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Abstract 

This work presents an application for visualizing subsurface geological data in 3D in web browsers, using 
the X3DOM framework. The data supported is 3D terrain, vertical subsurface cross sections and subsurface 
measurements from wells. Data is visualized for the area of Svalbard. To avoid low-level development, we 
use X3DOM, which hides the details of graphics rendering in high-level, declarative XML syntax. The 
resulting application is cross-platform and runs on computers, tablets and mobile phones with adequate 
graphics capabilities. The work is a summarization of the first author’s master’s thesis. 

Introduction 
The visualization of subsurface geological data is important in many fields such as 
ground-water mapping, oil and gas exploration and CO2 storage. In particular, the 
motivation for this work comes from the Virtual CO2 Laboratory project (VIRCOLA) [1], 
initiated in 2012. The purpose of VIRCOLA was to improve data sharing and cross-
disciplinary collaboration to facilitate the Norwegian National Center for Environmental-
friendly Energy’s research on subsurface CO2 storage [2]. The National Center is a large 
consortium consisting of 11 partners from academia and industry, constituting over 100 
researcher. To achieve this, an efficient tool for researchers to discover produced data and 
publications of other researchers, and identify fruitful collaboration constellations was 
needed. Such a tool would need to spatially covisualize data so researchers could identify 
other relevant data in proximity to their own data, and display owner and publication info 
about the data, so collaborations could be identified. VIRCOLA tried out several existing 
industrial-grade geoscientific 3D visualization applications such as SKUA [3] and Petrel 
[4], for covisualizing the data. However, it was experienced that these tools were built 
with other goals in mind than easy data and collaboration discovery. They were more 
suited for detailed interpretation and low-level domain specific tasks. Also, such software 
typically required costly licenses and had large user manuals with steep learning curves 
due respectively to the revenues in their typical domains of use (hydrocarbon and mineral 
extraction), and to the complexity of geological interpretation. What the researchers 
wanted was an easy-to-use visualization tool with the possibility to navigate to, and turn 
on and off visualization of individual datasets, and display additional information about 
the data. In addition, the tool should allow users to upload their own data and 
collaboratively enrich the database. We were not able to identify existing applications 
with such functionality. A similar observation has been done by Nimtz et al. [5] and 
Reumont et al. [6]. This paper describes a proof-of-concept application demonstrating 
that such a solution most likely can be implemented with X3DOM (with JavaScript). To 
encourage use and adoption, we have created a cost-free web application with inherent 
cross device,- and platform support (Figure 1, left), eliminating the need for payment, 
computer access rights management and installment. We provide all source code [7] so 
others can use it freely. The subsurface data supported in our solution is vertical cross 
sections of seismic data or any other measurements represented as 2D images, and 
subsurface measurements along the path of drilled wells. Several other types of 
subsurface data exist which would be useful to visualize, such as reservoir grids, fault and 
horizon surfaces and seismic volumes. However, we focused on cross sections and wells 
only as successfully visualizing them gives a good indication of the strength of X3DOM. 
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We have created a client-server solution where all data is stored in a database on the server 
and the client runs in a web browser using JavaScript and X3DOM. 
 

 

 
<html> 
... 
  <x3d width="800px" height="640px"> 
    <scene> 
      <transform translation="0 0 0"> 
         <shape> 
           <appearance> 
             <material diffuseColor="0 0 1"/> 
           </appearance> 
           <sphere></sphere> 
         </shape> 
       <transform> 
    </scene> 
  </x3d> 
... 
</html> 

                                                                

Figure 1 Left: Photo of a mobile phone running our app. Right: X3DOM code and the resulting rendering. 

Related work 
This article is based on the master thesis [8] by the first author, which describes the work 
in higher detail. The central technology we build on is the ISO standard X3D and its 
implementation X3DOM [9]. X3D is a standard for representing 3D computer graphics 
in a declarative manner. It describes a file format, a scene- and an event-graph. X3D 
scenes are encoded using XML syntax derived from its predecessor VRML97 [10]. 
X3DOM is an implementation of the X3D specification, along with support for regular 
DOM (Document Object Model) [11] interaction with the X3D elements declared in 
HTML5 content (see Figure 1 right for an example). The X3DOM framework has support 
for most major browsers on desktop and mobile [12]. Thus, most platforms and operating 
systems are supported inherently by the framework. X3DOM is open source and dual-
licensed under the MIT and GPL license [13]. 

X3DOM uses the low level graphics API WebGL which interfaces with the 
underlying computer’s hardware to render graphics. The WebGL specification is 
maintained by the Khronos Group [14] and has become the standard API for 3D graphics 
in browsers. [15].   

Similar to our work and driven by the same motivations is the work by Reumont 
et al. [6] from 2011 who investigate X3D for geoscientific visualization. However, both 
X3D support and web development libraries have improved much since then, making our 
solution in comparison to theirs work directly in a browser without the need for plugins, 
and support smooth loading and interaction with terrains using level of detail support. 
Also whereas they seem to present a monolithic and static X3D document describing the 
whole application, we have developed a three-tier application that dynamically creates 
X3D for graphics rendering, using separate libraries for GUI rendering and using a 
database residing on a server. 



Ziolkowska and Reyes’ paper [16] from 2016 presents interactive visualization 
models for geo-temporal and geospatial data in virtual globes. The authors use KML 
(Keyhole Markup Language) to visualize data on a virtual globe. There are several virtual 
globes available that supports KML, notably Google Earth, NASA WorldWind and 
Cesium [16]. The article discusses the support for subsurface visualization in virtual 
globes, noting that these “were not originally developed with the purpose of representing 
data below the Earth’s surface”. From our own experiences with using different virtual 
globes, navigating below the surface of the globe is hard, as support for this is not made. 
Adding geometry below the surface can be done but this is subsequently overdrawn, and 
solving this problem would require access to low-level rendering details which are not 
clearly exposed. The models presented in the paper [16] circumvents these limitations by 
introducing transparent earth layers around the globe, created using KML, treating the 
top layer as the surface of the earth, and thus enabling the camera to seemingly move 
subsurface to view the geospatial visualizations. Due to this workaround, the real globe 
rendered by the respective framework can be seen as an artifact inside the transparent 
layers.  

Krämer and Gutbell’s paper [17] from 2015 investigates the open-source 
frameworks Cesium, Three.js and X3DOM for use in geospatial applications in web 
browsers. However, the paper only explores visualization of surface geometry such as 
houses, roads and trees, whereas we demonstrate visualization of subsurface geometry. 
The authors give a qualitative comparison of the frameworks based on several software 
prototypes developed to assess them. They find that each framework has different 
approaches, goals and target groups. Cesium is targeted specifically at geospatial 
applications, and is well suited for such. Three.js offers direct access to WebGL, making 
it suitable for a wide range of use-cases due to this flexibility, although developers might 
have to implement desired features. X3DOM is declarative, and based on the standardized 
X3D file format. This has the advantage of developers not having to learn how to use the 
low-level WebGL API, and since it is built on a standard it is also suitable for applications 
required to be supported for a long time.  

3D Geology in a web browser 
Our solution demonstrates that it is possible to interactively visualize and dynamically 
upload subsurface geological data in web browsers using X3DOM. Users can access the 
web application from a variety of platforms and devices, and quickly navigate to 
interesting data points using the application’s viewpoint functionality. This, along with 
the rendered topography surrounding the data, allows users to get a quick overview of 
available data in a geographic area, see Figure 2. 

Specifically, the application lets users visualize subsurface geological data of 
wells and of vertical cross sections, with accompanying information of e.g. owner and 
related publications. The data resides in a database stored on a server which users can 
upload data to directly from the client web app. The wells and slices are visualized in a 
scene along with a topography of Svalbard. The user can navigate around in the 3D 
topography and go underground to view the subsurface data. Wells consist of physical 
measurements, such as temperature, taken along the 1D path of a drilled well 



  
Figure 2 a) Overview screenshot of Svalbard heightmap data. b) Screenshot of the entire browser window 
showing a 3D view of the white rectangle in a) with view eastwards. b) The two red markers show the top 

of two wells situated in Longyearbyen. 

They are visualized as colored curves along the well path where the color represents one 
of the physical measurement, see Figure 3. Cross sections are 2D images representing 
vertical slices into the earth. Typical such 2D images are seismic slices produced by 
sending sound waves into the earth and processing the echoes. See Figure 4.  
 

  
Figure 3. a) This shows Figure 2b) seen from below the horizon revealing two wells. b) Zoom-in on a). 

Left well shows “Self Potential” measurements while right well shows “Gamma radiation” measurements 
mapped to a blue-green-yellow-red rainbow colormap. Black color represents the lack of data. Red 

spheres show places where data visualization has been toggled off. 

As data often overlap each other or obstruct view to data behind, functionality to easily 
toggle visualizations on and off is implemented by left clicking on the visualization. 
When toggled off, a red translucent sphere is shown instead indicating that there is data 
at this point. Such spheres are clearly visible in Figure 3 and Figure 4. 

Interacting with slices and wells 
The slices and wells can be right clicked for getting further information. Then an 
information dialog box (Figure 5 left) shows up containing a header with the name of the 
object, a textual description of the data (“Description”) and clickable links to relevant 
documents (“Related articles”). 

The values of the selected attribute are then mapped to colors along the well 
according to the color legend and the user defined min and max value. For more accuracy, 
the user can read out an exact value on a well using the “Value at click point” information. 
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Figure 4 a) Two seismic slices intersecting the wells. b) Slice with magnetotelluric data shown to the left. 

Whereas a slice shows a single measurement as an image, a well typically has several 
measurements, called attributes, taken along its path, such as gamma radiation and 
temperature. Which attribute to visualize is chosen with a drop-down menu (see Figure 5 
right).  

 

.       

Figure 5. Left: Right clicking on a visualization opens up a window giving a description of the data and 
links to related articles. For well objects also several visualization options are presented including a drop-
down menu (right) for selecting which well attribute to visualize. 

The system offers an alternative way to navigate to a slice by finding its name in a 
list of all slices, see Figure 6 bottom left. This is practical when the user wants to navigate 
to a slice based on its name, without knowing where it is. From the list, it is also possible 
to quickly toggle the visualization of a selection of slices, or to open the data description 
window. The list is part of the sidebar, which is turned on by clicking the three horizontal 
lines shown in the upper right corner of Figure 2 b). The sidebar has settings for the terrain 
and for uploading data, which are described in the two following chapters. 

a b 



 

      
Figure 6. Left. The sidebar menu. Right: The upload data window. 

 

Uploading slice and well data to server 
From the sidebar in Figure 6 left, the user can upload slice and well data into the database 
residing on the server. As our goal was to demonstrate 3D capabilities, functionality for 
staging the uploads so that an administrator can verify the data before making it accessible 
to all users, and functionality for assigning read/write rights to users, has not been 
implemented. Also, we have not implemented user authentication with login and 
password. 

Uploading slices 

The data that must be uploaded to define a slice has three parts: textual metainformation 
about the data, a two-dimensional image of the geological data in “png” format, and the 
positioning of the data. The textual metainformation consists of the dataset name, a 
dataset description, and a list of URI links to related information (Figure 5 left). The 
positioning is defined by specifying start and end coordinates using the UTM [17b] 
coordinate system. This defines a line on the globe that the slice is vertically situated in. 
To specify at which depth interval the data resides, a start and end depth must be given.  

To upload the data (Figure 6), the user selects a csv (comma-separated values) file 
and a list of images. The csv data is originally defined in, and exported from, a Microsoft 
Excel spreadsheet document. Excel was used to provide a user interface for manually 
editing and constructing the data during the VIRCOLA project. Each row in the 
spreadsheet has information for one slice. Three cells are used to describe the 
metainformation (name, description and URI’s) where multiple URI’s are stored in a 
single cell using a semicolon separator. Additional cells are used to store the coordinates 
and the image file name. 

Uploading wells 

The data that must be uploaded to define a slice has two parts: textual metainformation 
about the data as for slices, and a well log. Each well log is stored in a file which 
essentially contains a list of points in 3D space (UTM and depth coordinates) describing 
the well path and a list of measurements (attributes) for each point. The header of the file 



contains a list of strings describing which measurements the log contains and is used to 
populate the dropdown shown in Figure 5 right. The well log is stored in a file following 
the Log Ascii standard [18].  

To upload a set of wells, the user selects a csv file describing them and then selects 
the well log files. The upload window is identical to that for slices shown in Figure 6 
right. As with the geological slices, the csv data for the wells are originally defined in an 
Excel spreadsheet (the same that stores the slices, but in a separate tab) where each row 
describes a well. The first cells in each row contains the metainformation and the last cell 
contains the name of the well log file. When the server receives the well log files, it parses 
them using our own JavaScript reader and stores the data in the database. 

Preprocessing of terrain 
Terrains can cover large areas and thus contain a high number of triangles. To achieve 
interactivity, a level-of-detail (LOD) scheme [19] is applied which calculates several 
versions of the terrain from the original terrain, each with an increasing degree of 
coarseness containing a decreasing number of triangles. A LOD scheme achieves 
interactivity by showing coarser geometry for terrain far away from the viewer and finer 
geometry for terrain close to the viewer. Based on a user-defined upper bound on how 
many triangles to be rendered, the system can choose appropriate levels of details during 
rendering. Terrain LOD algorithms can be complex to implement, however there is a 
ready implementation in X3DOM called the BVHRefiner node [20], which we use. The 
terrain is constructed from a heightmap image of the area. In a preprocessing step, using 
a software called the BVHRefiner Dataset Converter [20], the heightmap is divided into 
tiles and each tile is subsampled into new tiles representing different levels of detail for 
the same area. The tiles are stored as png files which the BVHRefiner selectively loads 
during runtime depending on the viewpoint. See Figure 7 for LOD example. 

The height-map image is extracted from an UTM referenced GeoTIFF file, of 
Svalbard where each pixel represents a 50x50 meter area, downloaded from the 
Norwegian Polar Institute web page [21]. The GeoTiff to PNG conversion is 
accomplished using GDAL (Geospatial Data Abstraction Library), which is a set of 
programs and libraries providing access to geospatial data in raster or vector formats [22]. 
In addition to extracting the heightmap, GDAL was used to generate the colors of the 
terrain from the terrain height using a standard GIS elevation palette going from blue at  

 

  

  
Figure 7 LOD Left: Coarse LOD with zoom in of white square below. Right: Fine LOD with zoom in of 
white square below. The coarse LOD to the left is shown during interaction such as rotation to achieve 
responsiveness. 



sea level through light green at plain level, green at lower slopes to white at high 
elevations. However other terrain textures could have been used such as satellite photo or 
geological maps which have colors according to the rock type of the terrain. 

Representing slices in X3DOM 
X3DOM provides predefined geometric primitives such as spheres (<sphere> tag in 
Figure 1), boxes (<box>) and cylinders (<cylinder>) which we use to build up our 
visualizations. Transformations (<transform> tag in Figure 1) are used to position them, 
and callback functions can be registered on any collection of primitives (<shape> tag in 
Figure 1) to e.g. call a JavaScript function when graphics is clicked on.  

When the application is started, the first thing that happens is the loading of slice 
data from the server. Once this has been loaded, each slice is processed on the client-side 
with JavaScript for generating X3DOM code describing its visualization. The X3DOM 
code is inserted into the HTML page by using the DOM API. 

The geometry of the slice shape is declared as a box, where the dimensions of the 
box are specified by the slice’s size. Listeners for the click event are added to the <shape> 
X3DOM element in the slice using X3DOM’s onclick attribute. The individual pieces of 
X3DOM code for each slice are then concatenated and inserted into the X3DOM <scene> 
in the DOM. 

The toggle functionality requires a substitute visualization to be shown in the slice 
visualization’s place when it is toggled off. Whether the slice shape or the substitute shape 
is displayed, depends on the value of the visible property of the slice data object. The 
event listener function of a slice differentiates between left and right clicks. If a left click 
is registered, the Boolean visibility state of the slice is inverted. The X3DOM code for 
the clicked slice or substitute shape is then removed from the DOM, and replaced with 
the X3DOM code for the “opposite” shape. X3DOM notices the change in the DOM, and 
updates the scene accordingly. 

The sidebar menu is created on the server by querying the database for all slice 
data and constructing a list of GUI elements. GUI is created in our app using the Angular 
framework [23]. Clicking the toggle button triggers an Angular event that is propagated 
to all dependents, thereby updating the graphics. Clicking the view button for navigating 
to a slice, uses the database id of the slice to retrieve the slice position and orientation, 
calculates a viewpoint looking perpendicular on the slice, and moves the camera to this 
viewpoint using the X3DOM <viewpoint> element. This X3DOM element allows 
specifying a location and orientation that can be applied to the camera, so that the camera 
navigates to the viewpoint with a smooth animation. When the Info button is clicked, the 
information dialog box for a slice is created and displayed using Angular GUI 
functionality. 

Representing wells in X3DOM 
The shape of a well is described by an array of 3D positions, where each position 
represents the start of a cylinder segment of the well, and the next position represents the 
end of the current segment and the start of the next one. For each well attribute, there is 
an equally long array containing the measured values for that attribute. Using several 
cylinder segments instead of a single, allows us to use different colors on each segment 
to communicate attribute values, and to support curved wells, although curved wells do 
not exist in our Svalbard data.  

To generate the X3DOM code for each cylinder shape, a height, position and color 
is required. An object with arrays for each of these attributes and for each well segment 
is created using the well data object fetched from the server. This function loops over the 



positions array of the well, and uses the depth value of the current and next position to 
calculate the height of the well segment. The depth of the position for the cylinder shape 
is translated by half the height of the segment, so that the positions represent the top of 
the cylinder.  

The color coding is calculated by using the visualization options found on the well 
data object. These options include the minimum and maximum value of the current 
attribute to be visualized. The attribute value is normalized within the min and max value, 
and this normalized value is used to look up the color in a color array corresponding to 
the color legend.   

For each cylinder, a <transform> element is used to position it. After the X3DOM 
code for the wells has been inserted into the <scene>, event listeners for each individual 
cylinder shape is added. This is to enable right-clicking on any part of the well for 
presenting the information dialog box and for displaying the attribute value of the clicked 
point. Toggling and showing the information dialog box is done in the same way as for 
the slices. 

The server 
The server is responsible for providing the client with access to the database, where the 
data for slices and wells reside. For this server, we use Node.js [24], which is a runtime 
for JavaScript, letting us use the language outside the browser. The ecosystem around 
Node.js contains a large number of extensions/plugins organized in the Node Package 
Manager (npm), enabling rapid development. One package used in the server application 
is Express.js [25]. This package facilitates creating so called RESTful web applications 
[26] that abide by sound design principles. In addition to providing an API interface to 
the database, the server stores heightmap and texture images used by the BVHRefiner 
node. These are served statically from the server. A MongoDB database [27] is used for 
storing data. MongoDB is a NoSQL database, which means data is stored in documents 
instead of traditional SQL table structures. A document in MongoDB is stored in 
JavaScript Object Notation (JSON) [28], allowing us to easily map query results to 
JavaScript objects. Another npm package, Mongoose [27], is used for interacting with the 
database. This package provides simple ways for modeling data structures in MongoDB, 
and for querying the database. Figure 8. The mongo shell application used to show the 
database representation of a slice shows the database query for the magnetotelluric slice 
object shown in Figure 4 b) and the formatted database response, using the MongoDB 
shell application. 
 

 
Figure 8. The mongo shell application used to show the database representation of a slice. 



Discussion 
In this article, visualizations were built by combining existing X3DOM nodes. However 
X3DOM lets developers define their own X3DOM nodes with custom appearance and 
functionality. Therefore the well and slice objects could have been represented as two 
custom and reusable X3DOM nodes. Custom nodes are created using X3DOM’s 
JavaScript API, which can make use of WebGL and GLSL shaders. However, one of the 
reasons for choosing X3DOM as a graphics framework in this work was to achieve a high 
level of abstraction through declarative programming and avoid low level WebGL 
programming. Low level WebGL programming can be avoided by using libraries such as 
Three.js [29], however such libraries still require the user to understand JavaScript and 
large imperative APIs instead of declaring and attaching high-level X3DOM nodes with 
well-defined and simple interfaces. Therefore, the approach of creating custom X3DOM 
nodes was not investigated. We believe that X3DOM is well suited for situations where 
the application can be built using already existing nodes. If this is not possible we believe 
that using an imperative framework with direct access to the underlying technologies 
(such as WebGL or Three.js) requires less work than creating custom X3DOM nodes. 
This is because the latter requires first implementing the visualization with an imperative 
framework and then encapsulating the solutions into an X3DOM node. On the other hand, 
if the custom nodes that need to be created have a high level of reusability, and the project 
consists of several programmers, it might still be better to invest the extra time into 
creating these nodes. This would require a small selection of programmers to perform, 
possibly time consuming, low-level coding and create a high-level library of custom 
X3DOM nodes. Then the rest of the team would be users of the library and would not 
need knowledge of low-level APIs such as WebGL. Our impression is that X3DOM is an 
excellent choice of framework, that requires very little knowledge outside of standard 
DOM manipulation. 
 Due to space constraints, we have not discussed our experiences using the Angular 
framework. We originally tried to express all of the web logic in Angular’s declarative 
syntax as this would fit well with X3DOM which is also declarative (as opposed to 
imperative languages). However, we were not able to make these technologies work 
together the way we wished. For details, see Malt’s thesis [8]. 

Conclusions and future work 
In conclusion, the application created in this work shows that it is possible to interactively 
visualize 3D subsurface geological data using X3DOM. Users can access the web 
application from a variety of platforms and devices, upload data, quickly navigate to 
interesting data using the application’s viewpoint functionality and get background 
information about the data. This, along with the rendered topography allows users to get 
overview of available data in an area, thus fulfilling the requirements of the application 
as described in the introduction. The source code can be downloaded here: [7]. 

As this was a proof-of-concept, much functionality is lacking for it to become a 
fully usable software. A sidebar for toggling wells was not implemented in our version. 
Useful terrain functionality is lacking, such as being able to toggle the terrain on and off; 
changing the texture that is projected to the terrain for e.g. showing a geological map of 
rock types (lithology); to support dynamic uploading of new terrain areas and to improve 
the navigation control for moving around in the terrain. Other subsurface visualizations 
of e.g. 3D surfaces representing faults, horizons and outcrops, as well as reservoir grids 
and volumetric data should be supported. 3D surfaces are supported in X3DOM, and for 
large surfaces, the LOD approach we used for terrain can be applied. Large reservoir 



geometries could be a challenge to support, but sizes that fit in the GPU memory could 
be represented using triangles in X3DOM. Volumes could be visualized by extending our 
slice visualization so that the user can move a slice through the volume, requiring only 
the visible slice data to be resident on the client. But even true volumetric rendering 
supporting translucency is supported in X3DOM [30], however, this approach is taxing 
on the client as all slices of the volume must be resident in client memory. Finally, the 
management of users with logins and different access rights as described earlier including 
also a more granular way of uploading and removing data should be in place. We see no 
limitations in the technology we have used in this work, for realizing the aforementioned 
functionality. 
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