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ABSTRACT 

Mate guarding, when two males compete for one female, is a reproductive strategy seen 

across a variety of vertebrate species. This often leads to hierarchical relationships, in which one 

male exerts dominance over other, subordinate males. However, the physiological mechanisms 

that promote dominance or subordinance in males remain largely unexplored. This study 

investigates the reproductive success and endocrine signals of these reproductive strategies in 

Japanese medaka (Oryzias latipes). To identify dominant and subordinate males, triads 

consisting of two males of different genotypes and one female were observed repeatedly for 5 

days. Male reproductive success was determined by genotyping embryos from each female. We 

found that the number of eggs fertilized by dominants and subordinates did not differ (p=0.29), 

indicating that dominant behavior does not guarantee reproductive success and that subordinate 

males may successfully fertilize eggs using sneaker male tactics. We hypothesized that these 

behaviors are linked to activity in the reproductive endocrine axis. To test this hypothesis, we 

quantified pituitary luteinizing hormone (LH) and follicle stimulating hormone (FSH) in 

dominant and subordinate males using ELISAs. While FSH did not differ between the groups, 

LH was unexpectedly higher in subordinate males (p=0.047). This indicates that either LH 

production is stimulated, or its pituitary release is inhibited in subordinates. To investigate these 

opposing explanations, we measured mRNA levels of LH, FSH, and GnRH receptors in the 

pituitary, and GnRH and AVT in the brain of dominant and subordinate males using qPCR. 

Mean differences between dominants and subordinates were not significant for any gene. 

Dominant fish expressed higher lhb in 8/12 tanks, indicating that LH production is not stimulated 

in subordinates, but as the transcripts for GnRH and its receptors also did not differ, further 

studies are needed to determine the mechanism by which LH release may be inhibited. 
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INTRODUCTION 

Mate guarding behavior 

 Mate guarding is a male reproductive strategy that increases individual male fitness by 

reducing rival males’ access to potential mating partners. This behavior is driven both by 

attraction to the female and competition among males (Yokoi et al 2015). Although mate 

guarding occurs across a variety of species from house sparrows to squirrels to humans, it has 

rarely been studied in a lab or in genetic model organisms (Hoi et al 2011, Sherman 1989, Yokoi 

et al 2015). In 2015, Yokoi et al established that male Japanese medaka, a teleost fish, 

prominently exhibit mate-guarding behavior in a triadic relationship (Yokoi et al 2015). When 

two males are housed together with one female, one of the males occupies a dominant position 

near the female and interferes with the subordinate male’s access to the female. This distinct 

behavior appears to be a combination of courtship display directed toward the female and 

aggression toward the other male. As medaka reproduce every morning, mate guarding can be 

seen daily. Yokoi et al (2015) also found that dominant males had a significantly higher mating 

success rate, fertilizing over 93% of the eggs. Having established observable mate guarding 

behavior in a genetic model, Yokoi et al (2015) were also the first to investigate an underlying 

physiological mechanism for it. Using knockout mutants of arginine-vasotocin (avt), a homolog 

to mammalian arginine-vasopressin (AVP), or its receptors (v1a1 and v1a2), they found that avt 

and v1a2 are required for normal mate-guarding behavior. Furthermore, the impaired behavior in 

knockouts is due to loss of sexual motivation, not competitive motivation, as avt mutants 

exhibited fewer courtship displays but normal aggression in a non-mate guarding situation 

(Yokoi et al 2015). No other study has yet corroborated these results or attempted to identify 

additional physiological motivators of mate guarding behavior. 
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Medaka 

 Medaka are a teleost fish native to the rice paddies of Japan, Korea, and eastern China. 

Already a popular model organism in Asia, they are becoming more commonly used in Europe 

and North America as molecular techniques and genetic tools continue to be developed 

(Wittbrodt 2002).  

Medaka are used as a model for both fishes and vertebrates in general. Their small size 

(3-4 cm), resistance to common fish diseases, and short generation time of 2-3 months makes 

them an ideal lab animal. They tolerate a wide range of salinities and temperatures (4-40 °C) and 

can reproduce every day, year-round in a lab. They are oviparous, producing transparent eggs 

that are fertilized externally, which is beneficial for studying development and reproduction. The 

sequencing of their genome, development of transgenic lines, and characterization of mutant 

phenotypes have made medaka valuable for genetics research (Wittbrodt et al 2002, Kirchmaier 

et al 2015). 

 Medaka have many genetic and morphological similarities to another model fish species, 

the zebrafish, which are separated from their last common ancestor by 110 million years, making 

them ideal for comparative studies. Some differences between them include slower development, 

and unlike zebrafish, which do not have sex-linked genes, medaka have the same XX, XY sex 

determination system as mammals. These characteristics have also made medaka a popular 

model for sex determination and sexual dimorphism (Wittbrodt et al 2002). 

HPG axis 

 The reproductive endocrine axis, also called the hypothalamus-pituitary-gonadal (HPG) 

axis, controls reproduction in vertebrates. In this system, the hypothalamus regulates the 

production and release of the gonadotrophins LH and FSH from the anterior pituitary gland into 
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the bloodstream. LH and FSH stimulate sex steroid production by the gonads by binding to their 

specific receptors, luteinizing hormone receptor (LHr) and follicle stimulating hormone receptor 

(FSHr) (Levavi-Sivan et al 2010).  

 LH and FSH are of central importance in the axis as they communicate between the brain 

and the rest of the body. Fish lack a hypothalamic-pituitary portal system. Instead, the pituitary is 

directly innervated by the hypothalamus. Gonadotrophin releasing hormone (GnRH) is the 

primary regulator of gonadotrophin release from the pituitary, but other factors also can play a 

role such as GABA, dopamine, and neuropeptide Y (Zohar et al 2010). Unlike in mammals, FSH 

and LH in teleost species are produced and released from separate pituitary cells. Therefore, in 

medaka, the production of these hormones can be studied in isolation. While the exact function 

of each hormone has not been clearly defined, research indicates that FSH is more important in 

gametogenesis and vitellogenesis, while LH is important in ovulation and spermiation (Levavi-

Sivan et al 2010, Murozumi et al 2014, Takahashi et al 2016).  

 As the primary regulator of FSH and LH, studying GnRH communication with the 

pituitary provides insight into hypothalamic control of the HPG axis. In some species, larger 

GnRH cells have been associated with male alternative reproductive tactics. There are multiple 

GnRH isoforms that exert different functions via several classes of receptors. In cichlid fish, the 

presence of other males and the opportunity to increase social status caused an increase in one of 

three forms of GnRH (Knapp 2003). Medaka have three paralogous GnRH genes—gnrh-1, gnrh-

2, and gnrh-3, although only gnrh-1 and gnrh-3 are expressed in the forebrain (Okubo et al 2000) 

and therefore more likely to play a role in gonadotropin regulation. GnRH neurons in the 

preoptic area express gnrh-1, while neurons in the terminal nerve express gnrh-3 (Okubo et al 

2002).  
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Arginine-Vasotocin 

 Arginine-vasotocin (AVT) is a nonapeptide produced by neurons in the ventral 

hypothalamus and preoptic area (POA) in fish (Iwasaki et al. 2013). In medaka, AVT neurons 

originate in the ventral hypothalamus and the gigantocellular, magnocellular, and parvocellular 

POA and primarily project to the posterior pituitary. However, the AVT neurons in the three 

POA cell populations also send fibers into many other regions of the brain such as the 

telencephalon, mesencephalon and diencephalon (Kagawa et al 2016). Two AVT receptors 

(V1a1 and V1a2) are expressed in the brain, while a third (V2) is localized in the gills, heart, and 

kidney (Lema 2010). In addition to inducing antidiuretic effects in the kidney and regulating 

osmotic balance in teleosts, AVT mediates aggression and sociosexual behaviors in a variety of 

species (Knapp 2003, Lema 2010). It has also been linked to territorial behavior in a tropical 

damselfish and pair bonding in cichlid fish (Yokoi et al 2015). In some species, correlations 

between alternative male reproductive tactics and the size of AVT neurons in the preoptic area 

have been found, although the direction of relationship is species dependent (Knapp 2003). 

Yokoi et al (2015) found that avt and its receptor v1a2 are required for mate guarding behavior 

in male medaka using knockout fish, while v1a1 is not. Expression of the AVT system in wild-

type dominant and subordinate males has not yet been investigated. 

Transgenic Lines 

 Transgenesis in medaka is achieved by injecting DNA into the cytoplasm of the 1-2 cell 

stage embryo. The embryos that stably integrate the DNA become transgenic founders 

(Wittbrodt et al 2002). At the Weltzien lab at the Norwegian University of Life Sciences 

(NMBU), several stable transgenic medaka lines have been developed. Two of these lines couple 

the expression of green florescent protein (gfp) to the lhβ promotor and red florescent protein 
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(rfp) to the fshβ promotor. So, LH-producing cells will also produce GFP, and FSH-producing 

cells will also produce RFP (Fontaine et al 2019). While transgenic lines can be useful for cell 

counting and visualizing locations of cells, in this study, they are used only as a marker for 

paternity testing. 

Objectives 

Although medaka have been established as an exciting new model for studying mate 

guarding behavior, the physiological mechanisms that promote dominance or subordinance in 

males remain largely unexplored. As a model for fishes and vertebrates in general, this research 

is useful for understanding mate guarding, a behavior widely seen across the animal kingdom. It 

also has practical applications in fish, providing information about important behavior and 

endocrine factors to improve reproduction in captivity, an action that would progress both 

aquaculture and restoration efforts. This project investigates the success of the two reproductive 

strategies in male medaka. We hypothesize that these behaviors are linked to activity in the HPG 

axis and will therefore examine the relationship between reproductive strategy and reproductive 

endocrine factors. 

The first specific objective was to identify dominant and subordinate fish using a 

behavioral assay, and then genotype embryos to determine paternity, and therefore male 

reproductive success. The second objective was to identify underlying mechanisms that drive the 

different mating behaviors. As central elements of the reproductive axis, LH and FSH are likely 

candidates for involvement in reproductive strategy determination. To determine their 

involvement, we compared LH and FSH gene expression and protein levels in the pituitaries of 

dominant and subordinate males using qPCR and ELISAs. Based on the known function of LH 

and FSH, we predicted that gonadotropin levels and transcription would be higher in the 
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dominant fish. We also used qPCR to analyze pituitary expression of three gonadotrophin 

releasing hormone receptors (gnrhr1b, gnrhr2a, gnrhr2b) and brain expression of gnrh-1 and 

gnrh-3 which stimulate the release of LH and FSH. After considering the pituitary gonadotropin 

level results, we predicted that gene expression of GnRH or its receptors would be 

downregulated in subordinate fish, preventing the release of LH from the pituitary. AVT and its 

receptors play a role in aggression and territorial behavior in some teleost species. To verify the 

results of a previous knockout study which suggests their involvement in medaka mate guarding 

behavior (Yokoi et al 2015), I analyzed expression of avt, vlal, and vla2 in the brain of dominant 

and subordinate males using qPCR. We predicted that expression of avt and v1a2 would be 

higher in dominant males. 
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MATERIALS AND METHODS 

Animals 

Medaka were kept at the Weltzien lab at NMBU in Oslo, Norway. Adult fish were maintained in 

a recirculating system at 28°C on a 14-h light, 10-h dark cycle. They were fed three times daily 

with a combination of dry feed and live Artemia salina. 

Behavior Assay 

 The behavior assay was completed at the Weltzien lab to determine dominant and 

subordinate males. Triads were formed with two male medaka and one female medaka co-

housed in a 3-L tank. The males were distinguished by clipping the top or bottom corner of the 

tail fin of lightly anesthetized fish. We observed triads for 1-3 minutes each at three time points 

between 9 am and 12 pm for at least 5 days. The male exhibiting the dominant behavior, 

characterized as guarding the female and aggression toward the other male, was recorded. All 

observations were blind, without knowledge of the records from the previous time points. Males 

that exhibited dominant behavior at ≥80% of the last 10 time points were considered dominant, 

while males that exhibited dominant behavior ≤20% of the 10 time points were labeled 

subordinate.  

Measuring Reproductive Success 

 Reproductive success of dominant and subordinate males was measured using one male 

from each transgenic line (lhβ:gfp and fshβ:rfp) paired with wild type females to form triads 

(n=10). Only fertile males homozygous for the respective transgene were used. Following the 

behavior assay and determination of dominance and subordinance, we collected 20-21 embryos 

from 2-4 clutches and incubated them 1-5 days in petri dishes at 26°C. Embryo DNA was 
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amplified directly from the tissue using the Thermo Scientific Phire Animal Tissue Direct PCR 

kit. The embryos were genotyped individually for the transgenes using gel electrophoresis with 

2% agarose gel to determine paternity. Sequences for the primers used in PCR are displayed in 

Table 1. Reproductive success was determined by comparing the percentage of eggs fertilized by 

dominant males verses subordinate males, and difference in fertilization rate was assessed using 

a two-sample t-test. 

 

Table 1. Primer sequences for PCR genotyping. 

Target 

Gene 

Forward Sequence 

(5’- 3’) 

Reverse Sequence 

(5’- 3’) 

rfp GTGTAGTCCTCGTTGTGGGA AGTTCATGCGCTTCAAGGTG 

gfp TGGTGGAGATCCGCAGCGACAT ATGGCGGTCTCGTGCTGCTCTA 

 

ELISAs 

 Enzyme-linked immunosorbent assays (ELISAs) were used to quantify FSH and LH 

protein levels in the pituitaries of dominant and subordinate fish instead of plasma levels, as the 

size of the fish prevents adequate blood collection. Following the behavior assay using wild-type 

males, we collected the brains and pituitaries as a unit from the dominants and subordinates 

(n=34). Tissue samples were homogenized in PBST with 0.1% BSA. We performed competitive 

ELISAs developed and validated by Burow et al. for LH and FSH in medaka according to the 

protocol described by the developer to calculate the amount of hormone in ng/pituitary (Burow et 

al. 2019). The results were analyzed using a two-way ANOVA where reproductive strategy is 

one factor and the separate ELISA plates are another factor. 
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RNA extraction and cDNA synthesis 

 Wild-type dominant and subordinate males (n=20) were dissected and brains and 

pituitaries were collected separately and stored in Trizol. Tissue was homogenized with lysing 

beads three times for 20 seconds at 4.0 m/s in an MP Biomedicals FastPrep-24 Instrument, and 

frozen at -80 °C. The samples were then shipped on dry ice from NMBU to the University of 

Mary Washington. We extracted RNA from the samples using the Zymo Research Direct-zol 

RNA Microprep kit for the pituitaries and the Direct-zol RNA Miniprep kit (Zymo Research, 

Irvine, CA) for the brains according to the manufacturer protocol. The RNA concentration was 

calculated from OD260 and purity was assessed by 260/280 and 260/ 230 ratios, measured using a 

Thermo Scientific Nanodrop 2000 spectrophotometer. We used a Thermo Scientific Maxima H 

Minus First Strand cDNA synthesis kit (Thermo Fisher, Waltham, MA) to reverse transcribe 60 

ng of RNA per sample into cDNA according to the manufacturer protocol. 

qPCR 

 We performed qPCR using 1× Thermo Fisher SYBR Select Master Mix. Each cDNA 

sample was measured in triplicate with 1 μL of cDNA per 10 μL reaction in a Thermo Fisher 

Quantstudio 3 real-time PCR system. Standard curves made with pooled cDNA were included on 

each plate to determine efficiency. Efficiencies above 85 percent were accepted. The following 

genes were measured in the brain: gnrh-1, gnrh-3, avt, v1a1, v1a2. These genes were measured 

in the pituitary: lhb, fshb, gnrhr1b, gnrhr2a, gnrhr2b. The housekeeping genes rpl7, 18s, and 

gapdh were measured and assessed for stability in each tissue using RefFinder (Burow et al 

2019). Primer sequences for each gene used are displayed in Table 2. Data was normalized to 

rpl7 in the pituitary and gapdh in the brain by subtracting the CT value for the housekeeping 

gene from the CT value for the target gene for each sample. Differences in gene expression were 
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calculated as normalized subordinate CT values minus normalized dominant CT values for each 

pair. Mean differences were evaluated using t-tests. 

 

Table 2. Primer sequences for qPCR analysis. 

Target 

Gene 

Forward Sequence 

(5’- 3’) 

Reverse Sequence 

(5’- 3’) 

lhb CCACTGCCTTACCAAGGACC AGGAAGCTCAAATGTCTTGTAG 

fshb GACGGTGCTACCATGAGGAT TCCCCACTGCAGATCTTTTC 

gnrh-1 GTGTCGCAGCTCTGTGTTC AGTATTTCAGTTCTCGCTTCCC 

gnrh-3 GATGATGGGCACAGGAAGAGTG GGGCACTTGCATCTTCAGGA 

gnrhr1b TCCTGCTACACATCCACCAG GCCTTTGGGATGATGTCTGT 

gnrhr2a GGGCGATGAGTGTGATCCTC CCCGAGTGGCACATTGAGT 

gnrhr2b TTGAGATATCAAGCCGCATC GAGTCCTCATCCGAGCTTTG 

avt CCGCCTGTTACATCCAGAACT GGGCCACAAGACATGCACT 

v1a1 GTGGGACCAGACCTTCTCC TGTAGATCCAGGGGTTGCAG 

v1a2 TGTGGTCTGTGTGGGATGAA TGTAAATCCACGGGTTGCAG 

rpl7 TGCTTTGGTGGAGAAAGCTC TGGCAGGCTTGAAGTTCTTT 

18s CCTGCGGCTTAATTTGACTC AACTAAGAACGGCCATGCAC 

gapdh GCAAAGTCATCCCTGCTCTC CCACAGACACATCAGCCACT 

 

Data analysis 

  Fertilization rates, body masses, and lengths of dominant and subordinate males were 

compared using two sample t-tests. Effects of transgenic line and position of fin clip on 

fertilization rate were also tested by t-tests. Pituitary FSH and LH levels were compared using a 

two-way ANOVA with behavior and ELISA plate as factors. Difference in gene expression 

within each pair was calculated as normalized subordinate CT value minus normalized dominant 
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CT value. T-tests were used to assess mean differences. The differences were considered 

significant if p ≤ 0.05. 
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RESULTS 

Reproductive success 

Eggs from 10 triads composed of a wild-type female and males from different transgenic 

lines (lhβ:gfp and fshβ:rfp) were genotyped for the transgenes to determine paternity. The 

percentage of eggs fertilized by the subordinate and dominant fish was calculated as a measure 

of reproductive success (Figure 1). The subordinate fish fertilized on average 59% ± 11.7 (mean 

±SEM) of eggs while dominants fertilized 41% ± 11.7. The percentage of eggs fertilized by 

dominant and subordinate males did not significantly differ (t(18) =2.1, p =0.29). 

 

 

Figure 1. Effect of strategy on reproductive success. Fertilization rates of dominant and 

subordinate males (n =10) did not differ (p =0.29). The results are indicated as mean ± SEM. 
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Fertilization rate did not differ according to transgenic line (t(18) =2.1, p=0.56) or 

position of fin clip (t(18) =2.1, p=0.64), as determined by t-tests. Dominant and subordinate 

males also did not differ in mean body mass (t(57) =2.0, p =0.09) or length (t(57) =2.0, p =0.58). 

Pituitary gonadotropin levels 

Wild-type males from 34 triads were used for measurement of FSH (n=15) and LH 

(n=19) by ELISA (Figure 2). Mean LH levels were significantly higher in subordinate males 

(17.4 ±2.55 ng/pituitary; mean ± SEM) than in dominants (12.4 ±2.04 ng/pituitary).  Mean FSH 

levels did not differ between dominant males (150 ±31.2 ng/pituitary) and subordinates (201 

±61.4 ng/pituitary). Comparison of gonadotropin levels within pairs shows that LH levels were 

higher in the subordinate in 14/19 triads, whereas FSH levels were higher in the subordinate in 

9/15 triads and the males in two triads had equivalent FSH levels.  

 

 

Figure 2. Pituitary gonadotropin levels (mean ± SEM) measured by ELISA. FSH levels (n=15) 

did not differ, but LH (n=19) was significantly higher in subordinate males (ANOVA, p=0.047). 
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Gene expression 

 Males from 12 triads were used for qPCR analysis in the brain and pituitary, although one 

pair was excluded for the genes encoding pituitary receptors due to undetermined values that did 

not cross the CT threshold. Differences in gene expression between dominants and subordinates 

are expressed according to dominant/subordinate pair in Figure 3 and Figure 4. Mean differences 

between dominants and subordinates were not significant for any gene (p>0.05). However, 

dominant fish had higher lhb expression in 8/12 triads, v1a1 expression in 7/12 triads, and v1a2 

expression in 8/12 triads. Subordinate fish had higher fshb expression in 9/12 triads and avt 

expression in 8/12 triads. They also had higher gnrh-1 and gnrh-3 expression in 6/12 triads, 

higher gnrhr1b expression in 5/11 triads, and gnrhr2a and gnrhr2b expression in 6/11 triads. 

  



15 
 

 

Figure 3. Differences in normalized CT values between dominants and subordinates. Positive 

values represent higher transcript levels in the dominant male. Negative values represent higher 

transcript levels in the subordinate male. Dominant fish had higher lhb expression in 8/12 triads 

while subordinate fish had higher fshb expression in 9/12 triads. Gnrh-1 and gnrh-3 were higher 

in dominant and subordinate fish each in 6/12 triads. 
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Figure 4. Differences in normalized CT values between dominants and subordinates. Positive 

values represent higher transcript levels in the dominant male. Negative values represent higher 

transcript levels in the subordinate male. Dominant fish had greater gnrhr1b expression in 6/11 

triads and greater gnrhr2a and gnrhr2b expression in 5/11 triads. Subordinate fish had greater 

avt expression in 8/12 triads. Dominants has greater v1a1 expression in 7/12 triads and greater 

v1a2 expression in 8/12 triads. 
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DISCUSSION 

The similar fertilization rate between dominant and subordinate males (Figure 1) 

indicates that subordinate fish are finding a way to fertilize eggs, not with only moderate success, 

but with equal success as the dominant fish. This is surprising, given that dominant fish appear to 

use more energy to chase the female and fight off the opposing male. These results also 

contradict prior findings by Yokoi et al (2015) who reported that dominant males fertilize over 

93% of eggs. Our results also imply that subordinate fish may be using sneaker tactics to bypass 

dominant males. Sneaker males in other species are often smaller and may be perceived as less 

of a threat or facilitate escape from the dominant male’s notice (Aubin-Horth and Dodson 2007). 

However, any sneaker male strategy potentially used by these subordinate fish does not appear to 

involve size since neither mean body mass nor length significantly differed between the 

dominant and subordinate fish. 

 To investigate how these behaviors are linked to activity in the reproductive endocrine 

axis, we quantified pituitary levels of LH and FSH in dominant and subordinate males. These 

gonadotropins are central to the HPG axis function, acting as the signal between the brain and 

the gonads. Since medaka do not have enough blood to accurately measure circulating levels, we 

measured levels in the pituitary, where LH and FSH are synthesized, as an indicator of 

gonadotropins in the system. While FSH did not differ between the groups, LH was 

unexpectedly higher in subordinate males. It makes sense that LH would vary in these adult 

males since FSH is thought to be more important for earlier processes like gametogenesis, while 

LH is more important in spermiation (Levavi-Sivan et al 2010, Murozumi et al 2014, Takahashi 

et al 2016). However, we did not expect the subordinate males to have higher LH. This indicates 

that either LH production was stimulated in subordinate fish, or alternatively that its pituitary 
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release was inhibited, in which case measuring pituitary levels is not a good indicator of 

circulating levels. 

To investigate these opposing explanations, we measured expression of genes encoding 

LH and FSH in the pituitary to determine whether increased pituitary LH could be attributed to 

increased transcription. We also measured transcription of the genes encoding GnRH and its 

receptors, as it is the primary player controlling gonadotropin release, and AVT and its receptors, 

since avt and v1a2 were previously found to be essential for mate guarding behavior in knockout 

fish (Yokoi et al 2015). Mean differences between dominant and subordinate males were not 

significant for any gene, so we examined pairs for emerging trends. Dominant fish expressed 

higher lhb in 8/12 tanks (Figure 3), indicating that LH production is not stimulated in 

subordinates, and instead, the higher pituitary LH seen in subordinate males may be due to an 

inhibition of its release from the pituitary.  

Dominant fish had lower avt expression than subordinates in 8/12 tanks, but higher v1a1 

expression in 7/12 tanks and v1a2 expression in 8/12 tanks (Figure 4). While these results are not 

consistent with the findings of Yokoi et al (2015), it is still possible that AVT in a specific area 

of the brain is important for mate guarding behavior. We measured expression of the whole brain 

and as AVT neurons are located in both the ventral hypothalamus and preoptic area and project 

to receptors throughout the brain (Kagawa et al 2016), differences in expression in one essential 

area may not be evident when measuring expression in the brain as a whole.  

In addition to nonsignificant mean differences, relative gnrh-1 and gnrh-3 expression was 

also evenly split according to pairs, both with higher expression in the dominant fish in 6/12 

tanks (Figure 3). Expression of the three GnRH receptors was nearly as evenly split (Figure 4), 

indicating that the possible inhibition of LH release is not due to a downregulation of expression 
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of GnRH or its receptors in the pituitary. Further studies are needed to determine the mechanism 

by which LH release may be inhibited. Although GnRH expression was also measured using 

whole brains, this has not changed our interpretation since gnrh-1 is only expressed in the 

preoptic area, gnrh-3 is only expressed in the terminal nerve (Okubo et al 2002), and the GnRH 

receptors were measured only in the pituitary. 

 Another player in the HPG axis that could explain the inhibition of LH is sex steroids. 

While in mammals, sex steroids generally exert negative feedback on both the pituitary and the 

hypothalamus (Sheckter 1989, Michopoulos et al 2009), in fish, their effect varies according to 

species. Estrogens have negative effects on the pituitary and hypothalamus in goldfish, as 

treatment with anti-estrogens increased serum gonadotropin levels (Billard and Peter 1977). 

Testosterone treatment had a positive effect on the HPG axis in rainbow trout, increasing 

pituitary and plasma gonadotropin levels. This effect was augmented when combined with a 

GnRH analogue (Crim and Evans 1983). Estradiol (E2) treatment has both positive and negative 

effects in female tilapia depending on the dose. Low doses of E2 increased FSH release and 

transcription of the genes encoding GnRH receptors. High doses of E2 decreased transcription of 

gonadotropin genes as well as gonadotropin release (Levavi-Sivan 2006).  In medaka, estradiol 

and testosterone treatment increase the number of LH and FSH cells in males. Treatment with 

the non-aromatizable 11-ketotestosterone did not have this effect, suggesting that testosterone is 

aromatizatized into estradiol to promote proliferation of both gonadotrope cell types in male 

medaka (Fontaine et al 2020). The direct feedback effect of sex steroids on LH and FSH levels as 

well as any effect via GnRH and gonadotrope cell proliferation remains to be investigated in 

medaka.  
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 The similar fertilization rate of dominant and subordinate males is most important finding 

of this research, as it indicates that subordinance is a viable reproductive strategy. Future studies 

should investigate potential sneaker tactics and the role of female choice to determine how 

subordinate males fertilize eggs with equal success as the dominant males. Subordinates having 

higher pituitary LH levels is also an important finding. Future studies should measure the sex 

steroids in dominant and subordinate males to determine what role they may play in mate 

guarding behavior, as well as in feedback on the pituitary. 
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