic, or “first-order predicate logic,” to be more ex-
act.3 A predicate is a formula that yields a proposition for each
value of its inputs. For instance, I can define a predicate called
“HasGovernor” as follows:

Let HasGovernor(x) be the proposition that x is a state that
has a governor.

Then I can assert:

HasGovernor(Virginia)

to state that Virginia has a governor. This mechanism alleviates
the need to define fifty nearly-identical propositions. Instead, we
define one predicate.

If you’re a programmer, you can think of a predicate as a function
that returns a boolean. Whether you’re a programmer or not, you
can think of a predicate as a function (in the chapter 3 sense)
mapping objects to propositions:

HasGovernor : Ω → P,

where P is the set of all propositions. Note that the domain of
this function is Ω, the entire domain of discourse. This means that
you can give any input at all to the predicate. For instance, we can
assert:

¬HasGovernor(mayonnaise)

3Or, if you want to sound really nerdy, you can call it first-order predicate
calculus, which is a synonym.

195 8.2. PREDICATE LOGIC

which is perfectly true.4

You may recall the word “predicate” from your middle school gram-
mar class. Every sentence, remember, has a subject and a predicate.
In “Billy jumps,” “Billy” is the subject, and “jumps” the predicate.
In “The lonely boy ate spaghetti with gusto,” we have “the lonely
boy” as the subject and “ate spaghetti with gusto” as the predi-
cate. Basically, a predicate is anything that can describe or affirm
something about a subject. Imagine asserting “Jumps(Billy)” and
“AteSpaghettiWithGusto(lonely boy).”

A predicate can have more than one input. Suppose we define the
predicate IsFanOf as follows:

Let IsFanOf(x, y) be the proposition that x digs the music of
rock band y.

Then I can assert:

IsFanOf(Stephen, Led Zeppelin)

IsFanOf(Rachel, The Beatles)

IsFanOf(Stephen, The Beatles)

¬IsFanOf(Stephen, The Rolling Stones)

We could even define TraveledToByModeInYear with a bunch
of inputs:

Let TraveledToByModeInYear(p, d, m, y) be the propo-
sition that person p traveled to destination d by mode m in year
y.

The following statements are then true:

TraveledToByModeInYear(Stephen, Richmond, car, 2007)

4By the way, when I say you can give any input at all to a predicate, I
mean any individual element from the domain of discourse. I don’t mean that
a set of elements can be an input. This limitation is why it’s called “first-
order” predicate logic. If you allow sets to be inputs to predicates, it’s called
“second-order predicate logic,” and can get quite messy.

196 CHAPTER 8. LOGIC

TraveledToByModeInYear(Rachel, Austria, plane, 2010)

¬TraveledToByModeInYear(Johnny, Mars, spaceship, 1776)

Defining multiple inputs gives us more precision in defining rela-
tionships. Imagine creating the predicate “AteWithAttitude”
and then asserting:

AteWithAttitude(lonely boy, spaghetti, gusto)

¬AteWithAttitude(Johnny, broccoli, gusto)

AteWithAttitude(Johnny, broccoli, trepidation)

Predicates and relations

The astute reader may have noticed that the IsFanOf predicate,
above, seems awfully similar to an isFanOf relation defined between
sets P (the set of people) and R (the set of rock bands), where
isFanOf ⊆ P × R. In both cases, we have pairs of people/bands for
which it’s true, and pairs for which it’s false.

Indeed these concepts are identical. In fact, a relation can be de-
fined as the set of ordered pairs (or tuples) for which a predicate is
true. Saying “IsFanOf(Rachel, The Beatles)” and “¬IsFanOf(Stephen,
The Rolling Stones)” is really just another way of saying “Rachel
isFanOf The Beatles” and “Stephen isFanOf The Rolling Stones.”

Quantifiers

One powerful feature of predicate logic is the ability to make grandiose
statements about many things at once. Suppose we did want to
claim that every state had a governor. How can we do it?

We’ll add to our repertoire the notion of quantifiers. There are
two kinds of quantifiers in predicate logic, the first of which is called
the universal quantifier. It’s written “∀” and pronounced “for
all.” Here’s an example:

∀x HasGovernor(x).

197 8.2. PREDICATE LOGIC

This asserts that for every x, HasGovernor is true. Actually,
this isn’t quite right, for although Michigan and California have
governors, mayonnaise does not. To be precise, we should say:

∀x ∈ S HasGovernor(x),

where S is the set of all fifty states in the U.S.

We can use a quantifier for any complex expression, not just a
simple predicate. For instance, if H is the set of all humans, then:

∀h ∈ H Male(h) ⊕ Female(h)

states that every human is either male or female, but not both.
Another (more common) way to write this is to dispense with sets
and define another predicate Human. Then we can say:

∀h Human(h) ⇒ Male(h) ⊕ Female(h).

Think this through carefully. We’re now asserting that this expres-
sion is true for all objects, whether they be Brad Pitt, Lady Gaga,
or a bowl of oatmeal. To see that it’s true for all three, let h first
be equal to Brad Pitt. We substitute Brad Pitt for h and get:

Human(Brad Pitt) ⇒ Male(Brad Pitt) ⊕ Female(Brad Pitt)

true ⇒ true ⊕ false

true ⇒ true

true X

Remember that “implies” (⇒) is true as long as the premise (left-
hand side) is false and/or the conclusion (right-hand side) is true. In
this case, they’re both true, so we have a true end result. Something
similar happens for Lady Gaga:

Human(Lady Gaga) ⇒ Male(Lady Gaga) ⊕ Female(Lady Gaga)

true ⇒ false ⊕ true

true ⇒ true

true X

198 CHAPTER 8. LOGIC

So these two cases both result in true. But perhaps surprisingly,
we also get true for oatmeal:

Human(oatmeal) ⇒ Male(oatmeal) ⊕ Female(oatmeal)

false ⇒ false ⊕ false

false ⇒ false

true X

Whoa, how did true pop out of that? Simply because the premise
was false, and so all bets were off. We effectively said “if a bowl
of oatmeal is human, then it will either be male or female. But it’s
not, so never mind.” Put another way, the bowl of oatmeal did not
turn out to be a counterexample, and so we’re confident claiming
that this expression is true “for all h”: ∀h.

The other kind of quantifier is called the existential quantifier.
As its name suggests, it asserts the existence of something. We
write it “∃” and pronounce it “there exists.” For example,

∃x HasGovernor(x)

asserts that there is at least one state that has a governor. This
doesn’t tell us how many states this is true for, and in fact despite
their name, quantifiers really aren’t very good at “quantifying”
things for us, at least numerically. As of 2008, the statement

∃x President(x) ∧ African-American(x)

is true, and always will be, no matter how many more African-
American U.S. presidents we have. Note that in compound expres-
sions like this, a variable (like x) always stands for a single en-
tity wherever it appears. For hundreds of years there have existed
African-Americans, and there have existed Presidents, so the ex-
pression above would be ridiculously obvious if it meant only “there
have been Presidents, and there have been African-Americans.” But
the same variable x being used as inputs to both predicates is what
seals the deal and makes it represent the much stronger statement
“there is at least one individual who is personally both African-
American and President of the United States at the same time.”

199 8.2. PREDICATE LOGIC

It’s common practice to negate quantifiers, both universal and ex-
istential. As of 2012, the following statement is still true:

¬∃p President(p) ∧ Female(p).

This conveys that there does not exist a female president. As an-
other example, if one day Missouri overhauls its government struc-
ture and replaces it with a mobocracy, perhaps we’ll state:

¬∀x HasGovernor(x).

Interchanging quantifiers

Some illuminating themes can be seen when we examine the re-
lationship that the two types of quantifiers have to each other.
Consider this one first:

∀x P (x) ⇔ ¬∃x ¬P (x), (8.1)

where P is any predicate (or for that matter, any expression involv-
ing many predicates). That’s sensible. It states: “if P is true of all
things, then there does not exist anything that it isn’t true for.”
Three other equivalences come to light:

¬∀x P (x) ⇔ ∃x ¬P (x) (8.2)

∀x ¬P (x) ⇔ ¬∃x P (x) (8.3)

¬∀x ¬P (x) ⇔ ∃x P (x) (8.4)

In words, identity 8.2 says “if it’s not true for everything, then it
must be false for something.” Identity 8.3 says “if it’s false for every-
thing, then there’s nothing it’s true for.” And identity 8.4 says “if
it’s not false for everything, then it must be true for something.” All
of these are eminently logical, I think you’ll agree. They also imply
that there are nearly always multiple correct ways to state some-
thing. In our apocalyptic vision of Missouri, for example, we stated
“¬∀x HasGovernor(x),” but we could just as well have stated
“∃x ¬HasGovernor(x),” which amounts to the same thing.

200 CHAPTER 8. LOGIC

Order matters

When you’re facing an intimidating morass of ∀’s and ∃’s and ∨’s
and ⇒’s and God knows what else, it’s easy to get lost in the sauce.
But you have to be very careful to dissect the expression to find
out what it means. Consider this one:

∀x ∈ R∃y ∈ R x + 1 = y. (8.5)

This statement is true. It says that for every single real number
(call it x), it’s true that you can find some other number (call it
y) that’s one greater than it. If you generate some examples it’s
easy to see this is true. Suppose we have the real number x = 5.
Is there some other number y that’s equal to x + 1? Of course, the
number 6. What if x = −32.4? Is there a number y that satisfies
this equation? Of course, y = −31.4. Obviously no matter what
number x we choose, we can find the desired number y just by
adding one. Hence this statement is true for all x, just like it says.

What happens, though, if we innocently switch the order of the
quantifiers? Let’s try asserting this:

∃y ∈ R∀x ∈ R x + 1 = y. (8.6)

Is this also true? Look carefully. It says “there exists some magic
number y that has the following amazing property: no matter what
value of x you choose, this y is one greater than x!” Obviously this
is not true. There is no such number y. If I choose y = 13, that
works great as long as I choose x = 12, but for any other choice of
x, it’s dead in the water.

The lesson learned here is that the order of quantifiers matters.
You have to take each quantifier/variable pair in turn, and think to
yourself, “okay, this statement is asserting that once I choose the
first variable, the rest of the expression is true for that choice.”

The value of precision

This fluency with the basic syntax and meaning of predicate logic
was our only goal in this chapter. There are all kinds of logical
rules that can be applied to predicate logic statements in order to

201 8.2. PREDICATE LOGIC

deduce further statements, and you’ll learn about them when you
study artificial intelligence later on. Most of them are formalized
versions of common sense. “If you know A is true, and you know
A⇒B is true, then you can conclude B is true.” Or “if you know
X∧Y is false, and then you discover that Y is true, you can then
conclude that X is false.” Etc. The power to produce new truth
from existing truth is the hallmark of AI systems, and why this
stuff really matters.

If you can imagine a program doing this sort of automated rea-
soning, it will become clear why the precision of something like
predicate logic — instead of the sloppiness of English — becomes
important. English is a beautiful and poetic language, but its am-
biguity is notorious. For example, back in chapter 3 we used the
phrase “some employee belongs to every department” when de-
scribing relations. Now consider that English sentence. What does
“some employee belongs to every department” actually mean? Does
it mean that there is some special employee who happens to hold
membership in every department in the company? Or does it mean
that no department is empty: all departments have at least one per-
son in them, for crying out loud? The English could mean either.
In predicate logic, we’re either asserting:

∃x Employee(x) ∧ ∀y BelongsTo(x, y)

or
∀y ∃x Employee(x) ∧ BelongsTo(x, y)

These are two very different things. A human being would realize
that it’s the second one the speaker means, drawing from a whole
range of experience and common sense and context clues. But a ’bot
has available none of these, and so it demands that the language
clearly and unambiguously state exactly what’s meant.

English is rife with these ambiguities, especially involving pronouns.
“After John hit George he ran away.” What happened? Did John
run away after striking George, fearing that George would retaliate?
Or did George run away after getting hit, fearing additional abuse?
It’s unclear what “he” refers to, so we can’t say from the sentence
alone.

202 CHAPTER 8. LOGIC

Here’s a funny one I’ll end with. Consider the sentence “He made
her duck.” What is intended here? Did he reach out with his hand
and forcefully push her head down out of the way of a screaming
projectile? Or did he prepare a succulent dish of roasted fowl to
celebrate her birthday? Oh, if the computer could only know.

Chapter 9

Proof

We’ve seen a lot of pretty sights on our cool brisk walk. We’ve
caught a glimpse of the simple elegance of sets and relations, the
precision of probabilistic reasoning, the recursive structure of trees,
the explosive nature of combinatorics, and much more. None of
these things have we plumbed to the depths, but we’ve appreciated
their beauty and taken note of where they stood along our blazed
trail. You’ll remember this hike when you run into such concepts
again and again in future computer science and math courses, and
in your career beyond academics.

Now we have one more stop to make before returning to the trail-
head, and that deals with the notion of proof. As we’ve studied
these various mathematical entities, I’ve pointed out certain of their
properties. A free tree has one more vertex than edge, for example.
The cardinality of the union of two sets is at least as big as each
of their individual unions. If you flip-all-the-bits-and-add-one in a
two’s complement scheme, and then perform that flip-and-add op-
eration again, you’ll return to the original number. But with a few
exceptions, we haven’t proven any of these things. I’ve just stated
them, and you’ve taken them on faith.

In order to establish reliable truth, of course, professional mathe-
maticians aren’t satisfied with unsubstantiated statements. They
need to be convinced that the claims we make do truly hold, and
provably so, in all circumstances. What they seek is a proof of a

203

204 CHAPTER 9. PROOF

claim: an irrefutable sequence of logical steps that leads inescapably
from our premises to our conclusion. There are several ways to con-
struct a convincing proof, and this chapter will highlight some of
them.

Most authors of discrete math texts, by the way, interweave the
concept of proof throughout the entire book. I’m taking a radical
departure by deferring this fundamental idea until the very end.
Why did I make this choice? A couple of reasons. First, as I said
at the very beginning, my target audience for this book is future
practitioners, not theoretical researchers. I think most practicing
computer scientists need fluency with the tools of discrete math,
not the ability to devise new fundamental theorems about them.
We mostly need to use, not to prove. The second reason is that I’ve
found that interspersing proofs throughout the presentation often
distracts the reader from the concepts at hand, since the focus shifts
slightly from the concept being discussed (the function, the directed
graph, what have you) to the proof about the concept. When the
proof itself takes center stage, it forces the actual subject matter to
share the limelight. And with technical material like this, we need
all the light we can get.

9.1 Proof concepts

A proof is essentially a chain of reasoning, in which each step can
be logically deduced from the ones that preceded it. It’s a way of
putting your thought process on display so it can be scrutinized to
make sure it holds water. Any step of your reasoning which was un-
warranted will be exposed, and perhaps reveal that the conclusion
you thought was true isn’t necessarily dependable after all.

Here’s an example from everyday life. I’m driving home from work
one afternoon, and I believe that my wife and children will be gone
when I arrive. I’ll be coming home to an empty house.

Now why do I believe this? Well, if I unravel my reasoning, it goes
like this. First, today is Wednesday. On Wednesday nights, my wife
and children normally go to church for dinner and service. Second,
my wife likes to call me ahead of time if this plan changes. My cell

205 9.1. PROOF CONCEPTS

phone is in my pocket, and has not rung, and so I conclude that
the plan has not changed. I look at my watch, and it reads 5:17pm,
which is after the time they normally leave, so I know I’m not going
to catch them walking out the door. This is, roughly speaking, my
thought process that justifies the conclusion that the house will be
empty when I pull into the garage.

Notice, however, that this prediction depends precariously on sev-
eral facts. What if I spaced out the day of the week, and this is
actually Thursday? All bets are off. What if my cell phone battery
has run out of charge? Then perhaps she did try to call me but
couldn’t reach me. What if I set my watch wrong and it’s actually
4:17pm? Etc. Just like a chain is only as strong as its weakest link,
a whole proof falls apart if even one step isn’t reliable.

Knowledge bases in artificial intelligence systems are designed to
support these chains of reasoning. They contain statements ex-
pressed in formal logic that can be examined to deduce only the
new facts that logically follow from the old. Suppose, for instance,
that we had a knowledge base that currently contained the follow-
ing facts:

1. A⇒C

2. ¬(C∧D)

3. (F∨¬E)⇒D

4. A∨B

These facts are stated in propositional logic, and we have no idea
what any of the propositions really mean, but then neither does the
computer, so hey. Fact #1 tells us that if proposition A (whatever
that may mean) is true, then we know C is true as well. Fact #2
tells us that we know C∧D is false, which means at least one of the
two must be false. And so on. Large knowledge bases can contain
thousands or even millions of such expressions. It’s a complete
record of everything the system “knows.”

Now suppose we learn an additional fact: ¬B. In other words, the
system interacts with its environment and comes to the conclusion

206 CHAPTER 9. PROOF

that proposition B must be false. What else, if anything, can now
be safely concluded from this?

It turns out that we can now conclude that F is also false. How do
we know this? Here’s how:

1. Fact #4 says that either A or B (or both) is true. But we
just discovered that B was false. So if it ain’t B, it must be
A, and therefore we conclude that A must be true. (For
the curious, this rule of common sense is called a “disjunctive
syllogism.”)

2. Now if A is true, we know that C must also be true, because
fact #1 says that A implies C. So we conclude that C is true.
(This one goes by the Latin phrase “modus ponens.”)

3. Fact #2 says that C∧D must be false. But we just found
out that C was true, so it must be D that’s false in order to
make the conjunction false. So we conclude that D is false.
(This is a disjunctive syllogism in disguise, combined with De
Morgan’s law.)

4. Finally, fact #3 tells us that if either F were true or E were
false, then that would imply that D would be true. But we
just found out that D is false. Therefore, neither F nor ¬E
can be true. (This step combines “modus tollens” with “dis-
junction elimination.”) So we conclude that F must be false.
Q.E.D.

(The letters “Q.E.D.” at the end of a proof stand for a Latin phrase
meaning, “we just proved what we set out to prove.” It’s kind of a
way to flex your muscles as you announce that you’re done.)

Not all proofs are performed in formal logic like this; some use
algebra, set theory, or just plain English. But the idea is the same:
start with what you know, procede to derive new knowledge using
only legal operations, and end with your conclusion.

The things we’re allowed to start with are called axioms (or pos-
tulates). An axiom is a presupposition or definition that is given

207 9.2. TYPES OF PROOF

to be true, and so it is legal grounds from which to start. A proof
can’t even get off the ground without axioms. For instance, in step 1
of the above proof, we noted that either A or B must be true, and
so if B isn’t true, then A must be. But we couldn’t have taken
this step without knowing that disjunctive syllogism is a valid form
of reasoning. It’s not important to know all the technical names
of the rules that I included in parentheses. But it is important to
see that we made use of an axiom of reasoning on every step, and
that if any of those axioms were incorrect, it could lead to a faulty
conclusion.

When you create a valid proof, the result is a new bit of knowledge
called a theorem which can be used in future proofs. Think of
a theorem like a subroutine in programming: a separate bit of
code that does a job and can be invoked at will in the course of
doing other things. One theorem we learned in chapter 2 was the
distributive property of sets; that is, that X ∩ (Y ∪ Z) = (X ∩ Y)
∪ (X ∩ Z). This can be proven through the use of Venn diagrams,
but once you’ve proven it, it’s accepted to be true, and can be used
as a “given” in future proofs.

9.2 Types of proof

There are a number of accepted “styles” of doing proofs. Here are
some important ones:

Direct proof

The examples we’ve used up to now have been direct proofs.
This is where you start from what’s known and proceed directly by
positive steps towards your conclusion.

Direct proofs remind me of a game called “word ladders,” invented
by Lewis Carroll, that you might have played as a child:

WARM
||||
????
||||

208 CHAPTER 9. PROOF

COLD

You start with one word (like WARM) and you have to come up with
a sequence of words, each of which differs from the previous by only
one letter, such that you eventually reach the ending word (like
COLD). It’s sort of like feeling around in the dark:

WARM
WART
WALT
WILT
WILD
||||
....

This attempt seemed promising at first, but now it looks like it’s
going nowhere. (“WOLD?” “CILD?” Hmm....) After starting over
and playing around with it for a while, you might stumble upon:

WARM
WORM
WORD
CORD
COLD

This turned out to be a pretty direct path: for each step, the letter
we changed was exactly what we needed it to be for the target
word COLD. Sometimes, though, you have to meander away from
the target a little bit to find a solution, like going from BLACK to
WHITE:

BLACK
CLACK
CRACK
TRACK
TRICK
TRICE

209 9.2. TYPES OF PROOF

TRITE
WRITE
WHITE

Here, we had to temporarily change our first letter three different
times — two of which seemingly brought us no nearer to WHITE —
in order to successfully forge a path through the tangled forest.

Knowing which direction to set out on is a matter of intuition plus
trial and error. Given the axioms of any system (whether algebra,
predicate logic, sets, etc.) there are an unfathomable number of
different ways to proceed. The vast majority of them are bound to
lead to dead ends. This is why a valid proof, when it is finished,
is often an elegant and beautiful thing. It’s a thin braid of jewels
glistening in the midst of a whole lot of mud.

Indirect proof

Also known as a proof by contradiction or reductio ad absur-
dum , the indirect proof starts in a completely opposite way. It
says, “okay, I’m trying to prove X. Well, suppose for the sake of
argument I assume that the opposite — not X — is true. Where
would that lead me?” If you follow all the rules and it leads you to
a contradiction, this tells you that the original assumption of ¬X
must have been false. And this in turn proves that X must be true.

We do this all the time in our thinking. Say you’re driving down
the highway. How do you know that the alternator in your car
engine is working? A direct proof would require that you open the
hood and examine the part, testing to ensure it works properly.
An indirect proof simply says, “well, suppose it weren’t working
properly. Then, my car engine wouldn’t operate. But here I am,
driving down the road, and the engine obviously does operate, so
that tells me that the alternator must be working properly.”

One of the most famous indirect proofs dates from Euclid’s Ele-
ments in 300 B.C. It proves that the square root of 2 is an irrational
number, a great surprise to mathematicians at the time (most of
whom doubted the very existence of irrational numbers). Remem-

210 CHAPTER 9. PROOF

ber that an irrational number is one that cannot be expressed as
the ratio of two integers, no matter what the integers are.

Proving this directly seems pretty hard, since how do you prove that√
there aren’t any two integers whose ratio is 2, no matter how hard
you looked? I mean, 534,927 and 378,250 are pretty dang close:

!2
534, 927

= 2.000005.
378, 250

How could we possibly prove that no matter how hard we look, we
can never find a pair that will give it to us exactly?

√
One way is to assume that 2 is a rational number, and then prove√
that down that path lies madness. It goes like this. Suppose 2
is rational, after all. That means that there must be two integers, √
call them a and b, whose ratio is exactly equal to 2:

a √
= 2.

b

This, then, is the starting point for our indirect proof. We’re going
to proceed under this assumption and see where it leads us.

By the way, it’s clear that we could always reduce this fraction to
lowest terms in case it’s not already. For instance, if a = 6 and

6 3b = 4, then our fraction would be 4 , which is the same as 2 , so
we could just say a = 3 and b = 2 and start over. Bottom line: if√
2 is rational, then we can find two integers a and b that have no

common factor (if they do have a common factor, we’ll just divide
it out of both of them and go with the new numbers) whose ratio√
is 2.

Okay then. But now look what happens. Suppose we square both

211 9.3. PROOF BY INDUCTION

sides of the equation (a perfectly legal thing to do):

a √
= 2 !b 2

a √
= (2)2

b

2a
= 2

b2

2 a = 2b2 .

Now if a2 equals 2 times something, then a2 is an even number.
But a2 can’t be even unless a itself is even. (Think hard about
that one.) This proves, then, that a is even. Very well. It must be
equal to twice some other integer. Let’s call that c. We know that
a = 2c, where c is another integer. Substitute that into the last
equation and we get:

(2c)2 = 2b2

4c 2 = 2b2

22c = b2 .

So it looks like b2 must be an even number as well (since it’s equal
to 2 times something), and therefore b is also even. But wait a
minute. We started by saying that a and b had no common factor.
And now we’ve determined that they’re both even numbers! This
means they both have a factor of 2, which contradicts what we
started with. The only thing we introduced that was questionable
was the notion that there are two integers a and b whose ratio was √
equal to 2 to begin with. That must be the part that’s faulty √
then. Therefore, 2 is not an irrational number. Q.E.D.

9.3 Proof by induction

One of the most powerful methods of proof — and one of the most
difficult to wrap your head around — is called mathematical in-
duction, or just “induction” for short. I like to call it “proof by

212 CHAPTER 9. PROOF

recursion,” because this is exactly what it is. Remember that we
discussed recursion in the context of rooted trees (see p.5.2). A
tree can be thought of as a node with several children — each of
which are, in turn, trees. Each of them is the root node of a tree
comprised of yet smaller trees, and so on and so forth. If you flip
back to the left-hand side of Figure 5.16 on p.5.2, you’ll see that
A is the root of one tree, and its two children, F and B, are roots
of their own smaller trees in turn. If we were to traverse this tree
in (say) pre-order, we’d visit the root, then visit the left and right
subtrees in turn, treating each of them as their own tree. In this
way we’ve broken up a larger problem (traversing the big tree) into
smaller problems (traversing the smaller trees F and B). The A
node has very little to do: it just visits itself, then defers all the
rest of the work onto its children. This idea of pawning off most of
the work onto smaller subproblems that you trust will work is key
to the idea of inductive proofs.

Mathematical induction is hard to wrap your head around because
it feels like cheating. It seems like you never actually prove any-
thing: you defer all the work to someone else, and then declare
victory. But the chain of reasoning, though delicate, is strong as
iron.

Casting the problem in the right form

Let’s examine that chain. The first thing you have to be able to
do is express the thing you’re trying to prove as a predicate about
natural numbers. In other words, you need to form a predicate that
has one input, which is a natural number. You’re setting yourself
up to prove that the predicate is true for all natural numbers. (Or
at least, all natural numbers of at least a certain size.)

Suppose I want to prove that in the state of Virginia, all legal
drinkers can vote. Then I could say “let Vote(n) be the proposition
that a citizen of age n can vote.” P x x(x+1)If I want to prove an algebraic identity, like i = , then I i=1 2
have to figure out which variable is the one that needs to vary across
the natural numbers. In this case it’s the x variable in my equation. P n n(n+1)So I’ll say “let P(n) be the proposition that i=1 i = 2 .” (The

213 9.3. PROOF BY INDUCTION

choice of the letter “n” isn’t important here — it just needs to be
a letter that stands for a number. We could have chosen anything,
even sticking with x. Later, we’ll use “k” as a stand-in, so keep
your eyes peeled for that.)

If I want to prove that the number of leaves in a perfect binary tree
is one more than the number of internal nodes, I’d have to think
about which quantity I can parameterize on (i.e., which quantity I
can use for my n.) In this case, I’d probably use the height of the
tree. I’d say “let P(n) be the proposition that the number of leaves
in a perfect binary tree of height n is one more than the number of
internal nodes.”

These are just examples. In any case, you need to cast your proof in
a form that allows you to make statements in terms of the natural
numbers. Then you’re ready to begin the process of proving by
induction that your predicate is true for all the natural numbers.

Proof by induction: weak form

There are actually two forms of induction, the weak form and the
strong form. Let’s look at the weak form first. It says:

1. If a predicate is true for a certain number,

2. and its being true for some number would reliably mean that
it’s also true for the next number (i.e., one number greater),

3. then it’s true for all numbers.

All you have to do is prove those two things, and you’ve effectively
proven it for every case.

The first step is called the base case, and the “certain number”
we pick is normally either 0 or 1. The second step, called the in-
ductive step, is where all the trouble lies. You have to look really,
really carefully at how it’s worded, above. We are not assum-
ing that the predicate is true for any old number! We are simply
considering, if it’s true for any old number, whether that would
necessarily imply it’s also true for the next number. In terms of

214 CHAPTER 9. PROOF

the predicate, we’re asking “does P(k) imply P(k + 1)?” In other
words: “we aren’t sure if P(k) is true. But if it does — a big “if,”
of course — would that logically demand that P(k + 1) was also
true?” If you can prove that it does, then you’re in business.

The whole thing is set up like a row of dominos. If one domino
falls, then the one after it will also fall. And if that one falls, then
so will the next. All that is needed is a base case to tip over the
first domino, and by this trail of causality, all the dominos will fall.

One terminology note: the entire second step is called the inductive
step, but the first half of it (the part where we assume that P(k)
is true) is called the inductive hypothesis. We never prove the
inductive hypothesis; rather, we assume it, and then see if that
allows us to deduce that P(k + 1) would also be true.

Example 1

Let’s work this out for the drinking/voting example. Let Vote(n)
be the proposition that a citizen of age n can vote. Our proof goes
like this:

1. base case. Vote(21) is true, because a 21-year old is old
enough to vote in the state and national elections.

2. inductive step. Vote(k)⇒Vote(k+1). Why? Because
nobody’s gettin’ any younger. If you can vote in a particular
year, then you’re also old enough to vote next year. Unless
the laws change, there will never be a case when someone old
enough to vote this year turns out to be too young to vote
next year.

3. Wow. We’re done. Q.E.D. and all that.

The only specific example we showed was true was Vote(21). And
yet we managed to prove Vote(n) for any number n ≥ 21.

Let’s look back at that inductive step, because that’s where all
the action is. It’s crucial to understand what that step does not
say. It doesn’t say “Vote(k) is true for some number k.” If it did,

215 9.3. PROOF BY INDUCTION

then since k’s value is arbitrary at that point, we would basically
be assuming the very thing we were supposed to prove, which is
circular reasoning and extremely unconvincing. But that’s not what
we did. Instead, we made the inductive hypothesis and said, “okay
then, let’s assume for a second a 40-year-old can vote. We don’t
know for sure, but let’s say she can. Now, if that’s indeed true, can
a 41-year-old also vote? The answer is yes.” We might have said,
“okay then, let’s assume for a second a 7-year-old can vote. We
don’t know for sure, but let’s say she can. Now, if that’s indeed
true, can an 8-year-old also vote? The answer is yes.” Note carefully
that we did not say that 8-year-olds can vote! We merely said that
if 7-year-olds can, why then 8-year-olds must be able to as well.
Remember that X⇒Y is true if either X is false or Y is true (or
both). In the 7/8-year-old example, the premise X turns out to be
false, so this doesn’t rule out our implication.

The result is a row of falling dominos, up to whatever number we
wish. Say we want to verify that a 25-year-old can vote. Can we
be sure? Well:

1. If a 24-year-old can vote, then that would sure prove it (by
the inductive step).

2. So now we need to verify that a 24-year-old can vote. Can he?
Well, if a 23-year-old can vote, then that would sure prove it
(by the inductive step).

3. Now everything hinges on whether a 23-year-old can vote.
Can he? Well, if a 22-year-old can vote, then that would sure
prove it (by the inductive step).

4. So it comes down to whether a 22-year-old can vote. Can he?
Well, if a 21-year-old can vote, then that would sure prove it
(by the inductive step).

5. And now we need to verify whether a 21-year-old can vote.
Can he? Yes (by the base case).

216 CHAPTER 9. PROOF

Example 2

A famous story tells of Carl Friedrich Gauss, perhaps the most
brilliant mathematician of all time, getting in trouble one day as
a schoolboy. As punishment, he was sentenced to tedious work:
adding together all the numbers from 1 to 100. To his teacher’s
astonishment, he came up with the correct answer in a moment, not
because he was quick at adding integers, but because he recognized
a trick. The first number on the list (1) and the last (100) add up
to 101. So do the second number (2) and the second-to-last (99).
So do 3 and 98, and so do 4 and 97, etc., all the way up to 50 and
51. So really what you have here is 50 different sums of 101 each, so
the answer is 50 × 101 = 5050. In general, if you add the numbers

xfrom 1 to x, where x is any integer at all, you’ll get 2 sums of x +1
x(x+1)each, so the answer will be 2 .

Now, use mathematical induction to prove that Gauss was right P x x(x+1)(i.e., that i =) for all numbers x.i=1 2

First we have to cast our problem as a predicate about natural
numbers. This is easy: we say “let P(n) be the proposition thatP n n(n+1)i = .”i=1 2

Then, we satisfy the requirements of induction:

1. base case. We prove that P(1) is true simply by plugging it
in. Setting n = 1 we have

1X
? 1(1 + 1)

i =
2

i=1

? 1(2)
1 =

2
1 = 1 X

2. inductive step. We now must prove that P(k)⇒P(k + 1).
Put another way, we assume P(k) is true, and then use that
assumption to prove that P(k + 1) is also true.

217 9.3. PROOF BY INDUCTION

Let’s be crystal clear where we’re going with this. Assuming
that P(k) is true means we can count on the fact that

k(k + 1)
1 + 2 + 3 + · · · + k = .

2

What we need to do, then, is prove that P(k + 1) is true,
which amounts to proving that

(k + 1)((k + 1) + 1)
1 + 2 + 3 + · · · + (k + 1) = .

2

Very well. First we make the inductive hypothesis, which
allows us to assume:

k(k + 1)
1 + 2 + 3 + · · · + k = .

2

The rest is just algebra. We add k + 1 to both sides of the
equation, then multiply things out and factor it all together.
Watch carefully:

k(k + 1)
1 + 2 + 3 + · · · + k + (k + 1) = + (k + 1)

2
1 1

= k2 + k + k + 1
2 2
1 3

= k2 + k + 1
2 2
k2 + 3k + 2

=
2

(k + 1)(k + 2)
=

2
(k + 1)((k + 1) + 1)

= . X
2

Therefore, ∀n ≥ 1 P(n).

Example 3

Another algebra one. You learned in middle school that (ab)n =
nbna . Prove this by mathematical induction.

nbnSolution: Let P(n) be the proposition that (ab)n = a .

218 CHAPTER 9. PROOF

1. base case. We prove that P(1) is true simply by plugging it
in. Setting n = 1 we have

? 1b1(ab)1 == a

ab = ab X

2. inductive step. We now must prove that P(k)⇒P(k + 1).
Put another way, we assume P(k) is true, and then use that
assumption to prove that P(k + 1) is also true.

Let’s be crystal clear where we’re going with this. Assuming
that P(k) is true means we can count on the fact that

kbk(ab)k = a .

What we need to do, then, is prove that P(k + 1) is true,
which amounts to proving that

(ab)k+1 k+1bk+1 = a .

Now we know by the very definition of exponents that:

(ab)k+1 = ab(ab)k .

Adding in our inductive hypothesis then lets us determine:

(ab)k+1 = ab(ab)k

kbk = ab · a

= a · a k · b · bk

k+1bk+1 = a X

Therefore, ∀n ≥ 1 P(n).

219 9.3. PROOF BY INDUCTION

Example 4

Let’s switch gears and talk about structures. Prove that the number
of leaves in a perfect binary tree is one more than the number of
internal nodes.

Solution: let P(n) be the proposition that a perfect binary tree of
height n has one more leaf than internal node. That is, if lk is
the number of leaves in a tree of height k, and ik is the number
of internal nodes in a tree of height k, let P(n) be the proposition
that ln = in + 1.

1. base case. We prove that P(0) is true simply by inspection.
If we have a tree of height 0, then it has only one node (the
root). This sole node is a leaf, and is not an internal node. So
this tree has 1 leaf, and 0 internal nodes, and so l0 = i0 + 1.
X

2. inductive step. We now must prove that P(k)⇒P(k + 1).
Put another way, we assume P(k) is true, and then use that
assumption to prove that P(k + 1) is also true.

Let’s be crystal clear where we’re going with this. Assuming
that P(k) is true means we can count on the fact that

lk = ik + 1.

What we need to do, then, is prove that P(k + 1) is true,
which amounts to proving that

lk+1 = ik+1 + 1.

We begin by noting that the number of nodes on level k of
a perfect binary tree is 2k . This is because the root is only
one node, it has two children (giving 2 nodes on level 1), both
those children have two children (giving 4 nodes on level 2),
all four of those children have two children (giving 8 nodes on

= 2k+1level 3), etc. Therefore, lk = 2
k , and lk+1 .

Further, we observe that ik+1 = ik + lk: this is just how trees
work. In words, suppose we have a perfect binary tree of

220 CHAPTER 9. PROOF

height k, and we add another level of nodes to it, making it a
perfect binary tree of height k + 1. Then all of the first tree’s
nodes (whether internal or leaves) become internal nodes of
bigger tree.

Combining these two facts, we have ik+1 = ik + 2
k . By the

inductive hypothesis, we assume that 2k = ik +1, and we now
must prove that 2k+1 = ik+1 + 1. Here goes:

nk+1 = nk + 2
k (property of trees)

nk+1 = 2
k − 1 + 2k (using inductive hypothesis)

nk+1 + 1 = 2
k + 2k

nk+1 + 1 = 2(2k)

nk+1 + 1 = 2
k+1 . X

Therefore, ∀n ≥ 0 P(n).

Proof by induction: strong form

Now sometimes we actually need to make a stronger assumption
than just “the single proposition P(k) is true” in order to prove that
P(k + 1) is true. In all the examples above, the k + 1 case flowed
directly from the k case, and only the k case. But sometimes, you
need to know that all the cases less than k + 1 are true in order to
prove the k + 1 case. In those situations, we use the strong form
of mathematical induction. It says:

1. If a predicate is true for a certain number,

2. and its being true for all numbers up to and including some
number would reliably mean that it’s also true for the next
number (i.e., one number greater),

3. then it’s true for all numbers.

It’s exactly the same as the weak form, except that the inductive
hypothesis is stronger. Instead of having to prove

9.3. PROOF BY INDUCTION 221

P(k)⇒P(k + 1),

we get to prove

(∀i ≤ k P(i))⇒P(k + 1).

At first glance that might not seem any easier. But if you look
carefully, you can see that we’ve added information to the left hand
side of the implication. No longer do we need to rely on the single
fact that P(5) is true in order to prove P(6). Now we get to take
advantage of the fact that P(1), P(2), P(3), P(4), and P(5) are all
known to be true when we try to prove P(6). And that can make
a world of difference.

Example 1

The Fundamental Theorem of Arithmetic says that every natural
number (greater than 2) is expressible as the product of one or more
primes. For instance, 6 can be written as “2 · 3”, where 2 and 3 are
primes. The number 7 is itself prime, and so can be written as “7.”
The number 9,180 can be written as “2 · 2 · 3 · 3 · 3 · 5 · 17,” all of
which are primes. How can we prove that this is always possible,
no matter what the number?

Let P(n) be the proposition that the number n can be expressed as
a product of prime numbers. Our proof goes like this:

1. base case. P(2) is true, since 2 can be written as “2,” and 2
is a prime number. (Note we didn’t use 0 or 1 as our base case
here, since actually neither of those numbers is expressible as
a product of primes. Fun fact.)

2. inductive step. We now must prove that (∀i ≤ k P(k))⇒P(k+
1). Put another way, we assume that P(i) is true for every
number up to k, and then use that assumption to prove that
P(k + 1) is true as well.

Regarding the number k + 1, there are two possibilities: ei-
ther it’s prime, or it’s not. If it is, then we’re done, because

222 CHAPTER 9. PROOF

it can obviously be written as just itself, which is the product
of one prime. (23 can be written as “23.”) But suppose it’s
not. Then, it can be broken down as the product of two num-
bers, each less than itself. (21 can be broken down as 7 · 3;
24 can be broken down as 6 · 4 or 12 · 2 or 8 · 3, take your
pick.) Now we know nothing special about those two num-
bers. . . except the fact that the inductive hypothesis tells us
that all numbers less than k + 1 are expressible as the prod-
uct of one or more primes! So these two numbers, whatever
they may be, are expressible as the product of primes, and
so when you multiply them together to get k + 1, you will
have a longer string of primes multiplied together. Therefore,
(∀i ≤ k P(k))⇒P(k + 1).

Therefore, by the strong form of mathematical induction, ∀n ≥ 2
P(n).

You can see why we needed the strong form here. If we wanted to
prove that 15 is expressible as the product of primes, knowing that
14 is expressible as the product of primes doesn’t do us a lick of
good. What we needed to know was that 5 and 3 were expressible
in that way. In general, the strong form of induction is useful
when you have to break something into smaller parts, but there’s
no guarantee that the parts will be “one less” than the original.
You only know that they’ll be smaller than the original. A similar
example follows.

Example 2

Earlier (p.111) we stated that every free tree has one less edge than
node. Prove it.

Let P(n) be the proposition that a free tree with n nodes has n − 1
edges.

1. base case. P(1) is true, since a free tree with 1 node is just
a single lonely node, and has no edges.

2. inductive step. We now must prove that (∀i ≤ k P(k))⇒P(k+
1). Put another way, we assume that all trees smaller than

223 9.3. PROOF BY INDUCTION

the one we’re looking at have one more node than edge, and
then use that assumption to prove that the tree we’re looking
at also has one more node than edge.

We proceed as follows. Take any free tree with k + 1 nodes.
Removing any edge gives you two free trees, each with k nodes
or less. (Why? Well, if you remove any edge from a free tree,
the nodes will no longer be connected, since a free tree is
“minimally connected” as it is. And we can’t break it into
more than two trees by removing a single edge, since the edge
connects exactly two nodes and each group of nodes on the
other side of the removed edge are still connected to each
other.)

Now the sum of the nodes in these two smaller trees is still
k + 1. (This is because we haven’t removed any nodes from
the original free tree — we’ve simply removed an edge.) If
we let k1 be the number of nodes in the first tree, and k2 the
number of nodes in the second, we have k1 + k2 = k + 1.

Okay, but how many edges does the first tree have? Answer:
k1 − 1. How do we know that? By the inductive hypothesis.
We’re assuming that any tree smaller than k + 1 nodes has
one less edge than node, and so we’re taking advantage of
that (legal) assumption here. Similarly, the second tree has
k2 − 1 edges.

The total number of edges in these two trees is thus k1 − 1 +
k2 − 1, or k1 + k2 − 2. Remember that k + 1 = k1 + k2 (no
nodes removed), and so this is a total of k + 1 − 2 = k − 1
edges.

Bingo. Removing one edge from our original tree of k + 1
nodes gave us a total of k − 1 edges. Therefore, that original
tree must have had k edges. We have now proven that a tree
of k + 1 nodes has k edges, assuming that all smaller trees
also have one less edge than node.

Therefore, by the strong form of mathematical induction, ∀n ≥ 1
P(n).

224 CHAPTER 9. PROOF

9.4 Final word

Finding proofs is an art. In some ways, it’s like programming: you
have a set of building blocks, each one defined very precisely, and
your goal is to figure out how to assemble those blocks into a struc-
ture that starts with only axioms and ends with your conclusion.
It takes skill, patience, practice, and sometimes a little bit of luck.

Many mathematicians spend years pursuing one doggedly difficult
proof, like Appel and Haken who finally cracked the infamous four-
color map problem in 1976, or Andrew Wiles who solved Fermat’s
Last Theorem in 1994. Some famous mathematical properties may
never have proofs, such as Christian Goldbach’s 1742 conjecture
that every even integer is the sum of two primes, or the most elusive
and important question in computing theory: does P=NP? (Put
very simply: does the class of problems where it’s easy to verify a
solution once you have it but crazy hard to find one actually have
an easy algorithm for finding them we just haven’t figured out yet?
Most computer scientists think “no,” but despite a mind-boggling
number of hours invested by the brightest minds in the world, no
one has ever been able to prove it one way or the other.)

Most practicing computer scientists spend time taking advantage of
the known results about mathematical objects and structures, and
rarely if ever have to construct a water-tight proof about them.
For the more theoretically-minded student, however, who enjoys
probing the basis behind the tools and speculating about additional
properties that might exist, devising proofs is an essential skill that
can also be very rewarding.

Index

n-choose-k notation, 148
n-to-the-k-falling operator, 144
a priori, 68
modus ponens, 185, 206
modus tollens, 206
quod erat demonstrandum (Q.E.D.),

206
reductio ad absurdum, 209

acyclic (graphs), 91
additivity property, 63
adjacent (vertices), 89
algorithm, 97, 126, 127, 130,

141, 142
Ali, Muhammad, 92
American Idol, 62, 68
ancestor (of a node), 115
and (logical operator), 18, 183,

186
antisymmetric (relation), 40,

43
Appel, Kenneth, 224
arrays, 13
artificial intelligence (AI), 181,

185, 205
associative, 20
asymmetric (relation), 41
ATM machines, 135

atomic (propositions), 182
Avengers, The, 73
AVL trees, 131
axioms, 206, 209

background knowledge, 68, 70
balancedness (of a tree), 130
base case (of a proof), 213,

220
bases (of number systems), 154,

157, 158
Bayes’ Theorem, 75
Bayes, Thomas, 67
Bayesian, 66
BFT (breadth-first traversal),

95, 97
Big-O notation, 126
bijective (function), 49
binary numbers, 25, 165, 166,

168, 170
binary search trees, 123, 124
binary trees, 116
binomial coefficients, 148
bit, 165
Black Swan, 73
Booth, John Wilkes, 86
BST property, 124, 129
byte, 168

225

226 INDEX

Cantor, Georg, 7, 12, 17
capacity (of a byte), 170
cardinality (of sets), 16, 25,

27, 66
Carroll, Lewis, 207
carry-in, 177
carry-out, 177
Cartesian product (of sets), 19,

35
chess, 114
child (of a node), 114
closed interval, 61
codomain (of a function), 45
collectively exhaustive, 26
combinations, 145
combinatorics, 25, 133
commutative, 18, 20, 71
compilers, 114
complement laws (of sets), 21
complement, partial (of sets),

18
complement, total (of sets), 18,

65, 138
complete binary tree, 121
conclusion (of implication), 184
conditional probability, 68, 72,

74, 78
congruent, 161
conjunction, 183, 192
connected (vertices/graphs), 89,

95
coordinates, 15
curly brace notation, 11
current node, 103
cycles, 90

DAGs (directed acyclic graphs),
90

data structures, 85
Davies family, 8, 19, 26, 139,

146
De Morgan’s laws, 21, 22, 191,

192
decimal numbers, 153, 157, 161,

166
degree (of a vertex), 90
depth (of a node), 115
dequeueing, 96
descendant (of a node), 115
DFT (depth-first traversal), 99,

100
Dijkstra’s algorithm, 101, 103
Dijkstra, Edsger, 101
direct proof, 207
directed graphs, 88, 91
disjunction, 183, 192, 206
disjunctive syllogism, 206
disk sectors, 148
distributive, 20, 192, 207
domain (of a function), 45
domain of discourse (Ω), 9, 19,

21, 24, 27, 60, 194
domination laws (of sets), 21
dominos, 214
Dr. Seuss, 73
drinking age, 212, 214
duplicates (in sets), 13

edges, 86, 87, 222
elements (of sets), 8, 15, 23
ellipsis, 12
empty graph, 87
empty set, 9, 16, 21, 24, 25,

36, 114
endorelations, 38, 93
enqueueing, 96

INDEX 227

enumerating, 133, 141
equality (for sets), 11
equiv (logical operator), 185,

187
Euclid, 209
events, 60, 61
exclusive or, 63, 183
existential quantifier (∃), 198
exponential growth, 123, 137
exponential notation, 157
extensional, 10, 11, 37, 48, 92,

186

Facebook, 87, 98
factorial, 139, 144
Federalist Papers, 77
FIFO, 96
filesystems, 113
Fisher, Ronald, 67
floor operator (b c), 162
Foreman, George, 92
France, 101
Frazier, Joe, 92
free trees, 111, 222
frequentist, 66
full binary tree, 121
function calls, 46
functions, 45, 61, 194
Fundamental Theorem of Count-

ing, 134, 139

Gauss, Carl Friedrich, 216
Goldbach, Christian, 224
golf, 143, 146
graphs, 85, 86
greedy algorithm, 107

Haken, Wolfgang, 224
Hamilton, Alexander, 77

handedness, 79
Harry Potter, 35, 93
heap, 123
height (of a tree), 115
heterogeneous, 13, 15
hexadecimal numbers, 159, 161,

164, 168
homogeneous, 14
HTML, 114
human body, 113

identity laws (of sets), 21
image (of a function), 48
imaginary numbers, 17
implies (logical operator), 184,

187, 190, 197
in-order traversal, 119, 129
inclusive or, 63, 183
independence (of events), 78
indirect proof, 209
inductive hypothesis, 214, 220
inductive step, 213, 214, 220
infinite, countably, 17
infinite, uncountably, 17
infinity, 12, 16, 17
injective (function), 48
integers (Z), 17, 24
intensional, 10, 11, 37, 48, 186
internal nodes, 115, 219
Internet, 87
intersection (of sets), 18, 183,

192, 207
interval, 61

Jarnik, Vojtech, 107
Jay, John, 77
Jumble R , 140

Kentucky Derby, 79

228 INDEX

Knuth, Donald, 144

Laplace, Pierre-Simon, 67
Law of the Excluded Middle,

191
law of the excluded middle, 21
Law of Total Probability, 71,

76
least significant bit (LSB), 166
least significant digit, 157
leaves, 115, 128, 219
left child, 116
level (in a tree), 115
lg (logarithm base 2), 123
license plates, 136
LIFO, 100
Lincoln, Abraham, 86
linked lists, 13
links (in a graph), 87
Liston, Sonny, 92
locker combinations, 135
logarithm, 123
logical operators, 182, 183
loops (in a graph), 87, 94
loosely-typed languages, 14

Madison, James, 77
MapQuest, 87, 92
marking (a node), 97, 103
mathematical induction, 211
medical test, 75
member (of set), 9
middle school, 145
minimal spanning tree, 112
modulo operator (mod), 161,

162
most significant bit (MSB), 166
most significant digit, 157

movie channel, 145, 148
movie theatre, 73
mutually exclusive, 26, 76, 80,

136

n-tuples, 15
NASCAR, 145
natural numbers (N), 17, 24,

212
negation, 184, 192, 198
negative numbers (in binary),

171
New York City, 126
Newton, Isaac, 67
nibble, 169
nodes (of a graph), 87, 222
not (logical operator), 184, 187

O(lg n) algorithm, 127
O(n) algorithm, 126, 130
object-oriented design, 114
octal numbers, 159
odometer rollovers, 156
one-to-one (function), 49
onto (function), 49
or (logical operator), 18, 183,

187
order (in sets), 13
ordered pairs, 14, 19, 35, 45,

196
ordered triples, 15
org charts, 113
outcomes, 60, 62
overflow, 176

P=NP?, 224
parent (of a node), 114
partial orders, 43
partial permutations, 143, 146

INDEX 229

partitions, 26, 71, 94
Pascal’s triangle, 149
passwords, 138
paths (in a graph), 87, 113
perfect binary tree, 122, 219
permutations, 139
PINs, 135
poker, 148
pop (off a stack), 99
posets, 43
post-order traversal, 118
postulates, 206
power sets, 24, 36
pre-order traversal, 116
predicate logic, 194
predicates, 194, 195, 212
premise (of implication), 184
Prim’s algorithm, 107, 112
Prim, Robert, 107
prior probability, 68
probability measures, 61, 63,

65
product operator (Π), 134, 144
proof, 203
proof by contradiction, 209
propositional logic, 181, 205
propositions, 181, 194
psychology, 70, 86
push (on a stack), 99

quantifiers, 196, 199
queue, 96, 98
quotient, 161, 162

range (of a function), 48
rational numbers (Q), 17, 24
reachable, 89
real numbers (R), 17, 24

rebalancing (a tree), 131
recursion, 116, 120, 141, 211
red-black trees, 131
reflexive (relation), 40, 43
relations, 35, 196
relations, finite, 39
relations, infinite, 39
remainder, 161, 162
right child, 116
root (of a tree), 112, 114
rooted trees, 112, 114, 211
Russell’s paradox, 15

sample space (Ω), 60
semantic network, 86
set operators, 18
set-builder notation, 11
sets, 8, 93
sets of sets, 15
sets, finite, 12
sets, fuzzy, 10
sets, infinite, 12, 13
sibling (of a node), 114
sign-magnitude binary numbers,

171, 177
southern states, 72
spatial positioning, 92, 112
stack, 99, 101
strong form of induction, 220
subsets, 23, 35
subsets, proper, 23
subtree (of a node), 116
summation operator (Σ), 73,

135
surjective (function), 49
symmetric (relation), 40, 93

tautologies, 191

230 INDEX

tentative best distance, 103
text mining, 77
theorems, 207
top (of a stack), 99
total orders, 44
transitive (relation), 42, 43
traversal, 95, 116
trees, 85, 111, 112
truth tables, 186, 190, 193
truth value (of a proposition),

181
tuples, 15, 196
two’s-complement binary num-

bers, 173, 177
typed, 13

unary operator, 184, 187
undirected graphs, 88, 93
union (of sets), 18, 183, 192,

207
universal quantifier (∀), 196,

198
universal set, 9
unsigned binary numbers, 171,

177
untyped, 13

Venn diagrams, 63, 207
Venn, John, 67
vertex/vertices, 86, 87
visiting (a node), 97, 103
voting age, 212, 214

weak form of induction, 213
weight (of an edge), 88
weighted graphs, 88, 101
weightlifting, 151
Wiles, Andrew, 224
word ladders, 207

World War II, 101
World Wide Web, 87
WWE wrestling, 72

xor (logical operator), 183, 187

	Contents at a glance
	Preface
	Meetup at the trailhead
	Sets
	Relations
	Probability
	Structures
	Counting
	Numbers
	Logic
	Proof

