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Abstract
We have considered edge detection as a classification problem, and we
have applied two popular machine learning techniques to the problem and
compared their best results to that of automatic programming. We show
that ADATE, our system for automatic programming, is capable of producing
solutions that are as good as, or better than, the best solutions generated by
two other machine learning techniques.

The results demonstrates the ability of the ADATE system to create
powerful heuristics to solve image analysis problems.

1 Introduction
Edges in digital images are often used to find the boundaries of any objects of interest
in an image. This is why edge detection one of the first steps in many image analysis
applications. Problems in which the task is to classify examples into one of a discrete
set of possible categories, are often referred to as classification problems. In this paper
we have considered edge detection as a classification problem. We have applied popular
machine learning techniques to the problem in order to compare their best solutions to the
best solutions generated by ADATE, our system for automatic programming.

We show that automatic programming performs as well or better than the competing
machine learning techniques on this problem, and that the performance can be attributed
to the ability of the automatic programming system to generate powerful feature
extraction that investigate complex relationships between the input attributes. The
solution created is unlikely to be useful for real-world applications, but the result provide
further evidence that ADATE can be used to create or improve solutions to image analysis
problems.

2 Background
The following sections provide relevant background information about traditional edge
detection and the machine learning techniques we have applied to the related problem of
edge classification.

This paper was presented at the NIK-2014 conference; see http://www.nik.no/.



Edge detection
Edge detection is a complicated problem in that there exists no objective truth. Which is
one of the reasons why it is impossible to design an edge detector that will find all the
true edges in an image and nothing more. It has been shown that edge detectors only give
ambiguous local information about the presence of object boundaries [1].

Despite this fact, there exists a variety of edge detecting algorithms. The simplest
algorithms are typically filter-based, meaning that they convolve a small mask with an
image in order to locate the edges. Points that lie on an edge can be located by detecting
local maxima or minima of the first derivative, or detecting the zero-crossing of the second
derivative. The Prewitt operator [2] introduced by Judith Prewitt in 1970 and the Sobel
Operator [3] by Irwin Sobel from 1973 are both examples of algorithms that detect edges
by convolving an image with local derivative filters.

There are also more complex algorithms, such as the Canny edge detector [4]
introduced by John Canny in 1986. This algorithm start out using a filter to locate sharp
discontinuities in the image. These discontinuities are then processed further through
what has been termed non-maximum suppression and then hysteresis thresholding. There
are other algorithms that attempt to find the edges through a series of steps. The Global
Probable Boundary (gPb) algorithm from 2011 is, like Canny, a three step algorithm [5].
All the steps are more complex than the ones in Canny, but the purpose of them are similar.
First, find indications of edges in the image, then process the edge pixels found to clean
up the initial results. In this instance, this is done by by incorporating global information.

In this paper we have looked at the edge detection problem from a classification
perspective. We only consider the immediate neighbors to any given pixel, meaning that
our approach is comparable to that of the simple filter approach, and perhaps also to the
first step of multi step algorithms. No comparison with any traditional edge detection has
been done, since the purpose of the experiment is to compare automatic programming to
other machine learning techniques.

Machine Learning Techniques
Decision trees classify instances by sorting them through a tree structure of nodes and
branches, where each node specifies a test of some attribute of the instance, and each
branch corresponds to one of the possible values for the attribute. The leaf node gives the
class of the instance [6]. C5.0 is a machine learning algorithm based on decision trees.
The decision trees are built from a list of possible attributes and set of training cases, and
the trees can be used to classify subsequent sets of test-cases [7]. The trees can also be
converted to rules, by creating one rule for each path from the root node to a leaf node [6].
Decision Trees have successfully been applied to a wide range of tasks, from diagnosing
medical cases to assessing credit risk of loan applicants [6].

Artificial Neural Networks (ANNs) are inspired by biological learning systems, like
the human brain, which are constructed by complex webs of interconnected neurons.
Each neuron takes a number of inputs, which may be outputs from other neurons, and
produces a single output, which may be input to yet other neurons [6]. Artificial Neural
Networks provide a robust, practical method for many different tasks. Some claim it is
the only solution needed for solving any type of problem. With the introduction of the
back-propagation learning algorithm, neural networks with one or more hidden layers can
in theory be trained to solve any regression or discrimination task. Since the mid-nineties,
neural networks have been applied to image processing applications. It has been used
for image segmentation and object recognition, as well as low level tasks such as noise



reduction and image enhancement [8].

Automatic Programming
Automatic programming is a relative new machine learning technique that supports
the automatic generation of algorithms based on specifications provided by the user.
Automatic Design of Algorithms Through Evolution (ADATE) [9] is a system for
automatic programming that creates functional programs using evolutionary principles. It
can be used to develop new programs, or evolve and improving existing ones [10, 11, 12].

Image segmentation is closely related to edge detection. It divides the image into
multiple parts, and is typically used to identify objects or other relevant information
in digital images. It has been shown that ADATE is capable of drastically improving
the segmentation quality of a popular and highly efficient graph-based segmentation
algorithm—while retaining the computational efficiency of the original algorithm [10].

To evolve a solution to a problem, the ADATE system needs a specification file that
defines data types and auxiliary functions, a number of training and validation input
examples, and an evaluation function that is used to grade and select potential solutions
during evolution. Additionally, the specification file may contain an initial program from
which evolution will start. Of course, it is possible to start the evolution from any given
program, for example to search for improvements for the best known program for a given
problem.

The programs are constructed using a limited number of so-called atomic program
transformation. The most important ones are as follows.

• R (Replacement) - A part of an existing program is replaced by a newly synthesized
expression. Due to the extremely high number of expressions that can be
synthesized, R transformations are combinatorially expensive.

• REQ (Replacement preserving Equality) - An R transformation that does not make
the program worse according to the given evaluation function. REQ transformations
are quite useful due to their ability to explore plateaus in the search landscape.

• ABSTR (Abstraction) - Like REQ transformations, these neutral transformations
exist to aid the system in exploring plateaus. In contrast to the general REQ
transformation, ABSTR transformations have the very specific task of introducing
new functions in the program by factoring out a piece of code and replacing it with
a function call. This gives the system the important ability of inventing needed help
functions on the fly, something which has proven to be an extremely useful feature.

Atomic program transformations are composed to compound program transforma-
tions using a number of different heuristics to avoid common cases of infinite recursion,
unnecessary transformations etc. For example, after an ABSTR transformation, the newly
introduced function should be used in some way by a following R or a REQ transforma-
tion. More details on the atomic program transformations and the heuristics employed to
combine them can be found in [9].

Each time a new program is created by a compound transformation, it is considered
for insertion into the so-called kingdom. As in all evolutionary systems, individuals
with good evaluation values are preferred, but in ADATE, the syntactic complexities of
the individuals also play an important role. According to what is commonly known as
Occam’s Razor, simple theories should usually be preferred over more complex ones,



as the simpler theories tend to be more general. This principle is utilized by ADATE
to reduce the amount of overfitting, in that small programs are preferred, and if a large
program is to be allowed in the kingdom, it has to be better than all programs smaller
than it [9]. In other words, a new program will only be allowed to be inserted into the
kingdom if all other programs in the kingdom are either larger or worse than it. Each time
a program is added to the kingdom, all programs in the kingdom both larger and worse
than than the new one are removed.

Having described the most important components of the ADATE system, we conclude
this section by giving a brief overview of the overall evolution occuring in a run of the
system.

1. Initiate the kingdom with the single program given as the start program in the
specification file (either an empty program or some program that is to be optimized).
In addition to the actual programs, the system also maintains an integer value CP
for each program P, called the cost limit of the program. For new programs this
value is set to the initial value 1000.

2. Select the program P with the lowest CP value from the kingdom.

3. Apply CP compound program transformations to the selected program, yielding CP
new programs.

4. Try to insert each of the created programs into the kingdom in accordance with the
size-evaluation ordering described above.

5. Double the value of CP, and repeat from step 2.

The above loop is repeated until the user terminates the system. The ADATE system
has no built-in termination criteria and it is up to the user to monitor the evolving programs
and halt the system whenever he considers the evolved results good enough.

3 The Experiments
The grayscale and ground truth images used to create the dataset were generated by a
custom script. Each of the images contains an instance of one of the different types of
edges available. Figure 1 shows some examples. Note that the edges are slightly varied
in intensity and size, but that the ground truth edge is only one pixel wide and located
at the center of edge. The classification dataset was made by iterating over the images,
collecting values from a 5x5 neighborhood around each pixel (see Figure 2). We chose
to use the 24 neighbor pixels as input attributes, and whether or not the middle pixel is
an edge pixel as the target attribute. Since normally, location of the correct edge can be a
matter of perception, slightly mis-localized boundaries should also be tolerated [13]. For
this reason, the pixel were accepted as true if any of its closest neighbors is marked as an
edge pixel, and accepted as false otherwise.

In total the dataset contains 163.840 instances with roughly 16% positive cases. Due
to the size of the dataset, a fixed split into training and testing data would be too much for
some of the machine learning systems to handle, since it would slow down the training
process considerably. For the systems where this applies, we chose to overcome the
problem by creating a suitable dataset by randomly sampling the complete dataset.

We chose to use C5.0 to assess the ability of the decision tree approach to classify the
dataset. The system is capable of handling the entire dataset, so we chose to use sampling



Figure 1: Step, ramp, ridge and roof edges, with ground truth

Figure 2: Order of gathering pixels from the 5x5 neighborhood

to utilize the entire dataset. 70% of the instances were used for training and 30% for
testing. Due to the unbalanced nature of the dataset—with almost 5 times as many false
cases as true—it is easy to get a relative low error percentage by simply classifying all
cases as false. We would rather have the system indicating edges where there are none,
than avoiding marking the real ones. We tried a number of different options in order to
circumvent this issue.

To assess the performance of the neural network approach we chose to use the
feedforward neural network implementation in Matlab. For this system we chose to
use only 10% of the entire dataset (16.384 instances). 70% of the instances were
used for training, 15% of the instances were used for testing and the remaining 15%
were used for validation. The default training method for feedforward networks is the
Levenberg-Marquardt backpropagation method. This method is in general the fastest
training function, and it is recommended as first choice, even though it requires more
memory than other algorithms [14]. More than 35 different networks were trained and
tested with variations in training methods, epochs, number of layers and neurons in the
hidden layers. Both the validation and test data were run manually after the training was
complete.

The experiments with the ADATE system was based on the data and test files used in
the C5.0 experiment, but we had to reduce the dataset. We decided to use only 10.000



rows for training and 10.000 for testing. We allowed the system to evolve programs using
only boolean literals, relational operators and simple arithmetic. These building blocks are
on their own enough for the ADATE system to generate decision trees similar to the ones
created by c5.0, but, due to the power of automatic programming and the ADATE system,
it is also capable of generating much more complex solutions. We also allowed the system
to use the trigonometric function tanh since it has been used to evolve interesting abilities
in the past.

4 Results
All the machine learning techniques produced solutions with good accuracy, suggesting
that the problem might be easy to solve. Table 1 contains the time needed to train the
best solution on each of the system, and Table 2 contains the results from running the best
solutions on the training and test data. We have included the F-measure [15] in addition
to the total error percentage.

Tool Training time

ADATE 2-3 weeks
Neural Network 28 minutes
C5.0 2.3 seconds

Table 1: The amount of time needed to train the best solution for each of the systems

Training data Test data

Tool Error % P R F Error % P R F

ADATE 0.11 0.99 1 1 0.33 0.98 0.99 0.99
Neural Networks 0.1 0.99 1 1 1.57 0.98 0.93 0.96
C5.0 2 0.89 1 0.94 2.2 0.89 0.99 0.94

Table 2: The performance of the best solutions created by the machine learning systems.
P, R and F signify Precision, Recall and F-measure respectively.

The best result produced by C5.0 came after training with a misclassification cost of
3 preferring true. This gave a total error of 2% on the training data and 2.2% on test
data. The solution performs significantly worse than both the best neural network and
the best program created by ADATE. There are no signs of overfitting, since the solution
performs equally well on both the training and test data. The solution was created in only
2.3 seconds, so the training time needed by C5.0 is far less than the time needed by the
two other systems.

The neural network structure that performed best consisted of 4 layers with
respectively 50, 25, 12 and 1 node in each layer. This structure got the best results when
trained with several different training methods, but the Levenberg-Marquardt method
performed significantly better than the others. The best network performed almost
flawlessly on the training data, with only 0.1% wrong classifications. The solution
performs slightly worse on the validation and test data, primarily due to a significantly
lower recall value. The solution got 1.3% errors in total on the validation data, and a



1 boolean h e l p ( double x ) {
2 i f ( x >0.157896483764 )
3 re turn x <0 .276555798365 ;
4 e l s e
5 re turn x < −0.125418003875;
6 }
7
8 boolean f ( double t1 , double t2 , double t3 , double t4 , double t5 , double t6 ,
9 double t7 , double t8 , double t9 , double t10 , double t11 , double t12 ,

10 double t13 , double t14 , double t15 , double t16 , double t17 , double t18 ,
11 double t19 , double t20 , double t21 , double t22 , double t23 , double t 2 4 ) {
12 double y1 ;
13 i f ( t4 <0.11954542403205382E−3 )
14 y1 = t 1 4 ;
15 e l s e
16 y1 = t 8 ;
17
18 double y2 ;
19 i f ( h e l p ( y1 ) ) {
20 boolean h1 ;
21 i f ( h e l p ( t 6 ) )
22 h1 = t rue ;
23 e l s e
24 h1 = h e l p ( t 1 0 ) ;
25
26 i f ( h1 )
27 y2 = t9−t 1 2 ;
28 e l s e
29 y2 = t 8 ;
30 }
31 e l s e {
32 i f ( h e l p ( t 1 8 ) )
33 y2 = t18−t 8 + t 2 ;
34 e l s e
35 y2 = t 7 ;
36 }
37
38 double y3 ;
39 boolean h2 ;
40 i f ( h e l p ( t 1 2 ) )
41 h2 = t rue ;
42 e l s e
43 h2 = h e l p y2 ;
44 i f ( h2 )
45 y3 = −292.561415835;
46 e l s e
47 y3 = t 1 6 ;
48
49 re turn h e l p ( y3 ) ;
50 }

Listing 1: The best solution created by ADATE—rewritten in Java to simplify the
interpretation.

F-measure of 0.96. This tells us that there are a relative large amount of true edge pixels
in the test data that have been wrongly classified—indicating a slight overfitting of the
solution to the training data.

ADATE was able to create a solution within 2-3 days with only 4,7% wrongly
classified test instances. After running more than two weeks, the performance of the
synthesized programs suddenly started to increase rapidly until several of them reached
100% correct classification on the training data. The best individual when considering
both training and test data is listed in Java in Listing 1. This program performs similarly
to the neural network solution on the training data, but it does not have same drop in
performance on the test data.

The most noticeable feature in the generated program is the auxiliary function called



help on lines 1–6. This function compares a variable x to a one of two possible constants
depending on the outcome of a comparison of the same variable to a third constant. All of
these constants have been highly optimized—indicating that they are of high importance
to the performance of the solution. This function provides a dual threshold setup that—
when invoked using a difference as input—is similar to other much more complex edge
detectors like Canny [4]. The function is invoked several times in the program, sometimes
using one of the input variables directly, and other times using a combination of several
inputs through the use of simple arithmetic.

5 Conclusions
We wanted to compare the ability of popular machine learning techniques to generate
solutions that can classify a pixel as either an edge or not an edge to the ability of ADATE
and automatic programming to do the same. We can conclude based on the experiments
described in this paper that ADATE is capable of producing solutions that are just as good
as, or even better than, the solutions created by two of most popular machine learning
techniques for classification problems.

The ability of ADATE system to create powerful customized heuristics has been
demonstrated once again in the domain of image analysis—providing further evidence
to support the hypothesis that the system is highly suitable for solving or improving
solutions to image analysis problems. This ability is likely to be equally suitable in all
other domains where there are no exact solutions or if the exact solution is impossible to
find in practice.
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