
This paper was presented at the NIK 2019 conference. For more information see http://www.nik.no/

Escape Local Minima with Improved Particle Swarm
Optimization Algorithm

K. Darshana Abeyrathnaa and Chawalit Jeenanuntab

Department of Information and Communication Technology,

University of Agder, Grimstad, Norwaya.

School of Management Technology, Sirindhorn International Institute of Technology, Thammasat

University, Pathumthani, Thailandb.

darshana.abeyrathna@uia.noa, chawalit@siit.tu.ac.thb

Abstract
Particle Swarm Optimization (PSO) is a powerful meta-heuristic technique which has been

maneuvered to solve numerous complex optimization problems. However, due to its

characteristics, there is a possibility to trap all particles in a local minimum in the solution

space and then they cannot find the way out from the trap on their own. Therefore, we modify

the traditional PSO algorithm by adding an extra step so that it helps PSO to find a better

solution than the local minimum that they undesirably found. We perturb all the particles by

adjusting parameter values in the traditional algorithm when there is no improvement of the

objective value over the training iterations, assuming that particles have stuck in a local

minimum. In this research, we mainly focus on adjusting the learning factors. However, the

parameter values have to be used in an effective way to perturb the particles. The behavior

of the proposed modification and its parameter adjustments are studied using a function

which has a large number of local minima - Schwefel’s function. Results show that 2 out of

3 PSO attempts trap in local minimum and slight changes on learning factors do not help

them to get out from the traps. However, perturbances made with large learning factors can

find better solutions than the local minima that they stuck in and help to find the global

minimum eventually.

1. Introduction

Particle Swarm Optimization (PSO) is a global optimization technique where it is

used to solve complex optimization problem with highly non-linear objective functions.

It has been successfully applied by researchers and engineers in number of domains to

solve complex optimization problems, including weights optimization of Artificial Neural

Networks [1, 2].

In most of the applications, we try to minimize the objective value of the optimization

problems. In many of those cases, it can be adjusting parameters to find the minimum

distance, minimum cost, minimum time required, minimum error, etc. However, with

PSO, a large number of solutions for the objective function are created by particles in the

PSO at one generation. Generation by generation, all particles evolve to an optimum

which provide the optimum parameter values.

Once the objective function is ready with a set of constraints, fitness of each particle

is calculated. This is the objective output for the selected particle. At end of the fitness

value calculation of all the particles, personal best (pbest) and the global best (gbest)

solutions for the current population is updated. Each particle has a best solution that has

been obtained so far. This best solution of each particle is called the pbest. However,

gbest is the best particle that provides the best parameter values to the objective function

out of all other particles from all generations. These updated pbest and gbest are used to

calculate the positions and velocities of each particle at the next generation using the

following equations.

𝑉𝑖(𝑡 + 1) = 𝑤 × 𝑉𝑖(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑1 × (𝑝 − 𝑋𝑖 (𝑡))
+ 𝑐2 × 𝑟𝑎𝑛𝑑2 × (𝑔 − 𝑋𝑖 (𝑡))

(1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/327107716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:darshana.abeyrathna@uia.noa
mailto:chawalit@siit.tu.ac.th

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (2)

The velocity and position of ith particle at generation t is given by 𝑉𝑖(𝑡) and 𝑋𝑖 (𝑡),

respectively while pbest and gbest given with p and g in the above equations. The effect

of current velocity for the next generation is decided by the inertia weight w. With a higher

value for the inertia weight, current velocity has a higher impact from the previous

velocity and vice versa. Random values, rand1, rand2 lie between 0 and 1. Learning

factors c1 and c2 have to be predetermined and different values of them alter the

performance of the PSO algorithm significantly.

However, when the learning procedures of all the particles in PSO decide by the Eq.

(1) and (2), parameter values can be adjusted so that, all particles closely follow the global

best or they follow their own best to beat the global best solution separately. Both these

procedures have their own advantages and disadvantages. The highlighting limitation of

the first procedure is once the global best particle traps in a local minimum, all particles

will follow that specific particle and trap in the same local minimum. Since they closely

follow the global best particle, none of the other particles will find a way to get out from

the trap. In the second procedure, each particle competes each other to becomes the best

particle of the entire set. In that case, PSO requires large number of training cycles to find

the global best solution and will stop at a random location where they find the best at that

specific training iteration, otherwise.

Therefore, in this research, we propose a solution for the above limitations of the PSO

algorithm combining the discussed properties of the individual procedures. The algorithm

starts following the first procedure where all particles closely follow the global best

particle. Once they trap in local minima, we switch the parameter values of the Eq. (1) so

that they find a completely new solution set for the next generation. In that way, one or

some of the particles can find better solutions than the current global best where it is

actually a local best of the actual solution space. In this research, we manly focus on

adjusting the learning factors c1 and c2. We also conduct an experiment to find the best

learning factor combination.

The rest of the paper is organized as follows. The works related to the proposed

algorithm and their usage are discussed in the following section (Sec. 2). Steps of the

proposed algorithm are presented in detail in the Methodology section (Sec. 3). A detailed

description about the experiment setup is given in Sec.4. Results of the conducted

experiment are presented and discussed in the Results and Discussion section (Sec. 5).

The conclusion for the entire research is made at the end (Sec. 6).

2. Related Works

Finding the best hyper parameter combination for any algorithm is important and

difficult. The selected parameters decide the performance and final outcome of the

algorithm. This is critical for the PSO algorithm compared to others since it has

collectively 5 hyper parameters to be adjusted (Eq. (1)). Adjusting them separately while

keeping others in a fixed position will consume a lot of time and might not find the best

combination. However, researchers have conducted different experiments to select the

best hyper parameters for PSO [3, 4]. The effect of different inertia weights on the

performance of PSO has been tested in [3]. The performance has been evaluated by

varying inertia weight with an additional constraint call “maximum velocity”, Vmax.

According to the empirical results, they identify, when the chosen maximum velocity is

small (≤ 2), inertia weight should be fixed approximately at 1. In contrast to the above,

if the maximum velocity is not small (≥ 3), 0.8 for the inertia weight is a better choice.

According to the experiment setup in [4], two sets of parameters are selected to test the

PSO performance based on the selected parameters. In both sets, learning factors are

considered as qual (c1 = c2). In the parameter set 1, the inertia weight is 0.6 and learning

factors are 1.7 each. In the parameter set 2, the inertia weight is 0.729 and learning factors

are 1.494 each. Test results reveal better performance of parameter set 1 while showing

the increase of performance parallel to the increase of the number of particles in a

generation. However, still it’s a comparison of results between selected sets, but it is not

the best way to find the best parameter set when the best parameter set is not included in

the testing sets.

In addition to findings of best hyper parameters, some researchers have tried to

modify the algorithm in order to get better results. A cooperative approach to the PSO

algorithm has been presented in [5]. In this proposed approach, different sections of the

solution vector are optimized using different individual swarms in PSO. The proposed

algorithm is used to solve a benchmark optimization problem and compared against the

traditional PSO approach to show the value of the proposed approach. Similar to the

above approach, [6] presents a modified version of PSO called Quantum Delta-Potential-

Well-based Particle Swarm Optimization (QDPSO) algorithm. In their approach, they

identify the quantum behavior of particles. Then they put a higher attention on the

particles which are far from the global best. According to their argument, those particles

have a higher potential to find better solutions than particles which closely following the

global best. Another approach call Adaptive Particle Swarm Optimization (APSO) is

presented in [7]. The proposed approach has following steps: fitness of each particle is

calculated, four evolutionary states are identified based on the population distribution –

1. exploration, 2. exploitation, 3. convergence, and 4. jumping out. Based on these states,

hyper parameters of Eq. (1) are automatically controlled. Then next generation is created

based on the adjusted parameter values.

The performance of the algorithm has been improved not only by modifying the

algorithm parameters, but also by combing it with some well know algorithms such as

Genetic Algorithm (GA) [8]. The procedure in [8] is similar to the procedure in this paper.

However, it is complex in nature as it uses GA operations once they stuck in local minima.

In [9], a selection mechanism from evolutionary computation has been used to improve

the PSO performances. A score for a particle is calculated based on its current position

and positions of the other particles. Once the scores of all particles are calculated, they

are sorted based on the calculated score. Then the positions and velocities of worst 50%

of particles are replaced with the remaining 50% best particles. At each training iteration,

this additional procedure is added to the algorithm. In the testing phase, the proposed

algorithm shows better performances on three out of four testing functions. A similar

approach to enhance the PSO performance is given in [10] by combining PSO and Chaos

theory. According to the simulation results, chaotic PSO (CPSO) outperforms standard

PSO and some other meta-heuristics algorithms.

The concept of the proposed algorithm in this research is quite similar to the methods

in [8, 10]. Compared to [8], the proposed method is easy and computationally

inexpensive. Compared to [10], the proposed algorithm starts with traditional PSO and

let all particles (moving closer to the global best) to reach an optimum point (global or

local) which is faster compared to their research. Then, only when it’s required, particles

are perturbed to get out from the trap in case if they have stuck in local minima. This

proposed algorithm is discussed in detail in the next section.

3. Methodology

The proposed algorithm starts similar way to the traditional PSO approach.

Parameters in the objective function collectively form the particles in PSO. Each particle

makes a solution to the objective function and all particles collectively moves towards

the global optimum during the training phase to find the optimum parameter set.

The algorithm starts creating n random solutions to the objective function and n is

equal to the number of particles in a population. The fitness value of each particle is

calculated using the objective function. The particle with the best fitness value is

considered as the global best and they also update their personal bests at every training

iteration as explained in the introduction section. Likewise, with the aid of Eq. (1) and

(2), generation by generation they reach to the global optimum in the solution space.

However, it is not possible to say whether particles have reach to the global optimum or

traps in a local optimum when it shows minor or no improvements at some adjacent

training iterations. However, with the traditional approach, they cannot get out from the

local minimum in case if they trap in one. Therefore, in this algorithm, we add an

additional step to perturb the particles if there is no or les improvement in the global best

for 10 consecutive training iterations (10 stall iterations) by changing learning factors, c1

and c2. However, we also save the current personal best and global best solutions in case

if they have already reach to the global solution. This step is applied two times to the

traditional approach and assume that it’s enough for them to escape local minima and

reaches to the global minimum. Then the training procedure stops when it reaches to the

maximum training iterations. The states of the proposed algorithm can be well learned by

using the following flowchart.

Figure 1 Flowchart of the improved PSO algorithm

However, the best learning-factor combination, c1 and c2, to perturb particles are still

unknown. Therefore, to find the best combination of learning factors and to check the

performance of the proposed algorithm, an artificial dataset is created. Detail of the

experiment setup is given in the next section.

4. Experimental Setup

The objective of the proposed algorithm is to improve the traditional PSO algorithm

which, sometimes, shows poor convergence ability with local minima in the solution

space. Therefore, to demonstrate the optimization qualities of the proposed algorithm, a

function with multiple local minima, which is famous in terms of its toughness to find the

global optimum [11] is selected: Schwefel’s function. While Eq. (3) gives the Schwefel’s

function, Figure 2 shows some angles when it is plotted for two variables.

𝑓(𝑅) = 418.9829 × 𝑑 − ∑ 𝑟𝑖 × sin(√|𝑟𝑖|

𝑑

𝑖=1

) (3)

In this equation, to reach the global optimum, 0, we set a constraint where the

maximum and minimum limits of each variable 𝑟𝑖 are 500 and -500, respectively. Then,

with any number of variables, d the objective value 𝑓(𝑅) reaches to 0 at the optimum R*

[R* = (𝑟1
∗, 𝑟2

∗, … . . 𝑟𝑑
∗) = (420.9687, 420.9687, ….. 420.9687)]. However, the following

figure shows different angles of the Schwefel’s function when it is drawn with two

variables (d = 2).

a. An angle from the top b. An angle from the bottom

c. Side view from 𝑟1 direction

Figure 2 Schwefel’s function for two variables

Figure 2 reveals the difficulty of finding the global minimum of the Schwefel’s

function since it has many local minima. However, in the experiment, we make it more

difficult adding two more variables (d = 4) to find the global optimum with both the

proposed and traditional PSO algorithms.

The proposed algorithm is similar to the traditional PSO at the beginning. To initiate

with, 100 particles are created randomly with the considered constraint for the variables

(𝑟𝑖 𝜖 [-500, 500]). Fitness values of those particles are calculated using the Schwefel’s

function. Based on the fitness values, pbest and gbest are updated. Velocities and

positions for the next generation are calculated using Eq. (1) and (2), respectively.

Considering the best parameter values identified at [4], we fix the inertia weight, w and

learning factors, (c1 = c2) at 0.6 and 1.7, respectively. The traditional PSO algorithm runs

500 training iterations (generations), if does not meet 10 continuous stall generations,

without converting to the proposed algorithm. Once it meets 10 continuous stall

generations, all the particles in the current generation are perturbed to create the next

generation. However, in this research, particles are perturbed by only adjusting learning

factors. Therefore, these values are changed starting from 2 (c1 = c2 = 2, 2 is slightly

higher than the current value 1.7). The other values selected for learning factors are, 10,

20, 50, 100, 500, and 1000. The results obtained with these changes are presented and

discussed in the next section.

5. Results and Discussion

The fitness values of each particle at each training iteration is studied separately. At

the beginning, fitness values of all particles are higher and generation by generation they

all reach to a minimum point (global or local). The evolution of these particles of a

successful PSO attempt are captured at four different training iterations and resented in

Figure 3.

a. Fitness values at 5th iteration b. Fitness values at 70th iteration

c. Fitness values at 150th iteration d. Fitness values at 170th iteration

Figure 3 Evolution of particles at different training iterations

However, when the global best moves towards to a local minimum, all particles

follow it and trap in the same local minimum (in case the other particles unable to find a

better solution) as shown by Figure 4. Figure 4.a shows that almost all particles have

reached to the same local minimum at end of the training iterations and Figure 4.b shows

the evolution of the fitness value of the global best over the training iterations.

Figure 4 Evolution of particles towards a local minimum

We perturb all particles when they stick in these kinds of traps. However, different

values for the learning factors (c1 and c2) perturb particles in the Figure 4.a in different

ways. For instance, variation of fitness values of particles, when learning factors during

the perturbance process are equal to 10 and 500, are given in Figure 5.a and 5.b,

respectively.

a. Perturb with c1 = c2 = 10 b. Perturb with c1 = c2 = 500

Figure 5. Perturb particles when they trap in local minima

Therefore, the effect of the perturbances depends on the values of the used learning

factors. The Table 1 provides the average minimum values of each training algorithm

(traditional PSO and proposed algorithm with different learning factor values) obtained

after 30 runs.

The table shows that 2 out of 3 PSO attempts trap in local minima and small

perturbances do not help them to get out from those traps. With higher values for learning

a. Fitness values of all particles at 80th iteration b. Global best fitness over the iterations

factors, PSO starts finding new and better solutions than the local minima that they stuck.

Figure 6, 7 and 8 provide selected examples for the cases where (Figure 6) PSO found

the global optimum itself, (Figure 7) PSO stuck in local minima, and (Figure 8) how

perturbances help PSO to escape local minima.

Table 1 Average of the minimum values given by different algorithms with different parameters

PSO

Proposed Algorithm with c1 = c2 =

 2 10 20 50 100 500 1000

No. of global

minimum findings

(out of 30)

10 9 10 10 12 14 19 21

Average of

minimum values
93.87 97.80 90.07 101.47 85.73 77.87 50.73 35.40

a. Example 1 b. Example 2

Figure 6 Examples that PSO found the global minimum without the help of perturbances

a. Example 1 b. Example 2

Figure 7. Examples that PSO stuck in local minima

a. Example 1 b. Example 2

Figure 8. Examples that PSO found the global minimum with the help of perturbances

Examples in both Figure 7 and 8 show that there is a local minimum around 120

fitness value in the solution space. Figure 6 shows that PSO can find the global minimum

without the help of perturbance step. However, both Figure 7 and 8 and also the Table 1

show that still PSO can trap in local minima and therefore need perturbance step to escape

them. The following section brings the conclusions of the research based on the

hypothesis we made, the method we proposed, and the above results.

5. Conclusion

PSO is a powerful meta-heuristic technique which has been used to solve plenty of

complex optimization problems. However, it has a limitation where when it traps in local

minima in the solution space, it cannot get out from the trap on its own. Therefore, in this

research, we slightly modify the algorithm by adding an extra step to perturb the particles

when they trap in local minima. This modification to the algorithm bring a significant

improvement to the results discussed in the previous section.

However, even though we identify that PSO likely to trap in local minima when it is

used to solve functions which have many local minima and the proposed modifications

to the algorithm can solve the problem, the parameter selection is still an issue. Therefore,

similar to the other hyper parameters, this value of the learning factors during the

perturbance stage have to be selected after a grid search. Values are subject to change

with the difficulty of the problem. Therefore, a trial and error attempt to find the best

learning factors to perturb the particles when they trap in local minima is necessary. These

factors should be able to perturb the particles until at least they produce the initial fitness

values.

References

1. Jeenanunta, C. and K.D. Abeyrathn, Combine Particle Swarm Optimization with

Artificial Neural Networks for Short-Term Load Forecasting. ISJET, 2017. 8: p. 25.

2. Daş, G.S., Forecasting the energy demand of Turkey with a NN based on an improved

Particle Swarm Optimization. Neural Computing and Applications, 2017. 28(1): p. 539-

549.

3. Shi, Y. and R.C. Eberhart. Parameter selection in particle swarm optimization. 1998.

Berlin, Heidelberg: Springer Berlin Heidelberg.

4. Trelea, I.C., The particle swarm optimization algorithm: convergence analysis and

parameter selection. Information Processing Letters, 2003. 85(6): p. 317-325.

5. Van den Bergh, F. and A.P. Engelbrecht, A cooperative approach to particle swarm

optimization. IEEE transactions on evolutionary computation, 2004. 8(3): p. 225-239.

6. Sun, J., B. Feng, and W. Xu. Particle swarm optimization with particles having quantum

behavior. in Evolutionary Computation, 2004. CEC2004. Congress on. 2004. IEEE.

7. Zhan, Z.-H., et al., Adaptive particle swarm optimization. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 2009. 39(6): p. 1362-1381.

8. Abeyrathna, K.D. and C. Jeenanunta, Hybrid Particle Swarm Optimization With Genetic

Algorithm to Train Artificial Neural Networks for Short-Term Load Forecasting.

International Journal of Swarm Intelligence Research (IJSIR), 2019. 10(1): p. 1-14.

9. Angeline, P.J. Using selection to improve particle swarm optimization. in Evolutionary

Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence.,

The 1998 IEEE International Conference on. 1998. IEEE.

10. Liu, B., et al., Improved particle swarm optimization combined with chaos. Chaos,

Solitons & Fractals, 2005. 25(5): p. 1261-1271.

11. Whitley, D., V.S. Gordon, and K. Mathias. Lamarckian evolution, the Baldwin effect and

function optimization. 1994. Berlin, Heidelberg: Springer Berlin Heidelberg.

