
The Aamodt and Kjus problem

Sigurd Kittilsen*

Department of Informatics, University of Oslo
sigurki@ifi.uio.no

Abstract

We conjecture that an interesting special case of the known NP-complete
problem, Multiprocessor Scheduling (MPS), is well inside P. We present a
number of results that supports the conjecture. We also give some empirical
results that strengthen our beliefs concerning the conjecture.

1 Introduction
The TV show "Hvem kan slå Aamodt og Kjus?", from now on referred to as A&K, has
an interesting way of awarding points to the teams. The show consists of two teams and
a series of eleven rounds, t1, t2, . . . , t11, where the winner of round ti gets i points. Since
there will be awarded at most 1+ 2+ . . .+ 11 = 66 points, the first team that reaches
more than 33 points, wins. However, a problem arises if the score is 33− 33 after the
11th round. This is bad because the show must have a winner. The easy fix is to drop the
last round and just make use of 10, but we will not settle with that. We have notified the
producers, giving them an infinite number of alternatives that guarantee a winner. If we
generalize and let there be m teams and r rounds, and look for ties between all teams, we
get a new and interesting complexity problem, A&K, as presented below.

We assume that the reader is familiar with basic concepts of complexity theory, e.g.
NP-completeness. The standard definitions of the complexity classes P and NP are found
in [1]. Furthermore, we assume that the reader has elementary knowledge about number
theory, e.g. modular arithmetic. See [2]. We use 4n to denote the n’th triangle number,
i.e. 4n = 0+1+ · · ·+n = n(n+1)

2 . The notation x | y reads “x divides y”.

The Multiprocessor Scheduling Problem
In the Multiprocessor Scheduling problem (MPS) we are given a multiset A of natural
numbers representing tasks, a number of processors m ∈ N, and a deadline D ∈ N. The
problem is deciding whether or not it is possible to partition A into m subsets such that
no subset sum is greater than D. MPS was shown to be NP-complete in [3]. We present
MPS mainly to be able to relate A&K to a known complexity problem. There exist other
NP-complete problems that would have served the same purpose, e.g. Bin Packing, Multi-
Way Partition.

We are now ready to formally present the A&K-problem.

*Sigurd Kittilsen is a Master’s Student at the Department of Informatics, University of Oslo. This work
is a part of his thesis.
This paper was presented at the NIK-2016 conference; see http://www.nik.no/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/327107651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 The A&K-problem
Given a number of rounds r ∈N, and a number of teams m∈N+, is it possible to partition
the set Sr = {0,1,2, . . . ,r} into m subsets, such that each subset sums to the same number,
namely 4r

m ?
An instance of the A&K-problem is a tuple 〈r,m〉. An instance is a yes-instance if it

is possible to partition Sr into m subsets with equal sums, and a no-instance if not. We
will occasionally, (not always), omit the 0 ∈ Sr, as this affects the presentability of our
partitions.

A&K is a special case of MPS, with A = Sr = {0,1,2, . . . ,r} and D = ∑a∈A a
m , forcing

all subset sums to equal 4r
m . There cannot exist a polynomial time reduction from A&K

to MPS, because merely printing the set Sr requires exponential time with respect to
|r| = O(log(r)). This should not lead us to believe that A&K is a hard problem; it is
just a result of compact representation. As a matter of fact, we are now ready to present
the main conjecture of this paper, which states that A&K is really easy.

Conjecture 1. An instance of the A&K-problem, 〈r,m〉, is a yes-instance if and only if the
following two criteria hold

m | 4r (C1)

4r

m
≥ r . (C2)

Should this conjecture hold, then A&K ∈ P, since checking satisfiability of C1 and C2
can be done in polynomial time.

The conjecture is a two-way implication, saying whether a certain instance is a yes-
or a no-instance. In order to prove the conjecture, we need to show that an instance is a
yes-instance if the two criteria are satisfied, and a no-instance if at least one of them is
not.

Conjecture proof — the trivial direction
The first criterion, C1, is necessary because the set Sr only contains natural numbers. If
m - 4r , then 4r

m is not a natural number, and no subset of Sr can add up to it. The
second criterion, C2, ensures that the element r ∈ Sr has a subset that it fits into without
overflowing it. Consider the opposite case, namely, 4r

m < r. In this case, all subsets are
supposed to sum to 4r

m , but no matter where you place r, that subset will already sum up
to more than it is supposed to.

Note that this direction holds for all instances of MPS with D = ∑a∈A a
m , by the same

arguments as above. That is, the longest task must not exceed the deadline, and the sum
of all tasks must be divisible by the number of processors. With this observation, we leave
the trivial direction.

On proving the non-trivial direction
The rest of this paper is devoted to the proof of the non-trivial direction of the conjecture.
We need to show that there exists a satisfying partition for all instances where both C1
and C2 hold. We will call these instances conjectured yes-instances. Giving a satisfying
partition for a conjectured yes-instance will be referred to as proving an instance.

We describe the general plan for proving the statement for different values of m, by
giving an example proof. The main idea is that we fix m, and prove the conjectured
yes-instances by induction on r.

Example proof. Here we will prove the conjecture when m = 3. The proof where
m = 2 is slightly simpler and less instructive and is left to the reader. We need to prove
that the cases 〈r,3〉, where 3 | 4r and 4r

3 ≥ r, actually are yes-instances.
Straightforward arithmetic reveals that 4r

3 ≥ r⇔ r ≥ 5 . Thus C2 holds for all r ≥ 5.
So when does 3 divide4r? Well, this is the case if and only if one of the following holds

• r ≡ 2 (mod 3)

• r ≡ 0 (mod 3) .

Observe that C1 holds at a regular basis. It does so for all m, as we will prove later.
The following figure illustrates how we will use induction on r to complete the proof.

The dotted line marks the point from where C2 is satisfied. The black cells on the

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4r 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

bottom line are the conjectured yes-instances. We will show that all these conjectured
yes-instances are in fact yes-instances via induction on r. There are four base cases,
namely, 〈5,3〉,〈6,3〉,〈8,3〉 and 〈9,3〉 (the definition of a base case can be found in Section
4). Here is how the partitions could look in the base cases:

• when r = 5 we have the partition {{5,0},{1,4},{2,3}}
• when r = 6 we have the partition {{6,1},{2,5},{3,4}}
• when r = 8 we have the partition {{8,1,3},{7,0,5},{6,2,4}}
• when r = 9 we have the partition {{9,2,4},{8,1,6},{7,3,5}}

Now we are left with the induction step. We will show that if we could partition Sr
for some r, we can also do it for r + 6. Assume that we have found a correct partition
{p0, p1, p2} for some r. We know that each pi sums to 4r

3 . Then we extend this partition
to be correct for r+6 like this: {p0∪{r+1,r+6},

p1∪{r+2,r+5},
p2∪{r+3,r+4}}.

This is a correct extension of our partition from r to r + 6. All new elements,
r,r + 1,r + 2, . . . ,r + 6, are used exactly one time each, and each subset now sums to
2r+7 more than they used to. Now we have covered all conjectured yes-instances, thus
the conjecture holds for m = 3.

3 Induction step and investigation of the two criteria
The Example proof consisted of four minor steps. Completing those four steps, for all m,
is sufficient to prove the conjecture.

1. Show that C2 is satisfied when r is greater than some limit
2. Show when C1 is satisfied, and prove that this happens at a regular basis
3. Make actual partitions for all base cases
4. Show how the induction step can be carried out

In this section, we will completely cover steps 4, 2 and 1, (in that order), for all m.

The induction step
The construction we present in this subsection will be used as the induction step for all m.

Assume that we are proving the conjecture for some particular m, and that we have
made a correct partition, {p0, p1, . . . , pm−1}, for some r. Then we can always extend this
partition by 2m, to hold for r+2m in the following fashion

{p0∪{r+1,r+2m}
p1∪{r+2,r+(2m−1)}

...
pm−1∪{r+m,r+(m+1)}}.

Now each subset has increased by 2r+2m+1 and all numbers between r and r+2m has
been used exactly once. Extending a partition by 2m like this will occasionally be referred
to as jumping.

The first criterion, C1

This first theorem states that C1 holds at a regular basis. The pattern in which C1 holds
repeats every 2m steps as r grows larger. The theorem also states that when the fixed m is
odd, the pattern repeats every m steps.

Theorem 1. For any r ∈ N and m ∈ N+ we have

m | 4r ⇔ m | 4r+2m .

Furthermore, if m is an odd number, the following holds

m | 4r ⇔ m | 4r+m .

Proof. Assume m | 4r. We have

4r+2m = 4r + (r + 1) + (r + 2) + · · · + (r + 2m) = 4r + 42m + 2rm . (1)

Since

42m =
2m(2m+1)

2
= m(2m+1) ,

all summands that make up4r+2m are divisible by m.
Now assume m | 4r+2m. By (1) , m | 4r +42m + 2rm. Since m | 42m and m | 2rm

we have that m | 4r.
Furthermore, we have that

4r+m = 4r + (r + 1) + (r + 2) + · · · + (r + m) = 4r + 4m + rm .

Now, the equivalence m | 4r ⇔ m | 4r+m holds iff m | m(m+1)
2 which is exactly when

m is odd.

The following theorem states exactly when C1 holds for different values of r and m.

Theorem 2. Assume m is of the form Pk0
0 Pk1

1 ...Pkn
n , where Pi is the i’th prime, (in particular

P0 = 2), Pn is the greatest prime that divides m and ki ∈ N.1 We have that m | 4r if and
only if one of the following holds for all i ∈ {1, . . . ,n}

• r ≡−1 (mod Pki
i)

• r ≡ 0 (mod Pki
i)

and one of the following holds

• r ≡−1 (mod 2k0+1)

• r ≡ 0 (mod 2k0+1) .

Before we prove the theorem we introduce a few lemmas.

Lemma 1. For all r,n ∈ N, we have

4(n+1)r =4nr +nr2 +4r .

Proof. We have
4(n+1)r =4nr +(nr+1)+(nr+2)+ ...+(nr+ r) =

4nr +nr+nr+ ...+nr︸ ︷︷ ︸
r

+1+2+3+ ...+ r︸ ︷︷ ︸
r

=4nr +nr2 +4r .

Lemma 2. Let Pk ∈ N, where P is a prime strictly greater than 2, and k ∈ N. We have
Pk | 4r if and only if one of the following holds

• r ≡−1 (mod Pk)

• r ≡ 0 (mod Pk) .

Proof. We first prove the if-part of the lemma. Assume that either r ≡−1 (mod Pk)
or r ≡ 0 (mod Pk) holds. Then r is of the form aPk−1 or aPk, where a ∈N+. We show
both cases by induction over a, starting with the base cases (where a = 1).

Case (A) r = Pk−1. Here4r =4Pk−1 =
(Pk−1)Pk

2 which is divisible by Pk.

Case (B) r = Pk. Here4r =4Pk =
Pk(Pk+1)

2 which is divisible by Pk.
We will only continue the induction for case (B), and later show that the statement

holds in case (A).
Assume by the induction hypothesis that Pk | 4aPk . We now need to prove that

Pk | 4(a+1)Pk .

We have 4(a+1)Pk =4aPk + aPk2
+4Pk by Lemma 1. All summands are divisible

by Pk. The first, by the induction hypothesis, and the third by the base case. To
conclude the if-part of the proof, observe that the statement also holds in case (A) because
4(a+1)Pk−1 =4(a+1)Pk− (a+1)Pk and everything is divisible by Pk.

For the other direction, assume Pk | 4r. Then Pk | r(r+1)
2 , which implies that

Pk | r(r+ 1). Since Pk only has one factor, namely P, and r and r+ 1 shares no factors,
exactly one of the following holds:

1All natural numbers can be written in this form, and by the Fundamental Theorem of Arithmetic the
factorization is unique.

• Pk | r
• Pk | r+1 .

Now, if Pk | r, then the lemma holds because r ≡ 0 (mod Pk). If Pk | r + 1, then
r + 1 = qPk for some q ∈ N. Thus r = qPk− 1, and the lemma holds, because r ≡ −1
(mod Pk).

Lemma 3. Let k ∈ N. We have 2k | 4r if and only if one of the following holds

• r ≡−1 (mod 2k+1)

• r ≡ 0 (mod 2k+1) .
Proof. This proof is very similar to the proof of Lemma 2. The only real difference

is in the only-if direction after we assume 2k | 4r. Now 2k | r(r+1)
2 , which implies that

2k+1 | r(r+1). We leave the rest to the reader.

Proof of Theorem 2. Assume m is of the form Pk0
0 Pk1

1 ...Pkn
n , where Pi is the i’th prime

and Pn is the greatest prime that divides m and ki ∈ N. Furthermore, assume that m | 4r .
We see that m | 4r if and only if Pki

i | 4r for all i ≤ n. This is equivalent to the fact that
2k0 | 4r and Pki

i | 4r for all i ∈ {1, . . . ,n}. By Lemma 2 we know that Pki
i | 4r if and

only if one of the following holds for all i ∈ {1, . . . ,n}
• r ≡−1 (mod Pki

i)

• r ≡ 0 (mod Pki
i) .

Finally, by Lemma 3 we get that 2k0 | 4r if and only if one of the following holds
• r ≡−1 (mod 2k0+1)

• r ≡ 0 (mod 2k0+1) .
The assumption has been shown equivalent to the conclusion, and the theorem has been
proven.
Please note that if k0 = 0, i.e. m is an odd number, the second requirement of Theorem 2
is always fulfilled and can be dropped.

The second criterion, C2

C2 was presented in a way that made it easy to see why we needed it. Now we state it in
a more useful way, with respect to proving the conjecture, just like we did with C1 above.
Stating it like this also grants some useful insight for free, as discussed below the proof.

Theorem 3. For all r,m ∈ N+ we have

4r

m
≥ r ⇔ r ≥ 2m−1.

Proof. We have

4r

m
≥ r ⇔

r(r+1)
2
m
≥ r

⇔ r(r+1)≥ 2mr
⇔ r ≥ 2m−1 .

Now we can show that the smallest conjectured yes-instance for any m, is always
〈2m− 1,m〉. This is because when r ≥ 2m− 1, C2 is satisfied. Furthermore, C1 holds
because, m | 42m−1, since 42m−1 =

(2m−1)2m
2 = (2m−1)m. Moreover 〈2m,m〉 is also a

conjectured yes-instance, since 42m =42m−1 + 2m, which is divisible by m, satisfying
C1. The second criterion, C2, is also satisfied since 2m−1 < 2m .

4 The base cases
Remember that we always fix the value of m in our proofs, just like we did in the example
proof where m was equal to 3. The construction we presented in the subsection concerning
the induction step goes hand in hand with Theorem 1. The induction step lets us jump
2m steps forwards, so if we jump from a yes-instance, i.e. a proven conjectured yes-
instance, we must hit a new conjectured yes-instance. This is because the new partition is
correct and the conjecture holds in the trivial direction. Theorem 1 states that C1 holds at a
regular basis, creating a pattern that repeats within 2m steps. We know from the discussion
after Theorem 3 that 〈2m−1,m〉 is the smallest conjectured yes-instance, so if we prove
that instance, we have proven every 2m’th instance from that point on, by induction. In
particular, we will have proven the instance 〈4m−1,m〉. Thus, proving every conjectured
yes-instance between 〈2m− 1,m〉 and 〈4m− 1,m〉 is sufficient in order to prove the
conjecture for that particular m. This is because there can not exist any conjectured yes-
instances before 〈2m−1,m〉, and an arbitrary conjectured yes-instance after 〈4m−1,m〉,
let us call it 〈R+4m−1,m〉 can be reached by jumping from 〈R+2m−1,m〉. These first
instances are called base cases.

Definition 1 (Base case). An instance of the A&K-problem, 〈r,m〉, is a base case for m if
the following two holds

• 2m−1≤ r ≤ 4m−2

• 〈r,m〉 is a conjectured yes-instance

With this definition and the discussion above, we have shown that by extending the
base cases we hit all conjectured yes-instances and we hit conjectured yes-instances
exclusively. As a result of this, all that remains is to find a correct partition (or at least
prove that such a partition exists), for all base cases.

When m only has one factor
At this point, we are able to prove a special case of the conjecture.

Theorem 4. Let 〈r,m〉 be an instance of A&K where m is of the form Pk, where P is a
prime number and k ∈ N. Then 〈r,m〉 is a yes-instance if and only if the following two
criteria holds

m | 4r

4r

m
≥ r .

Proof. By the considerations above, it is sufficient to give a correct partition for all
base cases. We split the proof into two parts.

First, consider the case where m = 2k. The only base cases are 〈2k+1− 1,2k〉 and
〈2k+1,2k〉, since they are the only conjectured yes-instances where 2m−1≤ r ≤ 4m−2.
For these two base cases we have the partitions:

Case r = 2k+1−1: {{r,0},{r−1,1},{r−2,2}, . . .{2k,2k−1}}

Case r = 2k+1: {{r,1},{r−1,2},{r−2,3}, . . .{2k +1,2k}}
As discussed after the proof of Theorem 3, 〈2m− 1,m〉 and 〈2m,m〉 are always

conjectured yes-instances. It is not hard to see that the partitions above work for any
m. This shows that the instances 〈2m−1,m〉 and 〈2m,m〉 in fact are yes-instances, for all
m.2

Now, consider the case where m = Pk and P is a prime strictly greater than 2. Since
m now is odd, we know from Theorem 1 that the pattern in which the conjectured
yes-instances appear, repeats every m steps. Thus if 〈2m− 1,m〉 and 〈2m,m〉 are base
cases then there must be base cases at 〈3m− 1,m〉 and 〈3m,m〉 too. Our base cases are
〈2Pk− 1,Pk〉,〈2Pk,Pk〉, 〈3Pk− 1,Pk〉 and 〈3Pk,Pk〉. This can also be directly read from
Theorem 2. The cases 〈2Pk−1,Pk〉 and 〈2Pk,Pk〉 were proven above.

For the remaining two cases, 〈3Pk−1,Pk〉 and 〈3Pk,Pk〉 we present an algorithm for
filling in the subsets. See figure 1. Below we prove that the algorithm not only works
for the instances 〈3Pk−1,Pk〉 and 〈3Pk,Pk〉, but for any instance 〈3m−1,m〉 or 〈3m,m〉,
where m is an odd number.

To better understand how the algorithm works, we imagine that we place the subsets
underneath each other with p0 at the top and pm−1 at the bottom. We only prove
that the algorithm works for the base case 〈3Pk − 1,Pk〉. The other case is similar.
Since r = 3m− 1 we know that we started out (the algorithm) with the set S3m−1 =
{0,1,2, . . . ,3m− 1}. In step 1, we distributed the m biggest elements of Sr, such that
the set pi = {r− i}. In step 2, we distributed the m smallest elements such that each pi
contains exactly two elements. Figure 2a illustrates how the sets look, after step 2, in the
base case 〈26,9〉. Since we have used the m biggest and the m smallest elements, we are
left with the set {m,m+1, . . . ,r−m}= {m,m+1, . . . ,2m−1}, which has cardinality m.
Since we also have m unfinished subsets, we know that we can fit exactly one element in
each subset. We want to show that you can fit all remaining elements into the subsets (one
in each), so that all subsets sum to 4r

m .
The subsets from p0 down to p m−1

2
are from now on called part A. The remaining

subsets, those from p m+1
2

to pm−1 we call part B. Note that part A contains one more
subset than part B, as m is an odd number.

It is clear that after step 2, p m−1
2

has the lowest subset sum in part A. Both two elements
of each subset in part A, are one bigger than those of the subset below it, and one smaller
than those of the subset above. This means that starting at p m−1

2
going upwards, the subset

sums increase by two at every step until you reach p0, which has the highest subset sum
in part A. The same holds for part B, with pm−1 having the smallest subset sum and p m+1

2
having the biggest.

Now we show that the subset sum of p m−1
2

is one lower than the subset sum of pm−1.
Furthermore, we show that p m−1

2
needs exactly the biggest remaining element, 2m− 1,

to sum to 4r
m . Since the parts A and B have the properties explained above, we can

then zig-zag between the parts filling in all the remaining elements. See figure 2b. The
subset p m−1

2
= {r− m−1

2 ,0}, and the subset sum is (3m− 1)− m−1
2 + 0 = 5m−1

2 . And

pm−1 = {r− (m−1), m+1
2 }, and the subset sum is (3m−1)− (m−1)+ m+1

2 = 5m+1
2 . We

subtract the subset sum of p m−1
2

from 4r
m to check what (element) the subset lacks, and

2Thus, the instance < 11,2 > is a yes-instance, which means it is a poor choice of an instance to base
your TV show on, if you want to avoid draws.

Figure 1: Algorithm 1

0. Create m empty subsets named p0, p1, . . . , pm−1.

1. Distribute the m biggest numbers in the subsets, in the following fashion
for i ∈ {0,1, . . . ,m−1} do

pi = pi∪{r− i}
end for

2. Fill in the m smallest elements in the subsets, in the following fashion
for i ∈ {0,1, . . . ,m−1} do

k = m−1
2 − i (mod m) // k ∈ N since m is odd

if r = 3m−1 then
pk = pk∪{i}

else // r = 3m
pk = pk∪{i+1}

end if
end for

3. Fill in the rest of the numbers in the correct subset
for i ∈ {0,1, . . . ,m−1} do

if i is even then
k = m−1

2 −
i
2

else // i is odd
k = m− i+1

2
end if
pk = pk∪{2m−1− i}

end for

Figure 2: Different stages of Algorithm 1 with the input 〈26,9〉
(a) After step 2

{p0 = {26,4},
p1 = {25,3},
p2 = {24,2},
p3 = {23,1},
p4 = {22,0},
p5 = {21,8},
p6 = {20,7},
p7 = {19,6},
p8 = {18,5}}

(b) After step 3

{p0 = {26,4,9},
p1 = {25,3,11},
p2 = {24,2,13},
p3 = {23,1,15},
p4 = {22,0,17},
p5 = {21,8,10},
p6 = {20,7,12},
p7 = {19,6,14},
p8 = {18,5,16}}

get 4r
m −

5m−1
2 = 2m− 1. Now since 5m−1

2 is one less than 5m+1
2 we have shown that

Algorithm 1 always produces the desired partition. Thus we have proven Theorem 4.
As discussed above, we have that 〈3m−1,m〉 and 〈3m,m〉 are base cases whenever m is
odd. Now since Algorithm 1 only requires m to be odd to work, we have actually proven
the base cases 〈3m−1,m〉 and 〈3m,m〉 for any odd m.

5 Reducing an instance
Here we present an alternative approach to prove the base cases. Instead of building the
partitions bottom up, we reduce the problem of proving a base case 〈r,m〉, to the problem
of proving the instance 〈r′,m′〉, where r′ < r and m′ < m. The next lemma is needed to
show that the Greedy algorithm, presented in figure 3, works.

Lemma 4. If 〈r,m〉 is a base case, then 4r
m < 2r.

Proof. Since 〈r,m〉 is a base case it follows that r < 4m− 1. We leave the actual
calculations to the reader, and just claim that

r < 4m−1 ⇔ 4r

m
< 2r .

Assume that we want to make a partition for the base case 〈r,m〉, and let us assume
that 4r

m is an odd number. Then we can reduce the instance 〈r,m〉, to a smaller instance,
by the Greedy algorithm, seen in figure 3.

Figure 3: Greedy algorithm

e1 = r
e2 =

4r
m − r // 4r

m − r is smaller than r, by Lemma 4, since r+(4r
m − r) = 4r

m
i = 0
while e1−e2 ≥ 1 do //the elements will be adjacent at some point since 4r

m is odd
pi = {e1,e2}
e1 = e1−1
e2 = e2 +1
i = i+1

end while

The algorithm first fills in r and 4r
m − r in the first subset. As long as the two numbers

that have just been added are not adjacent, the algorithm decreases the biggest by one
and increases the smallest by one, and places them in the next subset. The algorithm
terminates when e1 < e2.

We have now made r+1−(4r
m −r)

2 subsets, each summing to 4r
m . This can be understood

by observing that the algorithm will terminate when e1 < e2. This will be halfway between
the difference of r and 4r

m − r.
We have also used each number between r and 4r

m − r exactly once. This means we
have reduced the problem to solving the instance〈

4r

m
− r−1, m−

(
r+1− (4r

m − r)
2

)〉
= 〈r′,m′〉 .

Now all remaining subsets still need to sum to 4r
m , which means that 4r

m =
4r′
m′ . It now

follows that m′ | 4r′ and 4r′
m′ ≥ r′ since r > r′. Since both criteria are satisfied, 〈r′,m′〉

is a conjectured yes-instance. The instance 〈r′,m′〉 is not necessarily, (probably never), a
base case for m′. However, since we know that all conjectured yes-instances are covered
by extending all base cases, there must exist a base case 〈r′′,m′〉, that can be extended to
prove 〈r′,m′〉. The problem now is that 4r′′

m′ is not necessarily an odd number, so we can
not further reduce this base case by using the Greedy algorithm. Note that the Greedy
Algorithm is actually the one used to prove the base cases 〈2m− 1,m〉 and 〈2m,m〉. We
present an example that illustrates how the Greedy algorithm is used, and also shows its
limitation, that is, when 4r′′

m′ is even.

Example 〈2869,779〉
The instance 〈2869,779〉 is a base case for 779 since

• 2m−1≤ r ≤ 4m−2, since r = 3m+532.

• 〈2869,779〉 is a conjectured yes-instance, since 42869
779 = 5285.

Furthermore, 42869
779 = 5285 is an odd number, so we can run the Greedy algorithm on this

instance.
p0 = {2869,2416},
p1 = {2868,2417},
...
p226 = {2643,2642}

Now we have made 227 subsets each summing to 5285, and we have used all numbers
between 2869 and 2416 exactly once. We are left with the case 〈2415,552〉, which
originates, (can be extended), from the base case 〈1311,552〉. But, 41311

552 = 1558, which
is an even number, and we cannot run the Greedy algorithm to reduce the instance further.

If we had an algorithm for reducing base cases where 4r
m is even, we would be finished

with the whole proof of the conjecture.

6 Empirical results
In this section, we have both good and bad news. We present the bad news first.

We have made a Python program that prints out the number of base cases for different
m. Based on the outputs of the program, we believe that the number of base cases for a
given m is 2d+1, where

d = |{P : P is prime, P > 2 and P | m}| .

If this is true, there is no limit to the number of base cases, as m may have an arbitrary
number of prime factors. We have confirmed that 2d+1 equals the number of base cases,
for all m up to 16000.

On the bright side, we have made another program, that brute forces A&K for different
values of m. The program looks for satisfying partitions for all base cases where 4r

m
is even, for all m with more than one unique prime factor. So far we have proven the
conjecture for all m up to 129. This may seem like a modest number, but remember that
for now, we have no better algorithms than those used to solve NP-complete problems.

7 Conclusions and future work
We have proven the conjecture for all m of the form Pk, where P is any prime. For all
other m, we know that we can do induction over r, and we are done with the induction
step. We also know exactly where the base cases we need to prove are. What remains is
to make partitions for the base cases, or prove that such partitions exist.

We could find a way to construct the partitions for the base cases for any composite
m, based on the partitions of the prime factors of m. This was our initial plan, but so far
our attempts have been fruitless.

As suggested after the example above, it is sufficient to find an algorithm that reduces
a base case where 4r

m is even, to a smaller instance. Then we could reduce any base case
until we reach an instance proved earlier.

Remember that we do not actually need to construct the partitions at all. It suffices to
prove that they exist. This may be simpler than giving a constructive proof, but it is not
inconceivable that a constructive proof is needed in order to prove the conjecture.

Acknowledgements
I would like to thank my supervisor, Prof. Lars Kristiansen, for discussions and guidance
through this writing process. A thank you goes to Prof. Amir Ben-Amram, The Academic
College of Tel-Aviv, for valuable comments on an early draft of this paper. I would also
like to thank Stian Valle for contributing at an early stage.

References
[1] Michael Sipser. Introduction to the Theory of Computation. International Thomson

Publishing, 1st edition, 1996.

[2] William Stein. Elementary Number Theory: Primes, Congruences, and Secrets: A
Computational Approach. Springer Science & Business Media, 2008.

[3] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

	Introduction
	The Multiprocessor Scheduling Problem

	The A&K-problem
	Conjecture proof — the trivial direction
	On proving the non-trivial direction

	Induction step and investigation of the two criteria
	The induction step
	The first criterion, C1
	The second criterion, C2

	The base cases
	When m only has one factor

	Reducing an instance
	Example "426830A 2869,779 "526930B

	Empirical results
	Conclusions and future work
	Acknowledgements

