
Flexible Devices for Arctic Ecosystems
Observations

Lukasz Sergiusz
Michalik

Otto J. Anshus John Markus
Bjørndalen

November 2017

Abstract

Devices for observing the environment range from basic sensor systems,
like step-counters, through wild-life cameras, with limited processing
capabilities, to more capable devices with significant processing, memory
and storage resources. Individual usage domains can benefit from a range
of functionalities in these devices including flexibility in prototyping, on-
device analytics, network roaming, reporting of data, and keeping the
devices and services available in spite of failures and disconnections. The
problem is that either the devices are too resource limited to support the
range of functionalities, or they use too much energy.

An important usage domain is COAT – Climate-Ecological Obser-
vatory for Arctic Tundra. Presently, best practice includes deploying
wild-life cameras in the Arctic Tundra, and visiting them to manually
collect the recorded observations. This is a problem because such devices
can only be rarely visited, and manual approaches to fetching data and
storing it do not scale with regards to number of cameras, handling of
human mistakes, and with freshness of observations.

We present a prototype for observing the environment composed
of a general purpose computer, a Raspberry PI, in combination
with an ARM-based microcontroller. The combination enables us to
create a more energy efficient prototype while supporting the needed
functionality.

The prototype improves on currently applied methods of observing
the Arctic tundra. The prototype automatically observes the arctic
tundra through camera, humidity and temperature sensors. It monitors
itself for failures. The data is stored locally on the prototype until it can
be automatically reports to a backend service over a wireless network.

We have conducted experiments that show that task scheduling can
reduce power consumption, and we identify some additional points that
need to be addressed before we can run the device for long periods on
battery power.

This paper was presented at the NIK-2017 conference; see http://www.nik.no/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/327107666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction
Determining the characteristics of a platform for observing the arctic tundra is
challenging for several reasons. The arctic conditions pose by itself challenges of
limited physical access to observation units, demanding weather conditions, and
lack of infrastructure for energy and data networks. There are also challenges in
defining a platform able to allow for tracking progress in technology and a never
ending stream of new observational requirements and needs.

Platforms for observing the arctic tundra are based on devices ranging from
microcontroller-based devices including basic single-purpose sensors and wild-
life sensors with limited processing capabilities, to computer-based devices with
significant processing, memory, network, and storage resources.

An interesting and important effort to do observations of the arctic tundra is the
Climate-Ecological Observatory for Arctic Tundra (COAT) [1]. COAT makes use
of wild-life cameras placed below and above snow at multiple locations in Northern
Norway. Microcontroller-based systems like wild-life cameras typically have limited
functionality for doing flexible and adaptive observations, no automated reporting of
observed data through data networks, no way to (remotely) reconfigure the camera
unit after deployment, and no on-camera processing of the observed data. The wild
life cameras basically must be manually configured, they can only do observations
through a camera, temperature, and humidity sensors, and data must be manually
and physically fetched by physically visiting the camera unit. However, the energy
efficiency is high and the total energy usage is very low enabling operation for 6-12
months on a single battery charge.

Several types of Internet of Things (IoT) [2] sensor systems currently exist,
such as Vicotee Njord[3], SensorTag 2[4] or Waspmote[5]. All of these systems
can monitor the environment with multiple sensors and communicate with remote
services while being low-power-consumption devices. However, some of these
systems are still in a development stage and they can not be tested yet (Vicotee
Njord), others cannot be extended with specific sensor types because of a closed
design (SensorTag2) or due to custom module interface (Waspmote).

On the other hand, there is a variety of single-board microcontrollers, like the
Arduino, and single-board general purpose computers, like the Raspberry PI. These
allows for more open, flexible and general purpose. They can also be extended with
additional modules because they support common interfaces such a Serial Peripheral
Interface (SPI), Inter-Integrated Circuit (I2C), and Camera Serial Interface (CSI). A
variety of peripherals, a big community of users and open-source code and examples
make them an efficient platform for prototyping a customized solution for Arctic
Observatories.

2 Related Work
Internet of Things (IoT) based solutions became popular in projects like smart-
cities [14], [19], safety [12], [13] and health-care [15], [17], [18]. However, the
approaches that are used in those solutions cannot be directly applied for Arctic
region observations. Nevertheless, the properties of IoT components, which allow
for flexible, modular design, where an incentive for us to start the project.

Even though Internet of Things has been around for several decades it keeps
posing similar problems for IoT developers. In a paper from 2006 [20] issues with



sensor network deployment, network coverage and energy consumption were pointed
out. We have experienced similar concerns in our prototype. Those questions remain
open even though the IoT technology has progressed, the available development’s
boards are more powerful, energy-efficient, and they have longer radio links. All that
did not eliminate the issues with deployment of multiple devices in hardly accessible
regions, occurrences of network partitioning or high energy demand.

We have grasped an idea of long-range radio communication for image sensor
network from [16]. However, in [23] we concluded that sending the captured images
or other type of heavy data via LoRa mechanism is not possible because of a limited
data rate. Long range radio modules offer up to 20 kilometers of range with the costs
of a small data payload (around 200 bytes) and long data delivery time (around 5
seconds). Such radio links do not permit to send anything else than raw text data,
and thus they can not be used to deliver hundreds of images per day in an efficient
way. However, LoRa can carry efficiently different types of data such as the device’s
internal status (called also keep-alive message), which includes information about
remaining battery and storage capacity and occurred failures.

An interesting aspect related to the issues with growing sensor networks was
described in [21]. The article points out that the heterogeneity of sensor devices
in a single network introduces a challenge of finding the nodes capable of either
processing or storing a data. We have developed a single device, along with a
storage node, which in the nearest future might require to be extended with more
types of sensors. If a significant number of different devices is deployed in the field,
then It introduces a challenge of finding the data processing nodes in an efficient and
energy-wise way. The article introduces tree types of algorithms (request, traverse
and mixed) addressing this problem.

The idea of a customized, low-powered, long range device (called SensorScope)
for environmental observations was introduced in [22]. The prototype is build
on a Texas Instruments MSP430 microcontroller equipped with Semtech XE1205
radio transceiver which offers a range of up to 1200 meters and a decent power
efficiency. This successful and already commercialized solution revealed challenges
with programming and debugging the bare-microcontroller based system. A
microcontroller alone could not be used to process the gathered data in-situ and
would require all the data to be sent to backend-services. We decided to combine
a general purpose computer (Raspberry PI 3) with a microcontroller in order to
achieve some degree of data processing on site and to limit the system’s power
consumption. Our solution uses a newer type of transceiver with a theoretical range
up to 20 kilometers. The system described in [22] was deployed on a glacier in Swiss
Alps, which pose similar environmental conditions as the Arctic Tundra - the target
deployment destination for our prototype. High energy consumption and instability
issues in our solution cause, however, that in order to test it in the field in a similar
way, we would have to first improve it significantly.

3 Architecture
We present both hardware and software architecture of our prototype which we
called an Observation Unit (OU).



Hardware
To support flexible sensor prototypes and implementations, we need a system
that lets us combine the power and programmability of a general purpose
embedded system (Raspberry Pi class) with a microcontroller-style power efficient
system. Sensor prototypes can start development and experiments running in the
general purpose part, and optimize power efficiency by moving tasks over to the
microcontroller. The architecture presented here reflects the two-board solution
used in our current prototype, but the design could, in principle, be implemented
with a single chip or single board system.

Observation Unit

As outlined before, our prototype is composed of a main unit and a support unit in
the current stage. The units are connected via a communication bus as presented
in Figure 1. To communicate with the OU, we introduced a simple back-end server
which is referenced as a gateway in the remaining part of the paper.

The main unit is the heart of the system and its main purpose is to collect and
send data such as sensor readings and internal state (health status) to the backend
services.

Figure 1: The Observation Unit hardware architecture.

The support unit is a proposed solution for limiting the energy consumption of
the main unit. We have assumed that linux-compatible devices might demand too
much energy to be operative during the whole period of observations. In this case,
the main unit remains inactive (powered off) until the support unit determines that
more powerful board should be turned on in order to execute its defined tasks. We
were aware of the fact, that some devices are not equipped with a hardware clock,
which prevents them of stamping the captured data with an accurate time, which
might be important in order to analyze recorded information. Therefore some kind
of time measuring module is required as well to be a part of the support unit.

Gateway

The gateway’s hardware architecture consists of a computer unit with storage,
network access and communication modules compatible with the networks used by
the OU. The gateway architecture is presented in Figure 2.



Figure 2: The Gateway hardware architecture.

Software
Observation Unit

The main unit executes batches of tasks based on a defined order. Single task should
finish its execution as fast as possible to save device’s power. When last task finish
its running then device send information to the support unit with wake-up request
on a specified time value. The support unit works as a node that executes only tasks
requested by the main unit.

Gateway

Collecting data from the OU requires a type of backend-services running on the
gateway in order to examine device’s ability to communicate with an external server.
Such server is responsible for receiving data and sending confirmation of such event
back to the OU. The gateway software architecture is presented in Figure 3.

Figure 3: The Gateway software architecture.

4 Design
Observation Unit
A proposed design of the flexible device is composed of two development boards:
a Raspberry-like based main unit and a Arduino-like microcontroller-board, the
support unit, as shown in Figure 4. The first needs decent storage space for
observations’ data along with a camera-like sensor and some long range link to
the gateway. It is also required for the unit to have an external way to communicate
with the support unit. The latter, in order to keep the current time, should be



equipped with a hardware time clock like Real Time Clock (RTC) with a decent
accuracy.

Figure 4: The Observation Unit design.

The software stack for the main unit should include a Linux compatible
operating system along with popular programming languages in order to keep an
ease of prototyping for the flexible device and make it open for further software
modifications.

Gateway
The gateway might be based on a commodity Linux compatible device equipped
with the same long range module as the OU in order to receive data. If we assume
that one of the requirements for this unit is to have a decent long range coverage
then it would be desired to use a small size hardware that might be easy placed in
a high spot above the ground with a clean line of sights to the OU. Following this
assumption, a Raspberry-like board seems to be perfect for the gateway.

5 Implementation
Observation Unit
The observation unit is based on Raspberry Pi 3B (the main unit) and Arduino Pro
Mini (the support unit). Both operate on 5 volts of input voltage, which allows to
use the same power source for them without additional logic-level converters. The
prototype along with used modules are depicted in Figure 5.

To start experimenting with different classes of sensors, we have added two initial
sensors: a camera and a temperature and humidity sensor.

The communication module selected for the prototype is LoRa module,
specifically Dragino LoRa Bee,which is based on the Semtech SX1276 transceiver
chip. The module is connected via SPI to the main unit.

The C++ application for sending data from the OU to the gateway is based on
the LowCostLoRaGw [9] library made by Congduc Pham from the University of Pau
in France. The code selects information from sqlite3 database stored on the main
unit, where the OU saves all sensors’ readings and its health status. The data is
then sent to the gateway.

The LoRa module operates in 868 MHz band frequency and it is configured to
use 125 kHz Bandwidth (BW), Spreading Factor (SF) 12 and Command Rate (CR)



Figure 5: The Observation Unit prototype.

4/5 for the maximum range. This configuration is optimal in the terms of long range
communication, as specified in Semtech LoRa Modem Design Guide[6].

The camera module used in the prototype is Raspberry Pi Camera Module v2,
which comprises an 8-megapixel sensor. We used a Python program to capture in
a resolution of 1024 x 768 pixels, saving them to the device’s storage space. We did
not send the images using the LoRa module.

As an additional sensor, we used a DHT11 humidity and temperature sensor
connected with a single bus (Single-Wire Two-Way) to the main unit, which means
that a single communication line is used to request and receive 40-bits of data from
the sensor.

We need to turn off the main unit in order to save the OU ’s power. The issue with
a Raspberry Pi is that it cannot wake itself up after sleeping for a while. Therefore,
the support unit is responsible for waking up the Raspberry (after the Raspberry
has shut down) using an external timer event. The prototype’s boards communicate
with each other using an I2C bus. However, since one of the Raspberry PI 3B I2C
pins is also used to turn this device on, a signal switch (Keys SRD-05VDC-SL-C
relay in this case) is required. It allows to share the same pin by two separate circuits
and switch the pin to the circuit which is used at the moment.

An Arduino Pro Mini 5V was selected as the support unit for the prototype.
It runs on only 12 mA of current and its firmware is written in C++. Therefore,
every time the device’s code is changed, it must be compiled on an external host
and flashed to the board using an FTDI USB serial cable.

Since none of the boards used in the project have a build-in hardware clock, the
support unit was equipped with an RTC module, specifically DS1302. In the current
prototype the RTC module is used by the support unit to turn on the main unit at
a specified time and to pass the current time for it. The first initialization is done by
the main unit, using I2C communication with the support unit and timezonedb.com
API.

A Raspberry PI 3B is used as the gateway as showed in Figure 6 and uses the
same LoRa module as the OU. In order to make this device be able to receive
LoRa messages, a modified LowCostLoRaGw [9] library is used. The application is
executed as soon as the device’s operating system is up and running and it remains
in the background until the system’s shutdown. All received messages are stored in



an sqlite3 database for further processing.

Figure 6: The Gateway prototype.

6 Experiments
In order to determine how well the OU performed in terms of power-consumption
and task-execution times, we have designed and performed several experiments, two
of which we report from here. See [23] for more details.

We used a Mini USB Charger Doctor [11] to measure power consumption.
This device detects electric current consumption and voltage levels in the circuit
connected to it via USB. Its specification states that it can measure a current ranging
from 0 A to 3 A (with +- 1% of error and minimum resolution of 10 mA) and time
(only when a device is draining power) from 0 to 99 hours.

Extreme load scenario
The main purpose of this experiment was to determinate how much energy the OU
consumes when tasks are executed in predefined intervals. The device was monitored
during 24 hours of testing for every interval case (the same for every task during the
whole test) which gives 4 days of testing in total. To obtain the reference value for
power consumption, the device was left in an idle state for another 24 hours. Each
task was running independently in an endless loop with a sleeping time specified by
the interval length. The list of tasks and intervals used are presented in Table 1.

Task name
Idle-state Interval

System idle
1s 10s 30s 60s

1 x LoRa message sending x x x x
1 x RTC value reading x x x x
1 x DHT11 sensor’s value reading x x x x
1 x Camera image capture x x x x

Test duration 24h 24h 24h 24h 24h

Table 1: List of tasks executed during extreme load scenario.



Medium load scenario
To futher conserve power, we experimented with powering down the Raspberry Pi
in the OU. As soon as the device finished its booting sequence, it was executing the
same tasks as described in section 6 and then it was turned off for the specified sleep
time. This cycle was repeated in a loop of 24 hours. Four such experiments were
performed – one for every interval. Tasks performed during this scenario and the
lengths of power-off intervals are specified in Table 2.

Task name
Duration of shutdown state

System idle
1s 60s 30m 60m

1 x LoRa message sending x x x x
1 x RTC value reading x x x x
1 x DHT11 sensor’s value reading x x x x
1 x Camera image capture x x x x

Test duration 24h 24h 24h 24h 24h

Table 2: List of tasks executed during medium load scenario.

7 Results
This section presents the results of the experiments conducted to measure the
device’s power consumption in the previously defined scenarios.

Extreme load scenario
The main purpose of this scenario is to determine how much energy the OU
consumes when the OU alternates between executing tasks and idling. The results
presented in Figure 7 show that the power consumption is proportional to the
frequency of executing tasks. In the most intense case, the power consumption
is 1,7 times higher than in the idle state. With about 1 minute between tasks, the
power consumption was close to the idle state.

An interesting observation is that even in the idle state, the device consumes
around 5 Ah a day. This would drain a decent smartphone battery, which has a
capacity of around 2.5 Ah in half a day.

0 10 20 30 40 50 60

4

6

8

10

4.92

8.44
7.80

6.63

5.10

Duration of idle-state interval between task executions [s]

E
n
er

gy
co

n
su

m
p
ti

on
[A

h
]

Tasks execution
Idle state

Figure 7: Energy consumption measured over 24h in extreme load scenario.



Medium load scenario
Figure 8 shows the energy consumption levels for 24-hour-long periods of task
executing, interrupted with shutdown states of various lengths. The lengths of
shutdown states are marked on the horizontal axis of the figure. The highest energy
consumption measured in this scenario (5.43 Ah obtained for 1-second long shutdown
intervals) is comparable to the lowest energy consumption measured in the extreme
load scenario (5.10 Ah obtained for 60-seconds long idle intervals), as presented in
Figure 7.

We have observed that the overhead for shutdown (around 8 seconds) and
booting the Raspberry (ranging from 25 to 45 seconds) is large enough that the
effective interval between tasks executing is longer than the shutdown intervals
presented in the figure. For a 1 second interval, the effective downtime is around
34-54 seconds, which means that the 1 second interval is comparable to the 1 minute
idle state in Figure 7.

01 30 60

2

3

4

5

6

2.27

5.43

4.01

2.36 2.41

Duration of shutdown state [min] (0 coresponds to 1 second)

E
n
er

gy
co

n
su

m
p
ti

on
[A

h
]

Tasks execution
Shutdown state

Figure 8: Energy consumption measured over 24h in medium load scenario.

An important observation is that the unit is still drawing conderable power even
in the shutdown state. The support unit ’s power consumption was measured to
around 20 mA, which means that a powered-off Raspberry PI 3 consumes around
75 mA. To address this, we have used an Arduino-based Sleepy Pi 2 as a replacement
support unit, and initial experiments show that it can cut the power to the Raspberry
completely when it’s shut down. To reduce power consumption further, we need to
investigate reduction of boot and shutdown overhead in the Raspberry.

8 Future Work
Right now the observation unit consumes too much energy to be placed in the Arctic
environment and survive on batteries for several months. The Raspberry PI 3 used
as the main unit drains power even in the shutdown state, which requires an external
power circuit controlled by the support unit to cut off such power-leakage.

Another approach to limit the OU ’s power demand would be to replace
Raspberry PI 3 with a much more power-efficient Raspberry PI Zero (a less powerful
version of Raspberry PI family boards with a single core chip). Another option is
to experiment with letting the support unit power down the Raspberry to conserve
power. Initial experiments with a Sleepy Pi 2 shows that this can be a promising
approach.



9 Summary
The goals of this project were to develop a system capable of observing the Arctic
environment, detecting motion in front of the installed camera, reporting collected
data and the state of system’s sensors and to design a reference system for exploring
power issues and corresponding solutions. Such goals were achieved in a form of
proposed and examined in this paper prototype.

The prototype is a first attempt towards monitoring the wildlife in a more robust
way than just through a simple photo camera capturing images when the motion
is detected. The research brought much positive outcome. The observation unit
provides a way of delivering information on a long distance using a low-powered
communication module.

On the other hand, the OU consumes too much power to be placed in the field
in its current form. The increased functionality of the prototype definitely did not
come without a price, but with more extensive examinations and the addition of
several missing parts it could be polished to the state when it proves useful in the
real environment.

Since the main unit is under the control of a linux operating system, it allows
to use much more existing software solutions and programming languages to deliver
the desired functionality, which could not be provided by the embedded systems
only. It opens a door for introducing further improvements without the necessity of
being familiar with IoT development as a prerequisite.

The implementation of the observation unit prototype showed how many
different aspects need to be taken into account beyond software implementation.
The system’s stability, for example, does not depend only on the quality of the
software part, but also on the selected hardware components, which sometimes are
less reliable than others. Testing several models of the same type of peripheral is
highly advisable when choosing a candidate for the final solution to be deployed in
the field.

References
[1] ”COAT”, http://www.coat.no/. Accessed 28.08.2017.

[2] ”Internet of Things”, https://goo.gl/gJ3L6d. Accessed 28.08.2017.

[3] ”Vicotee Njord”, http://www.vicotee.com/. Accessed: 18.03.2017.

[4] ”SensorTag 2”, http://www.ti.com/tool/cc2650stk. Accessed: 18.03.2017.

[5] ”Waspmote”, https://goo.gl/MSKObw. Accessed: 18.03.2017.

[6] ”Semtech LoRa Modem Design Guide”, https://goo.gl/U1ZMvK. Accessed
17.04.2017.

[7] ”pi-timolo”, https://goo.gl/KWNgn6. Accessed 16.04.2017.

[8] ”picamera”, https://goo.gl/johwTp. Accessed 16.04.2017.

[9] ”Low-cost LoRa IoT”, https://goo.gl/aEwHT3. Accessed 17.04.2017.

[10] ”Adafruit Python DHT Sensor Library”, https://goo.gl/8sRbul.
Accessed 18.04.2017.

http://www.coat.no/
https://goo.gl/gJ3L6d
http://www.vicotee.com/
http://www.ti.com/tool/cc2650stk
https://goo.gl/MSKObw
https://goo.gl/U1ZMvK
https://goo.gl/KWNgn6
https://goo.gl/johwTp
https://goo.gl/aEwHT3
https://goo.gl/8sRbul


[11] ”USB Charger Doctor”, https://goo.gl/LA8Zyf. Accessed 1.05.2017.

[12] S. Imran, V. Sirivastava, I. Hwang, Y.-B. Ko. Poster: CarSafe – Feasibility
Study of a Life Saving System in a Car. MobiSys ’16 Companion Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications,
and Services Companion, page 34. Jun 2016.

[13] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, D. Wagner. Smart Locks:
Lessons for Securing Commodity Internet of Things Devices. ASIA CCS ’16
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 461-472. May-June 2016.

[14] J. Moore, G. Kortuem, A. Smith, N. Chowdhury, J. Cavero, D.l Gooch.
DevOps for the Urban IoT. Urb-IoT ’16 Proceedings of the Second
International Conference on IoT in Urban Space, pages 78-81. May 2016.

[15] A. S. Yeole, D. R. Kalbande. Use of Internet of Things (IoT) in Healthcare: A
Survey. WIR ’16 Proceedings of the ACM Symposium on Women in Research
2016, pages 71-76. March 2016.

[16] C. Pham, V. Lecuire. Building low-cost wireless image sensor networks: from
single camera to multi-camera system. ICDSC ’15 Proceedings of the 9th
International Conference on Distributed Smart Cameras, pages 158-163. Sept
2015.

[17] V. Tan , S. A. Varghese. IoT-Enabled Health Promotion. IoT of Health ’16
Proceedings of the First Workshop on IoT-enabled Healthcare and Wellness
Technologies and Systems, pages 17-18. Jun 2016.

[18] D. T. Lai. Keynote Talk: Harnessing Health IOT for Smart Healthcare. IoT of
Health ’16 Proceedings of the First Workshop on IoT-enabled Healthcare and
Wellness Technologies and Systems, page 1. Jun 2016.

[19] J.-E. Kim, M. Bessho, N. Koshizuka, K. Sakamura. Enhancing public transit
accessibility for the visually impaired using IoT and open data infrastructures.
URB-IOT ’14 Proceedings of the First International Conference on IoT in
Urban Space, pages 80-86. Oct 2014.

[20] A.S. Tanenbaum, C. Gamage, B. Crispo. Taking Sensor Networks from the
Lab to the Jungle. Computer 39 (8), pages 98-100. Aug 2006.

[21] R. Kolcun, D. Boyle, J. A. McCann. Efficient In-Network Processing for a
Hardware-Heterogeneous IoT. IoT’16 Proceedings of the 6th International
Conference on the Internet of Things, pages 93-101. Nov 2016.

[22] F. Ingelrest, G. Barrenetxea, G. Schaefer, M Vetterli, O. Couach, M.
Parlange. SensorScope: Application-Specific Sensor Network for Environmental
Monitoring. ACM Transactions on Sensor Networks (TOSN), 6(2), Article No.
17. Feb 2010.

[23] L. S. Michalik. EC3 - Edge Command-Control-Communication System for
Arctic Observatories. Master Thesis, UiT - The Arctic University of Norway.
May 2017.

https://goo.gl/LA8Zyf

	Introduction
	Related Work
	Architecture
	Hardware
	Observation Unit
	Gateway

	Software
	Observation Unit
	Gateway


	Design
	Observation Unit
	Gateway

	Implementation
	Observation Unit

	Experiments
	Extreme load scenario
	Medium load scenario

	Results
	Extreme load scenario
	Medium load scenario

	Future Work
	Summary

