
A Genetic Approach to Tuning Compact Trie Clustering

Richard Elling Moe, Snorre M. Davøen
Department of information science and media studies

University of Bergen

Abstract
The Compact Trie method for document clustering is sensitive to the kind of
text it is applied to, but contains various parameters that may be tuned for
adaptation to specific applications. We implement a genetic algorithm for
optimizing these parameters and apply it to a corpus of texts to demonstrate
the feasibility of using genetic algorithms for tuning.

1 Introduction
Suffix Tree Clustering is a method for content based document clustering introduced
by Zamir and Etzioni [18] and further discussed in [4, 7]. Some key properties of this
method is that word order matters, that clusters may overlap and that it works well on
small excerpts (snippets) from the documents. These were attractive features when the
Norwegian Newspaper Corpus[14] was to be analyzed for detecting reuse and overlap
in the flow of news [13, 9]. However, when adopted, it became clear that the method
can be sensitive to the kind of documents it is applied to. Several modifications to the
original algorithm proved beneficial in context of the new corpus. For instance using
alternatives to suffixes, such as n-grams, and identifying the parts of an article to make up
its snippet. Some of these are discussed further in [12, 11]. In the process, a generalized
method emerged, referred to as Compact Trie Clustering, having Suffix Tree Clustering
as a special case.

In these investigations, including the original paper, the setup of the algorithm was
tuned manually, relying on researchers’ expertise, intuition and qualified guesses to
optimize the performance. A mechanized process for tuning the algorithm would allow
the method to be adapted to a further range of corpora, without the need for such tacit
expert competencies. Furthermore, experimental approaches to tuning are prone to error
when intricate dependencies between different parameters is not fully understood by
the researchers, leaving potentially fruitful value-combinations unexplored. Mechanized
tuning could avoid such pitfalls by operating systematically and exhaustively.

Within the field of Information Retrieval, Zakos et al [17] and Chuan et al [3] discuss
similar kinds of tuning. Both apply genetic algorithms successfully, which suggests that
a similar approach might be viable in our context.

The remainder of this section presents the aim of the paper. Section 2 describes the
Suffix Tree Clustering method while section 3 identifies the parameters being subject to
change. Section 4 presents a genetic algorithm for tuning the parameters. Evaluation and
results follows in sections 5 and 6 before section 7 concludes.

This paper was presented at the NIK-2014 conference; see http://www.nik.no/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/327107605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper we aim to demonstrate the feasibility of tuning of Compact Trie
Clustering automatically by means of genetic algorithms. Tuning is the process of finding
the best options for certain parameters that may affect performance. We use the word
‘parameter’ in a wide sense to mean an intrinsic aspect of the algorithm that can be
changed. This may range from tweakable numbers, such as limits and thresholds, to
core properties such as the mentioned use of suffixes.

The concept of feasibility naturally involves aspects of effectiveness but also of
practicality. We broadly take this to mean that the tuning should be accomplished within
certain boundaries of time and resources. Given the possible scope of applications
and diversity of users we can not pinpoint these boundaries. Generally, we can not
expect every kind of user to have access to extraordinarily powerful equipment. Genetic
algorithms can be time-consuming but for the purpose of tuning, being a one-off event,
the tolerance for running time is probably quite high.

2 Compact Trie Clustering (CTC)
Zamir and Etzioni [18] demonstrate that documents can be clustered by applying the
Suffix Tree method to short excerpts from them, referred to as snippets, and claim that it
can outperform a number of other well-known clustering techniques.

More recently, Eissen et al [4] present a more nuanced picture. They point out that the
technique has some weaknesses but maintains that these have little impact when applied
to shorter texts and therefore represent no great problem in our specific context.

The current investigation builds on the previous reports [13] on the initial charting of
territory, [12] exploring the potential for improving the Suffix Tree Clustering in general
terms and [11] tuning the algorithm for further adaption to our specific corpus.

The backbone of the method is the data structure known as a compact trie [16] which
is a tree for storing sequences. Each arc is labelled with a sequence of tokens and a path
from the root represents the concatenation of labels along the path. This simple structure
effectively represents sequences and their subsequences as paths whereas the branching
captures shared initial sequences. A stored sequence will have an end-of-sequence mark
attached to its final node. Figure 1 shows the compact trie for the sequences aa, ab, abab,
abc, babb, bc, cbba, and cbbc, with the Si as end-of-sequence marks.

Figure 1: A compact trie and base-clusters

Given a set of phrases, initially snippets from a document, these are expanded into
an extended set of phrases that will represent the document and each of them is inserted
into a compact trie. That is, the arcs are labeled with sequences of words. Furthermore,
the end-of-sequence mark now also registers the set of documents that the phrase occurs

in. The Suffix Tree employed by Zamir and Etzioni is the case where each phrase in the
snippet is expanded into all its suffixes.

The compact trie forms the basis for constructing clusters of documents. Each node
in the trie corresponds to a base-cluster. A base-cluster σ : S is basically the set S of
documents associated with the subtree rooted in the node. The label σ is composed of
the labels along the path from the root to the node in question. Figure 1 illustrates three
examples of base-clusters.

The base-clusters will be further processed to form the final clusters. That is, they are
merged on grounds of being similar. Specifically, two base-clusters σ : S and σ′ : S′ are
similar if and only if |S∩S′|

|S| > ωsim and |S∩S′|
|S′| > ωsim, where ωsim= 0.5.

Now consider the similarity-graph where the base-clusters are nodes and there is an
edge between nodes if and only if they are similar. The final clusters then correspond
to the connected components of the similarity-graph. That is, a cluster is the union of
the document-sets found in the base-clusters of a connected component. Originally the
cluster is not given a designated label of its own but we add one by collecting the words
from the base-cluster labels and sort them by their frequencies therein.

Clearly, the construction of final clusters requires every base-cluster to be checked for
similarity with every other base-cluster. This is a bottleneck in the process but Zamir and
Etzioni circumvent the problem by restricting the merging to just a selection of the base-
clusters. For this purpose they introduce a score and form the final clusters from from
only the 500 highest scoring base-clusters. We refer to this limit as ωtop , i.e. in [18] we
have ωtop =500.

The score of a base-cluster σ : B is defined to be the number |B| × f (σ) where the
function f returns the effective length of σ. The effective length of a phrase is the number
of words it contains that are neither too frequent, too rare nor appear in a given stop-list of
irrelevant words. Specifically, ‘too frequent’ means appearing in more than a percentage
ωmax of the (total collection of) documents whereas a word is too rare if it appears in less
than ωmin documents. Furthermore, f penalizes phrases shorter than ωscrMin, is linear for
phrases with lengths between ωscrMin and ωscrMax and is constant beyond that. In [18, 7]
these thresholds are set to ωmin =3, ωmax =0.4, ωscrMin=2 and ωscrMax=7.

Variations on the scheme
A number of modifications to the original algorithm has proved beneficial in our context
[13, 12, 11]. The more substantial changes include the use of n-grams in stead of suffixes.
Except from some uninteresting special cases, the number of words contained in the n-
grams of a phrase is strictly fewer than the number of words in the corresponding suffixes.
With fewer words to process the algorithm works faster but there is a the concern that the
information held by the data then becomes impoverished. Therefore, n was originally set
to maximize the number of words inserted into the trie. This is achieved by expanding a
phrase of length k into its dk/2e-grams.

Alternative measures of similarity have also been introduced. The original similarity-
measure takes only the overlap of sources into account. Making use of other
characteristics such as labels and word frequencies leads to improvement.

Finally, we believe the original scoring is somewhat arbitrary and sensitive to the kind
of text it is applied to [13]. The improvements reported in [12, 11] are partly results of
experimentation with different scoring-functions.

3 Parameters for Tuning
We are faced with a wide range of options for setting up the clustering process. Here, we
confine ourselves to variations considered in the investigations reported in [13, 12, 11]
and [18]. Roughly speaking, they vary along five dimensions:

1. Snippet-extraction: There are many conceivable selections of text that could make
up the snippets, ranging from the entire document to some specific, smaller, parts
of it.

2. Snippet-expansion: Given a snippet, how should it be expanded into the phrases that
goes into the trie? Suffixes is obviously an option while the use of n-grams offer
various alternatives. There is also a question of granularity, i.e. should the snippet
be expanded as a whole or is it composed of multiple units, say the sentences, to be
expanded one by one?

3. Limits and thresholds: There is a number of parameters built into the algorithm,
including the frequency-thresholds ωmin and ωmax and the limit ωtop on the number
of base-clusters to be fed into the merging phase.

4. Base-cluster selection: The choice of base-clusters that proceed to the merging
phase can have great impact on the end result. Scoring is the main mechanism for
this purpose. Possibly with additional filtering based on cluster characteristics

5. Similarity measure: Which base-clusters should be merged?

We have identified a total of 19 parameters. Throughout, these are either written in
capitalized TYPEWRITER-font or as subscripted ωs. For lack of space we can not present
them all in full detail. Some parameters are components of complex parameters and these
are presented only when they apply.

Each parameter received an ample range of relevant values. These were determined
by reference to literature, specifically Zamir and Etzioni’s original paper [18] and the
investigations concerning our own application [13, 12, 11], occasionally with some
additional experimentation. For example, tests indicated that the full range of 25378 base-
clusters for ωtop could be reduced significantly which undoubtedly saved considerable
running-time.

In our context, a snippet will typically consist of some sentences and each of them
becomes a unit for expansion. The question remains, what do we pick from each article
to form its snippet? Moe and Elgesem [13] demonstrate that smaller snippets can do better
than the whole text. Clearly, the choice of snippets matters and we consider this to be a
tunable parameter ranging over a sample of ways to extract the snippets. We refer to it as
EXT . For news articles, candidate snippets can be readily available in the form of front-
page matter such as headlines, captions and ingresses. The range of EXT thus comprise the
combinations of such article-parts. Specifically: headline, ingress and byline taken from
the front-page and/or the article itself as well as some initial portion of the article-text
specified by an additional parameter ωtxt ranging from 0 to 1.

Alternatives to suffixes as way of snippet expansion could be the use of n-grams. In
[13, 12, 11] this is shown to be an improvement, for a specific choice of n. However, other
uses of n-grams are easily conceivable. Hence we let EXP be a parameter to be tuned over
a range of ways to expand a snippet of length k, including its suffixes and various uses of
n-grams:

• n-grams for 0≤ n≤ 10

• dk/2e-grams, as in [13, 12, 11] .

• n-grams for a range kωrMin ≤ n≤ kωrMax
where 0.0≤ ωrMin ≤ 0.9 and 0.1≤ ωrMax ≤ 1.0.

Our earlier investigations [13, 12, 11] has demonstrated the potential of tweaking
ωmin , ωmax and ωtop and hence we treat these as tunable parameters. with ranges
including Zamir and Etzioni’s original values and those used in [13, 12, 11]. Specifically,
0≤ ωmin ≤ 150, 0.05≤ ωmax ≤ 1.00 and 100≤ ωtop ≤ 10000

Behind the results reported in [13, 12, 11] lies experimentation with a number of
different measures for similarity and scoring. As different measures are reported to
give different performance we let these too constitute tunable parameters, referred to as
SIM and SCR respectively.

For SCRwe consider the two scoring-functions ↑ and ↓ found in [12] (↓ being Zamir
and Etzioni’s original score.) with 0 ≤ ωscrMin ≤ 20 and 3 ≤ ωscrMax ≤ 25 whereas
SIM ranges over 4 different similarity-measures, including those described in [18, 12, 11].

In the following we assume that b and b′ are base-clusters σ : S and σ′ : S′ respectively.
We write ŝ to denote the set of words occurring in a sequence s, whether it be a label or
an entire document.

First, we let sim1 be the Zamir and Etzionis original similarity-relation described in
section 2. Further we let sim2 be the similarity used in [11], defined by

sim2(b,b′) iff sim1(b,b′) and |σ̂∩ σ̂
′| ≥ ω∩ and

∑
w∈σ̂∪σ̂′

c f (w)

|σ̂∪ σ̂′|
≤ ωfreq

where 0≤ω∩ ≤ 50, 5≤ωfreq ≤ 500 and c f (w) denotes the corpus frequency of the word
w, i.e. the total number of times w occurs in our documents.

In [12], similarity is given in terms of the label profile for a base-cluster σ : S which is
the function~v defined by:

~v(w) =
{

Θ(w,S+,C) if w ∈ σ̂

0 otherwise

where Θ is the term frequency - inverse document frequency which reflects the weight of
a word w in a document relative to a corpus of documents. In our case, the document in
question is a concatenation S+, of the documents contained in the base-cluster whereas
the corpus is our entire collection C of articles. Specifically, Θ(w,S+,C) equals

t f (w,S+)∗ log
|C|

1+ |{d | d ∈C and w ∈ d̂}|

where the term frequency t f (w,S+) denotes how many times w occurs in S+.
Two base-clusters are now considered similar if, and only if, they satisfy the original

similarity-measure in conjunction with their label profiles having a cosine-similarity
above a threshold ωcos. That is, we define

sim3(b,b′) iff sim1(b,b′) and
Σw(~v(w)∗~v′(w))√

Σw~v(w)2 ∗
√

Σw~v′(w)2
≥ ωcos, where 0≤ ωcos ≤ 1

Finally we try a variation of sim1 often referred to as the Jaccard measure:

sim4(b,b′) iff
|S∩S′|
|S∪S′|

> ωJac, where 0≤ ωJac ≤ 1

Further filtering of base-clusters can be applied: [13] observes that base-cluster with
a singleton label, i.e. having a label consisting of a single word, are often large and
inaccurate so that the net effect of dropping them would be positive. This corresponds to
a boolean parameter SGL for which true signifies that base-clusters with singleton labels
are retained, and f alse that they are discarded. There is a similar parameter SGD specifying
whether or not base-clusters containing only a single document are filtered out.

4 A GA for tuning CTC
A genetic algorithm (GA) [6, 8, 10] maintains a population of individuals, each
represented by its chromosome. A chromosome is a sequence of genes, each encoding
a parameter whose value/state may influence the fitness of the individual. Based on
fitness, a set of individuals can be selected for reproduction to yield a new generation
in the population. Simultaneously, some individuals may vanish from the population.
Reproduction is a pairwise combination of individuals producing two offspring whose
chromosome is a crossover of those of the parents. The reproductive propagation of gene-
values can be overridden by mutation, i.e. random non-hereditary changes in genes.

Starting from a random initial population, the GA mimics an evolutionary process,
successively producing new generations until a stop-criterion has been met, ideally
converging on a population whose chromosomes have reached optimal fitness.

When applying a GA for optimizing a process, each gene represents one of its
parameters. That is, each individual chromosome corresponds to a possible solution for
the optimization. Fitness is a measure of the performance being optimized, typically
expressed in terms of the process’ effectiveness and/or efficiency.

Genes
The set of parameters described above make up the gene-pool for CTC-tuning. That is, a
chromosome is a sequence of values for these genes. Each chromosome then represents a
specific configuration of the CTC-algorithm. Hence, the ultimate goal of optimizing the
algorithm translates into finding highly fit individuals.

Reproduction
Evolution is driven by the perpetual cycle of reproduction. In each round:

• The k% fittest individuals are kept for reproductive duties. k is a given number
referred to as the keep size. The remaining individuals are considered too unfit and
are evicted from the population.

• The sufficient number of individuals are selected to become parents for a new
generation so that the population-size is re-established. The selection is made using
the Roulette Wheel algorithm, by which any individual may be selected but highly
fit ones are more likely to be chosen [8]. The selected individuals are paired up
randomly in couples.

• Each of these couples mate to produce two offspring whose genes are crossover
combinations of the parents’ genes. Given two parent chromosomes c1 and c2,
the crossovers are constructed by choosing a random crossover-point p. That is,
c1 = st and c2 = uv where the subsequences s and u are both of length p. Now, the
crossover chromosomes are the recombined sequences sv and ut.

• Mutation is inflicted on m randomly chosen genes from a set P of individuals, either
the entire population or just the new generation of offspring. m = mutation rate
×|P|× |Genepool|. The mutated gene receives a new value depending on its type.
Boolean genes are negated. A number-valued gene is adjusted randomly, up or
down, by some value from a limited interval within its range. Otherwise, the new
value is picked randomly from the range.

In principle, the evolutionary process could be set to aim for some sort of global
convergence. For instance when all reproduction literally re-produces chromosomes or
when the process reaches a population identical to an earlier population. However, this
could easily be too time-consuming. Instead, we monitor evolution by keeping track
of the fittest individuals over time. When the top candidate is unchallenged for an
extensive period, the process terminates on the assumption that this individual is highly fit.
Specifically, our GA stops when the highest fitness remains unchanged for 10 consecutive
rounds of reproduction.

Fitness
The fitness of an individual relates directly to the corresponding configuration’s
performance, i.e. the quality of clusters the CTC algorithm delivers when configured
accordingly. Having defined a ‘correct’ clustering, referred to as the ground truth, the
clusters produced by the algorithm can be measured up against it and the quality quantified
in terms of precision and recall.

Precision/Recall
The notion of relevance is fundamental to precision/recall [2]. For a clustering algorithm,
relevance pertains to individual clusters delivered by the algorithm. A cluster being
relevant basically means that the cluster appears in the ground truth clustering. Precision
and recall then measures to what degree the algorithm succeeds in producing relevant
clusters.

Assuming that C is the set of clusters generated by the CTC algorithm and R the set of
relevant clusters, precision would measure the proportion |C∩R|

|C| of relevant clusters among
the clusters generated by the algorithm. Recall measures the extent to which the algorithm
will recreate the set of relevant clusters, i.e. |C∩R|

|R| .
The two measures are often combined into one. Given precision p and recall r, the

(balanced) F-measure is their harmonic mean 2 pr
p+r .

The corpus
Since 2006 the Norwegian Newspaper Corpus [14] has downloaded the front pages of the
8 largest online newspapers and stored them in HTML format. From this, a sample corpus
consisting of the daily 10 top stories from December 7 to 18, 2009 [9], had been extracted
and prepared for experimentation. A total of 960 articles had been manually coded based
on categories that are used by media scholars to classify news, cf [1] and [5]. Each article

received a tag, consisting of five categories, characterizing the content of the article. For
example

International−Economy−FinanceCrisis−Debt−Dubai

The data had been further pre-processed by reducing words to their lemmas and keeping
only certain kinds of words: nouns, verbs, adjectives and adverbs. This was achieved
by marking up the text with syntactic information using the Oslo-Bergen tagger [15] and
subsequently filter the document to leave only the desired words in the desired form.

Relevance
The manually tagged portion of our corpus can serve as ground truth for evaluation in
terms of precision and recall. Since the tags represent a human judgement as to what the
document is about we think it is fair to assume that a high degree of overlap in tags will
indicate overlap in content. Therefore, we use tags to define relevance.

A ground truth cluster consists of all documents having identical tags, and only those
documents. Thus, ground truth clusters are identifiable by tags.

Here, the basic idea of relevance is that a good cluster contains the documents sharing
a tag. That is, a cluster is considered relevant if it matches some ground truth cluster.
The question is, should we require a perfect match? Consider the cluster containing three
articles, two of which constitutes a ground truth cluster

International−Politics−Climate−Obama−Copenhagen

and one with the tag

International−Politics−Climate−Dra f t−Copenhagen

These articles are all about the 2009 Copenhagen Climate Change Conference, and the
cluster would appear to be good. However, there can be no matching ground truth cluster
because of the discrepancy of one word in the tags. Is it reasonable to deem this cluster
irrelevant? This is largely a matter of the intended use and human opinion so the question
has no definite answer. However, by incorporating a degree of perfection we get the
flexibility that might allow for the cluster to be considered relevant.

A cluster C matches ground truth with discrepancy 5−d if and only if d is the maximal
number for which there is a ground-truth cluster G such that G ⊆C and d is the number
of words common to all tags in C∪G.

Intuitively, discrepancy 0 is a perfect match while 5 means that there is no category
that appears in all tags. Now, relevance can be defined as matching ground truth within
some appropriate level of discrepancy. However, just what is meant by ‘appropriate’
depends on the application so it is hard for us to pinpoint a level which distinguishes
relevant from irrelevant. For our analysis we consider only the extremes, regarding
discrepancy 0 as ultimate relevance while a cluster with discrepancy 5 is held to be
irrelevant (but see the remarks below).

Finally, fitness can be defined as the F-measure with a skew for discriminating against
disproportionate clustering. If the ratio number of clusters produced / number of ground
truth clusters is between 0.8 and 3 then 0.1 is added to the F-measure, otherwise 0.1 is
subtracted to obtain the fitness.

5 Evaluation
To evaluate the feasibility of automatic tuning of CTC by GAs we mainly address the
issue of effectiveness but also some considerations concerning practicality.

Effectiveness relates to the algorithm’s ability to tune for the better, i.e. that the
process constitutes a pursuit for higher performance. Preferably, it should also be capable
of matching the performance obtained by manual tuning, thus eliminating the need for
expert intuition and tacit competencies. We evaluate this by comparing configurations
found by GAs to

• The average F-measure of 100 random configurations. This checks if the GA will
tune for better performance.

• The original, manually tuned, configuration of Zamir and Etzioni and one of the
manual configurations described in [13].

Practicality is mainly a question of time and machine-resources. In the bigger picture,
the process as a whole can involve many time-consuming activities, such as preparing
a ground truth. For this discussion the running-time of the GA is the natural focus. In
principle, GAs can be distributed to run in parallel on several computers, which can speed
up program-execution. In terms of machinery, practicality basically means being able
to use readily available computers. Obviously, this depends on the circumstance but we
can reasonably imagine users who possess only a limited number of non-homogenous
run-of-the-mill computers.

Some remarks
Our previous studies [13, 12, 11] focus mainly on precision but the running-time of
configurations also receive some attention. One reason for this is that the parameter ωtop
is vital to recall, i.e. higher values will improve recall. However, increasing ωtop also
floods a computational bottleneck in the CTC-algorithm so boosting recall comes at a
cost in terms of efficiency. In this study there is no particular call for precision to carry
more weight than recall, or vice versa, so we remain neutral by defining fitness in terms
of the balanced F-measure. The running-time of a CTC-configuration could be taken as
an aspect of its fitness but fair timing can be difficult to achieve when the GA-execution
is distributed over a non-homogenous array of computers. Our experiments include a
distributed run and therefore we do not incorporate time-efficiency into the fitness.

Relevance is a relative concept which could vary greatly between different
applications and among different users. This is briefly discussed in [13]. They point out
that relevance as matching ground truth may be so strict that the values for precision/recall
drop to unfairly low levels. They suggest the alternative concept of tag accuracy which
provides a considerably more liberal notion of relevance. However, tag accuracy has
quirks of it own and since our purpose is not to provide an absolute measure of quality, but
simply to register improvement, we are not concerned about the scale of our F-measures.

Finally, it must be said that we are a bit cavalier about regarding clusters of
discrepancy 5 as plainly irrelevant. That is not necessarily the case. Moe and Elgesem
[13] point out that an apparently good cluster, consisting predominantly of articles on a
shared topic, could be deemed irrelevant if contaminated by just a single ‘junk’ article
of high discrepancy. Technically, even relevant articles can appear to be junk because
articles describing the same event from different perspectives could receive completely
different tags. Whether or not contamination by a small proportion of junk should spoil

the relevance of a cluster is a matter of the intended use. It must be for the user to decide
if the concept of relevance should be relaxed to allow some junk. We find it unnecessary
for our purposes.

6 Results
Our GA has been tested on ordinary off-the-shelf machinery. Two experiments have been
conducted in which the GA was set up in different ways. Not surprisingly, they confirm
that characteristics such as population size, keep size and mutation rate can influence both
effectiveness and practicality.

Effectiveness
In the following ‘Z&E’ refers to Zamir and Etzioni’s original configuration with a slight
adaptation to the kind of text in our corpus. Z&E sets the parameters as follows: EXT :
Everything except the article main text. ωtxt : 0, EXP : Suffixes, ωmin : 3, ωmax : 0.4, SCR :
↓, ωscrMin: 2, ωscrMax: 7, ωtop : 500, SGL : False, SGD : False, SIM : sim1, ωsim: 0.5

Moe and Elgesem [13] explore some alternative configurations and we choose to
consider the one with the best balance between precision and recall, but modify it
slightly by replacing sim1 with sim2 which actually improves the original performance.
Specifically, the configuration ‘M&E’ sets the parameters as follows: EXT : article
headline, introduction and byline ωtxt : 0, EXP : dk/2e-grams, ωmin : 6, ωmax : 0.5, SCR : ↑,
ωscrMin: 2, ωscrMax: 7, ωtop : 5000, SGL : False, SGD : True, SIM : sim2, ωsim: 0.5, ω∩ : 1,
ωfreq : 5

By ‘Random100’ we refer to the average performance of a set of 100 random
configurations. This will, alongside the configurations Z&E and M&E serve as the
benchmarks for the performance of configurations produced by our GAs. We test two
setups of the GA described above:

GA200: population size = 200, keep size = 80, mutation rate = 0.01 on the entire
population. This produced the configuration: EXT : Frontpage headline, ingress
and byline ωtxt : 0, EXP : 7-grams, ωmin : 33, ωmax : 0.6, SCR : ↓, ωscrMin: 7, ωscrMax:
8, ωtop : 9924, SGL : False, SGD : True, SIM : sim2, ωsim: 0.86, ω∩ : 2, ωfreq : 0

GA5000: population size = 5000, keep size = 50, mutation rate = 0.02 on each new
generation of offspring. This produced the configuration: EXT : ingress, article
headline and introduction ωtxt : 0.32, EXP : 4-grams, ωmin : 141, ωmax : 0.47, SCR :
↑, ωscrMin: 11, ωscrMax: 17, ωtop : 7937, SGL : False, SGD : True, SIM : sim1, ωsim:
0.99,

Table 1 shows the F-measures obtained by the configurations described above. We
have made no attempt to determine the appropriate maximum level of discrepancy for a
cluster be deemed relevant. Therefore we present the F-measure for each level separately,
in stead of their accumulation up through the levels. This also allows us to interpret the
results by considering the opposite ends of the relevance-spectrum, discrepancies 0 and
5.

If we were to rank these configurations GA200 is a clear winner, having the highest
score for discrepancy 0 and the lowest for 5. The scores are quite similar for M&E
and GA5000. While the latter does somewhat better on discrepancy 0, it loses to M&E
on discrepancy 5. We can hardly claim that one is better than the other, but they both
rank above Z&E and Random100. Remarkably, the manually tuned configuration Z&E is

Discrepancy Z&E M&E Random100 GA200 GA5000

0 0.138 0.624 0.188 0.735 0.638
1 0.014 0.017 0.015 0.007 0.010
2 0.010 0.011 0.016 0.000 0.004
3 0.028 0.011 0.038 0.000 0.002
4 0.028 0.021 0.087 0.003 0.000
5 0.682 0.313 0.538 0.241 0.327

Table 1: F-measures

outperformed by Random100. We believe this is partly due to CTC being highly sensitive
to the kind of text it is applied to, which motivated the need for corpus-specific tuning
in the first place. In addition, the Z&E configuration trades recall for speed. Zamir
and Etzioni kept the ωtop parameter low in order to reduce the time spent on base-cluster
merging, but this causes severe harm to recall and thereby to our F-measures. Random100

on the other hand is likely to represent a middle-of-the-range value for ωtop and thus be
balanced for a better F-measure.

Compared to the average random configuration, our GA clearly tunes for the better. In
addition, it can perform favorably compared to manual tuning. We think it is reasonable
to conclude that these results demonstrate the effectiveness of tuning by GA for our kind
of corpus.

Practicality
Population size is a major difference between GA200 and GA5000. One would naturally
expect the larger population to require more processing-time so while GA200 ran on a
single computer, the execution of GA5000 was distributed over 10 clients residing on
4 computers. Even so, the time-performances are on different scales. While GA200

took hours to complete, GA5000 ran into days. Since tolerance for running-time depends
heavily on the situation, we can only presume that users in circumstances similar to ours
might find the performance of GA200 acceptable. If so, since GA200 were run on a single
standard computer it could be considered practical. GA5000 required considerably more
resources both in terms of time and machinery and should be deemed significantly less
practical than GA200, if not impractical.

7 Conclusion
We find that the GA200-configuration demonstrates the feasibility of tuning CTC by means
of GAs, at least for our kind of corpus. Beyond that we can make no claim of external
validity. However, there is promise in the fact that a very simple, not to say naive, GA did
the job for our corpus. Given the rich body of sophisticated techniques that has developed
in the field of GAs we believe that a GA approach can be viable for many kinds of corpora.

References
[1] S. Allern. Newsvalue: On marketing and journalism in ten norwegian newspapers (in

Norwegian). IJ Forlaget (publisher) (2001)

[2] R. Baeza-Yates, B. Ribeiro-Neto. Modern information retrieval: the concepts and
technology behind search. Addison Wesley (2011)

[3] Chuan, L., Shao-ping, M., Min, Z. Parameter optimization for information retrieval
with genetic algorithm. In proceedings of the 2003 ieee international conference on
Systems, man and cybernetics (2003)

[4] S. M. zu Eissen, B. Stein, M. Potthast. The Suffix Tree Document Model
Revisited. In: Tochtermann, Maurer (Eds.): Proceedings of the I-KNOW05, Graz 5th
International Conference on Knowledge Management Journal of Universal Computer
Science, pp. 596-603 (2005)

[5] D. Elgesem, H. Moe, H. Sjøvaag, E. Stavelin. The national public service
broadcaster’s (NRK) news on the internet in 2009 (in Norwegian). Report to the
Norwegian Media Authority, Department of information science and media studies,
University of Bergen (2010)

[6] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley (1989)

[7] J. A. Gulla, H. O.Borch, J. E. Ingvaldsen. Contextualized Clustering in Exploratory
Web Search. In: H. A. do Prado; E. Ferneda. Emerging Technologies of Text Mining:
Techniques and Applications, pp. 184-207. IGI Global (2007)

[8] R. L. Haupt, S. E. Haupt. Practical Genetic Algorithms. John Wiley & Sons (2004)

[9] G. Losnegaard. Automatic extraction of news text from online newspapers. Project
report, Department of information science and media studies, University of Bergen
(2012)

[10] M. Negnevitsky. Artificial intelligence: a guide to intelligent systems. Addison
Wesley (2002)

[11] R. Moe, Clustering in a News Corpus. In: P. Sojka et al. (Eds.): TSD 2014, LNAI
8655, pp. 301–307. Springer International Publishing Switzerland (2014)

[12] R. Moe, Improvements to Suffix Tree Clustering. In M. de Rijke et al. (Eds.):
Advances in Information Retrieval, prodeedings of ECIR 2014. LNCS 8416, pp. 662-
667 (2014)

[13] R. Moe, D. Elgesem. Compact trie clustering for overlap detection in news. In:
Proceedings of the Norwegian Informatics Conference (NIK’13) (2013)

[14] Norwegian Newspaper Corpus, http://avis.uib.no/om-aviskorpuset/english

[15] Oslo-Bergen Tagger, http://tekstlab.uio.no/obt-ny/english/index.html

[16] B. Smyth. Computing Patterns in Strings. Addison Wesley (2003)

[17] Zakos, J., Ping, Z., Verma, B. (2005). Optimization of parameters for effective Web
information retrieval using an evolutionary algorithm. In Proceedings of the 2005 ieee
international joint conference on Neural networks (IJCNN´05) (2005)

[18] O. Zamir, O. Etzioni. Web Document Clustering: A Feasibility Demonstration. In:
Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval , pp. 46-54. ACM New York (1998)

