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Abstract 
Disease outbreaks forecasting is a vital component in public-health resource planning and 

emergency preparedness. However, the existing procedures have limitations due to the lack 

of analytical knowledge about spatiotemporal data. In this paper, we investigate how   

spatiotemporal data can be leveraged to forecast future disease outbreaks, using dengue 

incidences in the Philippines for demonstration purposes. Our approach is based on 

identifying highly correlated regions and using inputs from these regions to train and forecast 

dengue incidences using Artificial Neural Networks. We then removed the spatial aspect, 

focusing separately on each region to measure the effect of introducing spatial data. In all the 

experiments, monthly dengue incidences in 2016 were used as the testing data. Our empirical 

results show that including spatial data reduces the Mean Absolute Error by approx. 54 % 

compared to only using data from the target region. We conclude that adding data from 

neighbouring regions for forecasting can enhance the traditional approaches for forecasting 

dengue outbreaks, and we recommend that a spatio-temporal analysis is introduced as a 

standard component of disease outbreak forecasting. 

1. Introduction 

Disease Outbreaks Forecasting 

According to the World Health Organization, an early warning system should be able 

to predict an outbreak in terms of the time it occurs, the area it affects, as well as its 

magnitude (Drake, 2005). Forecasting disease outbreaks is a vital component in public-

health resource planning, emergency preparedness and helps in reducing morbidity and 

mortality due to serious illnesses (Nsoesie et al., 2014). However, the task is challenging 

since it is controlled by a number of internal and external factors. A large number of 

researchers in the field have been trying to analyse the disease outbreak forecasting 

problem with different approaches. Many of them are focusing on predicting the 

magnitude of the disease outbreaks while far fewer are working on forecasting the 

spatiotemporal data related to disease outbreaks. As Drake mentioned (Drake, 2005), 

forecasting the magnitude of disease outbreaks is difficult due to the infectious nature of 

diseases. Also, the factors which fluctuate the disease outbreak time series, such as 

characteristics of the disease, the environment or climate fluctuations, human 

demography, international and interregional travels (specially of the pathogen), and the 

health facilities of a country or of a region of a country (Myers et al., 2000) reduce 

forecasting performance. If there is a way to include these factors into forecasting models 

as input variables, the accuracy of the outcomes could increase significantly: (Linthicum 

et al., 1999) and (Hii et al., 2012) use climate and satellite data to forecast fever epidemics 

and temperature and rainfall data to forecast dengue incidence, respectively.  

Particularly, factors that decisively affect the dengue fever are identified as 

international and inter-regional transports, population growth, the rate of urbanization, 

health infrastructure of the country, climate changes, and availability of disease control 

systems (Descloux et al., 2012). According to Descloux et al., each year, approximately, 

25,000 deaths have been being recorded out of 500,000 patients with dengue 

haemorrhagic fever or dengue shock syndrome. This is a portion of 50 million people 
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who have been affected by one of the four serotypes of dengue virus: DENV 1 – DENV 

4. The virus is mainly transmitted by Aedes Aegypti (also known as yellow fever 

mosquito) (Barbazan et al., 2002). Although the casualty rate of dengue haemorrhagic 

fever incidences has been reduced by early diagnosis and treatments of patients, still it is 

a serious concern in the public health. 

To control the spreading rate, an early warning system is a necessity. Usage of 

weather variables is ample in forecasting models to forecast climate-sensitive inflection 

diseases such as Dengue and Malaria. Since many research are being conducted to find 

the influence of temperature and rainfall data series on forecasting outcomes (Descloux 

et al., 2012, Hii et al., 2012, Mattar et al., 2013), objective of this research is to find the 

influence of data from neighbouring regions to forecast the dengue incidences in the 

Philippines. Nevertheless, the existing processes for forecasting disease outbreaks are not 

reliable due to several reasons. Inadequate forecasting models are one of the major 

reasons among them. Since in this research, our emphasis is on forecasting disease 

outbreaks in terms of time and location, a study of spatiotemporal data forecasting 

techniques is essential.  

Disease Outbreaks Forecasting Techniques 

In the recent years, problems of data scarcity and computational power have been 

replaced by new challenges. In all brevity, knowledge discovery, data mining, and 

forecasting techniques are now challenged by the abundance of data available from 

efficacious data harvesting tools that produce real-time spatiotemporal data massively, 

for different applications in environmental science, meteorology, precision agriculture, 

oceanography, and other domains (Haworth and Cheng, 2012). In parallel to the above 

trend, many papers and books are being published with the purpose of improving the 

people’s understanding of spatiotemporal data and encouraging them to develop new 

models which can precisely analyse such data (Li et al., 2002). 

In addition to the simple statistical strategies, different regression models have been 

used to forecast dengue incidences: Multiple Regression (Hii et al., 2012, Phung et al., 

2015), Seasonal Autoregressive Integrated Moving Average (SARIMA) (Choudhury et 

al., 2008, Gharbi et al., 2011, Phung et al., 2015), Autoregressive Integrated Moving 

Average (ARIMA) (Luz et al., 2008, Promprou et al., 2006, Silawan et al., 2008), Poisson 

Distributed Lag Model (PDLM) (Phung et al., 2015). Althouse and Cummings (Althouse 

et al., 2011) compare three regression techniques to forecast dengue incidences in 

Singapore and Bangkok (Step-down Linear Regression, Generalized Boosted Regression, 

and Negative Binomial Regression) and show that Linear Regression outperforms other 

models. 

Available auto-regression techniques to analyse spatiotemporal data are summarized 

in (Pokrajac and Obradovic, 2001) under spatial data forecasting, temporal data 

forecasting, and spatiotemporal data forecasting. Haworth and Cheng (Haworth and 

Cheng, 2012) divide available techniques into two categories: statistical methods and 

machine learning methods. According to them, eigenvector spatial filtering, 

geographically and temporally weighted regression, space-time autoregressive integrated 

moving average (STARIMA), space-time geostatistical models, and spatial panel data 

models can be categorized as statistical methods, while support vector machines, artificial 

neural networks, and non-parametric regression techniques are categorized as machine 

learning techniques. Although interest of the researchers has been drawn towards 

statistical methods, in this research we use Artificial Neural Networks (ANNs) to forecast 

future dengue outbreaks in the Philippines since their ability to model complex nonlinear 

relationships in spatiotemporal data. 



 

A detailed overview about historical dengue incidences in Philippines and 

arrangement of the ANNs to forecast the future dengue incidences are given in Materials 

and Design of Experiment section. Results obtained at the above section are summarized 

and discussed in Results and Discussion section. The conclusion of the research is given 

at the end. 

2. Materials and Design of Experiment 

Dengue Incidences in the Philippines 

The dataset, which has been gathered by the Department of Health of the Philippines, 

contains monthly dengue incidences per 100,000 population of all regions in the 

Philippines from 2008 to 2016. The region map of the Philippines, which has 17 regions, 

is given in Figure 1. 

 

Figure 1 Administrative 17 regions of the Philippines 

According to the gathered data, the highest number of incidences are recorded in 2013 

(4919.09 per 100,000 population). Total incidences for the years from 2008 to 2016 show 

that regions XIV, VII, and VI have the highest number of dengue patients. These details 

are illustrated by Figure 2, where Figure 2.a shows the total number of dengue incidences 

of each year from 2008 to 2016 and Figure 2.b shows the total dengue incidences of each 

region from the region I to region XVI. 

Sum of the monthly dengue incidences of all regions for each month shows that there 

is a peak after every two months from January. In other words, the number of dengue 

incidences increase from January and reaches to its first peak in March. Likewise, there 

are four peaks throughout the year which are in March, June, September, and December 

as illustrated in Figure 3. 



Figure 2 Total dengue incidences of each year from 2008 to 2016 and each region from I to XVI 

 

 
Figure 3 Sum of the monthly dengue incidences of all regions for each month 

Even though researchers had used weather variables as inputs to forecast possible 

dengue outbreaks in the future (Descloux et al., 2012, Gharbi et al., 2011, Hii et al., 2012), 

rainfall and temperature data gathered by the World Bank Group for the same period have 

no visible or numerical correlation to the above monthly variations of dengue incidences 

in Philippines. These monthly variations of average rainfall and temperature series are 

presented against the monthly variation of total dengue incidences in the Philippines and 

given in Figure 4.a and 4.b, respectively. 

When the average precipitation reaches its highest in July, average temperature 

reaches to its highest in May. Although average precipitation riches to its second peak in 

September, there is no clear second peak for average temperature as shown by Figure 4.b. 

Likewise, both average rainfall and precipitation series follow their own patterns and total 

dengue records has no correlation for those variations. However, the data series of the 

adjacent regions show higher correlations with each other. Therefore, our goal is to 

identify how these data from neighbouring regions affect the forecast of future dengue 

incidences. Data preparation and the model arrangement are discussed in the next section. 

 

  



 

Figure 4 Average rainfall and temperature variations against monthly dengue incidences in the 

Philippines 

Design of Experiment 

Forecasting Dengue Incidences using the Historical Data of the Same Region 

This is the ordinary way of forecasting the future dengue outbreaks. Historical data 

of the same region is used to forecast the future dengue incidences. Although the 

researchers have used time series techniques for the above purpose, we arrange an ANN 

to forecast the future dengue outbreaks using two inputs from the historical data of the 

same region. To forecast the possible dengue incidences of month M, data from month 

M-1 and M-12 are used as they have the most relevant information about the month M. 

An example case for the above arrangement can be identified as, to forecast the number 

of dengue incidences in November, 2016 for the region i, (D(M)i), October, 2016 data of 

the same region (D(M-1)i) and November, 2015 data of the same region (D(M-12)i) are 

used as inputs. Separate data series are arranged to forecast each region, separately. A 

sample data arrangement is given by Table 1 where it is used to train the ANN to forecast 

all the months in 2016 of region i, separately. However, to be fair for all months of the 

testing set, the ANN is trained with the same amount of data to forecast each month in 

the testing data set. As an example, even though the target series of the training data set 

starts from January 2009 to forecast dengue incidences in January 2016, target series 

starts from February 2009 to forecast dengue incidences in February data in 2016.  

 
Table 1 Data arrangement to forecast dengue incidences of region i in each month of 2016 using same 

region’s data 

  Training Testing 

Target (D(M)i) Jan 2009 …………… Dec 2015 Jan 2016 …….... Dec 2016 

Inputs 
(D(M-1)i) Dec 2008 …………… Nov 2015 Dec 2015 …….... Nov 2016 

(D(M-12)i) Jan 2008 …………… Dec 2014 Jan 2015 …….... Dec 2015 

Forecasting Dengue Incidences using Data from Neighbouring Regions 

In this experiment, dengue incidences of each month of 2016 in all regions are 

forecasted using more than two inputs. In addition to the inputs identified in Table 1, data 

from regions which show higher correlation values is used as inputs to forecast future 

dengue outbarks. As an example, to forecast the number of dengue incidences in 

November, 2016 for the region i, (D(M)i), October, 2016 data of the same region (D(M-



1)i), November, 2015 data of the same region (D(M-12)i), and October, 2016 data from 

neighbouring regions j, (D(M-1)j; where j can be 1,2,3,…..17 but j ≠ i and j and i are 

highly correlated) are used as inputs. Separate data series are arranged to forecast each 

region, separately. A sample data arrangement is given by Table 2 where it is used to train 

the ANN to forecast each month in 2016 of region i, separately. 

 
Table 2 Data arrangement to forecast dengue incidences of region i in each month of 2016 using different 

regions’ data 

  Training Testing 

Target (D(M)i) Jan 2009 .................. Dec 2015 Jan 2016 ……...... Dec 2016 

Inputs 

(D(M-1)i) Dec 2008 .................. Nov 2015 Dec 2015 ……...... Nov 2016 

(D(M-12)i) Jan 2008 .................. Dec 2014 Jan 2015 ……...... Dec 2015 

(D(M-1)j) Dec 2008 .................. Nov 2015 Dec 2015 ……...... Nov 2016 

There can be more than one data series in addition to the first two series which were 

created by the data from the same region. In other words, more than one region can be 

identified which show a higher correlation to the selected region. However, this number 

is not equal for all regions. Table 3 presents the regions which give their data to create 

inputs to forecast dengue incidences of their neighbouring regions. The total dengue 

incidence of all regions is also considered while checking the correlation and it is also 

used as an input if it shows a higher correlation to the data series of the selected region. 

 
Table 3 Regions that support their neighbouring regions by providing their data as inputs 

  Additional inputs 
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Designing the Artificial Neural Network 

Once the data is ready, they are fed into the designed ANN. A network with four 

hidden layers (L1-L4) are used to forecast each region separately at both occasions. A 

preliminary test reveals that the number of neurons in the first hidden layer should be at 

least equal to the number of inputs to the network. Also, for the considered small dataset, 



we try to keep the network simple. Considering these two concepts and the number of 

outputs, which is always one for all the cases, we gradually decrease the number of 

neurons of the hidden layers and make it to one at the end. Therefore, the number of 

neurons of the second (L2), third (L3), and fourth (L4) hidden layers are kept the same for 

all the cases which are 4, 2, and 1, respectively. The number of neurons of the first hidden 

layer (L1) is always equal to the number of inputs (L) to the network. As an example, to 

forecast the month M of the region I with the aid of data from neighbouring regions, a 

network with 7 inputs (L = 7), four hidden layers with neurons equal to 7, 4, 2, 1, and one 

output is used. Inputs for the selected example are (D(M-1)I), (D(M-12)I), (D(M-1)II), 

(D(M-1)III), (D(M-1)IVA), (D(M-1)XIV), (D(M-1)ToT), and they can be arranged with the 

information given in Table 2 and 3. During the training process, backpropagation 

algorithm is used to training the network and training process stops when it completes 

1000 training cycles or when the training error (Mean Squared Error) reaches zero. Figure 

5 shows the network which can be adjusted to forecast each region with different data 

sets discussed in the Design of Experiment Section. 

 
Figure 5 The proposed Neural Network which is adjustable to forecast each region, separately 

However, to show that there is no bias on any of the experiments from the parameters 

of the ANN, the number of neurons in the first hidden layer is changed to 2 and 7 in the 

above example to forecast dengue incidences of the region I with data from the same 

region as given in Table 1. Therefore, the ANN trains with two different parameter sets 

when it is used to forecast future dengue incidences using data from the same region. 

Consequently, the same region is forecasted three times with different inputs and different 

ANN parameter arrangements: Experiment-1: Forecast each region with the aid of data 

from neighbouring regions and the number of neurons in the first hidden layer equal to 

the number of inputs. Experiment-2: Forecast each region with data from the same region 

and number of neurons in the first hidden layer equal to two. Experiment-3: Forecast each 

region with data from the same region and number of neurons in the first hidden layer 

equal to the number of neurons used during the first experiment. Obtained results are 

presented and discussed in the next section. 

3. Results and Discussion 

Dengue incidences of each month in 2016 of all regions are forecasted under the 

experiments discussed in the previous section. The error between the actual data series 



and forecasted series of each region for the testing year 2016 is calculated in terms of the 

Mean Absolute Error (MAE) as shown in Equation 1. 

𝑀𝐴𝐸𝑖
𝐸 =  

1

12
 × ∑ |(𝐷𝐴(𝑀)𝑖)𝑚 −  (𝐷𝐹(𝑀)𝑖)𝑚|

12

𝑚=1

 
  
1 

Both actual ((𝐷𝐴(𝑀)𝑖) and forecasted (𝐷𝐹(𝑀)𝑖) series consist of 12 elements (m = 

1,2,3,….12) and it is equal to the number of months of a year. Therefore, sum of the 

absolute error divide by the number of months to get the Mean Absolute Error of region 

i (i = I, II,….XVI), of experiment E (E = 1,2,3). The 𝑀𝐴𝐸𝑖
𝐸  of each region obtained at 

different experiments are summerized in Table 5. 

Table 5. Mean Absolute Errors of all regions at different experiments 

Region 𝑴𝑨𝑬𝟏 𝑴𝑨𝑬𝟐 𝑴𝑨𝑬𝟑 Region 𝑴𝑨𝑬𝟏 𝑴𝑨𝑬𝟐 𝑴𝑨𝑬𝟑 

I 2.42 4.90 5.63 IX 1.95 3.80 4.18 

II 3.51 5.64 6.27 X 2.31 6.22 5.98 

III 2.31 7.29 6.27 XI 1.60 3.09 2.81 

IVA 1.65 4.70 4.70 XII 1.95 4.21 4.66 

IVB 1.28 4.88 4.68 XIII 3.72 5.67 5.04 

V 0.98 2.67 2.81 XIV 4.11 11.08 10.27 

VI 1.71 5.53 4.82 XV 0.67 1.13 0.92 

VII 7.40 11.80 11.43 XVI 2.16 4.94 4.53 

VIII 0.83 2.45 2.24     

The best MAE of each region comes with the Experiment-1, where data from the 

neighbouring regions is used to calculate the future dengue outbreaks. The best MAE 

given by Experiment-1 belongs to region XV and it is equal to 0.67. These value by 

Experiment-2 and 3 are 1.13 and 0.92 and belong to the same region. The average MAEs 

are calculated for each experiment to decide the best way of forecasting the future dengue 

occurrences in the Philippines out of these three methods using Equation 2. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝐴𝐸𝐸 =  
1

17
 × ∑ 𝑀𝐴𝐸𝑖

𝐸

𝑋𝑉𝐼

𝑖=𝐼

 
  
2 

The 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝐴𝐸(1,2,3) are 2.39, 5.29, and 5.13, respectively. Therefore, the 

percentage decrease of MAE when the forecasting model use data from neighbouring 

regions compared to Experiment-2 and 3 are 54.92% and 53.52%, respectively. These is 

a significant improvement of results. However, the change of ANNs’ parameters from 

Experiment-2 to Experiment-3 does not make a significant difference. The change 

decreases the 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝐴𝐸 from 5.29 to 5.13. The graph given in Figure 6 shows the 

variation of average regional MAE throughout the testing year.  

The best monthly MAE obtained at experiment 1, 2, and 3 are 1.38 (September), 2.94 

(July), 2.78 (July). However, monthly variations of 𝑀𝐴𝐸(1,2,3) show that the steps 

identified at Experiment-1 are the best to forecast monthly dengue incidences in the 

Philippines as it obtains the lowest MAE for all months. 

 



 

Figure 6 Average regional MAE throughout the testing year 

4. Conclusion 
According to the results discussed in the previous section, steps used at the 

Experiment-1 are identified as the best way to forecast all regions in the Philippines. 

Adding data as inputs from the neighbouring regions improves the forecasting 

performances significantly. To eliminate adding noises to the training data, a data analysis 

and preprocessing step is recommended.    

However, this research focuses on finding the effect of adding data from 

neighbouring regions to forecast future dengue incidents and does not focus on applying 

multiple strategies to reduce the forecasting error. The dataset used in this research is 

quite small and parameters used while arranging the ANNs might not be the optimum. 

Therefore, the research can be further extended to reduce the forecasting error by focusing 

more on these limitations and more other strategies. 
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