
Automatic Parameter Optimisation
of Service Quality and Resource Usage ∗

Jacopo Mauro1,2, S. Lizeth Tapia Tarifa1 and Ingrid Chieh Yu1

1 Dept. of Informatics, University of Oslo, Norway
{jacopom,sltarifa,ingridcy}@ifi.uio.no

2 Dept. of Mathematics and Computer Science, University of Southern Denmark

Abstract
Developers use models to design real world distributed applications that often
are subject to Service Level Agreements to find a good balance between the
quality of the service and its resource usage. Executable models has been
used to observe and study such applications using, e.g., the Real Time ABS
language, an executable and object-oriented modelling language.

For complex models, due to the high number and dependencies between
the parameters, it is very difficult to understand the best possible setting that
leads the system towards a desired quality of service, while minimising the
usage of computing resources. In this work we present POPT, a parameter
optimiser tool that starting from Real Time ABS models, by using AI
techniques, searches in an automatic way for the best possible setting to
satisfy the developer’s expectations.

1 Introduction
As part of the software development cycle, software engineering uses techniques such
modelling and predictions to design and validate the applications to be developed, in
such a way that both the clients and the development team have better certainty that
the software to be implemented meets the desired expectations. A model of a software
application is mainly a simplified representation of the real world application and, as
such, only includes some aspects of interest that developers want to highlight and
investigate. In this context, modelling is used to understand existing applications that
need to be replaced, redesigned or improved, or to design new applications. When
modelling software architectures, ideally the model includes design decision which take
into account requirements related to quality of service and resource usage. For example,
the application must have an acceptable level of response time and must adapt to a variable
number of users with unexpected changes in their workload.

To predict that a software application will comply with some expected quality of
service, we need to consider its deployment, together with other parameters that have
an impact on its performance. For this, a model can be used to study how to put
together these design decisions to reach the desired quality of service early in the software
development process. This will allow to design adaptive applications, that can for example
change according to its customer traffic while trying to keep a good quality of service
with its current available resources. In particular, executable models have been used

∗Supported by SIRIUS - Centre for Scalable Data Access (www.sirius-labs.no).
This paper was presented at the NIK-2018 conference; see http://www.nik.no/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/327107687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
{jacopom,sltarifa,ingridcy}@ifi.uio.no
http://www.sirius-labs.no

to describe and predict behaviours of software applications taking into account non-
functional properties by using simulation techniques [1, 15, 20]. These case studies
have used the formally defined Abstract Behavioural Specification language called Real
Time ABS [12, 16]. This language realises a separation of concerns between the cost
of execution and the capacity of available resources. A simulation tool for Real Time
ABS supports rapid prototyping and visualisation. The use of modelling languages such
as ABS thus enables developers to investigate parameters that usually impact quality of
service decisions late in the software development at an early stage of software design.

After model creation, however, deciding good values for the parameters, is far
from being a trivial activity. The parameters’s values may have dependencies or have
unexpected impacts on the behaviour of the overall application. Often, especially for
complex models, the number of parameters is high, and each parameter may have a wide
range of values to consider. A complete exploration of the entire configuration space
is therefore unfeasible. In these cases, modellers usually use their expertise to select
promising values for the parameters, but they may have bias, thinking that certain values
are more promising than others and neglect to explore part of the configuration space that
could in reality be more promising. Moreover, they may not have a full understanding
of the trade-offs between the different parameters. Empirical evidence shows that using
automatic configurators such as [10, 11, 17] can lead to better configurations.

In this work we describe an automatic parameter optimiser called POPT. The
optimiser takes as input an executable model written in Real Time ABS to automatically
explore configurations with the aim of finding promising values for the model parameters
that will lead to satisfy the desired service quality at a minimum resource usage.

Paper Overview. Section 2 briefly introduces the Real Time ABS language. Section 3
contains the modelling of a running example to showcase the usage of POPT. Section 4
details the workflow of the tool, how to set it up and how to run it. Section 5 presents the
results for the running example. Finally, Section 6 discusses related work and concludes
the paper.

2 The Real Time ABS Language
Real Time ABS1 is a modelling language for distributed and object-oriented systems
with explicit deployment decisions. The main characteristics of ABS can be listed as
follows: i) it has a formal syntax and semantics, ii) it cleanly integrates concurrency
and object orientation based on concurrent object groups (COGs) [12, 24], iii) it supports
both synchronous and asynchronous communication [5, 13], and iv) it offers a range of
complementary modelling alternatives by integrating a functional layer with algebraic
datatypes and functional programming, with an imperative layer [12] with COGs and
asynchronous communication.

The functional layer of ABS is used to model computations on the internal data of
objects. It allows designers to abstract from the implementation details of imperative data
structures at an early stage in the software design. ABS includes a library with predefined
datatypes such as Bool, Int, String, Rat, Unit, etc. It also has parametric datatypes such
as lists, sets and maps. All other types and functions are user-defined.

The imperative layer of ABS allows designers to express interactions between
concurrent object groups (COGs), which have an active thread of execution and
communicate asynchronously via mailing boxes. Processes are encapsulated inside

1http://abs-models.org/

http://abs-models.org/

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

(a) The New Year’s Eve client scenario.

Clock
Hosting
machine

Computing
Resources

telb

smsb

request()

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

(b) The telephone company scenario.

Figure 1: A scenario capturing two telephone services and their client handset.

COGs [12,24], and they are created automatically at method call reception and terminated
after the method finishes its execution. ABS combines active (with a run method which is
automatically activated when an object is created) and reactive behaviour of objects. ABS
is based on cooperative scheduling: inside COGs, processes may suspend at explicitly
defined scheduling points, at which point control may be transferred to another process.
Only one process is active inside a COG, which means that race conditions are avoided.

Real Time ABS [3] extends ABS with modelling of the passage of dense time and
deadlines to method calls. The time extension allows to represent execution time inside
methods. The local passage of time is expressed in terms of a statement called duration
(as in, e.g., UPPAAL [18]). Time values capture points in time during execution.
Deadlines can be used to measure performance by checking weather a method was
executed within an expected deadline. Deadlines are given as an annotation by the caller,
when the method is called asynchronously.

Deployment is modelled using deployment components [16]. A deployment
component is a modelling abstraction that captures locations offering (restricted)
computing resources. The language also supports cost annotations associated to
statements to model resource consumption. The combination of deployment components
with computing resource and cost annotations allows modelling implicit passage of time.
Here time advances when the available resources per time interval have been consumed.

ABS is supported by a range of analysis tools (see, e.g., [1]); in this paper we are using
the simulation tool which generates Erlang code, as part of the automatic optimisation
process to retrieve the quality of the simulation and its visualisation capabilities.

3 Example: mobile phone services on New Year’s Eve
Figure 2: The mobile phone services
modelled in Real Time ABS

interface TelephoneServer {Unit call(Int calltime); ... }
class TelephoneServer implements TelephoneServer {
Int callcount = 0; Int callsuccess = 0;
Unit call(Int calltime){
Bool result = durationValue(deadline()) > 0;
while (calltime > 0) {
[Cost: 5] calltime = calltime − 1;
await duration(1, 1);}

if (result) {callsuccess = callsuccess+1; ...}

interface SMSServer {Unit sendSMS(); ...}
class SMSServer implements SMSServer {
Int smscount = 0; Int smssuccess = 0;
Unit sendSMS() {
[Cost: 1] smscount = smscount + 1;
Bool result = durationValue(deadline()) > 0;
if (result) ...}

In this section we present a simple exam-
ple to showcase the usage of POPT. The ex-
ample, first introduced in [14] and further
developed in this paper, is inspired by mo-
bile phone users behaviour on New Year’s
Eve. In this time of the year, as depicted
in Fig. 1a, people instead of alternating be-
tween making phone calls and sending SMS,
flood the SMS server with messages during
the so called “midnight window”.

Let us assume that calls and messages
are handled by two components, a Tele-
phone and SMS server. The services are de-
ployed on dedicated hosting machines and

interact with a number of clients, as depicted in Fig. 1b. The abstract implementations of
the services in Real Time ABS are given in Fig. 2. The telephone server offers a method
call which is invoked synchronously (i.e., caller waits for the callee), with the duration
of the call as parameter. The SMS server offers a method sendSMS which is invoked
asynchronously (waiting is not needed). Cost are added for each time interval during a
call and for each sendSMS invocation to underline that handling calls and messages con-
sume processor clock instructions. Calls and messages have a deadline, specified by the
client, that should be met if possible. The deadline for a call is met if the call is started
before the deadline, while for SMS the deadline is met if the message is sent before it.

class Handset (Int cyclelength, TelephoneServer ts, SMSServer smss) {
Bool call = False;

Unit normalBehavior() {
if (timeValue(now()) > 50 && timeValue(now()) < 70) {

this!midnightWindow();}
else { if (call) { [Deadline: Duration(5)] await ts!call(1); }

else { [Deadline: Duration(5)] smss!sendSMS(); }
call = ¬ call; await duration(cyclelength,cyclelength);
this!normalBehavior(); } }

Unit midnightWindow() {
if (timeValue(now()) >= 70) {this!normalBehavior();}
else { Int i = 0;

while (i < 10) {
[Deadline: Duration(5)] smss!sendSMS(); i = i + 1;}

await duration(1,1); this!midnightWindow(); }}

Unit run(){this!normalBehavior(); } }

Figure 3: The client handset in Real Time ABS.

The model of the handset
clients is given in Fig. 3. The
handset makes requests to the two
servers. The normal behaviour
of the handset is to alternate be-
tween sending an SMS and mak-
ing a call at each time interval.
When it makes a call, the client
waits for the call to end before
proceeding. The handset’s spike
occurs between the time window
starting at time 50 and ending at
time 70 that represents the “mid-
night window”. During the spike,

the handset asynchronously sends 10 SMS requests at each time interval. To evaluate if
it is the “midnight window”, the expression timeValue(now()) is used to check the
current time.

interface Balancer { Unit request(DC comp);
Unit setPartner(Balancer p);}

class Balancer(String name) implements Balancer {
Balancer partner = null;

Unit setPartner(Balancer p) {partner = p;}

Unit run() {
await partner != null;
while (True) {
await duration(1, 1);
InfRat total = await thisDC()!total(Speed);
Rat ld = await thisDC()!load(Speed, 1);
if (ld > overload()) { await partner!request(thisDC());}}}

Unit request(DC comp) {
InfRat total = await thisDC()!total(Speed);
Rat ld = await thisDC()!load(Speed, 1);
if (ld < underload() && finvalue(total)>20) {
thisDC()!transfer(comp, finvalue(total)/mr(), Speed); }}}

Figure 4: The balancer in Real Time ABS

The model also consider re-
sources and includes dynamic load
balancing, which enables the two
machines hosting the telephone and
SMS servers to exchange resources.
This is captured by the Balancer
class in Fig. 4, whose instances run
on each service. The Balancer
class implements an abstract balanc-
ing strategy, transfers resources to its
partner virtual machine when receiv-
ing a request message, monitors
its own load, and requests assistance
when needed. The behaviour of the
load balancer depends on the param-
eters moving ratio mr(), overload(), and underload() which determine how
much to transfer in each request and when to consider that the system is overloaded or
underloaded, respectively.

The Balancer class takes as parameter a name (for friendly console-messages). The
class has an active process defined by its run() method, which monitors the local load.
The ABS default construct thisDC() returns a reference to the hosting machine on
which an object is deployed and the method call load(Speed, 1) returns the usage

(in percentage) of processing speed in the previous time interval. If the load is above
overload()the balancer requests resources from its partner. If a Balancer receives
a request for resources, it will consider the underload() parameter and transfer part of
its available computing resources to its partner while maintaining its own capacity above
a minimum.

{ // Main block:
DC smscomp = new DeploymentComponent("smscomp", map[Pair(Speed, sms_rsc())]);
[DC: smscomp] SMSServer sms = new SMSServer(); [DC: telcomp] TelephoneServer tel = new TelephoneServer();
DC telcomp = new DeploymentComponent("telcomp", map[Pair(Speed, tel_rsc())]);
if (with_balancers()==1){
[DC: smscomp] Balancer smsb = new Balancer("smsb"); [DC: telcomp] Balancer telb = new Balancer("telb");
await smsb!setPartner(telb); await telb!setPartner(smsb);}

new Handset(1,tel,sms); ...// 30 clients
println("succ,"+ toString(success)); ...// print the desired outputs to be used as part of the inputs for POPT

}

Figure 5: The main block configuration Real Time ABS

The configuration of the system is given in the main block of Fig. 5. Here we use
deployment components to model the hosting machines and we decide which objects
to deploy inside the machines using the [DC: id] annotations. The parameters
sms_rsc(), tel_rsc() establish the amount of computing resources for each hosting
machine per time interval. The parameter with_balancers() enables instead the
usage of the balancers to check if their usage improve the quality of the system.

During the model execution the number of messages or calls that are delivered or
started before the deadline are considered as successes, and, as shown in the next section,
used to evaluate the quality of service provided by the system.

4 The Parameter Optimiser tool (POPT) for Real Time ABS
In this section we first describe the workflow of POPT, and later we describe the input
required by POPT, how it works, and how it can be deployed. POPT is open source and
freely available 2.

Learns from past simulations
(using AI)

Selects promising settings to try

Executes ABS simulation

Process log & Evaluates
parameter quality

Figure 6: POPT internal workflow.

POPT’s workflow. POPT uses as a back solver
the Sequential Model-based Algorithm Configu-
ration (SMAC) [10]. As depicted in Fig. 6, SMAC
is used in a cyclic workflow performed by POPT
where: i) the standard machine learning algorithm
Random Forest (RF) is used to learn a RF model
that relates the parameters of the ABS model with
their quality, ii) the RF model is used to select new
promising values of the parameters to try, iii) the
new values are tested by running the ABS model,
and iv) the output of the simulation is parsed to retrieve the quality of service. This infor-
mation will then be used in the following iterations to refine the RF model, thus potentially
having a more accurate estimation of the relation between the quality of the parameters
and the parameters of the ABS model. This cycle can be interrupted after a given interval
of time, after a given number of simulations have being performed, or when a given qual-
ity of solution has been reached. Once terminated, the best parameters which are used to
configure the model are returned.

2 POPT can be downloaded from: https://github.com/HyVar/abs_optimizer/

https://github.com/HyVar/abs_optimizer/

POPT’s input. As shown in Fig. 7, POPT requires three kind of inputs provided in
various files: i) the ABS model, ii) the definition of the parameters, and iii) the desired
target or metric that the modeller wants to reach/minimise.

ABS POPT
Executable Model

Parameter + Range

Desired target

Optimal settings

Figure 7: POPT inputs and outputs.

Starting with the ABS model,
the program should compile and
run correctly in the Real Time
ABS Erlang simulation tool, and
it should expose the parameters
that the modeller wants to tune
with POPT. The parameters are
expressed as constants in the
ABS language with the syntax:
def Int p()= v, where p and v
are the name and value of the pa-
rameter, respectively.

For the second input, POPT
requires to associate to every
parameter in the model, a finite
domain of values that it can take. This is done following the standard syntax adopted
by the SMAC optimiser. For the moment POPT only supports integers. Enumerations,
such as a finite domain of string values, can be easily encoded by mapping their domain
into a set of integer values. The parameters are defined in the file params.pcs.

Following our example, let us consider, e.g., the parameter mr with range [2,10] and
a starting default value of 3. This can be defined with the following syntax:

mr integer [2,10] [3]

Similarly, for the parameter with_balancers, we want to explore the possible values
0 and 1. This can be encoded as follows:

with_balancers integer [0,1] [1]

It is also possible to require the satisfaction of some constraints or to relate some
parameters using Boolean operators, e.g., {overload > underload}.

The last ingredient for running the optimiser is to specify what is the metric to
optimise. POPT tries to find out the best parameters maximising the, so called, quality
of a simulation (i.e., a modelling abstraction of the quality of service). Therefore, it is
vital to provide a function that associates the output of a simulation with its quality. This
function is defined by means of a python program in the file parse_abs_output.py.
In the python program, the user should define the code to parse the output of the
simulation and return a real number that represent the quality of the simulation, where
the lower the value, the higher the quality. The function that computes the quality
is called compute_quality and takes as input the output generated by running the
ABS model. SMAC will try to evaluate configurations where the number returned by
the compute_quality function is smaller and smaller. In case of errors (e.g., when
the ABS simulation ends prematurely or with an exception) the crash is captured and the
quality of the simulation is assigned to a very large value (e.g., 109). In our example, let us
assume that we want to tune the parameters to meet the following SLA: “The application
should have a success rate greater or equal than 85% for the response time of its services,
and minimise the amount of computing resource usage”. Figure 8 presents a snippet of the

compute_quality function to evaluate the quality of a simulation. We extract from
the output the total number of invocations to both services and the number of successful
invocations (i.e., invocations that meet their deadline) to define the success rate. If this
value is greater or equal to 85% then we return the amount of resources used for both
services, otherwise we return a large amount minus the success rate (indicating that the
success rate is not reached). If the success rate is reached, POPT will in the next step try
to minimise the resources, otherwise it will try to maximise the success rate.

... successrate = 100∗float(success)/total
if successrate >= 85: return sms_rsc + tel_rsc
else: return 1100 − successrate

Figure 8: Computing the quality of
the simulation of the example.

Note that POPT supports also non-deterministic
ABS programs, where the quality of the simulation
may vary run by run due to the inherent concur-
rency of the model itself. In this case, POPT de-
cides autonomously if the same configuration has
to be simulated again, trying to maximise the aver-
age quality of the simulations performed for the same configuration.

POPT’s deployment and execution. To facilitate the deployment of POPT, we use
the Docker container technology (see the github repository of POPT for the details on
how to retrieve the image and run it). The container image comes with all the software
and dependencies already installed, including python for parsing the output of the ABS
program, Java to compile the ABS program and run SMAC, and Erlang to run the ABS
simulations. To use it, the tool will need the previous specified files plus a file named
settings.py to control the ABS simulations and a file named scenario.txt to
control the entire tool execution. The file settings.py is used to establish constraints
on the execution time of every simulation, specifying which are the ABS program files
that define the model and how many times to repeat the simulation if it ends up in failure.
The file scenario.txt is used to specify when POPT should terminate. In particular,
two settings have to be considered: i) numberOfRunsLimit that limits the number of
successful sequential simulations, and ii) wallClockLimit that limits the overall time
POPT runs. With these two parameters POPT can be interrupted as soon as a given time
is passed or a given amount of simulation are tried. When all these files are setup, the user
can run the tool by invoking the command run_smac.sh.

... Best solution found with quality 247.0
mr=’2’, overload=’83’, sms_rsc=’142’, tel_rsc=’105’,
underload=’53’, with_balancers=’1’
Positive Runs 500, Crashes 0 ...

Figure 9: A possible output of the tool
running the telephone company example.

POPT allows two forms or parallelisa-
tion: i) each ABS simulation can be speed
up by running it on more than one core, and
ii) multiple simulations can be run in paral-
lel. In the latter case, following the recom-
mended practice of SMAC, instead of exe-
cuting a single instance of the configurator optimiser, POPT runs in parallel different
execution of the configurator optimiser. The various executions can therefore proceed in
parallel and share their results.

When terminated, POPT logs all the configuration tried with their quality for every
parallel run. To retrieve the best configuration tested and the total number of tests, the
user can invoke the utility merge_states.sh. The output of the optimisation process
is as shown in Fig. 9.

5 Example: optimising the resource usage of the services
We have applied POPT to the example in Sec. 3 and run the optimisation process in
three different platforms: i) a Virtual Machine (VM) in a OpenStack based private cloud

Device Modality Time Confs (unique) Best Value
OpenStack VM Non-Det 1h 453 (98) 251
OpenStack VM Non-Det 24h 11084 (6886) 246

Numascale Non-Det 1h 1111 (293) 248
Numascale Non-Det 24h 25818 (9583) 248

Laptop Non-Det 1h 592 (212) 247
OpenStack VM Det 1h 489 (489) 252
OpenStack VM Det 24h 10934 (10934) 243

Numascale Det 1h 1105 (1105) 247
Numascale Det 24h 18384 (18384) 242

Laptop Det 1h 500 (500) 254

Figure 10: Summary of results of applying the tool in the running example.

running a Ubuntu 17.10 operating system, with 4 virtual cores and 8 GB RAM, ii) a Mac
laptop with macOS Sierra v10.12.6. Processor 2,2 GHz Intel Core i7 and 16 GB RAM,
and iii) a Numascale cluster 3 running CentOS 7.3 operating system (we used 8 nodes,
each having 6 cores). We have run POPT for one hour in these three platforms. We have
also run it one entire day on the OpenStack VM and on the Numascale cluster to study
the improvement on the solution quality. For the laptop and the VM we used the POPT in
sequential mode, and we used Docker to install it, as explained in Sec. 4. For the cluster
we run 8 simulations in parallel, one for every node at disposal. Here POPT was installed
from sources, since we did not have root privileges required to run Docker.

It is worth to mention that even though the original model is non-deterministic
by nature, we initially decided to applied the POPT as if the model were determinis-
tic. We did this because the deterministic execution modality allows to explore more
unique configurations since it does not repeat the same run more than one time. Dur-
ing our experiments we realise that repeating the non-deterministic simulation may give
different results of the quality function and therefore it may be possible that for sim-
ulations that almost reach the desired value (85 for our example), running the con-
figuration only once is not enough. Indeed, when assuming that our example was
deterministic, the best value obtained was 242 found by using the Numascale clus-
ter after 5600 seconds. Note that in this solution, according to our quality function,
85 expresses the percentage of required success rate in the SLA, and 242 expresses
the sum of the computing resources in both hosting machines (sms_rsc+tel_rsc),
which according to the SLA we want to minimise. The parameters found for this so-
lution are: mr=’2’, overload=’94’, sms_rsc=’142’, tel_rsc=’100’,
underload=’54’, with_balancers=’1’. Unfortunately, for this solution, the
success rate is very close to 85, and when the simulation is repeated more than once, it
may happen that some of the runs give a success rate lower than 85 and therefore the
quality function (cf., Fig. 8) returns a value greater than 1000.

Taking into account the non-deterministic nature of the model and running more than
one simulation for the same configuration during the optimisation process gives instead
the following result: the best value of 246 was found after 31916 seconds by the VM
OpenStack with the parameters mr=’2’ overload=’95’, sms_rsc=’154’,
tel_rsc=’92’, underload=’46’, with_balancers=’1’. POPT decided

3https://www.numascale.com/

https://www.numascale.com/

0 2 4 6 8
1

10

100

1,000

Time (h)

G
ap

Non-Det

Det

(a) OpenStack VM.

0 5 10 15 20

10

100

1,000

Time (h)

Non-Det

Det

(b) Numascale.

Figure 11: Best solutions found over time. The y logarithmic axis represent the gap (either
over 1000 or below 85, see Fig. 8) of the best value w.r.t. the global best value that the
optimiser found (242).

to run this configuration 2000 times.
We believe that POPT can be extremely useful to try to balance the number of

repetitions to have a reliable measure of the solution quality. If the exploration were done
manually, a user could have found by luck the value of the parameters in a configuration
to reach the value of 242, not noticing that this solution has a success rate so close to
85%, and realise later that due to the non-determinism of the model another execution
would have violated the desired SLA.

telcomp

smscomp

———— Used ———— Total
 resources resources

Figure 12: A simulation of
the running example.

We summarise the optimisation results in Fig. 10. For
each run we reported the execution modality, the number of
runs with and without unique configurations (this because
non deterministic and parallel executions could run more
than one simulation for the same configuration), and the
value of the best solution that was found. As observed in
the results, POPT is already effective when used with a
normal laptop. Clearly, the more resources are available,
the better the solution. When more CPUs are available,
various simulations may run in parallel and, even if the
CPUs are not very fast4, a lot of configuration can be
explored, in particular with the deterministic execution
modality. However, in the case of a non-deterministic
execution modality, the parallel execution may run a lot of
repetitions for non-optimal solutions. This may hinder the
best solution to be reached, but may in turn also increase
its robustness.

Figure 11 presents plots that describe how the value of
the quality function has been reduced over time in the one
day executions. In particular, we present the points in time
when POPT has found a better solution both for the non-deterministic and deterministic
modalities. The y axis shows the difference between the metric value at a given point in
time w.r.t. 242 resources (sms_rsc+tel_rsc), which was the best value that POPT
found that keeps the 85% of success rate.

As it can be observed, POPT can in a short amount of time reduce the returned value
4In the Numascale cluster, just the compilation of the ABS Program required more than 20 seconds,

against less than 5 seconds on the VM.

of the quality function and find solutions which have a success rate of more than 85%.
Finding further improvement by reducing the amount of computer resources is a slow
process. The deterministic execution modality found the best values early (e.g. in less
than 3 h). The non-deterministic modality instead required more time: more than 8 h in
the OpenStack cloud, 20 for the Numascale cluster. This is no surprising due to the extra
simulations needed by the non-deterministic modality.

The results are promising. Without the need for the user to specify any information,
the outcomes have shown for instance that the balancers are indeed important and how
to configure the balancer to best handle the extra workload during the midnight window.
Figure 12 shows a simulation of the example where we can observe the resource usage
and the transfer of resources using the parameters proposed by the optimisation tool in the
non-deterministic modality. Note that the resource capacity values could be interpreted
together with historic data of real applications, as done in [1, 15, 20]. The interpretation
of this example is out of the scope of this paper, since our purpose is to show how to use
the tool with a simple example. In particular we can observe the effectiveness of the load
balancer during the midnight window.

6 Related Work and Conclusion
The idea of using models to study the best possible settings to apply to a concrete system
is probably as old as science. With the advent of computers and software, models and
simulators have also been proposed to control and optimise the usage of resources in
software applications, especially after the advent of cloud computing which allows the
renting of computing resources as needed.

Giving an overview of all the modelling languages and attempts to use models to
optimise software or other systems is beyond the scopes of this paper. In this context, we
would just like to remark that, while in general, the modeller often tries to tune manually
the parameter of a model, there are plenty of approaches that try to automate this task.
For example, just looking at the cloud setting, different approaches have been adopted to
optimise the resource consumption based, e.g., on reinforcement learning [4,26], k-means
clustering algorithm [25], autoregressive moving average [23], queuing network [27],
learning automata [21], and Markov Decision Process [2]. These approaches, as also
advocated in [9], can be used to improve a running system making it adaptable to changes.
With POPT our focus was instead to decide which settings can meet a desired SLA during
the design phase of an application. This allows to take into account deployment decision
in the early phase of the development of a system. We are not aware of other methods
which address optimisation of service quality at design phase.

To achieve this, we borrow techniques and best practices studied in the field of
Programming by Optimisation [8] that tracks back to the mid 70’s with the early works
on portfolio theory and algorithm selection [22] that have only recently been readily
available due to the powerful optimisation using machine-learning techniques and the
computational environments required to execute them. In particular, we used SMAC [10],
a parameter configurator that is often applied to the configuration of complex solvers for
NP-hard problems. A preliminary version of POPT has been already successfully applied
in an industrial settings to reduce the cost of a cloud based framework to dispatch car
software updates [19]. Other related papers such [6] presents a model-driven approach
to optimise the configuration, energy consumption, and operating cost of cloud and [7]
where an stochastic model and a convex optimisation solver are used to satisfy the
application’s developer objectives while optimising the resource usage.

References
[1] Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen, Rudolf

Schlatte, S. Lizeth Tapia Tarifa, and Peter Y. H. Wong. Formal modeling of resource
management for cloud architectures: An industrial case study using Real-Time ABS.
Journal of Service-Oriented Computing and Applications, 8(4):323–339, 2014.

[2] Bahar Asgari, Mostafa Ghobaei Arani, and Sam Jabbehdari. An efficient approach
for resource auto-scaling in cloud environments. International Journal of Electrical
and Computer Engineering (IJECE), 6(5), 2016.

[3] Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth
Tapia Tarifa. User-defined schedulers for real-time concurrent objects. Innovations
in Systems and Software Engineering, 9(1):29–43, 2013.

[4] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
and Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw.,
Pract. Exper., 41(1):23–50, 2011.

[5] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the
future. In Rocco de Nicola, editor, Proc. 16th European Symp. on Programming
(ESOP’07), volume 4421 of LNCS, pages 316–330. Springer, 2007.

[6] Brian Dougherty, Jules White, and Douglas C Schmidt. Model-driven auto-scaling
of green cloud computing infrastructure. Future Generation Computer Systems,
28(2), 2012.

[7] Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, Cornel Barna, and Gabriel
Iszlai. Optimal autoscaling in a IaaS cloud. In ICAC. ACM, 2012.

[8] Holger H. Hoos. Programming by optimization. Commun. ACM, 55(2):70–80, 2012.

[9] Geir Horn. A vision for a stochastic reasoner for autonomic cloud deployment.
In NordiCloud, volume 826 of ACM International Conference Proceeding Series,
pages 46–53. ACM, 2013.

[10] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-Based
Optimization for General Algorithm Configuration. In LION, volume 6683 of LNCS,
pages 507–523. Springer, 2011.

[11] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle.
ParamILS: An Automatic Algorithm Configuration Framework. J. Artif. Intell. Res.
(JAIR), 36:267–306, 2009.

[12] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin
Steffen. ABS: A core language for abstract behavioral specification. Proc. 9th
Int. Symp. on Formal Methods for Comp. and Objects (FMCO 2010), vol. 6957 of
LNCS, 142–164. Springer, 2011.

[13] Einar Broch Johnsen and Olaf Owe. An asynchronous communication model for
distributed concurrent objects. Software and Systems Modeling, 6(1):35–58, 2007.

[14] Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and S. Lizeth Tapia Tarifa.
Dynamic resource reallocation between deployment components. Proc. Int. Conf.
on Formal Eng. Methods (ICFEM’10), vol. 6447 of LNCS, 646–661. Springer, 2010.

[15] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Modeling
resource-aware virtualized applications for the cloud in Real-Time ABS. Proc.
14th Int. Conf. on Formal Eng. Methods (ICFEM’12), vol. 7635 of LNCS, 71–86.
Springer, 2012.

[16] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. Integrating
deployment architectures and resource consumption in timed object-oriented
models. J. of Logical and Algebraic Methods in Programming, 84(1):67–91, 2015.

[17] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC -
Instance-Specific Algorithm Configuration. ECAI, vol. 215 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2010.

[18] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

[19] Jia-Chun Lin, Jacopo Mauro, Thomas Brox Røst, and Ingrid Chieh Yu. A Model-
Based Scalability Optimization Methodology for Cloud Applications. 7th IEEE Int.
Symp. on Cloud and Service Computing, IEEE SC2, 2017.

[20] Jia-Chun Lin, Ingrid Chieh Yu, Einar Broch Johnsen, and Ming-Chang Lee. ABS-
YARN: A formal framework for modeling Hadoop YARN clusters. Proc. 19th Int.
Conf. on Fundamental Approaches to Software Engineering (FASE 2016), vol. 9633
of LNCS, 49–65. Springer, 2016.

[21] Khosro Mogouie, Mostafa Ghobaei Arani, and Mahboubeh Shamsi. A novel ap-
proach for optimization auto-scaling in cloud computing environment. International
Journal of Modern Education and Computer Science, 7(8), 2015.

[22] John R. Rice. The Algorithm Selection Problem. Advances in Computers, 15:65–
118, 1976.

[23] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscaling in the
cloud using predictive models for workload forecasting. CLOUD. IEEE, 2011.

[24] Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing active objects to
concurrent components. European Conference on Object-Oriented Programming
(ECOOP 2010), vol. 6183 of LNCS, 275–299. Springer, 2010.

[25] Rahul Singh, Upendra Sharma, Emmanuel Cecchet, and Prashant Shenoy.
Autonomic mix-aware provisioning for non-stationary data center workloads. In
ICAC. ACM, 2010.

[26] Zhiguang Wang, Chul Gwon, Tim Oates, and Adam Iezzi. Automated Cloud
Provisioning on AWS using Deep Reinforcement Learning. CoRR, 2017.

[27] Lydia Yataghene, Mourad Amziani, Malika Ioualalen, and Samir Tata. A queuing
model for business processes elasticity evaluation. IWAISE. IEEE, 2014.

	Introduction
	The Real Time ABS Language
	Example: mobile phone services on New Year's Eve
	The Parameter Optimiser tool (POPT) for Real Time ABS
	Example: optimising the resource usage of the services
	Related Work and Conclusion

