
Reusable Multi-Selection in Touch-Screen User
Interfaces

Anirudh Ramanathan∗1 and Jaakko Järvi†2

1Texas A&M University, College Station, TX
2University of Bergen, Norway

Abstract
Multi-selection is the act of selecting a set of elements in a graphical
user interface in order to perform an operation on that set. Examples of
multi-selection are selecting thumbnails in an image gallery or files on a
file explorer. Whether and how multi-selection is supported in different
applications varies widely, which leaves user experiences wanting. Järvi
and Parent recently introduced an abstract model of multi-selection that
helps programmers to implement multi-selection uniformly and correctly
in desktop GUIs. This paper adapts the model to touch-screen devices.
We present the rationale for choosing particular gestures for selection
commands and explain how they map to the original model. A user
study comparing our selection model with the established multi-selection
features used by major Android and iOS applications shows that our
selection feature allows for the fastest and most accurate selection.

1 Introduction
Mobile computing devices are ubiquitous and touch-screen interfaces are the de facto
standard for interacting with these devices. These interfaces have evolved to support
a variety of gestures, such as taps of different duration or multiplicities, swipes, and
contact with multiple fingers [4]. Such gestures are building blocks for more complex
forms of interaction. One common form, multi-selection, is used for selecting one
or more items from a collection of items. Examples of this interaction include the
selection of thumbnails in an image gallery and file manipulation in a file explorer.

Multi-selection is a frequently used feature and it should thus be intuitive,
uniform, and universally available for all collections in a UI—intuitive, because
it is unrealistic to expect users to study manuals to learn how multi-selection works;
uniform, because its use is almost reflexive and thus different behavior in different
contexts leads to mistakes and frustration; and universally available, because single-
selection quickly becomes repetitive and tedious. Today’s touch-based applications
do not satisfy these conditions. Järvi’s and Parent’s analysis [9] on the state of
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multi-selection revealed surprising inconsistencies and many oddities in the multi-
selection features of widely used desktop applications (such as OS X Finder and
GMail), and hinted at even more variation in touch-based multi-selection.

Multi-selection is not a feature that programmers should implement anew for
each application. GUI frameworks, both those native to particular mobile platforms
and those intended for cross-platform development, therefore offer abstractions that
are intended to help implementing multi-selection. In the best case, one can reuse an
existing widget (e.g., a listbox) that comes with multi-selection “out-of-the-box”. If
this is not possible, one can try to resort to various view classes, such as Apple’s iOS
UICollectionView [2] or Google’s Android the GridView [6], that serve to implement a
multi-selection feature characteristic to the platform. These view classes, however,
give a fairly limited multi-selection feature (individual taps to toggle items, no range-
based selection) that is often not sufficient or applicable to the selection context at
hand. The programmer must then implement the logic for manipulating selections
herself, and is on her own in making the design choices related to selections. It is
thus not surprising that multi-selection features differ widely across platforms and
across applications within the same platform—and that they are often buggy.

As a remedy to this situation, Järvi and Parent [9] presented an abstract model
of multi-selection that is independent of any collection or view and of the visual
characteristics of a selection context. The model lends itself directly to a reusable
implementation that provides a full-fledged multi-selection feature, assuming the
programmer implements a handful of functions that defines the “geometry” of the
selection context. The reference implementation is the MultiselectJS library [8].

This paper adapts Järvi’s and Parent’s model, from now on we call it the desktop
model, to touch-screen interfaces. The main challenge is to map the rather limited
touch gestures to the desktop model’s richer set of commands, which includes mouse-
clicks with different modifier keys. We solve this challenge by using combinations of
different types of taps (single, double, and long) and dragging, and by being careful
not to hinder the use of unrelated gestures, like those for scrolling. In general, the
design space of gestures is limited by the need to keep user interactions simple and
intuitive. The use of complex gestures brings along problems, such as the lack of
discoverability, lack of visibility, accidental activation, and inconsistency [13].

We validated our adapted model with a user study that compared it to
established multi-selection features on both Android and on iOS. Our model was
the fastest, most accurate, and least frustrating amongst the compared features.

2 Background
The desktop selection model defines a “language” for manipulating selections.
The commands of this language, such as click, command-click, shift-click,
arrow, command-arrow, and shift-arrow, give precise and unambiguous meanings
to selection commands that today appear with varying meanings in different
applications. We describe briefly the building blocks of the desktop model so that
we can present our selection language for touch-screen selection. For full details of
the desktop model, we refer to the original source [9].

Representing Selections
From the point of view of the selection semantics, it is secondary what the selectable
elements are. They can abstractly be represented as an indexed family, x : I →M ,



with M the elements and I an index set. With this mapping, one can refer to the
ith element, where i ∈ I, and mean the element xi ∈ M . The elements’ selection
state can be represented by a selection mapping, a function s : I → {T,F}, where
s(i) = T means that xi is selected and s(i) = F that it is not. We use 2 for {T,F}.

Primitive Selection Operations
Any change to a selection mapping is modeled as a function of type (I → 2)→ (I →
2). The desktop model defines a class of such functions, the primitive selection
operations, as the building blocks from which all other selection operations are
constructed. Let x : I → M a collection, J ⊆ I, and f : 2 → 2 a mapping.
A primitive selection operation is then defined as:

opfJ : (I → 2)→ (I → 2), s 7→ λi.

{
f(s(i)), i ∈ J
s(i), i /∈ J

In other words, opfJ applies the function f to every element in J and has no effect on
elements outside J . J is the selection domain and f the selection function. There
are four selection functions: the identity function λx.x, the constant functions λx.T
and λx.F, and the toggling function λx.¬x.

Primitive selection operations compose to realize complex selections. The result
of applying a series of selection operations opf1

J1 , opf2
J2 , . . . , opfn

Jn
to some selection

mapping s is (opfn

Jn
◦ opfn−1

Jn−1 ◦ . . . ◦ opf1
J1)(s). This suggest that selection state can be

maintained as a base selection mapping s and a composition op of primitive selection
operations. Selection state can then be manipulated by adding primitive selection
operations to and removing them from op. For example, a tapping gesture to toggle
some element i could be modeled by adding the operation opλx.¬x{i} and a drag gesture
to select all elements in some set J by adding opλx.TJ .

Selection Path and Geometry
When a user performs selections, she indicates a sequence of points using gestures
like taps and drags. We call these sequences selection paths. The points in a selection
path are often window coordinates, but in general they can be in an arbitrary space
V , the selection space, that the window coordinates can be translated to. We name
the function that maps window coordinates to the selection space m2v.

A selection path determines a selection domain. We assume the existence of
a function sdom : V ∗ → P(I) that maps from selection paths to domains. Often
only one or two points in the selection path are of interest to sdom. For example,
selecting a single element based on a tap requires sdom to translate the tapped
point to an element index. Selecting a range of elements based on a drag requires
sdom to identify the start and end points of the drag, translate them to indices, and
then return the range between those indices. In general, however, arbitrarily many
selection path points may be relevant; a “lasso” selection tool that select elements
that intersect with a user-drawn polygon is the canonical example.

If P is a selection path and p a point in V , then P |p extends the selection path
with p. What extending means can vary. In lasso selection | appends, whereas in
selection contexts where only two points are relevant, P |p might replace the last
element of P with p.



(a) Row selection geometry. (b) Box selection geometry. (c) Snake selection geometry.

Figure 1: Different definitions of sdom lead to different selection domains. The
dotted lines represent the selection path captured, e.g., during a drag gesture.

The abstract multi-selection model separates the reusable aspects of multi-
selection from those that vary across applications. The parameter that captures
all the variability is the selection geometry, the collection of the functions m2v,
sdom and operator | discussed above. These functions are defined by the application
programmer and they instantiate the generic model to different selection contexts.

Figure 1 shows the results of the same drag (the selection paths are equal) in
three different selection geometries. In the “row” selection geometry in Figure 1a the
sdom function extracts the first and last points from the the selection path, known as
the anchor and active end, and returns the range of elements between those points.
The sdom function of the “box” selection geometry in Figure 1b uses the anchor and
active end as the corners of a rectangle; the selection domain is all the elements that
intersect with that rectangle. In the “snake” geometry in Figure 1c the elements
that intersect with the selection path itself comprise the selection domain.

3 Selection Language for Touch Interfaces
With the basic building blocks introduced, we can define the selection language
for touch screen interfaces, i.e., the commands intended to be bound to selection
gestures. These commands are functions that map the current selection state into
a new selection state. The selection state is a tuple 〈s, op, P 〉, where

• s : I → 2 is the base selection mapping. In the initial state it is usually empty,
that is, s(i) = F for all i ∈ I.

• op is the composition of primitive selection operations. The op composition
together with the base selection mapping determines the current selection
mapping as op(s); the selection state of the ith element is thus ops(s)(i). We
consider the empty composition to be the identity function.

• P is the current selection path.
Figure 2 describes the commands in our selection language. The definitions

rely on pattern matching to select the correct case for a particular selection state
tuple—we assume the first matching case is selected. While function composition
has its regular meaning, we also assume that the composition structure within op
is accessible, so that pattern matching can extract individual primitive selection
operations. The metavariable o ranges over primitive selection operations and op
over compositions of zero or more of them. The pattern o◦op matches compositions
that have at least one primitive selection operation and binds o to the first operation.
Analogously, the pattern op ◦ o extracts the last primitive selection operation. The
symbol · denotes an empty sequence, both for compositions and selection paths.
The metavariable P ranges over selection paths, but crucially does not match the
undefined path ⊥ that may appear in the selection state tuple. The metavariable
_ binds to anything, including ⊥, and signifies an unused value. The metavariable



tapp : 〈s, op,_〉 7→ 〈s, opλx.¬onsel(p,op(s))
sdom(·|p) ◦op, ·|p〉

double-tapp : 〈s, opf_ ◦op, P 〉 7→ 〈s, opfsdom(P |p) ◦op, P |p〉
double-tapp : 〈s, op,_〉 7→ 〈s, opλx.Tsdom(·|p) ◦op, ·|p〉

undo : 〈s, on ◦ op,_〉 7→ 〈s, op,⊥〉
undo : t 7→ t

bake : 〈s, op ◦ o2 ◦ o1, P 〉 7→ 〈store(s, o1), op ◦ o2, P 〉
bake : t 7→ t

Figure 2: Selection language for touch-based selection.

t ranges over selection state tuples. A valid initial empty selection state is 〈e, ·,⊥〉,
where e is the empty selection mapping λi.F.

The functions tap and double-tap both map a selection state tuple to a new
selection state. The point parameter p to each function is written as a subscript,
as in tapp, to keep it notationally separate from the selection state parameter. The
functions are named to suggest the gestures they should be bound to.

The effect of tap is to toggle the selection state of an element, reset the
current selection path, and set the tapped selection space point to become the new
anchor. The tap command accomplishes the toggling by adding a primitive selection
operation to the op composition. The selection function is either λx.T or λx.F,
determined by the helper function onsel(p, r) = if sdom(·|p) = {i} then r(i) else F
that decides whether p is on a selected element or not in the current selection
mapping op(s). After tapp, the selection path is typically the singleton path
containing the point p, making p the new anchor. Since | is defined by the selection
geometry, however, the effect can be something else too. For example, ·|p could be
defined to return · for points that lie outside the selectable area.

After a tap operation, op has at least one element. We call the domain of the
topmost, the most recently added, primitive selection operation the active domain.
The selection function of that operation determines the mode of selection. If the
function is λx.T, the mode is to select, if it is λx.F, it is to deselect.

The effect of a double-tap is to first extend the selection path and then compute
a new active domain based on that path. Elements in the active domain are either
selected or deselected according to the current mode of selection. The effect is
obtained by changing the active domain. It can be that either the composition is
empty (and thus there is no active domain) or that the selection path is undefined.
The second case of double-tap matches in these situations. Its effect is the same as
that of tap, except that the mode of selection is always set to select.

Since double-tap applies the current mode of selection to a new active domain,
it is clear why tap sets the selection function either to λx.F or λx.T, not λx.¬x:
with λx.F and λx.T, double-tap selects or deselect a range of elements, with λx.¬x it
would toggle them. The latter is notably more confusing and less useful an operation
than the former two.

One benefit of representing selections as compositions of primitive selection
operations is that implementing an undo of selections is almost trivial. The undo
function rolls back op to the previous selection state prior to the most recent tap



by popping the topmost primitive selection operation. It also sets the selection
path to the undefined value ⊥. This is because the selection domain of the new
topmost primitive selection operation was not computed from the current selection
path—keeping the current path would make a subsequent double-tap command
unpredictable. With an undefined path the second definition of double-tap is applied
to add a new primitive selection operation. The second case of undo is applied if
there are no operations to undo.

Practically no applications today provide an undo operation for selections. Yet,
especially on desktops, it is easy to lose a carefully constructed complex selection,
say of photo thumbnails, because of a single mis-click. In such situations one hopes
that one could undo the last one or two clicks. Touch-based selection does not
usually have a simple gesture (smilar to click) that wipes out the entire selection. A
careless drag can nevertheless bring a user to an undesired selection state. We thus
support undo in a manner similar to the original desktop model.

The bake operation is for being able to limit the number of undoable states.
It changes neither which elements are currently selected nor the selection path. It
simply extracts the least recently added primitive selection operation from op and
“bakes” its effect permanently to the base selection mapping s; we assume store(op, s)
is an operation that constructs a selection mapping from op and s. The second case
of bake is for when there are no operations to bake.

4 Gesture Bindings
To put our selection language to work, we must decide which gestures lead to calls
to the commands of the selection language. The norm in touch-screen interfaces
is that multi-selection takes place in a dedicated GUI state, entered by tapping a
“select” toggle on the screen or with a long-press on one of the selectable elements.
Once in that state, all interactions are interpreted as selection commands. We too
adopt this scheme to avoid conflicts with other UI gestures that are unrelated to
selection.

As the namings suggest, we bind the tap gesture to the tap function and double-
tap gesture to the double-tap function. The tap gesture accomplishes thus three
tasks: (1) it inverts the selection state of a selectable element, (2) sets the current
selection mode to either select or deselect, according to which subsequent double-tap
gestures operate, and sets the anchor to the tapped location. The double-tap gesture
defines a new active end, and selects or deselects the elements in the active domain
(the range between the anchor and the active end in typical selection geometries).

We define two additional gestures to enable (de)selection using dragging:
• in double-tap followed by a drag, the double-tap and each subsequent detection

of a new point during the drag are bound to the double-tap function.
• in a long-press immediately followed by a drag, the long-press is bound to tap

and each subsequent detection of a new point during the drag to double-tap.
These gestures and their meanings are “isomorphic” to how command-click, shift-
click and dragging play together in the desktop model (tap corresponds to command-
click, double-tap to shift-click). The results of our user study, reported in Section 7,
strengthen our belief that the chosen gestures provide a good balance of simplicity,
familiarity, and expressive power for multi-selection in touch-screen interfaces.



5 Properties of Selection Semantics
In implementations of multi-selection based on our semantics, several beneficial
properties come “for free”. Some of the properties are subtle—programmers may
not be aware of the ramifications of implementing them one way or the other. Our
user study indicates that getting these properties “right” improves usability.

State Preserving Active Domains To describe this property, we first describe
its opposite: state erasing active domains, which is provided, for example, by Google
Photos. In this mechanism, once an element becomes part of the active domain in a
drag, the system erases its past selection state; it is not restored if the element later
during the same drag falls out of the active domain. This may lead to the (possibly
unintended) deselection of elements, as demonstrated by the example scenario in
Figure 3. The same figure also shows how the opposite state preserving active
domains property (that we provide) remembers elements’ prior selection states.

Figure 3: The series of three figures on the left demonstrate the state erasing active
domains behavior. The elements marked blue are previously selected and those in
yellow are in the active domain. The dotted line shows the drag gesture. Since the
drag temporarily takes the active domain over some of the blue elements, their past
selection states are erased and they become unselected. The series of three figures on
the right demonstrate the state preserving active domains behavior. The elements
that are not in the active domain at the end of the the drag retain their state.

Equivalence of double-tap and drag operations Selectable elements
commonly span several screens. Typically users can “push” a drag against an edge of
the viewport, causing a scroll that allows for extending the drag beyond the bounds
of the screen. This is a brittle mechanism (a user must be careful to not let go of
the drag) that can lead to unintended selections (the push may “overshoot” and
select too many elements). Since in our semantics a drag is a series of double-tap
commands, users can split a single range-selection operation over several drags. One
can release a drag at any point, scroll by any means convenient, and then pick up
the same drag by a double-tap.

Deselection of ranges of elements Our semantics support deselections over
ranges of elements. This capability is practically never provided in contemporary
multi-selection implementations. Somewhat puzzlingly, toggling over ranges often is.
This may be because toggling allows for a simple implementation of state preserving
active domains, and becuase when applied to a fully unselected or selected region,
toggling reduces to selection or deselection.



6 Related Work
This work is directly based on Järvi’s and Parent’s [9] work on mouse-based multi-
selection, which we adapt to touch-based selection. Interestingly, moving to touch-
based selection significantly simplifies the model and the selection language. First,
commands for keyboard selection are not needed, which means that the notion of a
keyboard cursor becomes irrelevant. Second, double-tap and tap add or modify only
one primitive selection operation whereas click in the desktop model adds two. The
latter causes additional complexity to all other operations, including undo.

Apart from Järvi’s and Parent’s work, we know of no attempts to formally model
multi-selection. Informally, Macintosh Human Interface Guidelines [1] introduced
extending selections using shift-clicks, and covered some terminology with regard to
mouse-based selection, such as defining the terms anchor and active-end. Similar
guidelines for Windows [11] established File Explorer’s selection behavior.

Many works have experimented with different ways to carry out multi-selection
on touch-screen devices. Mizobuchi and Yasumura [12] compare circling gestures
with tapping in selecting elements with varying levels of cohesiveness and shape
complexity, and suggest that circling may be a useful supplement to tapping. Roth
and Turner [14] propose Bezel Swipe as a multi-selection feature that does not
conflict with other common gestures. Leitner and Haller [10] propose Harpoon
Selection as a novel way to carry out selection tasks on pen-based interfaces.
Dehmeshki and Stuerzlinger [5] explore selection from the perspective of perception
science and gestalt groups, but their technique seems not to be particularly fitting
for the prevalent two-dimensional grids in touch-screen interfaces.

While novel gestures for multi-selection are interesting and worthy of study,
nothing that would replace tapping in a dedicated GUI state for selection has
emerged. Developers continue to struggle implementing the conventional (but
practical) multi-selection following current UI guidelines [3, 7] with their more or less
vague specifications. Our work distinguishes itself from prior works by providing an
abstract but precise semantics for the conventional multi-selection on touch-screen
interfaces. It can turn vague guidelines into a solid reusable implementation of a
full-fledged multi-select feature that is free of subtle bugs and inconsistencies.

7 User Study
We implemented our multi-selection semantics as a Java library and used it to
implement an Android application that presented users multi-selection tasks using
different multi-selection mechanisms, and gathered metrics. The mechanisms were:
Selection by tap This is the simplest and most common model in applications

across all touch-screen platforms. A tap toggles an element’s selection state.
There are no drags or region/range selections.

Google Photos Google Photos is an image organizer and viewer for both Android
and Apple’s iOS. Its multi-selection feature represents the state-of-the art in
touch-based selection. A tap toggles an element’s selection state. A Long-press
on an element (both selected and unselected) followed by a drag selects many
elements by rows. Dragging against the edge of the viewport scrolls. Google
Photo’s active domains are selection state erasing as described in Section 4.

Multiselect-Android This is our selection mechanism with tap, double-tap, and
dragging as described above. It has selection state preserving active domains.



(a) Task 0. (b) Task 1. (c) Task 2. (d) Task 3. (e) Task 4.

Figure 4: Task layouts.

Study Setup
The application presented the user with one practice screen and four selection tasks,
all to be performed using the same selection mechanism, one of the above three.
The application was running on a Nexus 7 (2013) tablet running Android 5.1.1.
We recorded detailed data of the user interaction and derived selection times and
accuracy metrics from this data.

The users were first presented with concise printed instructions on how their
assigned selection mechanism works. Task-specific instructions were presented
within the application before the beginning of each task. Users explicitly signaled
the completion of each task by tapping a “Done” button.

Each task was a request to select particular marked elements (file icons on a
grid). Figure 4 shows the layout of the elements in each task. The blue outline
shows the viewport at the beginning of the task; to access elements outside the
viewport required scrolling. The elements marked to be selected are shown in blue.
Orange elements were pre-selected at the beginning of the task and had to stay
selected. The tasks were as follows:
Task 0 Users were given an unlimited time to familiarize themselves with their

assigned selection mechanism.
Task 1 This task asked for selecting three distinct elements.
Task 2 This task spanned several pages and required scrolling, which was explained

in the task instructions. The elements to be selected appeared in groups, which
was intended to exercise drag selection.

Task 3 This task involved preselected elements outside the current viewport, which
was explained in the task instructions. We expected to see a difference between
mechanisms that support state preserving vs. erasing active domains.

Task 4 This task used a “box” selection geometry that allows for selections of
rectangular areas of elements. The change in geometry was explained in the
task instructions. This task was designed to exercise deselection.

At the conclusion of the four tasks, the users were presented with two simple



Task TAPt GPt MSAt TAPn GPn MSAn

Task 0 7.8 21.1 35.3 9 8 17
Task 1 1.5 2.2 1.8 3 3 3
Task 2 11.8 14.4 10.3 18 14 9
Task 3 25.1 16.5 6.6 47 18 4
Task 4 14.6 14.7 10.7 30 13 11

Figure 5: Average times (TAPt, GPt, and MSAt) and gesture counts (TAPn, GPn,
and MSAn) for completing each of the Tasks 0–4.

feedback questions: “Was the method sufficient for performing the required tasks?”
and “Was the method frustrating to use?” The first was intended to measure the
user’s opinion on adequacy, the second on convenience.

The study involved 36 users of ages between 18 and 38, 24 identified as male and
11 as female. One participant did not disclose their age or gender. The demographic
was already familiar with the use of touch-screen interfaces and with the notion of
multi-selection. Each user were randomly assigned a selection mechanism, one of
TAP (Selection-by-Tap), GP (Google Photos) and MSA (Multiselect-Android).

Analysis
We measured the time taken to complete each task, from the first user event to
tapping the “Done” button, and the number of selection gestures it required. Each
drag was counted as one event, as was each tap, double-tap, and long-press. The
average times and gesture counts are reported in Figure 5. In addition to finding
the mean and variances we used ANOVA tests and, where applicable, conducted
post-hoc analysis using the Tukey-Kramer method to check if the difference that we
observed between the means was statistically significant. We chose an alpha of 0.05,
and report results in a standard manner, with the F-value, the degrees of freedom
between and within groups, and the p-value. If the p-value is greater than the alpha,
we accept the null hypothesis and report it as not significant (NS).
Task 0 Hypothesis 0: MSA requires more practice time than either TAP or GP.

The single-factor ANOVA test revealed that the mechanism had a strong effect
both on the practice time (F2,33 = 10.87, p � 0.001) and number number of
gestures (F2,33 = 7.36, p � 0.05). Tukey-Kramer post-hoc analyses revealed
a significant time difference between MSA and TAP techniques (p < 0.01),
but not between MSA and GP. A similar analysis on the number of gestures
revealed a significant difference between GP and MSA (p < 0.01) and between
TAP and MSA (p < 0.05). Since MSA with its two kinds of taps is the most
complex of the three mechanisms, it was expected that its learning time was
the longest. The time was, however, less than a minute in all cases and thus
learnability seems unlikely to be a hurdle for the adoption and use of MSA.

Task 1 Hypothesis 1: TAP, GP, and MSA exhibit no significant difference when
selecting disjoint elements. We expected that users would not resort to more
advanced selection gestures than individual taps. The effect of the selection
mechanism to neither the completion time (F2,33 = 1.47, NS) nor number of
gestures (F2,33 = 0.08, NS) was significant, which indicates that all mechanisms
perform equally well for selecting distinct elements.

Task 2 Hypothesis 2: MSA and GP outperform TAP in selecting contiguous groups



of elements. The hypothesis is justified by TAP always requiring one tap per
element, even when elements are grouped together, whereas GP and MSA
allow for selecting a range of elements with one gesture. The differences in
selection times, however, were small and not statistically significant, even
though the number of gestures for TAP were significantly higher (with a
statistically significant difference between TAP and GP, and TAP and MSA.
Here each group contained 6–8 elements. With larger groups TAP does
perform relatively worse, as confirmed by results of Task 3. In this analysis,
we discarded results where over 10% of selections were incorrect, since with
many errors it is possible to complete the task much quicker.

Task 3 Hypothesis 3a: GP and MSA outperform TAP in selecting large contiguous
groups of selections. Hypothesis 3b: MSA outperforms GP in selecting
large contiguous groups of elements spanning multiple screens with previously
selected elements present. We again discarded records with over 10% of
incorrect selections. The TAP data-set was considerably smaller than the
others due to large number of errors, presumably due to users giving up
on completing a task that felt too tedious. A single-factor ANOVA test
revealed that the mechanism had a strong effect on the time to perform task
3 (F2,26 = 49.71, p � 0.001) and on the number of gestures (F2,26 = 36.29,
p � 0.001). Tukey-Kramer post-hoc analyses revealed significant differences
between all three pairs of techniques confirming both our hypotheses. That
MSA outperformed GP we attribute to two properties where the mechanisms
differ: MSA’s state preserving active domains and the ability to let go off a
drag and pick it up again. The former makes “overshooting” a drag a non-
problem and the latter enables alternating between a drag and a scroll.

Task 4 Hypothesis 4: MSA outperforms GP when the use of deselecting ranges of
elements leads to the fewest gestures needed to carry out a selection.
The single-factor ANOVA test revealed that the mechanism had an effect on
the time (F2,33 = 6.88, p < 0.01) and number of gestures (F2,33 = 43.17, p
� 0.001). Tukey-Kramer post-hoc analysis revealed a significant difference
between the task completion times of GP and MSA, but not between the
number of gestures. Although the MSA users completed the selection task
significantly faster than GP users, they did not use fewer gestures. This may
indicate that the users did not use deselection to accelerate the task. The time
difference observed may instead have come from greater flexibility of range-
selection gestures (both drag and double-tap can be used in MSA). Though
the hypothesis is confirmed, we cannot link it to the utility of deselection.

Finally, out of 12 users in each group, 10 in the TAP group, 3 in GP, and 1 in
MSA reported their selection mechanism “frustrating”; 5 users in the TAP group,
11 in GP, and 12 in MSA found it “sufficient”. The high number of frustrated TAP
users was expected since TAP offers no gestures for selecting many elements at once,
making several of the tasks tedious. We take the low number of frustrated MSA
users as an indication that the selection mechanism was not confusing to the users.

8 Conclusions
Whether and how touch-screen interfaces support multi-selection varies between
platforms and applications, arbitrarily, rather than in a way that could be justified by
better usability. This is because the guidelines that describe desired multi-selection



features are ambiguous and vague, forcing programmers to make implementation
decisions that are really design decisions, and also because implementing multi-
selection is today a difficult and tedious programming task.

Our multi-selection model can both bring the unnecessary variability to an end
and drastically simplify the programming of a multi-selection feature. It specifies all
context-independent aspects of multi-selection precisely, and allows for their reusable
implementation. Our user study confirms that the feature that falls out from the
model is superior (faster, more accurate, and less frustrating) to state-of-the art
multi-selection features both in Android and iOS platforms.
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