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Abstract. In this article, we generalize and improve the results of Fadail et al.[Z. M.
Fadail and S. M. Abusalim, Int. Jour. of Math. Anal., Vol. 11, No. 8(2017), pp. 397-
405.] and Dubey et al.[AnilKumar Dubey and Urmila Mishra, Non. Func. Anal. Appl.,
Vol. 22, No. 2(2017), pp 275-286.] under the concept of a c-distance in cone metric
spaces. We prove the existence and uniqueness of the fixed point for T -contractive type
mapping under the concept of c-distance in cone metric spaces.
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1. Introduction

In 2007, Huang and Zhang[12] first introduced the concept of cone metric spaces
and they established and proved the existence of fixed point theorems which is an
extension of the Banach contraction mapping principle in to the cone metric spaces.
Recently, Cho et al.[3] introduced the concept of c-distance in a cone metric spaces
and proved some fixed point results in ordered cone metric spaces. Afterward,
many authors have generalized and studied fixed point theorems under c-distance
in cone metric spaces (see [1, 7, 8, 9, 10, 11, 14, 15, 16]). In 2009, Beiranvand et
al.[2] introduced new classes of contractive functions and established the Banach
principle. Since then, fixed point theorems for T -contraction mapping on cone
metric spaces have been appeared, see for instance [4, 5, 6] and [11].

The purpose of this paper is to extend and generalize some results on c-distance
in cone metric spaces. Throughout this paper, we do not impose the normality
condition for the cones, but the only assumption is that the cone P is solid, that is
intP 6= φ. Also, in this paper we assume R as a set of real numbers and N as a set
of natural numbers.
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2. Preliminaries

Definition 2.1. ([12]) Let E be a real Banach space and θ denote to the zero
element in E. A cone P is a subset of E such that:

(1) P is a non-empty, closed and P 6= {θ};

(2) If a, b are non-negative real numbers and x, y ∈ P then ax+ by ∈ P ;

(3) x ∈ P and −x ∈ P ⇒ x = θ.

Given a cone P ⊆ E, we define a partial ordering � with respect to P by x � y

if and only if y − x ∈ P . We write x ≺ y to indicate that x � y but x 6= y, while
x ≪ y will stand for y − x ∈ intP , intP denotes the interior of P .

Definition 2.2. ([12]) A cone P is called normal if there is a number K > 0 such
that for all x, y ∈ E, θ � x � y implies ||x|| ≤ K||y||. The least positive number
satisfying above is called the normal constant of P .

In the following we always suppose E is a Banach space, P is a cone in E with
intP 6= φ and � is partial ordering with respect to P .

Definition 2.3. ([12]) Let X be a non empty set and E be a real Banach space
equipped with the partial ordering � with respect to the cone P . Suppose that the
mapping d : X ×X → E satisfies the following conditions:

(i) If θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X ;

(iii) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X .

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Example 2.1. Let E = R
2, and P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R

2, X = R
2 and suppose

that d : X × X → E is defined by d(x, y) = d((x1, x2), (y1, y2)) = (|x1 − y1| + |x2 −
y2|, αmax{|x1 − y1|, |x2 − y2|}) where α ≥ 0 is a constant. Then (X, d) is a cone metric
space. It is easy to see that d is a cone metric, and hence (X, d) becomes a cone metric
space over (E,P ). Also, we have P is a solid and normal cone where the normal constant
K = 1.

Definition 2.4. ([12]) Let (X, d) be a cone metric space, let {xn} be a sequence
in X and x ∈ X :

(1) for all c ∈ E with θ ≪ c, if there exists a positive integer N such that
d(xn, x) ≪ c for all n > N , then {xn} is said to be convergent and {xn}
converges to x.
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(2) for all c ∈ E with θ ≪ c, if there exists a positive integer N such that for all
n,m > N , d(xn, xm) ≪ c, then {xn} is called a Cauchy sequence in X .

(3) if every Cauchy sequence in X is convergent in X then (X, d) is called a
complete cone metric space.

The following Lemma is useful to prove our results.

Lemma 2.1. ([13])

(1) If E be a real Banach space with a cone P and a � λa where a ∈ P and
0 ≤ λ < 1, then a = θ.

(2) If c ∈ intP , θ � an and an → θ, then there exists a positive integer N such
that an ≪ c for all n ≥ N .

Next, we give the notion of c-distance on a cone metric space (X, d) of Cho et
al. in [3].

Definition 2.5. ([3]) Let (X, d) be a cone metric space. A function q : X×X → E

is called a c-distance on X if the following conditions hold:

(q1) θ � q(x, y) for all x, y ∈ X ;

(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X ;

(q3) for each x ∈ X and n ≥ 1 if q(x, yn) � u for some u = ux ∈ P , then q(x, y) � u

whenever {yn} is a sequence in X converging to a point y ∈ X ;

(q4) for all c ∈ E with θ ≪ c, there exists e ∈ E with θ ≪ e such that q(z, x) ≪ e

and q(z, y) ≪ e imply d(x, y) ≪ c.

Example 2.2. ([3]) Let E = R and P = {x ∈ E : x ≥ 0}, X = [0,∞) and define a
mapping d : X ×X → E is defined by d(x, y) = |x− y|, for all x, y ∈ X. Then (X, d) is a
cone metric space. Define a mapping q : X ×X → E by q(x, y) = y for all x, y ∈ X. Then
q is a c-distance on X.

The following Lemma is very important to prove our results.

Lemma 2.2. ([3]) Let (X, d) be a cone metric space and q is a c-distance on X.
Let {xn} and {yn} be sequences in X and x, y, z ∈ X. Suppose that {un} is a
sequence in P converging to θ. Then the following hold:

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.

(2) If q(xn, yn) � un and q(xn, z) � un, then {yn} converges to z.

(3) If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) � un, then {xn} is a Cauchy sequence in X.
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Remark 2.1. ([3])

(1) q(x, y) = q(y, x) does not necessarily for all x, y ∈ X.

(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Next definition taken from [2]:

Definition 2.6. Let (X, d) be a cone metric space, P a solid cone and T : X → X .
Then

(a) T is said to be continuous if limn→∞ xn = x∗ implies that limn→∞Txn = Tx∗,
for all {xn} in X ;

(b) T is said to be sequentially convergent if we have, for every sequence {xn}, if
{Txn} is convergent, then {xn} is also convergent;

(c) T is said to be subsequentially convergent if we have, for every sequence {xn}
that {Txn} is convergent, implies {xn} has a convergent subsequence.

Now, we give our main results in this paper.

3. Main Results

Theorem 3.1. Let (X, d) be a complete cone metric space, P a solid cone and q

be a c-distance on X. Let T : X → X be an one to one, continuous function and
subsequentially convergent and f : X → X be a mapping. In addition, suppose that
there exists mapping k, l : X → [0, 1) such that the following conditions hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), for all x ∈ X ;

(b) (k + 2l)(x) < 1 for all x ∈ X ;

(c) q(Tfx, T fy) � k(x)q(Tx, T y) + l(x)[q(Tfx, T y) + q(Tfy, Tx)]

for all x, y ∈ X. Then the map f has a unique fixed point x∗ ∈ X and for any
x ∈ X, iterative sequence {fxn} converges to the fixed point. If u = fu, then
q(Tu, Tu) = θ.

Proof. Choose x0 ∈ X . Set x1 = fx0, x2 = fx1 = f2x0, ....xn+1 = fxn = fn+1x0.
Then we have

q(Txn, T xn+1) = q(Tfxn−1, T fxn)

� k(xn−1)q(Txn−1, T xn) + l(xn−1)[q(Tfxn−1, T xn)

+q(Tfxn, T xn−1)]

= k(fxn−2)q(Txn−1, T xn) + l(fxn−2)[q(Txn, T xn)

+q(Txn+1, T xn−1)]

� k(xn−2)q(Txn−1, T xn) + l(xn−2)[q(Txn−1, T xn)

+q(Txn, T xn+1)],



New Fixed Point Results for T -contractive Mapping 371

continuing in this manner, we can get

q(Txn, T xn+1) � k(x0)q(Txn−1, T xn) + l(x0)q(Txn−1, T xn)

+l(x0)q(Txn, T xn+1)

and hence

q(Txn, T xn+1) �
k(x0) + l(x0)

1− l(x0)
q(Txn−1, T xn)

= hq(Txn−1, T xn)

� h2q(Txn−2, T xn−1)

� hnq(Tx0, T x1),

where h = k(x0)+l(x0)
1−l(x0)

< 1. Note that,

q(Tfxn−1, T fxn) = q(Txn, T xn+1) � hq(Txn−1, T xn).(3.1)

Let m > n ≥ 1. Then it follows that

q(Txn, T xm) � q(Txn, T xn+1) + q(Txn+1, T xn+2)

+..........+ q(Txm−1, T xm)

� (hn + hn+1 + .....+ hm−1)q(Tx0, T x1)

�
hn

1− h
q(Tx0, T x1) → θ as n → ∞.

Thus, Lemma 2.2(3) shows that {Txn} is a Cauchy sequence in X . Since
X is complete, there exists v ∈ X such that Txn → v as n → ∞. Since T

is subsequentially convergent, {xn} has a convergent subsequence. So, there are
x∗ ∈ X and {xni

} such that xni
→ x∗ as i → ∞. Since T is continuous, we obtain

limTxni
→ Tx∗. The uniqueness of the limit implies that Tx∗ = v. Then by (q3),

we have

q(Txn, T x
∗) �

kn

1− k
q(Tx0, T x1).(3.2)

Now by using (3.1), we have

q(Txn, T fx
∗) = q(Tfxn−1, T fx

∗)

� hq(Txn−1, T x
∗)

� h
kn−1

1− k
q(Tx0, T x1)
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=
hn

1− h
q(Tx0, T x1).(3.3)

By Lemma 2.2(1), (3.2) and (3.3), we have Tx∗ = Tfx∗. Since T is one to one,
then x∗ = fx∗. Thus, x∗ is fixed point of f . Suppose that u = fu, then we have

q(Tu, Tu) = q(Tfu, T fu)

� k(u)q(Tu, Tu) + l(u)[q(Tfu, Tu) + q(Tfu, Tu)]

= k(u)q(Tu, Tu) + l(u)[q(Tu, Tu) + q(Tu, Tu)]

� (k + 2l)(x0)q(Tu, Tu).

Since (k+2l)(x0) < 1, Lemma 2.1(1) shows that q(Tu, Tu) = θ. Finally, suppose
there is another fixed point y∗ of f , then we have

q(Tx∗, T y∗) = q(Tfx∗, T fy∗)

� k(x∗)q(Tx∗, T y∗) + l(x∗)[q(Tfx∗, T y∗) + q(Tfy∗, T x∗)]

= k(x∗)q(Tx∗, T y∗) + l(x∗)[q(Tx∗, T y∗) + q(Ty∗, T x∗)]

= (k + 2l)(x∗)q(Tx∗, T y∗).

Since (k+2l)(x∗) < 1, Lemma 2.1(1) shows that q(Tx∗, T y∗) = θ. Also we have
q(Tx∗, T x∗) = θ. Thus Lemma 2.2(1), Tx∗ = Ty∗. Since T is one to one, then
x∗ = fx∗. Therefore, the fixed point is unique

Corollary 3.1. Let (X, d) be a complete cone metric space, P a solid cone and
q be a c-distance on X. Let T : X → X be one to one, continuous function and
subsequentially convergent and f : X → X be a mapping. In addition, suppose that
there exists mapping k, l : X → [0, 1) such that the following conditions hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), for all x ∈ X ;

(b) (k + 2l)(x) < 1 for all x ∈ X ;

(c) q(Tfx, T fy) � k(x)q(Tx, T y) + l(x)[q(Tfx, Tx) + q(Tfy, T y)]

for all x, y ∈ X. Then the map f has a unique fixed point x∗ ∈ X and for any
x ∈ X, iterative sequence {fxn} converges to the fixed point. If u = fu, then
q(Tu, Tu) = θ.

Theorem 3.2. Let (X, d) be a complete cone metric space, P a solid cone and q

be a c-distance on X. Let T : X → X be an one to one, continuous function and
subsequentially convergent and f : X → X be a mapping. In addition suppose that
there exists mapping k, l, r : X → [0, 1) such that the following conditions hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), r(fx) ≤ r(x) for all x ∈ X ;
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(b) (k + 2l+ 2r)(x) < 1 for all x ∈ X ;

(c) q(Tfx, T fy) � k(x)q(Tx, T y) + l(x)[q(Tfy, Tx) + q(Tfx, T y)]
+ r(x)[q(Tfx, Tx) + q(Tfy, T y)]

for all x, y ∈ X. Then the map f has a unique fixed point x∗ ∈ X and for any
x ∈ X, iterative sequence {fxn} converges to the fixed point. If u = fu, then
q(Tu, Tu) = θ.

Proof. Choose x0 ∈ X . Set x1 = fx0, x2 = fx1 = f2x0, ....xn+1 = fxn = fn+1x0.
Then we have

q(Txn, T xn+1) = q(Tfxn−1, T fxn)

� k(xn−1)q(Txn−1, T xn) + l(xn−1)[q(Tfxn, T xn−1)

+q(Tfxn−1, T xn)] + r(xn−1)[q(Tfxn−1, T xn−1)

+q(Tfxn, T xn)]

= k(fxn−2)q(Txn−1, T xn) + l(fxn−2)[q(Txn+1, T xn−1)

+q(Txn, T xn)] + r(fxn−2)[q(Txn, T xn−1) + q(Txn+1, T xn)]

� k(xn−2)q(Txn−1, T xn) + l(xn−2)[q(Txn−1, T xn)

+q(Txn, T xn+1)] + r(xn−2)[q(Txn−1, T xn) + q(Txn, T xn+1)],

continuing in this manner, we can get

q(Txn, T xn+1) � (k(x0) + l(x0) + r(x0))q(Txn−1, T xn) + (l(x0)

+r(x0))q(Txn, T xn+1)

and hence

q(Txn, T xn+1) �
k(x0) + l(x0) + r(x0)

1− l(x0)− r(x0)
q(Txn−1, T xn)

= hq(Txn−1, T xn)

� h2q(Txn−2, T xn−1)

� hnq(Tx0, T x1),

where h = k(x0)+l(x0)+r(x0)
1−l(x0)−r(x0)

< 1. Note that,

q(Tfxn−1, T fxn) = q(Txn, T xn+1) � hq(Txn−1, T xn).(3.4)

Let m > n ≥ 1. Then it follows that

q(Txn, T xm) � q(Txn, T xn+1) + q(Txn+1, T xn+2)....+ q(Txm−1, T xm)

� (hn + hn+1 + ....+ hm−1)q(Tx0, T x1)

�
hn

1− h
q(Tx0, T x1) → θ as n → ∞.



374 A. K. Dubey, U. Mishra, N. K. Singh, M. D. Pandey

Thus, Lemma 2.2(3) shows that {Txn} is a Cauchy sequence in X . Since X

is complete, there exists v ∈ X such that Txn → v as n → ∞. Since T is subse-
quentially convergent, {xn} has a convergent subsequence. So there are x∗ ∈ X

and {xni
} such that xni

→ x∗ as i → ∞. Since T is continuous, we obtain
limTxni

= Tx∗. The uniqueness of the limit implies that Tx∗ = v. Then by
(q3), we have

q(Txn, T x
∗) �

kn

1− k
q(Tx0, T x1).(3.5)

Now by using (3.4), we have

q(Txn, T fx
∗) = q(Tfxn−1, T fx

∗)

� hq(Tfxn−1, T x
∗)

� h
kn−1

1− k
q(Tx0, T x1)

=
hn

1− h
q(Tx0, T x1).(3.6)

By Lemma 2.2(1), (3.5) and (3.6), we have Tx∗ = Tfx∗. Since T is one to one,
then x∗ = fx∗. Thus, x∗ is a fixed point of f . Suppose that u = fu, then we have

q(Tu, Tu) = q(Tfu, T fu)

� k(u)q(Tu, Tu) + l(u)[q(Tfu, Tu) + q(Tfu, Tu)]

+r(u)[q(Tfu, Tu) + q(Tfu, Tu)]

= k(u)q(Tu, Tu) + l(u)[q(Tu, Tu) + q(Tu, Tu)]

+r(u)[q(Tu, Tu) + q(Tu, Tu)]

� (k + 2l+ 2r)(x0)q(Tu, Tu).

Since (k + 2l + 2r)(x0) < 1, Lemma 2.1(1) shows that q(Tu, Tu) = θ. Finally,
suppose there is another fixed point y∗ of f , then we have

q(Tx∗, T y∗) = q(Tfx∗, T fy∗)

� k(x∗)q(Tx∗, T x∗) + l(x∗)[q(Tfy∗, T x∗) + q(Tfx∗, T y∗)]

+r(x∗)[q(Tfx∗, T x∗) + q(Tfy∗, T y∗)]

= k(x∗)q(Tx∗, T y∗) + l(x∗)[q(Ty∗, T x∗) + q(Tx∗, T y∗)]

+r(x∗)[q(Tx∗, T x∗) + q(Ty∗, T y∗)]

= (k + 2l)(x∗)q(Tx∗, T y∗)

� (k + 2l + 2r)(x∗)q(Tx∗, T y∗).

Since (k + 2l + 2r)(x∗) < 1, Lemma 2.1(1) shows that q(Tx∗, T y∗) = θ. Also we
have, q(Tx∗, T x∗) = θ. Thus, by Lemma 2.2(1), Tx∗ = Ty∗. Since T is one to one,
then x∗ = fx∗. Therefore, the fixed point is unique.
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Theorem 3.3. Let (X, d) be a complete cone metric space, P a solid cone and q

be a c-distance on X. Let T : X → X be an one to one, continuous function and
subsequentially convergent and f : X → X be a mapping. In addition suppose that
there exists mapping k, r, l, t : X → [0, 1) such that the following conditions hold:

(a) k(fx) ≤ k(x), r(fx) ≤ r(x), l(fx) ≤ l(x), t(fx) ≤ t(x) for all x ∈ X ;

(b) (k + r + l + 2t)(x) < 1 for all x ∈ X ;

(c) q(Tfx, T fy) � k(x)q(Tx, T y) + r(x)q(Tfx, Tx) + l(x)q(Tfy, T y)
+ t(x)[q(Tfx, T y) + q(Tfy, Tx)]

for all x, y ∈ X. Then map f has a unique fixed point x∗ ∈ X and for any x ∈ X,
iterative sequence {fxn} converges to the fixed point. If u = fu, then q(Tu, Tu) = θ.

Proof. The proof of this theorem is same as Theorem 3.1.

Now we give an example which illustrates our Theorems 3.1.

Example 3.1. Let E = R and P = {x ∈ E, x ≥ 0}, let X = [0, 1] and define a mapping
d : X ×X → E by d(x, y) = |x− y|et where et ∈ E. Then (X, d) is complete cone metric
space. Define a mapping q : X × X → E by q(x, y) = yet for all x, y ∈ X. Then q is

a c-distance on X. Define the mapping T, f : X → X by fx = x
2

4
and T (x) = x4 for

all x ∈ X. Take mapping k, l : X → [0, 1) by k(x) = x+1

4
and l(x) = x

8
, for all x ∈ X.

Observe that

(i) k(fx) = k

(

x
2

4

)

=

(

x
2

4
+1

4

)

= 1

4

(

x
2

4
+ 1

)

≤ ( 1
4
)(x+ 1) = k(x) for all x ∈ X.

(ii) l(fx) = l(x
2

4
) =

(

x
2

4

8

)

= 1

8

(

x
2

4

)

≤ 1

8
(x) = l(x), for all x ∈ X.

(iii) (k + 2l)(x) = x+1

4
+ x

4
= 1

4
(2x+ 1) < 1, for all x ∈ X.

Now, we have

q(Tfx, Tfy) = Tfye
t

=
y8

256
e
t

�

(

y + 1

4

)

y
4
e
t

= k(x)q(Tx,Ty)

� k(x)q(Tx,Ty) + l(x)[q(Tfx, Ty) + q(Tfy, Tx)].

Therefore, all conditions of Theorem 3.1 are satisfied. Hence f has a unique fixed point
x = 0 with q(0, 0) = θ.
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