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Abstract

The high representation of wooden houses in Norwegian cities
combined with periods of dry and cold climate during the winter time
often results in a high risk of severe fires. This makes it important for
public authorities and fire departments to have an accurate estimate of
the current fire risk in order to take proper precautions. We report on the
implementation of a predictive mathematical model based on first order
principles which exploits cloud-provided measurements from weather
stations and weather forecasts from the Norwegian Meteorological
Institute to predict the current and future fire risk at a given geographical
location. We have experimentally validated the model during the winter
2018-2019 at selected geographical locations, and by considering weather
data from the time of several historical fires. Our results show that our
cloud and web-based implementation is both time and storage efficient,
and capable of being able to accurately predict the fire risk measured
in terms of the estimated time to flashover. The paper demonstrates
that our methodology in the near future may become a valuable risk
predicting tool for Norwegian fire brigades.

1 Introduction
The large amount of forest in Norway has provided the foundation for a very long
tradition of constructing houses using wood as the main material. These houses can
be extremely susceptible to fire under weather conditions that typically occur during
the winter time when there are long periods of dry and cold weather. When the air
gets colder and drier, the water concentration in the wood decreases [17], meaning
there is a high probability of the wood to catch fire. As identified by Log [12],
it is the period during December - January when the weather is usually cold that
have the highest frequency of fires in Norway. The very severe fire in Lærdalsøyri
January 18-19 2014, resulting in the loss of more buildings in a single conflagration
since 1923, may serve as an example [5, 11].
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The long-term aim of the work presented in this paper is to address the research
question as to whether there is a way to reduce the impact of fires by means of an
early warning system that can for example warn the local fire brigade when a high
fire risk is expected in the coming days. This would enable them to stay alert and
be better prepared in case a fire incident occurs [14]

The first contribution of this paper is to investigate whether the predictive model
developed by Log [12, 13] for estimating the relative humidity in wooden structures
based on first order principles can be used in combination with weather data
measurements and forecast data to obtain a reliable and useful fire risk prediction.
In this work, we use the estimated time to complete flashover as an indication of
fire risk. The time to flashover is in practice in the order of minutes. To be useful,
our predictions should be within similar order of magnitude in terms of time and be
consistent with observed weather conditions [10]. A second contribution is to show
how the fire risk prediction can be provided as a cloud-service and be implemented
based on cloud-services. We have implemented the fire risk indication prototype as a
distributed application based on the architectural principles of micro-services [3] and
REST [16]. For the implementation of the fire risk prediction service we have used
the Spark/Java framework [18], and deployed the application on the Amazon EC2
platform. For data storage, we rely on the MongoDB noSQL database deployed in
the Azure cloud platform. As the data source for meteorological data we rely on the
Frost[15] and MET [9] REST web-services of the Norwegian Meteorological Institute
(MET) providing data from high-end weather stations and weather forecast data. In
addition to these professional meteorological services, we have also investigated the
consumption of meteorological data from Netatmo consumer-grade weather stations.

The reminder of this paper is organised as follows. In Section 2 we briefly
outline the predictive fire risk indication model which has served as a basis for our
investigations. Section 3 explains how we have implemented a software prototype by
aggregating data from external cloud-services to obtain the input data required for
the predicative fire risk indication model. In Section 4 we present selected results of
our experimental evaluation. Finally, in Section 5 we provide the conclusions and
discuss directions for future work. The paper is based on the master’s thesis [19].

2 Predictive Fire Risk Indication Model
The predictive fire risk indication (FRI) model [12] is based on computing the
relative indoor humidity of a wooden structure using the measured and/or predicted
indicators for the outdoor climate [13]. Obtaining the relative indoor humidity makes
it possible to determine the concentration of water in the wood which in turn makes
it possible to estimate the time to complete flashover in case of a fire.

The basic observation underlying the model is that as the air gets dryer the
wood releases moisture and when the relative humidity increases the wood will
absorb moisture. In addition to this, the predictive model takes into account decay
periods related to the transport of water in and out of the wood. The decay period
gives a delayed effect in terms of fire risk. Due to space limitations, we only outline
the theoretical foundation of the FRI model below. Details can be found in [12, 13].

Outdoor Climate. The FRI model requires the outdoor air temperature, outdoor
relative humidity, and the outdoor water concentration of the air. The first two



elements are typically measured. The outdoor water concentration can be estimated
by calculating the water saturation vapour pressure as:

Psat = 610.78 ∗ e
17.2694∗Tc
Tc∗237.3 (1)

where TC (◦C) is the the outdoor air temperature. The outdoor water concentration
can now be obtained as:

Cwa = RHout ∗ (
Psat(Tc) ∗Mw

R ∗ (Tc +K)
)) (2)

where RHout is the outdoor relative humidity, Mw(0.01801528)(kg/mol) is the
molecular mass of water, R(8.314J/Kmol) is the molar gas constant, and K is
the absolute temperature 273.15K.

Indoor Climate. The indoor climate is dependent on the outdoor climate [13] in
addition to factors such as the humidity released by people, plants and animals inside
the house, and also the air change rate. Log found [12, 13] that it is reasonable to
assume that 1 kg of moisture is released daily and that older wooden houses have a
lower air change rate compared to newer houses. Based on the investigations of Log
[12, 13], the concentration of water in the air inside a house with forced ventilation
can be computed iteratively using the following formulas:

Cin,0 = RHinside ∗ Csat,in (3)

Cin,i = ((1 − β) ∗ Cin,i−1 + β ∗ Cwa ∗ (
Tout
Tin

))) +
mwall,loss

v
+ms ∗ ∆t

v
(4)

where RHinside is a base relative humidity set to 40% as a starting point; Csat,in is
found using Eq. 2 without RH and Tc is set to 22◦C; β accounts for the ventilation
(air changes per hour), Tout and Tin is the absolute outdoor and indoor temperature
where we set the indoor temperature to an estimated 22 ◦C; mwall is the sum loss
of water concentration in the walls, volume is the volume of the room, ms is the
moisture supply which is 1

24∗3600kg/s and ∆t is the calculation interval set to 720 s.
The second order partial differential diffusion equation, i.e. analogous to the

heat equation, is then solved for the wooden wall layers involved in the moisture
transport. The innermost layer is for simplicity treated as a mathematical reflection
surface. This is well-founded based on moisture diffusion barrier requirements in
Norwegian houses preventing rot formation as a result of wall and thermal insulation
cold weather temperature gradients. The Bernoulli equation based air change rate
as recommended by Log [13] was used in the modeling. It should be noted that the
methodology relies on basic physics, with no empirical constants. Parameters such
as the moisture diffusuin coefficient is taken from the literature [1].

With the indoors concentration of water calculated, the relative humidity can be
computed using the following equation:

RHinside =
Cin

Csat ,in

(5)

where Cin is then obtained using Eq. 4.



Fuel Moisture Content. Based on the computed indoor climate figures, it is
possible to estimate the concentration of water in each of the layers of wood, and
based on this in turn estimate the fuel moisture content (FMC) of the wood at a
given moment of time. Having computed FMC, the time to flashover tFO can be
computed as [10]:

tFO = 2 ∗ e0 .16∗FMC (6)

The time to flashover is in practice in the order of minutes where the lower the
time to flashover, the higher the fire risk. It should be noted in the current version
of the model, we do not take into account further risk elements such as wind-speed
and wind-direction which may contribute to a high risk of a fire spreading.

The advantage of the FRI model is that it can estimate fire risk based on outdoor
climate elements. Measurements and predictions of outdoor climate elements are
publicly available as measurements and forecasts covering all of Norway, whereas it
is not yet realistic to assume that all houses would be equipped with sensors making
indoor climate elements publicly available.

3 Cloud- and Microservice-based Implementation
We have made an implementation of the FRI model capable of computing fire risk
indications and providing the indications as a REST web service. The application
and the web service has been designed such that it can be used both for our
experimental evaluation, and also be consumed by clients in general that need to
access to fire risk indications for a given geographical location.

Figure 3 shows the overall software architecture of our prototype system which is
divided into several smaller components following a microservice-oriented approach.
The Fire Risk Prediction Model (FRP) component implements the FRI model, and
the data harvesting and collection component (DHC) deals with collecting weather
data, both forecast and historical weather data (measurements). The fire risk web
service acts as a controller service that handles communication from clients to the
other two components. All components are to be deployed on a cloud platform
where we additionally store collected weather forecasts and measurements in order
to be able to run the controlled experiments required to validate the FRI model.

The implementation is able to compute fire risk indication based on historical
data in the form of measurements from meteorological (weather) stations, forecast
data, and a combination of the two. The latter is highly relevant in practice as one
often want to compute the indications based on measurements for the last 1-7 days
and forecast for the coming 1-7 days. Figure 2 illustrates the interaction between
the components of the application when providing a fire risk indication based on a
combination of measurements (historical data) and forecast data.

Part of our evaluation goal is to compare the fire risk computed using different
weather data sources. In order to have consistent data sets throughout the
evaluation, the weather data from all external services are stored in databases. This
allows the model to use a consistent data set when testing occurs at a later date
for instance as the fire risk model is being refined. The data is stored using the
original format as it was retrieved from the external services in order to have the
complete data available. Since external services provide data in a JSON or XML
representation, we are using a noSQL database [6] for storing the weather data.



Figure 1: Software architecture of the FRI prototype application

Figure 2: Sequence diagram for fire risk indication with historical and forecast data

The FRI application services and components have been deployed on the Amazon
EC2 platform and implemented using the Spark/Java microservice framework. The
data storage uses a MongoDB database deployed on the Azure cloud platform.
The FRI application uses three external web services to obtain weather data from
several sources. Two of the sources provide historical weather data while the third
one provides forecast weather data to predict the fire risk in the coming days.

Frost. The Frost API [15] is a REST web service that provides historical weather
data recorded by MET. Consumers of the service must provide the locations of
where it shall retrieve weather data. This can be done by providing the identity
of the source (station), or by giving the longitude and latitude of a position and
the service will then find the nearest station. The service gives access to all the
stored data that MET has recorded. The Frost API gives access to resources
about locations, weather records, observations, lighting, sources (weather station



metadata), elements (weather elements), climate normals, and frequencies. The
FRI application uses location, observation, and meta-data about the stations.

Netatmo. The Netatmo service [2] deals with the same type of weather data as
the Frost service, but relies on consumer grade weather stations typically installed
in private homes. The consumers publish their weather data into a cloud-based
server. Through this cloud-based server, it is possible to retrieve the measured
weather data, that can then be used in the FRI application. The Netatmo API
offers different services based on the types of Netatmo product. In the case of the
FRI application, only temperature and humidity is used. The meta-data for the
stations contains the identification of the indoor and outdoor module, and general
information about the stations such as location which is used by the FRI application.

MET. The MET API [9] provides predictive analysis of the weather in terms of
forecast data. It offers resources that estimate how the weather will be in the near
future, as well as current weather data such as lowest and highest temperatures over
a certain period. The service is able to return the weather data for predictions of
the weather for a nine day period into the future. The first three and a half days
are provided as hourly measures. The next five and a half days are provided at six
hour intervals. The forecast data is offered in XML and JSON format.

4 Experimental Evaluation
We have collected weather data in the winter period 2018 - 2019 at four selected
locations in Bergen, Haugesund, Gjøvik, and Lærdal. The reason for choosing these
locations were due to the varied climate. At the west coast it is more humid in the
winter than in some of the inland locations which in turn are also generally a lot
colder during the winter. The collected data includes weather data from Netatmo
stations, placed in Bergen and Gjøvik, MET stations, and weather forecasts from
Frost. Part of the evaluation has been to investigate whether the data source used
impacts the fire risk indication, and to validate the fire risk indication model in terms
of being able to provide plausible indications. We also investigated the difference
in computing fire risk indications based only on (historical) measurements versus
using forecast data or a combination of the two. We also considered historical fires
to see how the FRI model implementation would have indicated the fire risk at the
time of fire, and in the days leading up to the fire. Finally, we have evaluated the
computation-time and storage efficiency of our implementation.

Historical Weather Data. Figure 3 shows the average fire risk indications based
on measurements collected in the winter period 2018 - 2019 (December (12) until
May (05)). From the graph it can be seen that the FRI model generally indicates
an expected higher risk of fire (shorter time to complete flashover) at the colder
inland locations. This is also shown in Table 1 which summarises key figures for the
complete period. It should be noted that at 50% and 60% indoor relative humidity,
the time to flashover is around 9 and 11 minutes, respectively.

Historical and Forecast Weather Data. Being able to predict the fire risk
within the next coming days is a main objective. We therefore explore the
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Figure 3: Estimated time to flashover for the four selected locations

Location Average Std. dev Max Min

Bergen 5.50 0.67 7.64 4.13

Haugesund 5.70 0.63 7.59 4.32

Gjøvik 4.48 0.90 8.02 3.32

Lærdal 4.77 0.74 7.57 3.56

Table 1: Key figures for fire risk indicates from the four locations

combination of measurements (historical data) and forecast data. An aspect to
consider is that the FRI model requires a few days of self-calibration before it
can accurately begin to indicate the fire risk. To investigate this we ran the FRI
model using only weather forecast data (no calibration) and using a combination of
historical data (for calibration) and forecast data. Figure 4(left) shows the results
for the January-February period in Bergen without the use of historical data for
calibration. The corresponding fire risk indication obtained using only historical
data is also visualised as a reference. In Figure 4(right) historical weather data
(measurements) is added on to the forecast data, which is used for the calibration.
As can bee seen from the figures, the fire risk based on forecast follows roughly the
same curve as the fire risk indication based on historical data in the first three and
a half days. In this period of time, the forecast works with weather data at hourly
measures. After that period it starts giving forecast data at a six hour interval.
When it starts the six hour interval, the FRI model has less data to work with and
predict the fire risk until the next measure in six hours.

Table 2 provides the key figures. It can be seen that the average difference
between using only historical and forecast fire risk indication when additional data
has not been added for self-calibration is estimated to around 0.26 minutes. The
standard deviation for the difference is at 0.24. The maximum difference between
forecast and historical when calibrated is 0.58 and when not calibrated is 0.62. The
results demonstrates that the use of historical data for calibration results in a more
accurate prediction. In practice this is also how we expect the FRI model to be
used. When computing a fire risk prediction at a given day, historical data from the
past days will be used in combination with the forecast data.
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Figure 4: Time to flashover for forecast and historical weather data - without
calibration (left) and with calibration (right)

Location Avg. Diff Std. Div Max. diff

Bergen (no calibration) 0.26 0.24 0.63

Bergen (calibration) 0.12 0.18 0.58

Table 2: Fire risk information from four locations

MET stations and Netatmo stations. The results above were based on using
MET data from high-end measuring stations. We also investigated the use of low-
end measuring stations in the form of Netatmo stations. These stations are typically
placed closer to the houses than that of the MET stations. Figure 4 shows the
difference between using a a Netatmo station and a MET station for two locations.

As can be seen in Figure 4 (right), the fire risk indication based on the Netatmo
station in Gjøvik follows almost the exact same curve as the one based on the MET
station. In Figure 4 (left), the Netatmo fire risk indication from Bergen is not
exactly the same as the one from MET. The curve itself follows almost to the point
of what the MET-based fire risk indicates. This may be due to the fact that the
Netatmo station is not correctly calibrated and measures temperatures higher then
the MET, station, or that the Netatmo station in Bergen is placed around 1.76km
north east of the MET station. The MET station in Bergen is located close to the
water with an open field surrounding the station whereas the Netatmo station was
place in the inner city with surrounding houses.

Table 3 summarises the numerical differences between the use of Netatmo
stations and MET stations when computing the fire risk. At Gjøvik, the difference
between the Netatmo stations and the Frost stations is almost negligible, whereas
the result from Netatmo and Frost Bergen is more varied for certain periods. Still
the overall difference is 0.5 minutes on average, and at most around 1 minute.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150

M
in

ut
es

Days

Bergen - Frost
Bergen - Netatmo

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150

M
in

ut
es

Days

Gjøvik - Frost
Gjøvik - Netatmo

Figure 5: Time to flashover for input data based on the MET and Netatmo stations
in Bergen (left) and Gjøvik (right)



Location avg.diff std.dev Max diff Max Min

Bergen 0.53 0.28 1.06 7.09 4.13

Gjøvik 0.07 0.07 0.19 6.14 3.32

Table 3: Difference between MET stations and Netatmo stations

Fire Risk for Historical Fires. Another aspect in terms of validating the FRI
model, is to consider fires in the past. This way it is possible to determine how
the fire risk was at the time of the fire, and the period leading up to the fire. A
recent fire that will serve as an example, is the one in Lærdalsøyri on 18th January
2014 [4, 5, 8, 11]. This is a place with many old wooden buildings and at a location
that gets very dry during the winter period. The fire risk estimated for that time
is visualised in Figure 6(left) with day 0 being the day of the fire. During a period
of around 12 days before the fire, the temperature started dropping which results
in the climate getting drier. In this dry period, the wood inside the houses released
humidity to the indoor air, and was gradually ventilated out of the houses. At the
time of the fire at around 22:50 the FRI model indicates that it would take around
3.8 minutes until complete flashover. The fire department learnt about the fire at
22:53pm, and the fire fire truck was on scene at 22:59pm [8]. At this time it was
reported that the house was in complete flashover. Since the FRI model indicate a
complete flashover in 3.8 minutes, the fire department did not have sufficient time to
put out the fire. It should also be noted that at the time, there was storm strength
winds in the area [8] which also contributed to higher risk of fire conflagration.
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Figure 6: Time to flashover for the fire in Lærdal 2014 (left) and at a home care
center in Kongsberg 2017 (right)

Another fire that we considered was the one in Kongsberg, at 24th December
2017, at a home care center[7]. The fire resulted in the loss of life. The fire risk
indication for this period is visualised in Figure 6(right). During the December
month of that year, the time to flashover averaged around 4.2 minutes. Since this is
a home care center, the fire department must conform to response time given by the
Norwegian law which that states the required response time is to be 10 minutes or
less. Our results indicates the same as the fire risk from the fire in Lærdal of 2014,
that the time it takes for a complete flashover is considerably lower than that of the
required response time from the fire department.

Given these results, the FRI model could have warned the fire department to
be readily available. It also looks like the required response time does not take into
consideration dry indoor conditions. Based on these results, the FRI model could
have predicted that the fire department could not properly handle a fire that would
flashover that quickly. The current minimum response time that the fire department
is expected to comply to hence seems to be too high for the dry periods of winter.



Storage and Computation Time. During the 2018-2019 winter period, the
FRI application collected approximately five months worth of weather data. This
includes forecast data and historical data from four locations, and weather data
from two Netatmo stations. The FRI application performs continuous harvest of
weather data. Every 24 hours, the FRI application fetches historical weather data
for the previous day, from MET and Netatmo, and forecasts for the next nine and
a half days. Whenever the FRI application fetches new historical weather data, it
will take the previously calculated fire risk indication and create an augmented fire
risk indication for the new weather data, and add it to the back of the previous one.
By doing it this way, the storage efficiency depends not on the weather data, but
only on how many fire risk indications are stored.

Each weather forecast stored in the database had a list of 87 objects containing
weather information, such as temperature and humidity. The total amount of
storage that these forecasts use, amounts to 12.5Mb, with an average of around
25.4 kb. per forecasts. The weather data from the Frost stations were stored in
24 hour intervals and contains hourly recorded weather elements, mostly the same
types as the forecast. The collection in the database that stores historical data ended
up containing 634 documents, each of these documents covering 24 hours worth of
weather data. The total amount of storage used was 5.6 Mb with an average of
9.0 kb per document. The measurements from the Netatmo stations were stored in
the same way as the Frost stations, where each document contains 24 hours worth
of weather data. The total number of documents containing weather data from
Netatmo totalled at 336.7 kb of storage with a average of 1.3 kb per document.

A fire risk indication for a 24 hour period at one location uses 61.6 kb of
storage. Given this, it is possible to calculate how much storage is needed when
doing continuous fire risk calculations for several locations. For instance, with
continuous fire risk calculations for 10 locations this will amount to 616 kb of fire
risk indications every day. For a whole year this will require 224.84 mb of storage.
With 100 locations, each with a separate weather station as source, the total amount
of storage for a whole year would be 2.24 Gb which is a modest amount of space.

With regard to runtime efficiency, it took 0.07 seconds to compute fire risk
indications for a full year. Note that this excludes the time it takes to retrieve
the weather data from the external services and the time for converting the data.
If everything is included for creating a fire risk for a whole year, the time is 4.1
seconds to retrieve the weather data, another 0.2 seconds to convert it. Then it is
passed on to the FRI component which add another 0.6 seconds for conversions and
it takes 0.07 seconds to compute the fire risk. The total time elapsed for creating a
fire risk indication with weather data for a full years amounts to 5 seconds. If the
same was done for half a year, the time 2.5 seconds of which 2.36 seconds is used
to fetch the data, and 0.04 seconds used for converting and computations. The rest
of the time is spent communicating between the components. This shows that fire
risk indications can be computed and stored in both a space and time efficient way.

5 Conclusions and Future Work
We have implemented an innovative and science-based predictive fire risk indication
in a cloud-service context where external data services provided by MET and
Netatmo have been used to obtain the weather data required for the computation.
The results indicate that we are able to obtain a reasonably accurate fire risk



prediction in terms of the estimated time to flashover. In particular given the result
of the fires in Lærdal and Kongsberg, we conclude that the FRI model gives accurate
fire risk indications. Furthermore, information gathered from the fire department
in Bergen, stated that they had a minimum requirement of 10 minutes response
time to certain critical buildings. This included hospitals, nursing homes, historical
buildings and shopping centres. With the result regarding the Lærdal and Kongsberg
fires, many of the fire departments around Norway would not have sufficient time to
respond to a fire during the winter period - even if they formally conform to current
regulations during other periods of the year.

Our results also shows that it is feasible to use a combination of measurement
data and forecast data in order to compute a useful fire risk indication. In fact, our
results demonstrate that the best option is to combine the two using measurement
data to properly calibrate the FRI model. With regard to storage efficiency, the FRI
application requires relatively little storage, and we can conclude that the software
architecture has adequate storage efficiency. Furthermore it has been shown that
it does not accumulate large amount of weather data. With regard to the run-
time efficiency of creating fire risk indications, most of the time was spent fetching
data from the external services. The time for computing a fire risk indication was
negligible. This indicates that the implementation of the FRI model is adequate
regarding the run-time efficiency. The most time consuming internal operation of
the FRI application was conversion of weather data.

On the implementation side, we have not yet considered end-user clients. In
addition to this, future work may also include further improving the implementation
of the FRI model for fire risk indication aimed at making it more efficient. However,
the time it takes to compute the fire risk itself is very low, and for that reason it
would be more relevant to consider the time it takes to retrieve data from external
services possibly by using background fetch of the data.

Based on the result of indicating the fire risk of the four locations, we can identify
a period from the start of January to the middle of February as the period with the
highest fire risk. After this period the fire risk reduces steadily with a few periods
where it goes up again before it starts to decrease from the middle of April. It is
at this point the weather climate gets warmer, but that does not necessarily mean
that the fire risk will be lower. The reason for this is because of, e.g,. heathlands
and forests that can easily catch fire. This may also have an impact on the fire risk
for later periods of the year. The current FRI model considers only colder climate
conditions and would have to be mathematically refined in order to cover also the
warmer periods of the year. Another aspect that may be improved in the future is
to take into account more parameters when calculating the fire risk. This could be
done by weather elements such as wind-speed and direction to get a more accurate
result regarding conflagration risk. There is also the possibility of combining the
wind with a parameter that may indicate how densely the houses are located.
Acknowledgement. This study was partly funded by the Research Council of
Norway, grant no 298993 Reducing fire disaster risk through dynamic risk assessment
and management (DYNAMIC).
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