
Mapping Data to Ontologies With Exceptions Using
Answer Set Programming

Daniel P. Lupp and Evgenij Thorstensen

Abstract
In ontology-based data access (OBDA), databases are connected to
an ontology via mappings from queries over the database to queries
over the ontology. In this paper, we define an ASP-based semantics for
mappings from relational databases to first-order ontologies, augmented
with queries over the ontology in the mapping rule bodies. The resulting
formalism can be described as ”ASP modulo theories”, and can be used
to express constraints and exceptions in OBDA systems, as well as being
a powerful mechanism for succinctly representing OBDA mappings.
Furthermore, we show that brave reasoning in this setting has either
the same data complexity as ASP, or is at least as hard as the complexity
of checking entailment for the ontology queries. Moreover, despite the
interaction of ASP rules and the ontology, most properties of ASP are
preserved. Finally, we show that for ontologies with UCQ-rewritable
queries there exists a natural reduction from our framework to ASP
with existential variables.

1 Introduction

Ontology-based data access (OBDA) [25] is a method for data integration, utilizing
a semantic layer consisting of an ontology and a set of mappings on top of a
database. An ontology is a machine-readable model designed to faithfully represent
knowledge of a domain independently of the structure of the database; it is
comprised of concepts and relationships between these concepts. These ontologies
are often formulated using description logics (DLs), a class of decidable logics, due
to their desirable computational properties [6].

With the help of mappings, users’ queries over the ontology are rewritten into a
query over the database language, such as SQL, which can then be run on the source
data. To ensure that this rewriting is always possible, one requires the ontology
to be first-order rewritable (FOL-rewritable); that is, that every allowed query is
equivalent to a first-order formula. However, not all description logics have this
property. A common class of ontology languages used in OBDA is the DL-lite
family. These description logics have been tailored towards FOL-rewritability and
tractable query answering, making them ideally suited for OBDA [6].

Unfortunately, the rewriting step can cause a worst-case exponential blow-up in
query size [6]. While this blow-up is necessary to ensure complete query answering,
it can lead to highly redundant database queries. Robust pruning of redundant

This paper was presented at the NIK-2018 conference; see http://www.nik.no/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/327107682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

queries without nonmonotonic features such as extensional constraints [27] or
closed predicates [23] is practically infeasible. Furthermore, mapping design and
maintenance is usually manual work [2]. This can be a very laborious task, and
recent work on mapping evolution and repair [19] attempts to alleviate some of
the difficulties involved. However, currently OBDA mappings are interpreted as
first-order implications. As a consequence, they lack the expressivity to succinctly
handle these issues: for instance, exceptions must be stated explicitly, possibly in
multiple mapping assertions.

Example 1 Let TABLE1(<ID>,<DATA>,<CONF>) be a table whose third column indicates
a measure of confidentiality of the given entry, ranging from 1 (highly confidential) to 5
(not confidential). Furthermore, let AC v A be an axiom in the ontology T , where AC
represents the confidential individuals in A. The mapping assertions

∀X, Y∃Z :TABLE1(X,Y,Z)∧Y = “a” ∧ (Z 6= “1” ∧ Z 6= “2” ∧ Z 6= “3”) A(X)

∀X, Y∃Z :TABLE1(X,Y,Z)∧Y = “a” ∧ (Z = “1” ∨ Z = “2” ∨ Z = “3”) AC(X)

express that any entry whose DATA column contains “a” is a member of the concept A or
AC depending on the confidentiality level. Changing what constistutes “confidential” to
for instance “any data with confidentiality level 2 or above” can represent a major challenge
for mapping maintenance: exceptions are listed explicitly and therefore must be changed in
every relevant mapping assertion. Such code lists (exceptions depending on the value of
a given column) are a common practice in database applications, yet are very prone to
error since (1) changes must be made to potentially many mapping assertions and (2) it is
entirely manual work, without robust consistency checking.

Allowing for negation-as-failure as well as ontology queries in the mapping bodies
alleviates these issues:the following mapping rules map the data in the same manner, yet
have a more succicnt and robust manner of handling exceptions.

∀X, Y∃Z :TABLE1(X,Y,Z)∧Y = “a”, not AC(X)→ A(X)

∀X, Y∃Z :TABLE1(X,Y,Z)∧Y = “a” ∧ (Z = “1” ∨ Z = “2” ∨ Z = “3”)→ AC(X).

In this paper, we propose a new framework for OBDA mappings called mapping
programs where mappings are not interpreted as first-order implications. Instead,
they are rules containing a database query as well as (positive and negative)
ontology queries in their bodies, allowing for existential quantification in both the
body and the head of a rule. The ontology queries in rule bodies are evaluated
with respect to both the answer sets of the mapping program and the ontology.

This integration of ontology queries into rules allows our formalism to express
ontological epistemic constraints, for example extensional constraints [27] and
thus a method of pruning redundant queries. Furthermore, by being able to
express default rules, mapping programs serve as a powerful abbreviation tool for
mapping maintenance (cf. Example 1). This enables the addition of nonmonotonic
features to OBDA while retaining the desirable complexity of ontology reasoning.
Furthermore, the semantics for OBDA with mapping programs is capable of
capturing both the open-world reasoning of the ontology as well as the closed-
world reasoning of the database. This was previously not possible with classical
mappings, as they are interpreted as first-order theories and thus are inherently
open-world.

Related work

Current research on extending OBDA with nonmonontonic capabilities has focused
on the ontology side, e.g., through modal description logics or by inclusion of
closed predicates [8, 23]. However, the modal semantics can be quite unintuitive.
In this setting, modal ontology axioms do not behave well in the presence of
nonmodal axioms. Furthermore, extending ontologies with closed predicates
quickly results in intractability, cf. [23].

Using a rule-based framework for mappings in OBDA is no new notion; indeed,
[3] considers mappings as Datalog programs (possibly with stratified negation)
rather than first-order implications. However, this and to our knowledge all
previously proposed mapping frameworks are monotonic and thus suffer from the
issues illustrated in Example 1.

Since our goal is to connect data to an ontology, we require that each mapping
rule contains a database query acting as a guard on the rule. Thus, existential
witnesses generated by rules are not further propagated by the mapping program.
This is in contrast to the more general existential rules frameworks of tuple-
generating dependencies, where existentials in heads of rules may propagate
[5, 4]. The decidability of mapping program reasoning therefore reduces entirely to
decidability of ontology reasoning.

There have been several approaches to combining rule-based formalisms and
description logic ontologies in contexts other than data transformation, be it by
constructing a hybrid framework integrating both rules and ontology axioms
into the same semantics [24] or by adding rules “on top” [10] of ontologies in the
form of DL-programs. Here, rules can interact with an existing knowledge base by
including special ontology queries in the rule bodies.

Both DL-programs and mapping programs are special cases of a more general
framework called HEX programs [11]. These contain, in addition to regular atoms,
queries to external sources in rule bodies which are evaluated with the help of
oracles. While extending HEX programs with existential variables in the heads and
negative bodies of rules, mapping programs restrict external source queries to
database queries (in the positive body of rules, at least one such query must be
present in each rule) and ontology queries (in the positive and negative body of
rules). These restrictions guarantee that mapping programs are very well-behaved
as opposed to general HEX-programs [9]: Despite existential quantification in rules,
the presence of database queries ensures very limited and nonrecursive value
invention (introduction of new constants), guaranteeing a finite grounding of every
mapping program. This provides a solid foundation for query answering and data
transformation, as it guarantees termination.

Paper overview

In the following, we define and analyze the general mapping program framework.
We discuss the complexity of reasoning in our framework (NPO-complete, if there
exists an ontology reasoning oracle O). Thus, despite the seemingly self-referential
definition of satisfiability in mapping programs,1 mapping program reasoning
separates entirely, i.e., mapping programs can be described as “ASP modulo
theories” [17] where for most reasoning tasks the ontology is treated as an external

1Entailment of rule bodies depends on both the ontology and the answer sets of the mapping
program.

black box. As a result, many results from classical ASP, e.g., properties of stratified
programs, are directly applicable to this setting. Finally, we consider a special
case where the body ontology queries are UCQ-rewritable with respect to the
ontology. Using this property, mapping programs can be reduced to classical ASP
in a straightforward manner.

2 Preliminaries

OBDA Mappings

Let ΣT and ΣS be disjoint signatures containing ontology predicate symbols, and
source predicate symbols respectively. Furthermore, let C be a set of constants. A
source schema S is a relational schema containing relational predicates in ΣS as well
as integrity constraints. A legal database instance D over S is a set of ground atoms
from ΣS and C that satisfies all integrity constraints in S . A first-order formula
with free variables is called a query, if it has no free variables it is called a boolean
query. An ontology T is a set of first-order formulas over ΣT . In practice, description
logics are often used to express ontologies. Thus, though the results in this paper
focus on the general case of FOL ontologies, we will use common DL notation
throughout the examples in this paper for notational convenience [6].

Example 2 The axiom Boss v ∃hasSup− is equivalent to the first-order formula
∀x(Boss(x)→ ∃y.hasSup(y, x)). Here, hasSup− refers to the inverse role of hasSup.

Following [18], an OBDA specification is a tuple (D,M, T) consisting of a
database instance D legal over a schema S , a FOL-rewritable ontology T and a
setM consisting of mapping assertions of the form m :ϕ ψ, whereϕ and ψ are
queries over the data source and ontology, respectively. Then a model I of an
OBDA specification (D,M, T) is a first-order model over ΣT ∪ΣS ∪C that satisfies
both T andM. Here we say that a first-order model I satisfies a mappingM if
I � ψ(t) for every mapping assertion m :ϕ ψ and every tuple t ∈ eval(ϕ,D).

Example 3 Consider a database consisting of precisely one two-column table
JOBS DB(<NAME>,<JOB>). Furthermore, consider the ontology T = {Empl v
Person, Boss v Person}. In the rewriting process, the query Person(x) would be rewrit-
ten to Person(x) t Empl(x) t Boss(x) while in the unfolding step, each of the above
disjuncts would be expanded to a database query using the mapping assertions. For
example, if there exist two mapping assertions JOBS DB(x, “Accountant”) Empl(x)
and JOBS DB(x, “IT”) Empl(x), then the disjunct Empl(x) would be unfolded as
JOBS DB(x, “IT”) ∨ JOBS DB(x, “Accountant”).

Example 3 demonstrates some of the current shortcomings of classical OBDA
mappings: due to its inherent, first-order nature, it is impossible to distinguish
between inferred knowledge and knowledge that is explicit in the database. In the
above example, in the presence of a mapping assertion JOBS DB(x, y) Person(x)
the query Person(x) would have sufficed without any ontology rewriting, since
all desired information was contained in one table. However, while some OBDA
implementations [16] support manual query pruning, i.e., the user is able to decide
which concepts should not be rewritten, this can potentially lead to incomplete
query answering, and there is currently no way of formally checking whether it

does. Thus, to ensure complete query answering we have a (potentially redundant)
worst-case exponential blow-up in query size.

Another issue with the current aproach is how exceptions and a lack of
information are dealt with. Currently, one must keep track of exceptions manually
by explicitly listing all exceptions to a rule. Furthermore, due to the closed-world
assumption (CWA) in the database, a lack of knowledge is interpreted as knowledge
itself, e.g., if something is not contained in the JOBS DB table, it is not a Person.

Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm based
on the stable model semantics first defined in [14] as a means of handling default
negation in a straightforward manner. It has become one of the more popular logic
programming paradigms, due to, e.g., computational benefits such as guaranteed
termination as compared to resolution in Prolog [20].

An ASP-program P s a set of rules of the form H ← B1, . . . , Bm, not C1, . . . , not Cn.
with ground atoms H, Bi, and C j. The head of a rule r is Head(r) = H and the body
consists of a two parts, the negative body body−(r) = {C1, . . . Cn} and the positive
body body+(r) = {B1, . . . , Bm}. The Herbrand base HBP of a program P is the
set of all possible ground atoms using predicate symbols, function symbols and
constants occuring in P. Then for a subset I ⊆ HBP, the Gelfond-Lifschitz reduct
PI of P is the set of rules in P after applying the following changes: (1) If Ci ∈ I for
some i, remove the rule (this corresponds to rules that cannot be applied); (2) in all
remaining rules, remove the negative clauses not Ci (this corresponds to removing
all negative clauses that will evaluate to true).

This reduct is a program without any occurence of negation-as-failure. An
interpretation I ⊆ HBP is called a stable model or an answer set of P if it is a
⊆-minimal model of PI , i.e., it is ⊆-minimal and satisfies all rules in PI .

Though the above semantics require ground atoms, i.e., are essentially
propositional, ASP programs might also contains variables or function symbols.
In this general case where function symbols are allowed, reasoning becomes
undecidable [1]. In the function-free case, the first-order ASP programs are usually
first grounded to reduce it to the propositional case. The grounded programs can
then either be solved directly [13] or, e.g., translated to an instance of the Boolean
satisfiability problem (SAT) before being passed on to efficient SAT solvers [22, 15].

3 OBDA Mapping Programs

In this section we introduce the syntax and semantics for a new framework for
OBDA mappings called mapping programs. These programs consist of rules that,
intuitively, map database queries QS to ontology queries HT provided that certain
conditions J+ and J− are met. Thus, mapping programs extend classical OBDA
mappings with default reasoning.

A mapping rule is a rule of the form

HT (x, z)← J+1 (y′1), . . . , J+l (y′l), not J−1 (y1), . . . , not J−k (yk), QS(x).

where yi, y′j ⊆ x for all i, j. Here, the head HT (x, z) is a first-order formula over ΣT
where z denotes possible existential variables. The body of a mapping rule consists
of J−i , J+j , respectively called the negative and positive justifications and the source

query QS . Here, J−i and J+j are first-order formulas over the language of T , and

the source query QS is a first-order formula over ΣS . A setM of mapping rules is
called a mapping program.

Example 4 Consider a database consisting of one table Jobs DB(<NAME>,<JOB>). Let
ΣT = {Empl, hasSup, depHeadO f } with a unary relation Empl of employees and
two binary relations hasSup and depHeadO f , describing a supervising relation and a
department head relation, respectively. The default rule “employees, of whom we do not
know that they are the head of a department, have a supervisor” can be expressed through
the following mapping:

m1 : ∃Z.hasSup(X, Z)← Empl(X), not ∃Y.depHeadO f (X, Y), Jobs DB(X, P).

Then a generalized OBDA specification is a triple (D,M, T), where D is a legal
database instance over a schema S ,M is a mapping program, and T is an ontology.

Definition 1 (Skolem program, following [12]) LetM be a mapping program. The
Skolem rule sk(m) associated to a rule m ∈ M is obtained by replacing each existential
variable v in Head(m) by a new Skolem function symbol skv(s), where s is an ordered
sequence of universal variables in Head(m) . Then the Skolem program of M is
sk(M) = {sk(m) | m ∈ M}.

A mapping interpretation A is a consistent subset of HBsk(M), the Herbrand base
over the Skolem program sk(M). Such an interpretation is said to satisfy or model a
positive Skolemized mapping rule

m : HT (x, skz(x))← J+1 (y′1), . . . , J+l (y′l), QS(x).

written A � m, if it satisfies the head or does not satisfy the body. It satisfies
the body of a rule m if the following holds: for every tuple t ∈ eval(QS ,D), every
interpretation I with I � T ∪ A satisfies J+j [t] for all j ≤ l. Here, eval(QS ,D)
denotes the set of tuples t that are answers to the query QS over D.

Remark 1 In this framework, the database query QS acts as a guard on the mapping rule
m. It is in general a first-order query. Since QS is interpreted solely over D, mapping rules
are not applicable to existential witnesses generated by mapping rule heads. In particular,
the database query >(x) is a shorthand for every tuple x occuring in the database.

For brevity, we writeM instead of sk(M) by abuse of notation. Indeed, in the
following we only consider the Skolemized mapping program.

An interpretation A is said to satisfy or model a positive mapping programM,
written A �M, if it satisfies all mapping rules contained inM.

Example 5 Consider the mapping from Example 4. By Skolemizing, we get the mapping
program:

hasSup(X, skz(X))← Empl(X), not ∃Y.depHeadO f (X, Y), Jobs DB(X, P).

Definition 2 (Partial ground program, following [12]) The partial grounding PG(m)
of a mapping rule m is the set of all partial ground instances of m over constants in ΣD for
those variables that are not existential variables in the negative justifications. The partial
ground program of a mapping programM is the set PG(M) =

⋃
m∈M PG(m).

Example 6 Consider the database and mapping from Examples 4 and 5. If the set of
constants occuring in the database is {a, b}, then PG(sk(m1)) consists of the four mapping
rules for u, v ∈ {a, b}:

hasSup(u, skz(u))← Empl(u), not ∃Y.depHeadO f (u, Y), Jobs DB(u, v).

Remark 2 (Finite partial grounding) Though the above definition is seemingly
identical to that given in [12], the partial ground program of a mapping program is
guaranteed to be finite due to the presence of the database guard QS in every mapping rule.
This guard is evaluated solely over the domain of the database. In contrast, ∃-programs are
partially ground using Skolem symbols as well, causing the partial ground program to be
infinite as soon as any rule contains an existential head variable.

Definition 3 (T -reduct) Given an ontology T , define the T -reduct PG(M)A of a
partial ground mapping program PG(M) with respect to an interpretation A as the
mapping program obtained from PG(M) after applying the following:

1. Remove all mapping rules m where there exists some i ≤ k such that T ∪A � J−i .

2. Remove negative justifications from the remaining rules.

Example 7 Continuing with our running example, let T = {Boss v ∃depHeadO f ,
Boss v ∃hasSup−}. Add the mapping rules m2 : Boss(X)← Jobs DB(X, b) and
m3 : Empl(X) ← Jobs DB(X, P). Then for A = {Jobs DB(a, b), Empl(a), Boss(a)},
the rules

hasSup(a, skz(a))← Empl(a), not ∃Y.depHeadO f (a, Y), Jobs DB(a, v).

for v ∈ {a, b} are removed in the T -reduct PG(M)A construction, since T ∪ A �
∃Y.depHeadO f (a, Y). Then the T -reduct w.r.t. A consists of all groundings of the
following rules:

hasSup(b, skz(b))← Empl(b), Jobs DB(b, Y).
Boss(X)← Jobs DB(X, b).

Empl(X)← Jobs DB(X, P).

A mapping interpretation A is called a T -answer set ofM if it is a ⊆-minimal
model of the T -reduct PG(M)A. Then a tuple (I ,A) consisting of a first-order
model I and a mapping interpretationA is a model of a generalized OBDA specification
(D,M, T) if I � T ∪A and A is a T -answer set ofM. For a given ontology T ,
a mapping programM is said to entail a formulaϕ, writtenM �T ϕ, if every T -
answer set ofM entailsϕ. Similarly, a generalized OBDA specification (D,M, T)
entails a formulaϕ, written (D,M, T) �ϕ, if every model of (D,M, T) entailsϕ.

Example 8 It is easily verifiable that the set A given in Example 7 is in fact a T -answer
set. It does not, however, entail T , as the ontology axiom Boss v ∃hasSup− is not satisfied.
Thus, to obtain a model of the generalized OBDA specification, any model I must satisfy
this axiom, in addition to the assertions in A.

Remark 3 (Extensional constraints) Mapping programs are capable of expressing
extensional constraints over the OBDA specification, i.e., constraints over the ontology
language on the database and mappings [27]. For instance, the extensional constraint
C ve D, which can be intuitively read as “if C(a) is contained in the ABox, then D(a)
is contained in the ABox as well.” Such a constraint is expressible with the mapping
⊥ ← not D(X), C(X),>(X), where ⊥ is bottom and > is the query top of appropriate
arity. This guarantees that any T -answer set ofM must satisfy this constraint. Thus,
queries containing the disjunction C t D can be pruned, as querying for C in addition to
D yields no new information. It is worth noting that, while this is similar to integrity
constraints over the database, it is not entirely the same: the database schema might differ
greatly from the structure of the ontology, thus allowing the possibility of describing
database constraints on an ontology level.

Complexity Analysis

In the general case, where the heads and bodies of mapping rules are allowed
to contain arbitrary first-order formulas, reasoning over mapping programs is
obviously undecidable. Indeed, consider an empty T and the mapping program
M = {R(a) ← >, H(x) ← ϕ, R(x)} for some arbitrary first-order formula ϕ.
ThenM � H(a) if and only ifϕ is a tautology, which is known to be undecidable
for arbitrary first-orderϕ. This is summarized in the following theorem.

Theorem 1 The problem of checkingM � A for a given mapping programM and a
ground atom A is undecidable.

Corollary 1 Let (D,M, T) be a generalized OBDA specification and A be a ground
atom. Then the problem of checking (D,M, T) � A is undecidable.

Now consider the case where T = ∅ and L is the set of all ground atoms over
the language of T . In this case, the oracle O(T ,L) must only check membership
in A, hence it is linear in the size of A. In this case, a partially ground Skolem
mapping program is simply a classical ASP program. Therefore, brave reasoning
over partially ground Skolemized mapping programs is at least as hard as classical
ground ASP, i.e., is NP-hard [20].

More generally, let (T ,L) be a pair consisting of an ontology T and a set L of
formulas over the signature ΣT such that T -entailment of anyϕ ∈ L is decided by
an oracle O(T ,L). In the following we consider mapping programsM where the
queries in rules are formulas from L. Then to construct a T -answer set, we can
employ a variant of the guess-and-check algorithm for ASP: By definition, a set A
is a T -answer set ofM if and only if it is a ⊆-minimal model of the T -reductMA.
Both the construction ofMA and the satisfiability-checking are done following
their respective definitions. For ⊆-minimality, it suffices to check co-satisfiability of
A \ {a} for every a ∈ A, sinceMA is a positive program and hence monotonic.

The complexity of the guess-and-check method is dominated by the oracle
O(T ,L): indeed, the oraclesO(T ,L) and co-O(T ,L) (the oracle that checks if a formula
in L is not entailed by T) are called a number of times polynomial in the size ofM.

More specifically, for a given oracle O(T ,L) brave reasoning over mapping
programs is NPO(T ,L)-complete.

Theorem 2 Let (T ,L) be a pair consisting of a first-order ontology T and a set of
formulas L over the language of T such that T -entailment is |O(T ,L)|-hard for an oracle

O(T ,L). Then for a partially ground Skolemized mapping programM where the head and
all justifications are formulas from L, T -answer set existence is NPO(T ,L)-complete.

Note that, by the preceding theorem, a partially ground Skolemized mapping
program satisfying the conditions of Theorem 2 can be rewritten into an ASP
program with oracle calls in the rule bodies. Therefore, mapping programs can
be considered as “ASP modulo theories.” The resulting ASP program, however,
bears little resemblance to the original program, as it is the encoding of an NPO(T ,L)

Turing machine.

Properties of Mapping Programs

In the previous section, we have seen that reasoning with mapping programs
separates in the sense that a candidate T -answer set A can be checked rule by
rule using an ontology reasoning oracle. Therefore, many properties obtainable
by syntactic restrictions on ASP transfer automatically to mapping programs. As
an example, we show that the proof of answer set uniqueness of stratified ASP
programs can be directly transferred to the mapping program setting.

Definition 4 A mapping programM is said to be stratified if there exists a number
l (called the length of M) such that each query Q contained in a rule M can be
associated to a natural number v(Q) ≤ l where for any rule r in M v(Head(r)) ≥
maxQ∈Body+(r) v(Q), and v(Head(r)) > maxQ∈Body−(r) v(Q) hold.

Then the proof of the following theorem is entirely analogous to its classical/DL-
program counterparts [26, 10]. Indeed, using the iterative model sematics [26], a
stratification gives rise to a perfect model AM ofM. It is then easily shown that
this model must be a T -answer set, and conversely that any T -answer set is in
turn a perfect model ofM.

Theorem 3 Let (D,M, T) be a generalized OBDA specification with a stratified
mapping programM. ThenM has a unique T -answer set iffM is satisfiable.

UCQ-Rewritable Justifications

We now analyze a restriction of mapping programs that admits a natural reduction
to classical ASP for query answering and reasoning. To this end, let T be an
ontology over a decidable fragment of first-order logic. We say a formulaϕ over
ΣT is UCQ-rewritable with respect to T if the T -rewriting ofϕ is equivalent to a
union of conjunctive queries [7].

Then for a mapping programM where all justifications are UCQ-rewritable
with respect to T , let M, called the T -rewritten program, denote the mapping
program obtained fromM by replacing every justification with its rewriting with
respect to T . The T -rewritten programM is equivalent to a program containing
only atoms as positive justifications and CQs as negative justifications, by well-
known logic program equivalence transformations [21]. By abuse of notation,M
will in the following denote this equivalent program.

Let us first establish the connection between mapping programs and ∃-ASP.
Recall that a mapping rule can be applied to every tuple t ∈ eval(QS ,D) where
T ∪A � J+i [t] for all positive justifications J+j and T ∪A 6� J−j [t] for all negative

justifications J−j . If the TBox T is empty, this reduces to checking whether the
justifications are certain answers w.r.t.A and hence simply checking containment in
A. This is, however, precisely the semantics of ASP with existential variables. Hence,
mapping programs can be seen as an extension of ∃-ASP [12], both semantically
and syntactically. This result is summarized in the following theorem.

Theorem 4 LetM be a partially ground Skolem program where all justifications are
conjunctive queries. Then a set A is a ∅-answer set ofM iff it is a ∃-answer set ofM.

The following lemma describes the relationship between T -rewritten programs
and reducts w.r.t. A, which is particularly useful when analyzing the connection
between ∃-ASP and mapping programs, as discussed in Theorem 5.

Lemma 1 For any A ⊆ HBsk(M) we have MA
= MA, where MA denotes the T -

rewritten program ofMA.

Theorem 5 LetM be a partially ground Skolem program where all justifications are
UCQ-rewritable with respect to an ontology T . A set A is a T -answer set ofM iff it is an
∅-answer set ofM.

As a direct consequence of the preceding theorem, the following corollary
describes how query answering over an OBDA specification using a UCQ-
rewritable mapping program can be reduced to query answering over an equivalent
OBDA specification with an empty ontology.

Corollary 2 Let (D,M, T) be an OBDA specification,M the T -rewritten program
ofM, q a query over ΣT , and q its rewriting with respect to T . Then (D,M, T) �
q[t] ⇐⇒ (D,M, ∅) � q[t].

Therefore, by Corollary 2 and Theorem 4 we find that every UCQ-rewritable
mapping program M is equivalent (w.r.t. answer sets) to an ∃-ASP program.
Then, by results in [12], this can be reduced to a classical ASP program. This is
summarized in the following theorem.

Theorem 6 For an OBDA specification (D,M, T), where the justifications inM are
UCQ-rewritable with respect to T , there exists an ASP programM′ such that for a query
q over T (D,M, T) � q[t] ⇐⇒ M′ � q[t], i.e., query answering over (D,M, T)
reduces to cautious reasoning overM′.

4 Conclusion and Future Work
In this paper, we propose a new mapping framework for ontology-based data
access (and data transformation in general) that is both very expressive and
controllable with respect to computational complexity. Our framework allows
for default reasoning as well as the expression of epistemic properties over the
database and ontology. We show that mapping programs can be described as
“ASP modulo theories,” treating the ontology as an external black box. The loose
coupling of ASP and ontological reasoning allows us to transfer existing results
about ASP to this setting.

While various highly optimized ASP solvers do exist, the data complexity
involved is rather undesirable in the context of real-world OBDA and big data.

Therefore, one of the greatest priorities regarding future work is to determine how
and when the complexity can be reduced; the mapping program should not be
run on the entire data set. Furthermore, there appears to be a strong connection
between mapping programs and satisfiability modulo theories (SMT). We believe
that mapping programs with ontologies supported by SMT solvers should be
translatable into SMT instances in the same manner as ASP programs can be
translated into SAT instances. If true, this could allow for very efficient query
answering in certain OBDA settings. As such, investigating this connection is a
clear goal for future work.

References

[1] M. Alviano, F. Calimeri, W. Faber, G. Ianni, and N. Leone. Function symbols
in ASP: Overview and perspectives. In NMR—Essays Celebrating Its 30th
Anniversary, pages 1–24. College Publications, 2011.

[2] N. Antonioli, F. Castan, S. Coletta, S. Grossi, D. Lembo, M. Lenzerini, A. Poggi,
E. Virardi, and P. Castracane. Developing ontology-based data management
for the italian public debt. In 22nd Italian Symposium on Advanced Database
Systems, SEBD 2014, pages 353–360. Universita Reggio Calabria and Centro di
Competenza (ICT-SUD), 2014.

[3] R. Barilaro, N. Leone, F. Ricca, and G. Terracina. Distributed ontology based
data access via logic programming. In Proceedings of RR 2012, pages 205–208,
Berlin, Heidelberg, 2012. Springer-Verlag.

[4] A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. J. Artif. Intell. Res. (JAIR), 48:115–174,
2013.

[5] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework
for tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite
family. J. Autom. Reasoning, 39(3):385–429, 2007.

[7] F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi,
and D. F. Savo. Optimizing query rewriting in ontology-based data access. In
Proceedings of EDBT 2013, pages 561–572, New York, NY, USA, 2013. ACM.

[8] F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge
and negation as failure. ACM Trans. Comput. Logic, 3(2):177–225, April 2002.

[9] T. Eiter, M. Fink, T. Krennwallner, and C. Redl. Domain expansion for ASP-
programs with external sources. Artif. Intell., 233:84–121, 2016.

[10] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
answer set programming with description logics for the semantic web. Art.
Intel., 172(1213):1495 – 1539, 2008.

[11] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of
higher-order reasoning and external evaluations in answer-set programming.
In Proceedings of IJCAI 2005, pages 90–96, San Francisco, CA, USA, 2005.
Morgan Kaufmann Publishers Inc.

[12] F. Garreau, L. Garcia, C. Lefèvre, and I. Stéphan. ∃-ASP. In Proceedings of JOW
2015 co-located with the IJCAI 2015, Buenos Aires, Argentina, July 25-27,, 2015.

[13] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187-188:52–89, August 2012.

[14] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In ICLP ’88, pages 1070–1080. MIT Press, 1988.

[15] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers.
Found. Art. Intel., 3:89–134, 2008.

[16] D. Hovland, D. Lanti, M. Rezk, and G. Xiao. Enabling SPARQL
queries over enterprise relational data (extended version). preprint, 2015.
arXiv:1605.04263v2 [cs.DB].

[17] J. Lee and Y. Meng. Answer set programming modulo theories and reasoning
about continuous changes. In Proceedings of the IJCAI 2013, pages 990–996.
AAAI Press, 2013.

[18] D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. Mapping analysis
in ontology-based data access: Algorithms and complexity. In Proceedings of
ISWC 2015, pages 217–234, 2015.

[19] D. Lembo, R. Rosati, V. Santarelli, D. F. Savo, and E. Thorstensen. Approaching
OBDA evolution through mapping repair. In Proceedings of DL 2016., 2016.

[20] V. Lifschitz. What is answer set programming? In D. Fox and C. P. Gomes,
editors, Proceedings of AAAI 2008, pages 1594–1597. AAAI Press, 2008.

[21] V. Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic programs.
Ann. Math. Art. Intel., 25(3):369–389, 1999.

[22] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT
solvers. Art. Intel., 157(12):115 – 137, 2004. Nonmonotonic Reasoning.

[23] C. Lutz, I. Seylan, and F. Wolter. Ontology-based data access with closed
predicates is inherently intractable (sometimes). In Proceedings of IJCAI 2013,
pages 1024–1030. AAAI Press, 2013.

[24] B. Motik and R. Rosati. Reconciling description logics and rules. J. ACM,
57(5):30:1–30:62, June 2010.

[25] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. In S. Spaccapietra, editor, J. Data Sem. X, pages
133–173. Springer-Verlag, Berlin, Heidelberg, 2008.

[26] T. C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193–216. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1988.

[27] R. Rosati. Prexto: Query rewriting under extensional constraints in DLLite.
In E. Simperl, P. Cimiano, A. Polleres, O. Corcho, and V. Presutti, editors,
The Semantic Web: Research and Applications, volume 7295 of Lecture Notes in
Computer Science, pages 360–374. Springer Berlin Heidelberg, 2012.

