
Recent Trends in Software Testing Education:
A Systematic Literature Review

Per Lauvås jr and Andrea Arcuri
Westerdals Oslo ACT, Norway,

and University of Luxembourg, Luxembourg

Abstract
Testing is a critical aspect of software development. Far too often software
is released with critical faults. However, testing is often considered tedious
and boring. Unfortunately, many graduates might join the work force
without having had any education in software testing, which exacerbates
the problem even further. Therefore, teaching software testing as part of
a university degree in software engineering and is very important. But it
is an open challenge how to teach software testing in an effective way that
can successfully motivate students. In this paper, we have carried out
a systematic literature review on the topic of teaching software testing.
We analysed and reviewed 30 papers that were published between 2013
and 2017. The review points out to a few different trends, like the use of
gamification to make the teaching of software testing less tedious.

1 Introduction
In 2017, 606 documented1 software fails did impact half of the world’s population
(3.7 billion people), costing $1.7 trillion in assets. And that is only a small sample
of all different software faults that happen regularly on a daily base in all different
kinds of existing software systems.

Software testing is the most common technique used to reduce the amount of
faults during software development before the software is released to customers.
Unfortunately, software testing is often considered tedious and boring. Furthermore,
many graduates joining the work force as software developers do have a background
in computer science, where proper software engineering foundations like software
testing might be lacking or covered only superficially.

Teaching software testing in a university poses many challenges, as lecturers need
to find ways to overcome the tediousness of testing, to motivate students, and to
show them why software testing is such a critical and fundamental aspect of software
development.

In this paper, we have carried out a systematic review of recent (2013-2017)
work on software testing education. Systematic literature reviews are a method to
synthesise existing research regarding specific research questions in a systematic,

This paper was presented at the NIK-2018 conference; see http://www.nik.no/.
1https://www.tricentis.com/software-fail-watch/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/327107697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

comprehensive, and unbiased way [18]. Our systematic literature review is based on
a selection of 30 papers.

The main contributions of this paper are:

• A systematic literature review of software testing education based on 30 papers
published between 2013 and 2017.

• A categorisation and analysis of current research, where for example experience
reports on pedagogical approaches are the most common kind of research
article.

• A meta-analysis of learned lessons on what to do to improve the teaching of
software testing.

The paper is organised as follows. Section 2 describes how the 30 papers for the
systematic literature review were selected. Section 3 poses three research questions,
which are answered based on the content of the systematic literature review. Finally,
Section 4 concludes the paper.

2 Paper Selection
To select our sample of papers to study current trends in software testing education,
we made a query on Google Scholar. We selected papers published during the span
of five years, from 2013 to 2017. The papers must contain the keywords software and
testing in either their title or abstract. Furthermore, each paper in its title/abstract
must contain at least one of the following keywords: education, student, course,
learn, curriculum and teaching.

Such query was carried out on the 30th of January 2018, and resulted in 57 hits.
We were unable to retrieve two book chapters and one article within these hits. The
remaining selection was independently reviewed by the two authors of this paper to
exclude:

• out of topic papers.

• papers with title/abstract in English, but with the main text in a different
language (e.g., Chinese and Portuguese).

• BSc and MSc theses.

• papers presenting a tutorial done in a conference.

After such filtering phase, the resulting sample was reduced to 30 papers.

3 Paper Analysis
In this paper, we aim at answering the following research questions:

RQ1: What topics are addressed in the recent literature on software testing
education?

RQ2: What kind of contributions are present in papers published on software testing
education?

RQ3: What insight can be provided to lecturers that want to introduce software
testing as part of their teaching?

Table 1: Topic categorisation for the analysed 30 papers.
Topic # Papers References
Pedagogical Approaches 12 [9, 27, 5, 4, 1, 19, 30, 8, 10, 14, 7, 16]
Tooling 7 [24, 11, 17, 15, 32, 31, 13]
Gamification 4 [29, 12, 26, 25]
Benefits and Impact 2 [21, 20]
Outside Higher Education 2 [23, 22]
Course Evaluation 2 [2, 3]
Trends 1 [28]

RQ1: What topics are addressed in the recent literature on
software testing education?
To answer RQ1, each author read through the paper selection, and independently
proposed his own categorisation for each paper. The two categorisations were then
discussed, and merged into a single one, resulting in the following:

Pedagogical Approaches: how to deliver a course on software testing.

Tooling: tools which can be used to facilitate the delivery of software testing
courses.

Gamification: introducing game elements when teaching software testing to create
engagement and stimulate motivation for learning.

Benefits and Impact: expected benefits of teaching software testing concepts.

Outside Higher Education: teaching software testing concepts outside higher
education.

Course Evaluation: how to evaluate software testing courses.

Trends: status on teaching software testing within higher education.

Table 1 shows the topic categorisation of the analysed papers. We see that
Pedagogical Approaches is clearly the largest category with 12 out of 30 papers. There
are also a significant amount of papers describing Tooling (7) and Gamification (4).
Gamification and Pedagogical Approaches are clearly related. They both concern
how to deliver a course. In fact, gamification can be regarded as a pedagogical
approach [6]. The three largest categories may therefore tell us how to deliver
courses on software testing and what tools could help us in the process. These three
categories constitute 77% of the papers in our review.

Some of the pedagogical papers have a foundation from pedagogical theory.
Within a blended classroom setting, educators may use an adaptive approach to
teaching grounded in Vygotsky’s zone of proximal development [4]. Teachers may
aim for an increased depth of understanding according to Blooms Taxonomy levels
by spending less time on lectures [5]. There are multiple good reasons to flip the
classroom [30]. Two papers describe how courses may be designed according to the
educational philosophy CDIO (Conceive - Design - Implement - Operate)[8, 16].

Other papers within the pedagogical category do not have the same strong
theoretical foundation within pedagogy, but they do address how to teach software
testing. With so many openly accessible open source projects, educators should use
these real-world projects in their teaching [19, 10]. As Data Structures is a well
known topic within Computer Science and Software Engineering studies, why not
use the topic to teach software testing [9]? Multiple papers recommend to place
students in teams. They can also be placed in pairs to perform pair testing [1]. A
specific subtopic, metamorphic testing, has the potential to really engage students
in creative classroom activities [27]. Using exploratory teaching, students learn via
negative experiences in practical situations [14].

Multiple existing tools may be used to support the teaching of software testing.
Educators can use a collaborative virtual environment (CVE) [24] or a cyberlearning
environment, such as WRESTT-CyLE [11, 31]. Teachers may develop web-based
courses using multiple learning tools [17]. Some describe and evaluate tools
where students may upload program code, including tests, to get an evaluation
automatically [15, 13]. With HoliCoW [32], student code can be manipulated
(mutated) so that instructors can run regression tests and evaluate the robustness of
the original software.

Introducing game elements can make software testing education more enjoyable.
Such elements can be digital games. In Code Defenders [12], the students learn
and practice testing concepts as they play the game. Students playing the Testing
Game [29] will more specifically learn functional, structural and mutation testing.
The games do not have to be digital. Using a custom, physical card game can also
strengthen the learning of software testing [26]. Gamifying software testing education
does not have to include actual games. With HALO - ‘‘Highly Addictive sociaLly
Optimized Software Engineering’’ [25] software testing techniques are disguised
as quests. The student can complete quests to receive rewards in the form of
achievements, titles and experience points.

The remaining categories have one or two articles in our review. Both papers
within Benefits and Impact describe how software testing knowledge leads to more
reliable code [21, 20]. Two papers on teaching software testing outside higher
education were found. One involves K12 education [23], and one describes a training
course for software developers [22]. Two papers suggest how teachers may evaluate
the delivery of a software testing course through direct [2] and indirect [3] assessment.
A single paper was found in the category Trends. In this paper we find a description
on how software testing education has been approached in Brazil and abroad [28].
The authors identify a lack of software testing on the curricula. Few lectures are
assigned to the teaching of software testing. Furthermore, software testing is seldom
integrated with other possible disciplines. 11 different initiatives to support software
testing education, found within existing research, are described.

RQ1: There are three main topics in recent research litterature on software
testing in education: Pedagogical Approaches, Tooling and Gamification.

Other less described topics include Benefits and Impact, Outside Higher
Education, Course Evaluation and Trends.

RQ2: What kind of contributions are present in papers
published on software testing education?
To answer RQ2, we defined the following types of contribution given by the papers:

Table 2: Types of contribution for the analysed 30 papers. The papers are grouped by
topic: Pedagogical Approaches (P), Tooling (To), Benefits and Impact (I), Outside
Higher Education (O), Course Evaluation (E) and Trends (Tr).

Topic Reference Experience Experiment Survey Interview Review
P [27] X

[8] X
[10] X
[14] X
[4] X

[19] X X
[5] X X
[1] X
[9]

[30]
[7]

[16]
To [32] X

[31] X
[13] X
[24] X
[11] X X
[17] X X
[15] X X

G [25] X
[29] X
[26] X
[12]

I [20] X
[21] X X

O [22] X X X
[23]

E [2] X
[3] X

Tr [28] X

Total 30 16 4 9 2 1

Experience: reports on anecdotal personal experience in teaching software testing.
Papers may include some statistical analyses.

Survey: questionnaires to students and/or professionals.

Interview: interview with students, instructors or other persons involved in a
course delivery.

Review: literature review or review of current practices.

Experiment: controlled empirical study involving human subjects (typically
students).

A paper could provide none, one or more kinds of contribution. Papers that
provide none of these contributions are usually short position papers discussing for
example possible plans for future work, or ideas/tools not evaluated yet.

Table 2 shows our categorisation. Experience is the most common type of
contribution within our findings. These papers are stories from software testing
course deliveries or structural changes within software testing education. With
these stories, other educators may learn from the experience and pick up good ideas
to use in their own teaching. ‘‘This paper presents some reflections on a number
of classroom experiences of five academics, working in different teaching contexts,
all of whom share an expertise in the software quality assurance area of software
testing(..)’’ [27]. Perceived increased learning outcome and happier students are
often described results within these papers, but they are not always backed up by
scientific evidence. ‘‘We obtained good teaching results and reached the goal of
modern engineering education reform’’ [8]. Some articles within the category did
include statistical data to support the reported experiences [4, 5, 31, 13, 2, 11, 15, 17],
but not within a controlled experiment: ‘‘Mixed model repeated measures ANOVAs
were conducted for both statement and branch coverage for unit, subsystem, and
system testing to compare the effect of availability and knowledge of the use of code
coverage tools (IV) on percentage of code coverage (DV) across the Fall 2012 and
Fall 2013 semesters’’ [11].

Some of the experience reports did also include Survey, which is our second largest
type of contribution. Data from a course delivery and reflections from the educators
can be combined with a survey with the students or trainees [11, 17, 15, 22, 19].

When students are asked to fill out a questionnaire, they normally do so as a
part of a course evaluation. But we also find examples of surveys completed at the
start of a course [17]. There is also a survey with professors that teach introductory
programming courses to evaluate their level of software testing knowledge [21]. We
find different topics within the different student surveys:

• The perception of the usefulness of testing tutorials within a tool [11].

• Usefulness of the collaborative features in a tool [11].

• Course-start survey [17].

• Course-end survey [17, 3, 22].

• Survey on reflective thinking [15].

• Evaluation of a testing game [29, 26].

• Achievement test [22].

Not all details about practicalities are reveiled about the different surveys, but
the Likert scale is mentioned multiple times[29, 26, 22].

We found Experiment to be somewhat well represented within our findings.
Two of the papers [21, 20] (from the same research project) investigate the possible
impact of software testing knowledge on the production of reliable code. They found
that code written after exposition to software testing knowledge was 20% more
reliable. The concept of pair programming can be applied to students who write test
cases [1]. Students write better test cases when they write them in pairs. The test

cases will detect more errors and have better code coverage. Collaborative Virtual
Environments (CVEs) can be used for software testing courses [24]. Results suggest
that students working virtually through a CVE can obtain equivalent results as
those students who do not.

Interview (2) and Review (1) were less represented within our findings. The
interviews were with students and a manager. The students [5] were interviewed in
groups ‘‘to learn the students’ opinion, attitude and behavior towards their learning’’.
The manager [22] was interviewed three months after the software developers had
finished their software testing course. This was done to investigate ‘‘if there had been
any changes to the processes or activities performed by this unit(...)’’. The single
paper in the Review category provide an overview of CS curricula in and outside
Brazilian universities. It also includes a systematic mapping to describe initiatives
within existing research to support software testing education.

RQ2: Recent papers on software testing in education include many experience
reports. Another major type of contribution is survey. There are also papers
providing controlled experiments. Interviews and reviews also appear, but less

frequently. Position papers are quite common.

RQ3: What insight can be provided to lecturers that want to
introduce software testing as part of their teaching?
To answer RQ3, we analysed which types of suggestions and shared learned lessons
are present in the selected 30 papers. Here we discuss the one that most often
appeared among these papers.

Motivate Students: Software testing may be perceived as boring by the students.
What can we as educators do to address that?

Multiple papers state that software testing is not well accepted among students.
Many students find it dull and not very interesting:

• ‘‘Students often view testing as a boring and unnecessary task, and education
is usually focused on building software, not ensuring its quality.’’ [19]

• ‘‘(...) standard testing techniques are often perceived as boring and difficult
when compared to creative programming and design activities, which dominate
education.’’ [12]

• ‘‘(...) students remain averse to software testing as there is low student interest
in software testing.’’ [25]

• ‘‘(...) many students feel unmotivated to learn contents related to software
testing.’’ [29]

• ‘‘A major challenge was to dispel the stigma of software testing and maintenance
as an unholy alliance of arguably the two least favored tasks within the realm
of the software life cycle’’ [4]

Learning is not easy when motivation is low. Increasing the motivation for
software testing could therefore be a natural aim when teaching the topic. Multiple
papers within our findings discuss motivation.

All papers within the Gamification category do, naturally enough, involve
motivation. The game elements are there to increase motivation in the first
place. The papers with empirical data do find that introducing games or game-like
elements increase motivation or the level of excitement: ‘‘Through the feasibility
study performed, we observed that the Testing Game have good quality regarding
motivation (...)’’ [29]. ‘‘(...) brings benefits in the form of group learning and
enjoyable learning’’ [26]. ‘‘Finally, a fun, informal, and collaborative classroom was
used to prevent creating stereotypes that CS is boring’’ [25].

But it is possible to increase motivation without using gamification. Some
recommend to use real-world projects [11, 19, 10] and industry testing tools [11, 1,
19, 10]. The real-world projects can be selected within open-source projects [19, 10].
By doing so, the students will see that testing skill and knowledge can solve real
problems on existing projects. And if the students are placed in teams, they will be
in a typical real-world setting, and they may experience the benefits of collaborative
learning [11]. The students may also be the active part when the projects are to
be selected to further increase the motivation [19]. The use of code coverage tools
motivate the students to improve their test suites [11].

Specific topics within software testing can also stimulate motivation. Mutation
testing involves making small changes in a computer program. A mutated version is
called a mutant. When good test cases exist for a program, they will manage to kill the
mutant. A live mutant can guide further test generation efforts. The robustness of the
program can be measured by evaluating how many mutants the written test cases will
detect. Multiple papers mention mutation testing specifically [29, 12, 21, 19]. Killing
mutants can be a game in itself [12], but even without gamification, the introduction
of inserted mutants can engage the students. They can see how important test cases
are, and they can see how the program robustness is increased when a test suite is
expanded and refined. Some describe a tool ‘‘that simulates production environments
through forced logical error injections into student projects.’’ [32] without referring
to it as mutation testing.

RQ3: Software testing education does not have to be dull and boring. We, as
educators, can use real-world projects, industry tools, mutation testing and

gamification to create enthusiasm and motivation among our students.

4 Conclusion
In this paper we have carried out a systematic literature review on software testing
education. The review was based on a selection of 30 papers, published between
2013 and 2017.

The papers give an impression that software testing is an important topic, but
does not receive enough attention in Computer Science and Software Engineering
education. When students do approach software testing concepts, they find it to be
dull and of little interest. But these issues can be addressed. This review shows that
many aspects within software testing education are discussed in recent literature.
The papers offer many forms of contributions. The most common suggestions involve
getting the students motivated for learning, using different kinds of techniques and
tools to achieve it.

Future work will study how the trends change through time, e.g., by looking at
older articles from before 2013. There are also many research questions that, for

reason of space, were not addressed in this paper, like for example: In which venues
are this type of research papers published? Are there conflicting reccomandations
in different experience reports? What is the empirical or anecdotal evidence to
reccomand teaching software testing in its own dedicated courses instead of being
part of more general programming ones (or vice-versa)? Etc.

Acknowledgment
This work is supported by the Research Council of Norway (project on Evolutionary
Enterprise Testing, 274385), and by the National Research Fund, Luxembourg
(FNR/P10/03).

References
[1] I. Alazzam and M. Akour. Improving software testing course experience with

pair testing pattern. International Journal of Teaching and Case Studies,
6(3):244--250, 2015.

[2] A. Alelaiwi. Direct assessment methodology for a software testing course. Life
Science Journal, 11(6s), 2014.

[3] A. Alelaiwi. Indirect assessment of student learning in a software testing course.
Life Science Journal, 11(6s), 2014.

[4] M. Allison and S. F. Joo. An adaptive delivery strategy for teaching software
testing and maintenance. In Computer Science & Education (ICCSE), 2015
10th International Conference on, pages 237--242. IEEE, 2015.

[5] R. Aziz. Improving high order thinking skills in software testing course.
International Journal of Computer Science and Information Security, 14(8):966,
2016.

[6] J. Banfield and B. Wilkerson. Increasing Student Intrinsic Motivation And Self-
Efficacy Through Gamification Pedagogy. Contemporary Issues In Education
Research - Fourth Quarter, 7(4), 2014.

[7] Z. Bin and Z. Shiming. Curriculum reform and practice of software testing. In
International Conference on Education Technology and Information System
(ICETIS 2013), pages 841--844, 2013.

[8] Z. Bin and Z. Shiming. Experiment teaching reform for software testing
course based on cdio. In Computer Science & Education (ICCSE), 2014 9th
International Conference on, pages 488--491. IEEE, 2014.

[9] I. A. Buckley and W. S. Buckley. Teaching software testing using data structures.
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE
AND APPLICATIONS, 8(4):1--4, 2017.

[10] Z. Chen, A. Memon, and B. Luo. Combining research and education of
software testing: a preliminary study. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pages 1179--1180. ACM, 2014.

[11] P. J. Clarke, D. L. Davis, R. Chang-Lau, and T. M. King. Impact of using
tools in an undergraduate software testing course supported by wrestt. ACM
Transactions on Computing Education (TOCE), 17(4):18, 2017.

[12] B. S. Clegg, J. M. Rojas, and G. Fraser. Teaching software testing
concepts using a mutation testing game. In Software Engineering: Software
Engineering Education and Training Track (ICSE-SEET), 2017 IEEE/ACM
39th International Conference on, pages 33--36. IEEE, 2017.

[13] D. M. de Souza, B. H. Oliveira, J. C. Maldonado, S. R. Souza, and E. F. Barbosa.
Towards the use of an automatic assessment system in the teaching of software
testing. In Frontiers in Education Conference (FIE), 2014 IEEE, pages 1--8.
IEEE, 2014.

[14] B. Doersam. Teaching of software testing and quality issues. In EDULEARN14
Proceedings, pages 80--88. IATED, 2014.

[15] E. Fridge and S. Bagui. Impact of automated software testing tools on reflective
thinking and student performance in introductory computer science programming
classes. International Journal of Information and Communication Technology
Education (IJICTE), 12(1):22--37, 2016.

[16] S. Jia and C. Yang. Teaching software testing based on cdio. World Transactions
on Engineering and Technology Education, 11(4), 2013.

[17] J. Kasurinen. Experiences from a web-based course in software testing and
quality assurance. International Journal of Computer Applications, 166(2),
2017.

[18] K. Khan, R. Kunz, J. Kleijnen, and G. Antes. Systematic reviews to support
evidence-based medicine. Crc Press, 2011.

[19] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr. Using a real world
project in a software testing course. In Proceedings of the 45th ACM technical
symposium on Computer science education, pages 49--54. ACM, 2014.

[20] O. A. L. Lemos, F. C. Ferrari, F. F. Silveira, and A. Garcia. Experience
report: Can software testing education lead to more reliable code? In Software
Reliability Engineering (ISSRE), 2015 IEEE 26th International Symposium on,
pages 359--369. IEEE, 2015.

[21] O. A. L. Lemos, F. F. Silveira, F. C. Ferrari, and A. Garcia. The impact of
software testing education on code reliability: An empirical assessment. Journal
of Systems and Software, 2017.

[22] G. Lopez, F. Cocozza, A. Martinez, and M. Jenkins. Design and implementation
of a software testing training course. In 122nd ASEE Annual Conference &
Exposition, 2015.

[23] T. Michaeli and R. Romeike. Addressing teaching practices regarding software
quality: Testing and debugging in the classroom. In Proceedings of the 12th
Workshop on Primary and Secondary Computing Education, pages 105--106.
ACM, 2017.

[24] J. P. U. Pech, R. A. A. Vera, and O. S. Gómez. Software testing education
through a collaborative virtual approach. In International Conference on
Software Process Improvement, pages 231--240. Springer, 2017.

[25] S. Sheth, J. Bell, and G. Kaiser. A gameful approach to teaching software design
and software testing - assignments and quests. Technical report, Technical
Report cucs-030-13, Dept. of Computer Science, Columbia University, 2013.
http://mice. cs. columbia. edu/getTechreport. php, 2013.

[26] A. Soska, J. Mottok, and C. Wolff. An experimental card game for software
testing: Development, design and evaluation of a physical card game to deepen
the knowledge of students in academic software testing education. In Global
Engineering Education Conference (EDUCON), 2016 IEEE, pages 576--584.
IEEE, 2016.

[27] D. Towey, T. Y. Chen, F.-C. Kuo, H. Liu, and Z. Q. Zhou. Metamorphic testing:
A new student engagement approach for a new software testing paradigm. In
Teaching, Assessment, and Learning for Engineering (TALE), 2016 IEEE
International Conference on, pages 218--225. IEEE, 2016.

[28] P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado. Cs curricula of the
most relevant universities in brazil and abroad: Perspective of software testing
education. In Computers in Education (SIIE), 2015 International Symposium
on, pages 62--68. IEEE, 2015.

[29] P. H. D. Valle, A. M. Toda, E. F. Barbosa, and J. C. Maldonado. Educational
games: A contribution to software testing education. XLVII Annual Frontiers
in Education (FIE). IEEE, 2017.

[30] J. van Eijck, V. Zaytsev, et al. Flipped graduate classroom in a haskell-based
software testing course. In Pre-proceedings of the Third International Workshop
on Trends in Functional Programming in Education (TFPIE 2014), 2014.

[31] P. Yujian Fu and P. J. Clarke. Integrating software testing to cs curriculum
using wrestt-cyle. 2015.

[32] P. Zhang, J. White, and D. C. Schmidt. Holicow: automatically breaking team-
based software projects to motivate student testing. In Software Engineering
Companion (ICSE-C), IEEE/ACM International Conference on, pages 436--439.
IEEE, 2016.

