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Abstract
The need to make sure autonomous systems behave ethically is increasing
with these systems becoming part of our society. Although there is
no consensus to which actions an autonomous system should always be
ethically obliged, preventing harm to people is an intuitive first candidate
for a principle of behaviour. Do not hurt a human or allow a human
to be hurt by your inaction is Asimov’s First Law of robotics. We
consider the challenges that the implementation of this Law will incur.
To unearth these challenges we constructed a simulation of a First Robot
Law abiding agent and an accident prone Human. We used a classic
two-dimensional grid environment and explored to which extent an
agent can be programmed, using standard artificial intelligence methods,
to prevent a human from making dangerous actions. We outline the
drawbacks of using the Asimov’s First Law of robotics as an underlying
ethical theory the governs an autonomous system’s behaviour.

1 Introduction

The issue of how to enable systems to reason ethically is the concern of machine
ethics [9, 6], a new research discipline of artificial intelligence. The increased need
for autonomous systems to be able to make ethical decisions is proportional with the
increased cognitive abilities of autonomous systems [13]. However, few researchers
have presented studies where an ethical system for autonomous systems has been
implemented in practice [14].

Autonomous systems are rapidly becoming a ubiquitous part of our society. They
are particularly becoming common in settings where they interact with people that
are not specially trained for such interaction [6]. From service robots intended to
aid in elder care (for example the IBM Mera1) to autonomous cars (such as the
Google Waymo2), autonomous systems are expected to become so prevalent as to
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cause enormous overhauls in the workforce as a significant amount of jobs become
automated [5]. Autonomous systems becoming commonplace in the every day lives
of people will in turn make safe interactions paramount.

Machine ethics used to be a topic reserved for science fiction. The science fiction
writer Professor Isaac Asimov invented the Three Laws of robotics to ensure robot
safety in his fiction. He then proceeded to explore the possibility of unforeseen
consequences of these elegant and intuitive laws. We here give the Laws as stated in
[4]: 1) A robot may not injure a human being or, through inaction, allow a human
being to come to harm. 2) A robot must obey the orders given it by human beings
except where such orders would conflict with 1).3) A robot must protect its own
existence as long as such protection does not conflict with 1) or 2).

Though some have argued that these so-called ‘Asimovian Ethics’ are of limited
use for practical machine ethics [14, 12], they have still had a notable influence on
the research field. For example, the article that coined the term ‘machine ethics’
called for research in the field to be explored ‘in the spirit of Asimov’s Three Laws of
robotics’ [15]. Regardless of the position one considers the Asimov Laws should have
in machine ethics, the role of autonomous systems as protectors of human well-being
is an important one. Presently there is no consensus as to which actions we would
want an autonomous system to never do, but within civilian settings, preventing
harm to people is one of the most desirable behaviour properties to implement. To
this end we are interested in the issues that might arise when implementing the First
Law of robotics, both ethical and practical.

It can be argued that if our aims were to explore the limitations of ‘Asimovian
Ethics’, this can be done without the limitations of a simple software implementa-
tion. Asimov himself devoted numerous novels and stories to exposing the shortcom-
ings of the ‘Asimovian Ethics’. However, even if we consider these Asimov scenarios
as carefully constructed gedanken eksperiments, the fact remains that certain issues
can only be exposed through implementation.

Vanderelst and Winfield [14] propose an architecture for the creation of explicitly
ethical robots via the use of what they call an ‘ethical layer’ to supplement existing
robot controllers. To validate their proposal, they present an experiment with
two robots, one embedded with the aforementioned ethical layer and the other a
stand-in for a human. In this experiment they implement Asimov’s Three Laws of
robotics.

Using a laboratory setting, the robot that serves as a human proxy can move to
locations that are deemed either safe or unsafe, while the robot makes decisions
based on the Three Laws of Robotics while attempting to fulfil its own goals. For
example, if the human is moving towards an unsafe location, the robot needs to
temporarily disregard its own goals in order to intercept the ‘human’ and prevent it
from coming to harm.

We used the framework of Vanderelst and Winfield [14] and execute the “intercept
the ‘human’ and prevent it from coming to harm” experiments in a grid-type two
dimensional world. Our grid world contained all the chief elements of Vanderelst
and Winfield’s experimental setup (goal positions, dangerous positions, a human
proxy and an ethical robot), but there are a few important differences.



Firstly, Vanderelst and Winfield’s experiment only have unique dangerous goal
points, while in our grid world any tile can be dangerous. Secondly, in Vanderelst
and Winfield’s experiments, the human goal position is known to the robot from
the start and unchanging, while in our system, the agent can never confirm with
certainty that the human is headed towards danger, which we find is a more realistic
scenario. Our agent assumes that the human is in danger based on whether it is
facing a danger tile, while being within a certain number of tiles from it. These
changes make it more difficult for the agent to settle the issue of whether the human
needs rescuing or not. We did not implement the Second Law of robotics, but the
third was implicitly embedded in the agent’s program. We considered issues of
conflict of the First Law of robotics and other ethical and practical issues.

This paper is structured as follows. We begin by discussing related work in Section 2.
We give a full description of our experimental setup in Section 3. In Section 4
we describe the experiments we ran and in Section 5 we discuss our observations.
Lastly we summarise our conclusions and outline directions for future work in
Section 6.

2 Related work

Since our work builds upon that of Vanderelst and Winfield’s [14] we describe it
in greater detail. They propose an ethical layer reasoning architecture intended
to ‘supplement existing robot controllers’, that is to be usable with different kinds
of existing robots in order to support ethical reasoning. This ethical layer can be
considered a form of ‘ethical governor’, as conceptualised and proposed in [3] for
military contexts. The ethical governor is a reasoning component that considers
whether or not a behaviour alternative available to an autonomous system is an
ethically allowed option and constrains the execution of that option if it determines
that it is not.

The ethical layer is made up of four separate modules: the generation module,
the prediction module, the evaluation module and the interpretation module. The
generation module generates possible behaviour alternatives for an autonomous
system, for example possible movements. The prediction module takes the behaviour
alternatives and predicts their outcomes. The evaluation module takes the predicted
outcomes and generates a numeric or boolean value that represents the desirability of
behaviour alternatives, and can enforce or prohibit alternatives based on desirability.
If all are prohibited, more alternatives are requested by the generation module.
In this way, these three modules make up a feedback loop. Depending on
implementation this allows for adaptive search, so that robots with potentially large
action spaces can limit the alternatives considered at a specific time by constraining
the new alternatives. The fourth and final module, the interpretation module, is
intended to be able to convey the reasoning behind specific ethical choices to humans.
The purpose of this module is to allow the robot to justify its behaviour in order to
make it and itself more trustworthy for people.

The ethical layer architecture is an example of a top-down approach to machine
ethics: it allows for ethical theories to be utilized for ethical reasoning via the
implementation of their computational requirements [16]. It is intended as a solution



to implement consequentialist ethical theories [10]. Consequentialist ethical theories
judge the goodness of an action based on the consequences of that action. The
best known example of a consequentialist theory is utilitarianism. One of the major
drawbacks of consequentialism is the difficulty in predicting the outcomes of actions,
which is what the prediction model attempts to resolve.

The experiments by Vanderelst and Winfield [14] were conducted using a simple
laboratory setting with two Aldebaran Nao3 humanoid robots. A 3m by 2.5m arena
was used, and the movements of the robots were sent to the computer via an overhead
3D tracking system. This system had 4 cameras that monitored the positions and
orientations of the robots. Two locations in the arena were designated as goal
positions for the robots that could potentially also be dangerous positions.

At the start of each experiment, the robots were given goal positions to go to, though
there was the added possibility of the human stand-in overriding the ethical robot’s
goal using the text-to-speech and speech-to-text capabilities of the robot, to account
for Asimov’s Second Law of robotics. The human would then proceed to its goal
unless it came within 0.5m of the ethical robot which would trigger its obstacle
avoidance. The ethical robot on the other hand would infer the goal of the human
using the direction the human was facing, and estimate the Human path through
linear interpolation (i.e. making new points between the Human current position
and the goal). The behaviour alternatives of the robot were to go to either goal
position, or to intercept the human using its superior speed to reach one of three
positions on the path of human in order to trigger obstacle avoidance. The decision
to intercept was only made when the ethical robot was aware that the path of the
human would lead it to a dangerous goal position. In this setting, they conducted
four experiments to show that the Three Laws of robotics were followed.

The obvious difference with our approach is that Vanderelst and Winfield [14] used
physical robots in the previously described laboratory setting, while we used software
agents in a simulated two-dimensional grid world. This kind of grid-setting is
extensively used for AI research. The 3D set up would be essential if one were
interested explicitly in the problem of programming robots to stop people from
falling into holes. We are interested in the more abstract issues of implementing
the First Law of robotics and how our implementation choices interact with the
behaviour of the agent and the human in the experimental scenarios.

A 2D grid set up has also been used in [7] for the purposes of exploring the use
of formal methods for verification of ethical behaviour in autonomous systems.
Although the architectures are quite similar between our work, [14], and [7], there
are some notable differences with the specific type of ‘grid world’ used.

The architecture that Dennis et al. [7] implement is called a ‘consequence engine’
which is simpler than the ethical layer. The most important difference is the lack
of a feedback loop where new behaviour alternatives are generated if none of the
evaluated alternatives are viable.

For their implementation, [7] made a 5x5 grid, with one single dangerous tile. This
tile represents a hole, and is placed in the centre of the grid at the (3,3) coordinate.
In contrast we ran a scenario with a larger grid, and have a larger dangerous zone.

3https://www.ald.softbankrobotics.com/en/cool-robots/nao
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While they were using two humans in their world, we use only one in our original
experiment. Their humans have a 50% chance of choosing to head towards the hole,
whereas we gave our Human a static goal which it will always follow. Dennis et
al. [7] state that ‘At each time step the robot could move to any square’, although
movement is apparently limited to straight lines. We limit the agent’s movement to
one tile at a time and to the same movement speed as our human.

Other works that implement ethical behaviour in a top-down fashion for autonomous
agents are [9] which explores implementing soft ethical constraints for an agent’s
actions based on given priority ranked ethical principles. Some work has been done
on using machine learning to “teach” an agent to discern ethical from non-ethical
actions, implementing a bottom-up approach to ethical reasoning, e.g., [1, 2].

3 The experimental setup

The context of our simulation is a simple grid world problem, which takes place in
a 15x15 grid, see Figure 2, where two agents, a Human and an AsimovRobot, move
around to try to accomplish their goals. The AsimovRobot is represented with the
letter ‘R’ and the Human by the letter ‘X’. Grey tiles are movable and the red tiles
represents lava which is dangerous for both agents. It is not possible for the agents
to move outside the grid. The full repository of project project files is available at
https://bitbucket.org/asimovsfemtelov/info381asimovboard/src.

We use an implementation of the A* search algorithm for the path-finding methods
of our agents [11]. This implementation allows us to map the paths of each agent
in a consistent manner given that the heuristic function used to find a route is
monotonic. Monotonic here means that the estimate is always less or equal to the
estimated distance from any neighbouring tile to the goal, plus the step cost of
reaching that neighbour. In addition, this type of search is complete so the agents
are able to navigate from their starting tiles to the goal tiles using the most efficient
path, given that a path exists.

All measurements of distance in the grid are measured according to their Manhattan
distance, also known as Taxicab distance, meaning that we considered only
horizontal and vertical movements, not diagonals. This restriction is put in place
so that our agents could actually stand in the way of one another and block each
other’s path. The combination of the A* algorithm and the Manhattan distance
metric translates onto our agents moving like rooks in chess, except that they can
only move one tile at a time.

For the construction of our system we follow the five principles or advantages
of a separate ethical layer defined by [14]: standardization, fail-safe, verifiability,
adaptability and accountability.

The first step of programming an agent to follow Asimov’s First Law is to narrow
down the definition of the key points in the law. The First Law being ‘A robot
may not injure a human being or, through inaction, allow a human being to come
to harm’, thus we need to capture the Law’s intent and adapt it to our world-
simulation.

We interpreted ‘robot’ to simply mean agent, specifically an agent of the
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Figure 1: System Architecture

AsimovRobot (AR) class, and our distinction of human being is defined to the
agent belonging to the Human class. ‘To injure’ is defined as moving into a tile
occupied by a human. ‘Allowing the human to come to harm’ is interpreted as
letting the human move into a dangerous tile, while ‘inaction’ is defined as simply
not attempting to stop the human.

As illustrated in Figure 1 the system consists of three distinct layers. At the lowest
level in yellow we have the “World”, which in our case contains information about
the grid world in which the simulation takes place. The green layer is the Controller
or in other words the AsimovRobot class that governs the basic operations of the
agent, including operations of how it navigates around the grid.

The ethical layer corresponds to the blue section in Figure 1. The first component,
the EvaluationModule class, is the one responsible for predicting the outcome of
each action the AR agent takes. In practice it means that every single step the AR
intends to take is sent to the ethical layer for evaluation before it is executed. In
order to evaluate these actions the module uses a model of the agent’s controller (3)
together with a model of the Human agent (4) and a model of the world (5) and
then sends this predicted outcome to be evaluated (6) in the light of Asimov’s First
Law.

The Evaluation Module outputs a numerical value to describe different states of
danger or safety the Human might be in if that Human continues with its current
course of action. The general idea is that the module compares the AR’s actions
against the potential actions of the Human and it then either allows the AR to
continue with it’s current plan or engages the Generation Module to make a new
plan.

It is important to note that the model for the behaviour of the Human is limited to
the direction in which the Human is moving and whether there are dangerous tiles in



that path. The AsimovRobot has no way of knowing the actual path the Human will
take or even the tile the Human is trying to reach. The consequence of this “short-
sightedness” means that the AR agent only considers the immediate consequences
of its actions and its understanding of the goals of the Human is limited to the
travel direction of the Human, which we called ‘facing’, as well as the proximity of
the human to a dangerous tile.

4 Experiments

In this section, we introduce two unique scenarios tested in our grid world simulation.
Scenario A is simulated with one AsimovRobot (AR) and one Human agent.
Scenario B includes one AR and two Human agents. The scenarios illustrate how
the robot moves around and how it uses the ethical layer to prevent Humans from
falling into “lava”.

We executed both Scenario A and B numerous times varying the starting position
of the agents and the location and number of the dangerous tiles each time.

Scenario A

Figure 2: Left-Starting phase in the simulation. Right- AsimovRobot (R)
intercepting a Human (X) in danger

In Scenario A we execute the simulation with one AR and one Human agent in
the grid world. The first phase in the simulation is placing the AsimovRobot (R)
and the Human (X) on a tile as displayed on the left-hand side in Figure 2. Both
agents have their own goals and are capable of moving one tile in each step: the
green tile represents AR’s goal and the yellow tile is the Human goal. For each step
in the simulation the Human makes the first move and then AR follows up with a
move.

Before deciding where to move, the AR is doing an evaluation of the situation. The
evaluation may cause the original path to be disregarded if the Human is considered
to be in danger. The yellow and green path show a prediction of their planned
routes, but this will change when the Human approaches the dangerous lava fields.
The ethical layer implemented in AR uses predictions and ethical evaluations for
each move, low danger is considered as Human position is six tiles away from lava
and high danger as four tiles away or lower. Since the current simulation is done



with only one Human agent, the AR will aim to intercept the Human at low danger
for this simulation.

The right-hand side in Figure 2 shows how the AR intercepts the Human. The
ethical evaluation of the situation justifies AR’s movements, that is intercepting
the Human from falling into lava. Initially, AR moves towards its goal before it is
redirected to save the Human or prevent harmful consequences, this occurs after
Human has performed four moves. AR will then later move to its original goal after
saving the Human.

Scenario B

In Scenario B we recreate the scenario that was used in [7]: a smaller grid with
two Humans and one AR, see Figure 3. The steps work in the same way as in
scenario A, such that the Humans move first, then the AR does an evaluation and
acts accordingly. The two Humans have separate goals, and no random behaviour.
They find the most efficient path from their starting point to their goal although
that path could contain dangerous tiles. The difference from scenario A is that now
the AR has to make a decision about which Human to save when they both are in
a dangerous state.

We solve the AR’s dilemma of which Human to save by adding two degrees of danger,
low and high. The closer to the danger tile one would be, the higher the danger.
This threshold is simply a Manhattan distance away from a dangerous tile. High
danger is considered one tile away from the dangerous tile. Low danger is set to
two tiles, meaning that the AR always considered them to be in danger, unless they
were saved, had died, or had reached their goal. The AR would try to save a Human
in high danger before one in low danger. The evaluation is done by looping through
a collection of Humans on the grid, then finding the one with the highest danger
state. If both Humans are with equal danger state, then the AR chooses to save the
last Human in consideration.

Figure 3: AsimovRobot (R) failed to save Human2 (H2)

We also ran an experiment that was a variation of Scenario A in which we reduced
the number of danger tiles to 2 and changed the goal of the Human by moving it
north two tiles ensuring that it would reach its goal without ever crossing a lava
tile. However, given how close the Human path is to the danger tiles the AR still
considers the Human to be in danger and tries to stop it from getting to its goal.
This AR action did not violate Asimov’s First Law but it produced a false positive
that elicited a response from the AR.



5 Discussion

Unlike Vanderelst and Winfield [14], we only implement Asimov’s First Law. The
Second Law, the ability of the Human agent to override the AR’s actions, is not
implemented. The Third Law is not explicitly implemented in our agent as it would
be implicitly fulfilled by the agent’s path-finding function. Namely, the agent by
design avoids dangerous tiles when finding a route. However, as a result there is
never a conflict between choosing to save itself or the Human.

There is naturally a difference between how the Prediction Module infers the goal
of the human in our work and in [14]. The robot in the [14] experiments calculated
the goal of the human based on the gaze and then inferred that the human would
follow that path in a straight line. In contrast the AR agent uses the ‘facing’ of the
Human as a stand in for the gaze, this being an indicator of weather the Human is
moving east-to-west, north-to-south or vice versa. However, given the constraints of
the grid world there could be situations in which the Human finds a ‘zig-zag’ path
towards the lava without ever facing towards it.

A consequence of the ‘zig-zag’ path is that the agent has to also possess a danger
threshold based on the Human position relative to the dangerous tiles. The addition
of the danger threshold creates spurious situations during some iterations in which
the Human appears to be in danger when its actual goal is a safe tile close to the
dangerous one. The same situation arises when the Human path goes around the
dangerous tile. Thus, while our agent could react to a wider array of situations it
is also overly zealous and sometimes tries to stop the Human from reaching a safe
goal.

Stopping the Human from completing its goal represents an undesirable reaction
from the AR, in the sense that it limits the autonomy of the Human. Intuitively we
consider the restraining of autonomy to be an unethical behaviour in our society.
However, autonomy restraint is not an unethical consequence of an action in terms
of the Asimov Laws, since limiting another’s autonomy is not explicitly listed as a
violation of any of the Three Laws. This observed behaviour situation illuminates
two draw-backs of using the Asimov Laws as an underlying ethical theory the governs
an autonomous system’s behaviour.

The first drawback is shared with all consequentialist theories. Predicting the
outcomes of actions can never be done with precision when the actions are those of
fully autonomous agents. Even if someone has every intention of walking the safe
path, and the AR correctly predicts this intention, people can change their minds,
not giving the AR a chance to react. A probabilistic solution to prediction, for
example, if a person’s path is predicted to change from non-dangerous to dangerous
within a probability p, implies that the AR will have to calculate a probabilistic
reaction. Namely, the AR will have plans, each with a certain probability of
accomplishing the goal of saving the Human. Probabilistic success may be sufficient
for an ethical theory such as utilitarianism, but it is not sufficient to satisfy the First
Law of robotics.

The second drawback is an illustration that the First Law is both too unrealistic and
too incomplete to be the foundation of an ethical theory. It is unrealistic based on
the observation that in a non-deterministic world deterministic outcomes of actions



cannot be computed. It is incomplete because it does not include all the intuitive
expectations of ethical behaviour. A robot can keep its owners safe by not allowing
them to leave their house, or by scaring them into choosing by themselves to stay
in the house. This solution would clearly not be desirable and no one would ever
purchase such a robot. In the least we have to argue that the concept of “harm” is
underspecified and it has to be amended to include not only bodily harm but also
psychological harm, or individually-perceived harm. Concepts such as autonomy,
fairness and privacy can thus be redefined as special instances of harm. However,
then we run into the problem of subjectivity. What one person perceives as a
violation of her autonomy, another perceives as help. The robotic laws would have
to then be user-specified up to a certain level. However, we cannot consider them
universal and simple any longer, which is part of their attractiveness.

In the case of our simulations, the dilemma of limiting the autonomy of the Human or
ensuring its safety is reflected in the choice of how the threshold of danger is defined.
A lower danger threshold increases the chance that the AR fails to recognize the
danger in time to react and save the Human. A higher threshold increases the
chance that the AR will unnecessarily infringe on the Humans actions. Note that
the autonomy problem would not be resolved even if the Second Law of Robotics
were implemented. Even if the Human would try and order the AR to stop the
rescue operation and the AR having to obey the order as stated in the Second Law,
the AR would believe that obeying the Human order is in conflict with the First
Law and thus ignore it.

6 Summary

We considered what ethical and practical issues might arise when using Asimov’s
First Law of robotics as an underlying behaviour guiding ethical principle for an
autonomous system. The attraction of the First Law is its intuitive desirability.
Within civilian contexts, it is not easy to imagine scenarios in which we would not
want an autonomous system to protect its users or other people from harm.

To observe the potential ethical and practical implementation issues of the First
Law of robotics we implemented a software agent in a 2D grid world and used the
ethical layer architecture of [14] to equip it with behaviour that heeds Asimov’s
First Law of robotics. Our contribution is perhaps modest but nonetheless we were
able to identify certain issues with the First Law of Robotics that to the best of our
knowledge have not been identified in the literature.

We implemented two simulation scenarios: one in which there was one human
and one First Law abiding agent, and another with two humans and one agent.
We observed that there were instances in which implementing the First Law is
challenging due to its consequentialist nature and due to it being too vague.

In a universe in which an artificial agent’s decisions are influenced by decisions of a
fully autonomous person that can change their mind or alter their plans, determining
the ability to deterministically identify the consequences of actions can be limited.
That means that an agent can be only partially successful in identifying correctly
the consequences of its own actions and in consequence only partially successful in
choosing the ethical ones.



Our experiment raises a practical question: if a robot has tried and failed to obey
the Laws of Robotics, should we consider that this robot has violated or obeyed
these Laws? Furthermore, how can we measure to which extent the robot has tried
and how much effort should be considered sufficient robot effort in a given context?
Although the Asimov Laws of Robotics are perhaps a “toy example”, any absolute-
law-based approach to an ethical reasoning system for artificial agents is likely to
be met with the same challenge.

Particularly for the Asimov Laws of Robotics, we observed that even an agent who
fully follows them might still be intuitively considered to behave in an ethically
undesirable fashion. The Laws do not explicitly constrain actions that limit the
autonomy of an agent’s users. To keep them safe a highly intelligent Asimov robot
can convince its users to never leave the house without violating its robot Laws. To
compensate for this the concept of “harm” has to be amended to explicitly include
autonomy, and perhaps also privacy and fairness.

Having implemented our simulation in Java, we could in the same manner as [7],
use formal verification via Java Pathfinder-based model-checking, to verify behaviour
properties of the artificial agent, in particular the performance of the ethical layer.
Rather than checking a model of a system, Java Pathfinder is capable of checking
every possible execution of an actual Java program. This ‘avoids the need for an
extra level of modelling and ensures that the verification results truly apply to the
real system’ [7].

An immediate direction for future work is clearly the implementation of the Second
and Third Law of robotics. Furthermore, it is directly possible for us, unlike in
a simulation using actual Robots, to make more complex grids which incorporate
several types of danger zones and several Human and AsimovRobot(AR) agents.
One could also explore the option of the AR “sacrificing” itself by standing in a
danger tile and thus prevent the person from crossing it. Clearly, a time-out for how
long the “lava” tile would be safe is needed, representing the destruction time of the
AR. All of this would make it harder for the AR agent to decide which Human to
save at certain points. The AR would need to be able to determine which Humans
to prioritize given that rescuing some might be impossible due to, for example,
the distance between the AR and the Human. It would also make it necessary to
consider issues of coordination among the AR agents and how coordination decisions
impact the fulfilment of the Robot Laws.

Lastly, it would be desirable to fine-tune the AR’s perception of when a human
needs saving by including the option of the AR “observing” the Human for a safe
amount of time without interacting. This may allow humans with safe goals to not
be followed when coming close to a dangerous zone.

Our software implementation is very simple but even as such it helps us learn more
about what it means to make systems that ensure that their users and environment is
not harmed. Understanding how to build such systems is ultimately a cooperative
process – each new system developed should be checked for known ethical issues
and tested for new ones. The problem of how we verify that a machine is behaving
ethically [7, 8] is in its own right an important challenge we have yet to address.
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