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Abstract
The Vulkan API provides a low level interface to modern Graphics
Processing Units (GPUs). We demonstrate how to use Vulkan to send
commands explicitly to separate GPUs for implementing platform,- and
vendor independent multi-GPU rendering. We describe how to implement the
sort-first and sort-last approaches to perform parallel rendering with Vulkan.
We introduce an abstraction library which we have made available, and an
application for multi-GPU rendering of meshes. Performance benchmarks
have been performed in order to evaluate the implementation. We also show
that we can utilize the additional GPU memory from multiple GPUs to render
larger data sets than possible with a single GPU.

1 Introduction
Graphics Processing Units (GPUs) are dedicated hardware for accelerating computer
graphics. To implement applications with computer graphics, we can utilize a graphics
Application Programming Interface (API). These graphics APIs provide an interface
to GPUs in a vendor neutral way. For demanding graphics rendering, using multiple
GPUs can improve performance. However being able to use multiple GPUs from
different vendors is not straight forward. Few graphics APIs have the features necessary
to implement a general solution to multi-GPU rendering. With recent graphics APIs
providing a lower level interface than before, developers have more freedom to manage
details of the rendering process. This paper describes how to use Vulkan Application
Programming Interface (API) to achieve multi-GPU rendering. We introduce an open
source abstraction library for this purpose, and a prototype application that uses the library
for sort-first and sort-last rendering of meshes.

Being able to select explicitly which GPU to assign work to, is important for
implementing a solution for multi-GPU rendering. Core OpenGL does not support
explicit selection of GPUs on the Windows operating system. To be able to assign
work to each GPU explicitly with OpenGL, we have to rely on extensions specific
to GPU vendors. AMD’s GPU association extension [1] and NVIDIA’s GPU affinity
extension [2] provide the functionality of creating OpenGL contexts associated with
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specific GPUs. Though AMD’s extension target both consumer and professional GPUs
[3], NVIDIA’s extension is limited to their professional lineup (Quadro) only [4]. Hence,
these extensions can not be considered a general solution to implement explicit multi-
GPU rendering on consumer GPUs.

Explicit selection of GPUs is possible with Direct3D. Direct3D is however designed
for the Windows operating system and is not an open API. However, Vulkan is an open
API, which most likely will be supported by drivers and most operating systems for the
foreseeable future.

Vulkan API launched 16th February 2016 and is “a new generation graphics and
compute API that provides high-efficiency, cross-platform access to modern GPUs [. . .]”
[5]. Contrary to OpenGL, where explicit control over GPUs is only available by
extensions, with Vulkan, GPUs must be accessed explicitly. This provides the flexibility
to implement multi-GPU rendering in a general solution for all Vulkan-capable GPUs,
including consumer grade products.

2 Related work
Different ways of subdividing rendering into individual tasks that can be performed in
parallel has been described by Molnar et al. [6]. They introduced the concepts of sort-
first decomposition which is a partitioning of the screen into tiles, each being rendered
in parallel, and sort-last decomposition which partitions the data instead, for instance
the triangles of a 3D mesh. For both decompositions, the resulting renderings must be
composited to one final image.

A large amount of research has been performed on rendering strategies when utilizing
clusters of computers [7]. In such settings, low latency and scalability is central. Our
work is orthogonal to these works as it can be used in any framework for utilizing multiple
GPUs on each computer node.

Hardware-specific multi-GPU and multi-CPU rendering frameworks have been
released, such as NVIDIA Optix [8] for NVIDIA GPUs, AMD RadeonRays [9] for
AMD GPUs and Intel Embree [10] for Intel Xeon CPUs. These solutions offer APIs
for raytracing and are tailored for specific hardware whereas ours interface the low level
Vulkan API on any Vulkan compatible GPU.

NVIDIA’s Scalable Link Interface (SLI) [11] and AMD’s Crossfire [12] offer
automatic, but limited utilization of several graphics cards residing in one computer. This
is handled by the graphics drivers and does not require a change in the application itself.
Both vendors offer two types of parallelization, alternate frame rendering where altenate
frames are rendered by alternate GPUs, and split frame rendering where the rendering
window is split and each GPU renders a part of it. SLI only works with identical NVIDIA
GPUs while Crossfire can work with different AMD GPUs. Our solution can utilize any
combination of Vulkan capable GPUs, regardless of vendor or model.

3 Multi-GPU with Vulkan API
The Vulkan API provides explicit access to GPUs allowing the developer to allocate
resources, and perform rendering and compute operations. Vulkan has no global state,
as all state is represented by objects. This provides the opportunity to implement multi-
threading without context switches, as there is no global context to take into account.

Vulkan, and most other graphics APIs implements graphics rendering using the
graphics pipeline [13]. The graphics pipeline is a series of steps to produce pixels on



the screen from 3D geometry. This pipeline is accelerated on the GPU to improve
performance. With Vulkan, we have to initialize the resources necessary for rendering
on a per-GPU basis. This adds some upfront work for the developer, compared to higher
level graphics APIs like OpenGL. However, it also allows flexibility to schedule different
rendering commands to different GPUs, which is necessary to implement a general multi-
GPU implementation.

When implementing an application utilizing Vulkan, we first create a Vulkan instance
[14, p. 38], from which we can enumerate physical devices [14, p. 44] (see Figure 1).
These physical devices represents the Vulkan capable GPUs in our system. However
all interaction with a GPU happens through a logical device [14, p. 56]. The logical
device represents a subset of the functionality available for a physical device. When
using multiple GPUs we create one logical device for each of them.

VkInstance

vkEnumeratePhysicalDevices

VkPhysicalDevice VkPhysicalDevice ...

VkDevice ...

VkCommandPool VkQueue VkRenderPass

VkCommandBuffer Render pass instance

Draw commands

Figure 1: Vulkan objects used for multi-GPU rendering, and how they relate. The arrows
show how we can use the API to record draw commands and the render pass instance they
belong to into a command buffer. Command buffers are submitted to queues.

From a logical device we can create resources, allocate device memory, execute
commands, bind resources to pipelines. We can perform rendering with graphics
pipelines, and execute compute shaders with compute pipelines. Drawing with graphics
pipelines must happen inside a render pass.

To execute commands on a GPU we must submit command buffers, which are batches
of commands, to a queue. Command buffers are allocated from command pools [14,
p. 70], which must be created from a logical device.

We have to specify which queues to create upon creation of the logical device. Queues
belong to queue families that describe the capabilities of the queue, for instance graphics-
and compute capabilities [14, p. 63]. Information about available queue families can be
queried from the physical device. Multiple queues can execute commands in parallel,
though the graphics driver must distribute the computational units of the GPU. Queue
priorities allow us to hint to the driver which queues to prioritize more.

Render passes [14, p. 187] encapsulate attachments, subpasses and subpass
dependencies. The attachments describe the layout of framebuffers that can be rendered



to. Drawing commands can only be recorded within a subpass of a render pass instance.
Multiple of these subpasses can be executed in parallel, and subpass dependencies provide
synchronization guarantees between them. Upon starting a render pass instance, we have
to specify a framebuffer object. This framebuffer encapsulates information about the
specific attachments (texture, depth buffer, etc) that will hold the result from rendering.

Resources and memory are separated in Vulkan. There are two types of resources
in Vulkan, buffers [14, p. 335], and images [14, p. 345]. Resources must be bound to
memory objects before use. These memory objects [14, p. 293], are allocated from the
logical device. The memory can either be device local (GPU memory), or host local (main
memory). Device local memory is usually not visible for the host, so in order to transfer
data to GPU memory, it must first be loaded into a host local staging buffer, which can
then be copied to the device local memory through the API.

Vulkan only supports shaders in the byte code format SPIR-V [15]. To use shaders, we
must create shader modules [14, p. 229], which are combined in pipelines [14, p. 247]. We
must bind a graphics pipeline inside a render pass instance before our draw commands.
We can dispatch compute shaders with compute pipelines.

4 A Vulkan Abstraction Library
To take care of the low-level Vulkan details described above, we have made publicly
available the library Boilerplate (BP) [16], a cross platform abstraction library
implemented along with the multi-GPU application. BP consist of C++ wrappers of
Vulkan objects, and abstractions hiding complexity of the API. The core module bp
provides the wrappers and abstractions of Vulkan, and additional modules can be utilized
for creating e.g. windows and scenes.

While many of the classes implemented with bp are simple wrappers of Vulkan
objects, some of the classes provide a higher level abstraction that hides complexitites
of Vulkan. Examples of the latter are devices, memory allocators, attachments, subpasses
and render passes. To take care of the multi-GPU details of parallelization and
compositing, the module bpMulti provides classes for implementing sort-first and sort-
last rendering.

Instance and Device
The first step when implementing an application utilizing Vulkan API, is to create an
instance object. If the intention is to use the bpQt module for creating a Qt window,
a QVulkanInstance object, must be created. Otherwise, we can use the abstraction
bp::Instance together with the bpView module, or other window libraries that can
provide a Vulkan representation of the window.

The next step is to create a logical device, represented by bp::Device for each of
the GPUs that should be used. We create devices with at least a graphics capable queue.
We can also specify that the device should be capable of presenting its result to a specific
window.

A bp::MemoryAllocator object is provided by the device, which is used to
allocate memory for buffers or images. This abstraction is a wrapper of Vulkan Memory
Allocator [17], an open source library from the GPUOpen initiative by AMD. The
memory allocator allocates memory optimally in large chunks, rather than using small
allocations for each resource.



Rendering with Boilerplate
The render pass abstraction provided by BP, bp::RenderPass, takes care of recording
to a command buffer the commands for a render pass instance, and the subpasses within
that render pass instance. Subpasses, represented by an abstract class bp::Subpass,
must be added to the render pass before initialization.

Draw commands can only be executed inside a subpass of a render pass instance.
To implement a subpass, we must inherit bp::Subpass and override the render
method. Subpass dependencies can be added to a subpass with the addDependency
method. Attachments to use in a subpass are represented by bp::AttachmentSlot
objects. Subpass dependencies, as well as attachment slots must be set before adding the
subpasses to a render pass.

When executing a render pass instance, we must provide a framebuffer, represented
by bp::Framebuffer, that holds attachments for each of the attachment slots
in use by the subpasses. The abstract class bp::Attachment represents a
framebuffer attachment, and is inherited by bp::Texture and bp::Swapchain. A
bp::Texture object encapsulates a single offscreen image, and a bp::Swapchain
represents a series of images used to render to a window or display. A simple renderer
would usually implement a swapchain as color attachment, and a texture as depth
attachment.

To execute the commands on the GPU we must submit the recorded command
buffer to the graphics-capable queue. When the commands have finished executing, our
attachments will contain the rendering result.

5 Multi-GPU Implementation
We have made available the source code [18] of a prototype application that supports
loading 3D meshes from file, and rendering with either sort-first or sort-last multi-GPU
approaches. Each GPU renders its contribution to a texture. The textures are composited
to the final frame by one of the GPUs, before it is presented to the screen. The current
implementation executes five steps in order to render a frame:

1. Rendering the contributions for each GPU into textures.

2. Copy the contributing textures from the secondary GPUs to the host (CPU and main
memory).

3. Redundant memory to memory copying step (discussed later) of the contributing
textures.

4. Copying the textures from host to the primary GPU.

5. Combining the contributions into the final image in a compositing step.

If these steps are executed sequentially every frame, the overhead from the three
copying steps would be a bottleneck for performance. In order to increase the frame rate,
functional parallelism (pipelining) is introduced, such that some stages can execute in
parallel. This approach increases frame rate, however the latency from starting rendering
a frame until presenting it on the screen is not improved. See Figure 2 for a timeline of
the rendering process across a few frames.

It is possible to parallelize stages executing on a single GPU by submitting commands
to different queues. This has been utilized to perform rendering on the primary GPU in
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Figure 2: Illustration of a timeline for two GPUs A and B over three frames. H represents
the host CPU and main memory. White steps are rendering, gray steps are copying, and
black steps are compositing.

parallel with the last copying step, but requires the primary GPU to support a separate
transfer-capable queue. When using multiple queues, the GPU and driver software takes
care of scheduling the submitted tasks. Without using multiple queues, the rendering step
and the compositing step on the primary GPU could be submitted in the same batch, by
implementing two subpasses in a single render pass. This approach could be useful for
GPUs that only support a single graphics capable queue, as multiple subpasses can in
some cases be executed in parallel (depending on GPU and driver implementation).

Two multi-GPU approaches are supported, sort-first and sort-last. For both
approaches, the GPUs render their contributions into textures. Each GPU needs two
textures used as framebuffer attachments: the color attachment and the depth attachment.
In our implementation, the color attachment is implemented as a 32-bit RGBA texture and
the depth attachment as a 16-bit depth texture. Both are represented by bp::Texture
objects.

To render a mesh loaded by the application, a subpass have been implemented by
inheriting bp::Subpass. This subpass is then executed in a render pass instance
by each of the GPUs. After rendering the contributions of each GPU to textures, and
copying the contributions from the secondary GPUs to the primary GPU, they must be
composited into a final image. A subpass executed within a render pass, performs this
compositing step. The compositing and parallelization of multi-GPU rendering is handled
by compositor classes provided by the module bpMulti.

Sort-first
The sort-first approach is implemented by partitioning the screen into horizontal tiles of
fixed height (see Figure 3a). Each GPU renders its tile to the framebuffer consisting of the
color- and depth attachment textures. Then the color textures rendered on the secondary
GPUs are copied into the primary GPU before composition. The textures contain the
finished rendering for each tile, which must be copied into their correct screen positions.



For this, we draw a rectangle for each of the contributions, while sampling the color from
the texture in the fragment shader.

(a) Screenshot illustrating the sort-first approach. (b) Screenshot illustrating the sort-
last approach.

Figure 3: Screenshots illustrating the sort-first and sort-last implementations running on
two GPUs shown with two different colors.

Sort-last
Sort-last parallelization is implemented by partitioning the geometry (see Figure 3b).
Each GPU renders its portion of the geomerty into textures of the same size as the render
window. The contributing textures are copied from the secondary GPUs to the primary
GPU. For sort-last, both the color- and depth textures must be copied, and the compositing
must compare the fragment depths to decide from which texture to sample the color.

In order to composite the contributing textures into the final image, we draw a full
screen quad for each contribution. In the fragment shader we sample the color from the
color texture, and set the fragment depth to the value sampled from the depth texture.
Then the depth test takes care of selecting the closest fragment.

Copying Contributing Textures
The time it takes to copy a texture from one GPU to another increases with resolution.
Therefore the three steps for copying the contributing textures can quickly become a
bottleneck.

The naive solution to copy a texture from one GPU to another, is to have a host-
allocated staging buffer for each of the GPUs, then map these buffers and copy between
them. Both of these staging buffers are located in main memory. Therefore copying
between them is in theory a redundant step. The implemented copying process is to first
copy from GPU memory to a staging buffer, then copy between the two staging buffers,
before finally copying from the second staging buffer to the destination GPU.

In order to speed up the copying process for the redundant step, the memory is copied
chunk-wise on multiple threads as a single thread is not able to utilize the entire memory
bandwidth available. The tradeoff is high CPU usage.

To avoid the redundant copying step results in one less step to execute, increased
frame rate and reduced CPU usage. For, we need a staging buffer shared between
the source and destination GPUs. This could be possible using the Vulkan device
extension VK_EXT_external_memory_host [14, p. 1247]. However, the extension



requires driver support which is currently limited. AMD and NVIDIA have contributed
in developing the extension [19]. Therefore it may be supported in future driver releases.

6 Results
In order to evaulate the implementation, performance have been measured for benchmarks
tailored specific to the sort-first and sort-last approaches. Two different hardware
configurations have been tested, both utilizing only dedicated GPUs. Testing Computer 1
(TC1) has three relatively powerful GPUs (Table 1a). Testing Computer 2 (TC2) has two
GPUs from different vendors (Table 1b), which shows that the implementation is vendor
agnostic and can work with any Vulkan capable GPUs.

CPU Intel Core i7-6850K
RAM 64GB
GPU 1 Nvidia GeForce GTX 1080 8GB
GPU 2 Nvidia GeForce GTX 1080 8GB
GPU 3 Nvidia GeForce GTX 1080 8GB

(a) Specifications of testing computer 1 (TC1).

CPU Intel Core i7-7700K
RAM 32GB
GPU 1 Nvidia GeForce GTX 760 2GB
GPU 2 AMD Radeon RX 460 2GB

(b) Specifications of testing computer 2
(TC2).

Table 1: Specifications of the testing hardware used for benchmarking.

For both the sort-first and sort-last approaches, each GPU renders to off-screen
framebuffers. The pixels from these framebuffers are combined to produce the final
image. The difference between them is that the sort-first approach distributes pixels
to render among the GPUs, while the sort-last approach distributes geometry. So a
benchmark that shows performance increase for the sort-first approach, might not scale
as well for the sort-last approach. This is why two different benchmarks have been
implemented. All the benchmarks was executed with a screen resolution of 1024x768.

Sort-first Benchmark
Since the sort-first approach distributes the pixels to render among the available GPUs, a
benchmark suitable for evaluating the performance of the sort-first implementation would
be demanding per pixel. One such use case is ray tracing. Ray tracing is a rendering
technique that calculates the color per pixel by tracing light rays backwards into the scene.
To simulate a per-pixel demanding workload, the implemented benchmark for the sort-
first implementation draws a rectangle filling the framebuffer for each GPU, and performs
demanding calculations in the fragment shader.

The performance results for the sort-first benchmark on TC1 (see Figure 4a), shows a
58% increase of frame rate from a single GPU to two GPUs. Adding a third GPU further
increased the frame rate 22%, which is a 94% improvement compared to a single GPU.
The GPU utilization was 79% and 65% for two and three GPUs respectively, compared
to an ideal implementation.

On TC2 the sort-first results did not improve performance, as the difference in
performance of the GTX 760 and the RX 460 was too large to get performance
improvement in this benchmark. This is perhaps due to the difference in Raster Operations
Pipeline (ROP) count, of which the GTX 760 has 32, and the RX 460 has 16. However
for the demanding geometry implemented in the sort-last benchmark, the two GPUs
performed similarly.



(a) Sort-first performance results. (b) Sort-last performance results.

Figure 4: Diagrams showing the performance for TC1. Performance is measured in
Frames Per Second (FPS). Our solution successfully accelerates rendering when adding
more GPUs

Sort-last Benchmark
The sort-last approach distributes geometry among the available GPUs. The benchmark
used to evaluate the sort-last implementation is to draw a large enough amount of
geometry, such that a single GPU is not powerful enough to achieve good performance.
Then the geometry can be distributed between the GPUs to improve performance.

Since TC1 is significantly more powerful than TC2, the benchmark was run with
different amount of geometry for each of the computers. TC1 was tested with a large
mesh of a Boeing airplane (see Figure 5a), with more than 280 million triangles. This
mesh was used with permission by the Boeing company. TC2 was benchmarked with
a reconstructed mesh of a statue of Lucy (see Figure 5b), with more than 28 million
triangles, provided by the Stanford 3D Scanning Repository [20]. The Lucy mesh was
rendered twice, resulting in about 56 million triangles.

(a) Screenhot of the Boeing airplane model. Our
copy of the model is missing some geometry, but
it is still suitable for benchmarking.

(b) Screenshot of the reconstructed
mesh of a statue of Lucy.

Figure 5: Screenshots of the meshes used for benchmarking the sort-last implementation.



The performance results from the sort-last benchmark rendering the Boeing airplane
on TC1 (see Figure 4b), shows a 76% improvement from one to two GPUs, and 27%
improvement from two to three GPUs, which is a 124% improvement from one to three
GPUs. The GPU utilization is in this case 88% and 75% for two and three GPUs
respectively, compared to an ideal implementation.

The results from the sort-last benchmarks on TC2 (see Figure 6) yielded a
performance increase of 52% when utilizing both GPUs, compared to the GTX 760 GPU
alone, or 71% compared to the RX 460 GPU on its own. The GPU utilization is 80%.

Figure 6: Diagram of the performance for TC2 for the sort-last benchmark. Performance
is measured in Frames Per Second (FPS).

Utilizing Additional GPU Memory
While we have shown that we can utilize the sort-first and sort-last implementation to
achieve higher framerates in specific scenarios, it is also possible to utilize the additional
GPU memory available in a multi-GPU setup. We have performed rendering of geometry
with high-resolution textures using the introduced sort-last implementation. We can
render larger data sets using multiple GPUs than a single GPU, as we have access to
more GPU memory.

The data set we used in order to perform rendering of geometry with high-resolution
textures, consists of 3D models of the Beckwith Plateau (Book Cliffs, UT, USA) mountain
side (see Figure 7). The Virtual Outcrop Geology group, Uni Research, Bergen is
acknowledged for access to the 3D models used within this work. The data was acquired
with the support of the Research Council of Norway and FORCE Sed/Strat group through
the EUSA/SAFARI project (grant number 193059).

The data set consists of 12 sections of the mountain side with high-resolution textures.
In total, the data set consists of more than 24 million triangles, and 4.3GB of textures in
the compressed JPG format. The textures require more memory once uncompressed and
transferred to the GPUs. We were able to render 3 sections with a single GTX 1080 GPU,
on TC1. Utilizing all three GPUs, we were able to render 9 sections, at a framerate of
50FPS. In our testing we were not able to allocate the entire GPU memory available. This
could be caused by fragmentation of the GPU memory.



Figure 7: Screenshots from rendering the Beckwith Plateau, Book Cliffs, UT, USA. This
geometry is too large to fit on a single GTX 1080 GPU.

7 Conclusion
We have shown that the prototype application for multi-GPU rendering with Vulkan API
can perform well with the sort-first and sort-last approaches. We have also shown that
we can utilize the additional GPU memory to render data sets that will otherwise not
fit in the memory of a single GPU. The application is cross platform, and will work on
most Vulkan capable GPUs. This is the first publicly available, heterogeneous multi-GPU
solution implemented with Vulkan API. We believe this implementation has potential,
and that performance improvements can be made by implementing pipelining of all the
rendering steps, and support for the external memory Vulkan extension.

Future work
The main area of potential performance improvement is pipelining of the steps necessary.
Currently there are five steps, three of which are copying steps from the secondary- to
the primary GPU. Some pipelining have been implemented already, but more is possible.
Having all five steps operate in parallel will increase the frame rate, and GPU utilization.
However the latency will not improve. By implementing support for the external memory
Vulkan extension, we can remove one of the copying steps, reducing some latency and
possibly increase the frame rate, but also reduce CPU usage as the redundant copying step
is removed.

Another area of improvement is to implement dynamic load balancing, such that the
workload will be automatically distributed according to the performance of the GPUs.
This way the faster GPU will do more work than the weaker one.
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