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Abstract

In the oil and gas industry, during exploration prospect assessment,
explorationists rely on ad hoc manual work practices and tools for
developing and communicating multiple hypothetical geological scenarios
of the prospect. This leaves them with little efficient means to make
the fullest use of state of the art digital technologies to communicate
and systematically compare and assess different hypothetical geological
scenarios before deciding which scenario to pursue. In this paper we
present a formal framework for geological multi-scenario reasoning, a
novel tool-based method for geologically oriented subsurface evaluation.
The methodology applies formal methods and logic-based techniques to
subsurface evaluation and expresses interpretive uncertainty as discrete
scenarios with branches of potential alternatives. This framework
consists of (i) a proto-scenario generator that takes user observations
and geological evidence as input and generates semantically valid initial
states based on formalized geological knowledge in first-order logic (ii)
geological processes formalized as a rewrite theory that are executable
in Maude. By applying geological rewrite rules onto the proto-scenarios,
we are able to assist explorationists with multi-scenario generation and
reasoning beyond human capacity.

1 Introduction
This paper presents a novel method and tool developed with the aim to assist
geologists, in particular explorationists in their subsurface evaluation process and
in their exploration for new subsurface petroleum resources. This framework is
developed as part of a larger interdisciplinary research project on geological multi-
scenario reasoning taking place at the SIRIUS research based innovation center.

A key challenge for exploration in particular, but also subsurface evaluation in
general, is that geodata are “uncertain, intermittent, sparse, multiresolution, and
multi-scale” [6]. Geodata underdetermine concrete models and interpretations [11].
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This means that even though geodata may refute particular interpretations of the
subsurface, they can never verify the correctness of a single interpretation. As
such, it is common for different geoscientists to hold widely differing interpretations
of available data [2, 3]. Advances in digital tool support for quantitatively-
oriented geodata interpretation over the past decades have improved geoscientists’
capacity to delineate closed structures and potential traps indicating possible
hydrocarbon deposits in the subsurface [13]. However, available geodata provide
limited information about critical factors for exploration; whether source rock is
present and mature, the presence and quality of reservoir rock, the presence of
an effective seal, and whether or not there are hydrocarbon accumulations in
subsurface structures observed in the data. Geoscientists therefore supplement
these quantitative methods with qualitatively oriented forms of reasoning we refer
to as geological history reasoning. Geological history reasoning makes active use of
data underdetermination as a source of knowledge to develop and assess multiple
hypothetical scenarios of the subsurface to justify whether, where, and (importantly)
why there can be hydrocarbon deposits in a prospect through many-faceted
geological scenarios explaining available data in terms of sequences of interrelated
geological processes [10]. Despite its centrality in exploring for new subsurface
hydrocarbon resources, this qualitative form of reasoning remains almost completely
unsupported in the digital tool set currently available for geoscientists [12]. Instead,
they use pen and paper along with generic digital drawing and presentation tools
for developing and communicating multiple hypothetical geological scenarios. With
little to no efficient means to make the fullest use of state of the art digital
technologies to systematically compare and assess different hypothetical geological
scenarios before deciding which scenario to pursue when assessing exploration
prospects, geoscientists often end up limiting themselves to only assessing a few
possible scenarios due to the time constraints of commercial petroleum exploration.

Through geological multi-scenario reasoning we apply formal methods and logic-
based techniques to express the space of possible interpretations as discrete scenarios
with branches of potential alternatives. Through systematic representation,
analysis, and comparison of different geological scenarios the goal is to support
geoscientists to reason beyond human capacity. In this paper, we present the
formal framework behind such tool-supported geological reasoning. This framework
consists of (i) a formalization of geological domain knowledge [8] in first-order logic
(FOL) that generates proto-scenarios, i.e., expanded semantically valid geological
descriptions based on geologists’ observations and geological evidence (ii) a formal
specification of geological processes in rewriting logic (RL) [1, 9] that can be
executed in Maude [1]. With RL, we capture geological entities, concurrent
geological process, and distributed geological states. With FOL, we address complex
geometrical relationships and relative timing. By applying geological rewrite theory
that we have developed with geologists onto the proto-scenarios, we are able to
assist explorationists with multi-scenario reasoning. The combination of these two
reasoning methods having rigorous semantics allow us to explore, generate and
analyse multi-scenarios to a depth that is otherwise impossible to achieve. Finally,
the methodology and tool chain are designed in such a way that allows deployment
on a scalable technology.

We have organized the remainder of the paper as follows. First we outline
petroleum system analysis, a particular form of subsurface assessment that we have



used as use case for developing our framework. We then progress to outlining the
formalization of geological processes in rewriting logic, how we represent geological
knowledge, and the scalable infrastructure for running multiple geological scenarios.
Finally, we outline the use case demonstration, before drawing the conclusion.

2 Petroleum System Analysis
A main objective for explorationists is to make decisions about whether and where
to drill given limited and sparse subsurface data. This decision is made based on
detailed petroleum system analysis of the area of interest.

Petroleum system is the framework used in substantiating the possibility of
hydrocarbons accumulation in an area. It is defined as a unifying concept that

Figure 1: The geological setting for the use case, showing the four rotated fault
blocks, with the three geological units that are making them up (reservoir rock
units, top/base seal rock units) and the bounding faults

Figure 2: Ancient Submarine Fan, showing the main environments and their
corresponding facies, in which the four fault blocks, representing the use case, have
been deposited in (from proximal to distal: canyon, channel, levee, lobe, lobe fringe
and basin plain). Canyon, channel and lobe represent the reservoir rock units, and
basin plain represent the seal rock units.



Figure 3: Manual reasoning of the use case

encompasses all of the disparate elements and processes of petroleum geology. The
essential elements of a petroleum system include: source rock, reservoir rock, cap
rock and overburden rock. Petroleum systems have two processes: trap formation
and generation–migration–accumulation of hydrocarbons. If one of these elements
or processes are not present than there is no petroleum system.

Use Case The use case chosen is addressed to explorationists in their process
of lead maturation. The geological settings comprise a series of four rotated
fault blocks, consisting of three geological units: base seal, reservoir and top seal
(Figure 1), deposited in a marine environment, as a submarine fan (Figure 2). Source
rock is present and has generated oil and gas, traps are fault-traps relying on faults
being sealing or on lateral seal being present. Useful information is provided by the
well X (marked by a red cross), drilled in the area of interest that did not encounter
any hydrocarbons but the core and logs acquired tell us that the reservoir is present,
of good quality and deposited in a distributary channel.

To demonstrate the necessity and usefulness of a tool for automated reasoning,
a human reasoning example is shown in Figure 3. This example will answer the
question: “Is it possible to have hydrocarbons accumulation in GU11, while having
no hydrocarbons accumulation in GU8? The manual reasoning starts from analysing
the data provided by the well, explaining why there is no hydrocarbons accumulation
in GU8. After finding out the answer to this first question we proceed explaining
under what circumstances there can be an accumulation in GU11. This might be
deduced from this decision tree, however, the more complex the use case, the harder
the reasoning gets. For certain, the manual reasoning is not always fail-free or
complete.

3 Formalization of Geological Processes in Rewrit-
ing Logic

Rewriting logic is a computational logic and can be used as a semantic and logical
framework. It was introduced in the 1990s and has been applied in various domains,
such as hardware, software, logic systems, and computational systems. A rewrite
theory R = (Σ,E,R) consists of a membership equational logic [5] theory (Σ,E)



and a set of (possibly conditional) rewrite rules R. As a semantic framework, (Σ,E)
specifies the static aspects of distributed states. Σ is a set of declarations of sorts,
subsorts, and function symbols. In Maude, an implementation of rewriting logic
capable of executing rewriting logic theories, a function symbol f is declared with
the syntax op f : s1...sn → s, where s1...sn are the sorts of its arguments, and s is
its (value) sort. For example, we can define constructors of different environments
in a submarine fan:

sort SubmarineFanEnv .
op feederChannel : → SubmarineFanEnv .
op distributaryChannel : → SubmarineFanEnv .
op interChannel : → SubmarineFanEnv .
op lobe : → SubmarineFanEnv .
op lobeFringe : → SubmarineFanEnv .
op basinPlain : → SubmarineFanEnv .

E is a set of confluent and terminating (possibly conditional) equations. In Maude,
equations are written with syntax eq t = t′ and ceq t = t′ if cond, where the latter
expresses conditional equations. Rewrite rules R specify the dynamic aspects of a
concurrent and distributed system, i.e. system’s transition from a sub-distributed
state to a new sub-distributed state. R is a set of (possibly conditional) labeled
rewrite rules of the form rl [l] : t ⇒ t′ and crl [l] : t ⇒ t′ if cond, where the
latter is a conditional rewrite rule. The rule specifies the system’s transitions from
an instance of t to the corresponding instance of t′, where l is a label. Conditional
rules apply only if their conditions hold. Operationally, a term is reduced to its
normal form modulo a set of equational axioms before any rewrite rule is applied.
This dynamic aspect of rewriting logic captures local concurrent transitions. With
several local concurrent transitions performed at the same time, true concurrency is
represented.

A state or configuration denotes a multi-set of objects and messages. The Maude
simulation and execution starts with an initial state/configuration.

Rewriting Logic for Geology The evidence accumulated over the last twenty
years strongly supports the claim that rewriting logic can rightfully be said to have
“ε representational distance” [9] as a semantic and logical framework. That is,
what is represented and its representation are often isomorphic structures. We
exploit this property and together with the geologists, we apply rewriting logic in
the domain of geology and define the geological rewriting theory Rgeo. Given a
subsurface specified as a rewrite theory (Σ,E,R), rewriting logic then allows us to
reason about the complex changes that are possible in the geological system, given
the basic geological changes modeled as rewrite rules R. That is, we can then use
(Σ,E,R) together with Maude and its supporting formal tools to simulate, study,
and analyze geological dynamics. In particular, we can study in this way complex
processes involving chains of geological changes and leading to multi-scenarios of
hydrocarbon migration and accumulation.

In Figure 4 we show a conditional rewrite rule, which captures the geological
process of hydrocarbon migration and accumulation through a fault. All the
capitalized terms are variables. For example, GU1 and GU2 are placeholders for
the identity numbers of geological units. RT is the placeholder for the type of



1 crl [ migrat ion−through−f au l t−f i l lToMaxClosure−accumulation−r u l e ] :
2

3 〈 GU1 : GeoUnit | Type : RT, Permeab i l i ty : PMT1 , Poros i ty : PRT1 , SubmarineFan : SF1 ,
Depos i tedIn : ENV, Hydrocarbon : HC1 〉

4 〈 GU2 : GeoUnit | Type : sandstone , Permeab i l i ty : PMT2 , Poros i ty : PRT2 ,
SubmarineFan : SF2 , Depos i tedIn : ENV, Hydrocarbon : HC2 〉

5 〈 N : Pathways | PType : f a u l t (F , GU1 , GU2 ) 〉
6 t rap format ion (GU2 , TPT, SPT, TFT)
7 accumulation (GU2 , B)
8 =⇒
9 〈 GU1 : GeoUnit | Type : RT, Permeab i l i ty : PMT1 , Poros i ty : PRT1 , SubmarineFan : SF1 ,

Depos i tedIn : ENV, Hydrocarbon : HC1 〉
10 〈 GU2 : GeoUnit | Type : sandstone , Permeab i l i ty : PMT2 , Poros i ty : PRT2 ,

SubmarineFan : SF2 , Depos i tedIn : ENV, Hydrocarbon : HC1 〉
11 〈 N : Pathways | PType : f a u l t (F , GU1 , GU2 ) 〉
12 t rap format ion (GU2 , TPT, SPT, TFT)
13 accumulation (GU2 , t rue )
14 if HC1 =/= null and PMT2 == permeable and PRT2 == porous
15 and (TPT == faultDependent−s e a l i n g or TPT == faultDependent−nonSeal ing )
16 and SPT == fi l lToMaxClosure and isYounger ( timeOf ( Migrat ion ) , TFT) .

Figure 4: A Rewrite Rule for Hydrocarbon Migration and Accumulation

geological unit such as shale or sandstone. PMT1 and PMT2 are the placeholders
for the permeability of reservoirs such as permeable or non-permeable. PRT1 and
PRT2 are placeholders for the porosity of reservoirs such as porous or non-porous.
SF1 and SF2 are the placeholders for the environments of submarine fan such
as feeder channel, distributary channel, inter channel, lobe, lobe fringe, or basin
plain. ENV is the placeholder for the depositional environment. HC1 and HC2

are the placeholders for the identity numbers of hydrocarbon objects, i.e. null if
hydrocarbon does not exist. F is a placeholder for the identity number of a fault.
TPT is a placeholder capturing the type of traps. SPT is a placeholder capturing the
maximum hydrocarbon accumulation level. TFT is the placeholder capturing the
trap-formation time. B is a Boolean variable. This is a conditional rule. This rule
can only be applied if GU1 contains hydrocarbon, GU2 is permeable and porous, the
trap for GU2 is fault-dependent and was formed before the hydrocarbon migration
happened, and there is a migration pathway from GU1 to GU2 through fault F.
After this rule is successfully applied, the state of the configuration expresses that
GU2 accumulates the same type of hydrocarbon as GU1.

4 Knowledge Representation
In order to use rewriting logic for simulating these complex geological processes,
we need to start with an initial state. In most cases, the end-user does not have
complete knowledge about the original state of the system to simulate. This leads
to an underdetermined description of the initial state, in which many initial states
are possible. To determine which state is a possible state that makes sense for the
given domain requires reasoning on a combination of the end-users knowledge about
this specific case, and general domain knowledge about what is a meaningful state.
However, this knowledge is purely static, i.e. it concerns only individual states, and
not the evolution of one state to another. The latter is achieved by the runtime
application of Rgeo.

To automate this task, we formalize both the general domain knowledge and



1 above (E1 , E2) :− ontopof (E1 , E2) .
2 above (E1 , E2) :− ontopof (E1 , E) , above (E, E2) .

Figure 5: Example Prolog program defining the above relation.

the knowledge specific for this case, in such a way that a machine can reason
on this knowledge and determine which state makes sense and which does not.
Such formalization of knowledge is normally done using logic, typically first order
logic, a modal logic, or a description logic (see e.g. [14] for an overview). For our
purposes we have chosen to formalize the geological knowledge in Prolog [4]. Prolog
can be viewed as both a declarative general-purpose programming language, and
a first-order logical language for formalizing knowledge. In Prolog, knowledge is
represented via facts and simple implications, both terminated by a dot. Facts have
the form

H(~x) .

and the implications have the form

H(~x) :- B1(~y1), B2(~y2), . . . , Bn( ~yn) .

where H and each Bi are relation names and ~x and each ~yi are tuples of terms
(constants or varibles). Furthermore, :- denotes left implication (i.e.←) and comma
is conjunction (i.e. ∧). Negation (with negation-as-failure semantics [4]) is written
\+. Variables are denoted by a capital first letter, and everything else are constants.
Figure 5 presents an example Prolog program that defines the above relation as the
transitive closure of the ontopof relation, where ontopof(A, B) states that A is on
top of B.

The Prolog formalization is responsible for taking the end-users knowledge
about a scenario, and generate all possible initial states with respect to the
temporal relationships between the elements. These temporal relationships can be
determined from the objects’ geometrical relationships. For example, a layer that is
geometrically above another layer is also younger. For more complex relations, see
the example below.

Our formalization could also have been done in a different logical language, such
as OWL [7] (a type of description logic). OWL is more commonly used but less
expressive. We plan to investigate the possibility to move (part of) the formalization
to OWL in the future, to be able to better reuse already existing formalizations.

Example One important part of determining all possible proto-scenarios is to
find the possible temporal relationships one can have between the events forming
the different elements of a geological system. For example, we know that if a fault
cuts a particular layer, then the layer is formed before the event that produced the
fault. As noted above, a fault is younger than another if its cross-cutting topmost
layer is above the cross-cutting topmost layer of the other. Accordingly, we define
the approximate time of the formation of a fault by finding out the topmost layer it
cuts. Both the Prolog-formalization of this relation between a fault and its topmost



1 t op l ay e r ( Fault , Layer ) :−
2 f a u l t ( Fault ) , g e o l o g i c a l u n i t ( Layer ) ,
3 goes through ( Fault , Layer ) ,
4 \+ ( ontopof ( OtherLayer , Layer ) ,
5 goes through ( Fault , OtherLayer ) ) .
6

7 younger than (F1 , F2) :−
8 f a u l t (F1) , f a u l t (F2) ,
9 t op l ay e r (F1 , R1) , t op l ay e r (F2 , R2) ,

10 above (R1 , R2) .

Figure 6: Prolog formalization of temporal knowledge.

1 g e o l o g i c a l u n i t ( l aye r1 ) . f a u l t ( f a u l t 1 ) .
2 g e o l o g i c a l u n i t ( l aye r2 ) . f a u l t ( f a u l t 2 ) .
3 g e o l o g i c a l u n i t ( l aye r3 ) . goes through ( f au l t 1 , l ay e r3 ) .
4 ontopof ( layer1 , l ay e r2 ) . goes through ( f au l t 2 , l ay e r3 ) .
5 ontopof ( layer2 , l ay e r3 ) . goes through ( f au l t 2 , l ay e r2 ) .

Figure 7: Prolog formalization of end-user knowledge.

layer and the temporal order of faults is presented as top layer and younger than,
respectively, in Figure 6. The Prolog formalization of the former can be read as:
“Fault has top-layer Layer if Fault is a fault, Layer is a geological unit, Fault
goes through Layer, and there does not exist a layer that is on top of Layer which
Fault goes through”.

In Figure 7 we can see an example knowledge base describing some known
facts input by the end-user. From these facts and the definitions of Figure 6 we
can e.g. derive that fault2’s topmost layer is layer2 and fault2 is younger than
fault1.

5 Scalable Infrastructure

Figure 8: Work flow

In order to run the sequence of tools in a reliable and efficient way, we need to
establish a pipeline, see Figure 8, that encapsulates and automates all the different
steps of the process and at the same time is able to scale the simulations to shorten
computing time. As a secondary priority the preparation and installation time on
systems supposed to run this pipeline should be kept as small as possible.



The decision to use rewriting logic in the simulation part of the pipeline enables
us to scale and run the simulations on different systems in parallel. This allows
using affordable standard or cloud-based hardware while still keeping the required
time per use case within reasonable bounds. The chosen approach is to establish a
computation framework which consists of a controller and several worker nodes. The
controller dictates and schedules the workflow while being agnostic of any domain
knowledge. All computation work is done by the worker nodes which have the
necessary domain knowledge and all required tools installed. Each worker node
that is started automatically registers with its controller. The controller exposes
a few webservices to allow user interactions such as starting a computation with
a given set of data, collecting results afterwards, as well as giving access to some
status information. The first step taken in the pipeline is the creation of proto-
scenarios from the input data which was given into the system when submitting
the use case. After this is successfully done, the number of simulations that have
to be run is known to the system for the first time. According to this number,
work packages for the proto-scenarios are prepared and queued. The controller then
starts to asynchronously distribute these work packages to all available and currently
idle worker nodes in set intervals. Each of the nodes then runs a simulation based
on the proto-scenario it received with the work package from the controller and
returns a final configuration as result after finishing the simulation. Each result/final
configuration is reported back to the controller and also persisted into a database
for later evaluation. After all work packages (all simulations) are completed, the
resulting data can be collected by the user by calling the appropriate webservice.

The controller as well as the worker nodes are implemented as Java Spring
applications and use webservices to communicate to each other and the outside
world. The database currently used is PostgreSQL, but could basically be any
relational database that can be used in connection with the Spring Framework
and JPA (Java Persistence API). To increase portability and reduce the effort for
installation and configuration, controller and worker nodes are encapsulated into
Docker images (with the worker node image also containing everything necessary to
create the proto-scenarios and run simulations). All worker nodes use the same
implementation and Docker image, only being different in the configuration of
the Docker container created when first started (namely container name and port
claimed on the host machine, plus IP address in cases where different machines
are used). This allows us to keep administrative work when deploying the pipeline
environment to a minimum.

6 Use Case: multi-scenario analysis of hydrocar-
bon migration and accumulation

This section shows the analysis results of the use case presented in Section 2. Note
that a geological unit GU defined in Section 2 is presented as GeoUnit in our tool.
Based on the facts about depositional environment, the observation of geometrical
relations, and the assumptions of sealing capacity, hydrocarbon migration time, and
reservoir locations, our reasoning engine generates 3024 proto-scenarios for our use
case as the input configurations (i.e., initial states) for the Maude engine. Multi-
scenarios of geological processes are computed by Maude simulation. Currently,
the total execution time, including the time for generating all 3024 proto-scenarios
plus the complete simulation time, using 4 worker nodes in parallel on the same



Figure 9: An Example of Scenario Explanation

machine is about 77 minutes. We observe that the number of scenarios for such
a small use case is already pretty high. This shows that the comprehension of
the geologically oriented subsurface evaluation is likely beyond human capacity and
requires digital support. Therefore, we design an interactive tool interface that
provides users various options to constrain and aggregate the scenarios computed
by Maude. The more constraints given, the less scenarios remained for investigation.
Take an example of our use case, by giving three constraints: (i) GeoUnit 8 is in
distributary channel, (ii) GeoUnit 8 does not have accumulation, and (iii) migration
happened after the trap was formed, the number of scenarios remained is reduced
from 3024 to 14. Based on the observations, evidence (i) and (ii), and assumption
(iii), these 14 scenarios explain all the possible reasons of why GeoUnit 8 in our use
case is a dry well. Figure 9 shows one of the scenario explanations by our engine
among these 14 scenarios. The yellow part highlights the observation, which shows
the location of the source rock and the type of the hydrocarbon. The green parts
highlight the evidence (i) and (ii). The blue part highlights the assumption (iii),
i.e. a trap is formed when the corresponding fault is ceased. In addition, the engine
is capable of providing users the following information: the hydrocarbon migration
pathway, the sealing capacity of faults, how a reservoir is trapped or why a reservoir
cannot be trapped, whether a reservoir has hydrocarbon accumulation or not and the
maximum accumulation volume if any, and the simulation history of hydrocarbon
migration and accumulation. By continuing with the same approach of constraining
scenarios, our tool shows not only that it is possible to find hydrocarbon in the
surrounding area of the dry well GeoUnit 8 but also explains why it is possible and
how the hydrocarbon can be accumulated. Figure 10 is a screenshot of the tool
that shows under which constraints we may find accumulation in GeoUnit 11 and
the number of scenarios is reduced from 14 to 8. The corresponding explanations
of these 8 scenarios are provided by our tool and the format is similar to the one
shown in Figure 9. Note that during the process of constraining scenarios, if none
of the remaining scenarios satisfies the given constraint, the tool shows “No cases
are matched”.

In order to assist the users during the process of constraining scenarios, our
tool provides multiple options for selecting and seeing the variations of a specific



Figure 10: The tool shows that it is possible to find accumulation in GeoUnit 11

Figure 11: An example of how the tool shows the variations of a target category

target category, for example the user can choose to see only the submarine fan
environment and the corresponding permeability and porosity of a reservoir, or all
the possible migration pathways up to a certain reservoir, or the sealing capacity of
a specific fault, or the trap-formation of a reservoir, etc. These supplementary
information pinpoint the evidence across scenarios based on the already given
constraints. Figure 11 shows an example of how our tool presents these variations.
While GeoUnit 8 is in the distributary channel, GeoUnit 11 can only be in either
distributary channel, inter-channel or lobe.

7 Conclusion
In this paper we have shown how our method and tool can support geological
reasoning through historical narratives. By exploring, explaining and constraining
scenarios based on observations, evidence and assumptions, we are able to assist
explorationists in communicate and systematically compare and assess different
hypothetical geological scenarios before deciding which scenario to pursue when
assessing exploration prospects. Our methodology provides a qualitative form of
reasoning and addresses a gap that is currently existing between geologically oriented
work processes and the digital tools available.

The framework offers a novel application of rewriting logic that holds the
potential of extending the scope of formal methods beyond the conventional domain
of computing.
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