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Abstract. For a graph G and any v ∈ V (G), EG(v) is the set of all edges inci-
dent with v. A function f : E(G) → {−1, 1} is called a signed matching of G if∑

e∈EG(v) f(e) ≤ 1 for every v ∈ V (G). The weight of a signed matching f , is defined

by w(f) =
∑

e∈E(G)) f(e). The signed matching number of G, denoted by β′

1(G), is the

maximum w(f) where the maximum is taken over all signed matchings over G. In this
paper, we have obtained the signed matching number of some families of graphs and
studied the signed matching number of subdivision and the edge deletion of edges of a
graph.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G).
The order |V | and size |E| of G is denoted by n(G) and m(G), respectively.
Let G = (V,E) be a graph. For u ∈ V , EG(v)={uv ∈ E|u ∈ V } are called the edge-
neighborhood of v in G. For simplicity EG(v) is denoted by E(v). The degree of a
vertex v ∈ V is degG(v) = dG(v) = |E(v)|. The minimum degree and the maximum
degree of a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. A
vertex of degree one is called a leaf and its neighbour is called a support vertex.
A graph, G, is called r-regular graph if degG(v) = r for every v ∈ V (G). For a
nonempty subset X ⊆ E the edge induced subgraph of G, induced by X , denote by
〈X〉, is a subgraph with edge set X and a vertex v belong to 〈X〉 if v is incident
with at least one edge in X . A k-partite graph is a graph which its vertex set
can be partitioned into k sets V1, V2, · · · , Vk such that every edge of the graph has
an end point in Vi and an end point in Vj for some 1 ≤ i 6= j ≤ k. A complete
k-partite graph is a k-partite graph that every vertex of each partite set is adjacent
to all vertices of the other partite sets. We denote the complete k-partite graph
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by Kn1,n2,···,nk
, where |Vi| = ni for 1 ≤ i ≤ k. In the case k = 2, the k-partite

and complete k-partite graph are called bipartite and complete bipartite graphs. We
denote by Pn, Cn,Kn and Kn, the path, the cycle, complete graph and the empty
graph of order n, respectively. A double star DSa,b is a graph containing exactly
two non-leaf vertices which one is adjacent to a leaves and the other is adjacent to
b leaves. These two non-leaf of double star are called centers of double star. For
a graph G = (V,E) and e = uv ∈ E, a subdivision of G respect to e, denote by
S(G), is a graph obtained from G by deleting the edge e and add new vertex x

and new edges xu and xv. Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint
vertex sets. A graph G = (V,E) is the join graph of G1 and G2, if V = V1 ∪ V2

and E = E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}. If G is the join graph of G1 and G2,
we shall write G = G1 + G2. The graphs Wn = Cn + K1, Fn = Pn + K1, and
Frn = nK2 +K1 are called wheel, fan and friendship graphs, respectively. For all
graph-theoretic terminology not defined here, the reader is referred to [2].
Let f : E(G) → {−1, 1} be a function. For every vertex v, we define fG(v) =
∑

e∈EG(v) f(e). A function f : E(G) → {−1, 1} is called a signed matching of G if

fG(v) ≤ 1 for every v ∈ V (G). The weight of a signed matching f is defined by
w(f) = f(E(G)) =

∑

e∈E(G) f(e). The signed matching number of G is β′

1(G) =max

w(f), where the maximum is taken over all signed matchings. It seems natural to
define β′

1(Kn) = 0 for all totally disconnected graphs Kn. A signed matching f on
G, with w(f) = β′

1(G) is called a β′

1- signed matching.
The concept of signed matching is defined by Wang [4], and further studied in, for
example [3, 5, 6]. In [4], it is shown that a maximum signed matching can be found
in strongly polynomial time. In addition, the exact value of β′

1(G) for paths, cycles,
complete graphs and complete bipartite graphs were found [4].
In this paper, we have studied the signed matchings of subdivision and edge deletion
of a graph. Also, we have studied the signed matchings of join of graphs.

2. Main Results

In this section, we first stated some of the results which would be useful in the
remaining part of the paper. The following proposition provides a relation between
|E(G)| and β′

1(G).

Proposition 2.1. For any graph G = (V (G), E(G)), we have β′

1(G) ≡ |E(G)| (mod 2).

Proof. Let f be a β′

1-signed matching on G. Suppose that P andM are the numbers
of positive and negative edges respect to f , respectively. Hence

P +M = |E(G)|, P −M = β′

1(G).

Therefore, β′

1(G)−|E(G)| = −2M and we conclude that β′

1(G) ≡ |E(G)| (mod 2).

In [4], β′

1(G) for Eulerian graphs is given as follows.
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Theorem 2.1. [4] Let G be a Eulerian graph of order n and size m. Then

β′

1(G) =
1

2
((−1)m − 1).

Corollary 2.1. [4]Let n be a natural number. Then

β′

1(Cn) =

{

−1, if n 6= 2k,
0, if n = 2k.

For non-Eulerian graph, the following theorem was given in [4]. Here we give an
alternative proof for this theorem.

Theorem 2.2. Let G be a graph of order n with 2k(k ≥ 1) odd vertices. Then

0 ≤ β′

1(G) ≤ k.

Proof. Let f : E(G) −→ {1,−1} be a β′

1-signed matching of G. Hence fG(v) ≤ 0
for any even vertex v and fG(v) ≤ 1 for any odd vertex v. Therefore

2β′

1(G) = 2
∑

e∈E

f(e) =
∑

v∈V

fG(v)) ≤ 2k,

and hence β′

1(G) ≤ k.
For the lower bound, note that, the edges of G can be partitioned to subsets
E1, E2, · · ·Ek, such that for each i, the induced subgraph 〈Ei〉 is a trail connected
odd vertices and at most one of these trails has odd length (see Theorem 5.3 of
[2]). If we label the edges of each Ei alternately by 1 and −1, we can find a signed
matching with positive weight. Hence β′

1(G) ≥ 0.

As a straight result of Theorems 2.1 and 2.2, we have the following corollary.

Corollary 2.2. Let G be a graph. Hence β′

1(G) = −1 if and only if G is a Eulerian
graph of odd size.

Theorem 2.3. [4] Let m and n be two natural numbers. Then

β′

1(Km,n) =

{

0 if mn ≡ 0 (mod 2),
min{m,n} if mn ≡ 1 (mod 2).

Theorem 2.4. Let m,n, p be positive integers. Then

β′

1(Km,n,p) =















0 if m ≡ n ≡ p ≡ 0 (mod 2),
−1 if m ≡ n ≡ p ≡ 1 (mod 2),
0 if m ≡ n ≡ 0 (mod 2), p ≡ 1 (mod 2),
min{m,n} if m ≡ n ≡ 1 (mod 2), p ≡ 0(mod 2)
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Proof. If m ≡ n ≡ p (mod 2), then each vertex of Km,n,p has even degree and
hence Km,n,p is an Eulerian graph. Therefore, the first and the second parts of the-
orem are obtained by Theorem 2.1. Now suppose that V1 = {v1, v2, . . . , vm}, V2 =
{u1, u2, . . . , un} and V3 = {w1, w2, . . . wp} are three parts of Km,n,p of sizes m,n

and p, respectively. Let f : E(G) −→ {1,−1} be a signed matching of Km,n,p. At
first consider the case m ≡ n ≡ 0 (mod 2) and p ≡ 1 (mod 2). Hence every vertex
of V3 has even degree. Therefore fKm,n,p

(v) ≤ 0 for any v ∈ V3. On the other hand
Km,n,p

∼= Km+n,p ∪Km,n and hence

w(f) =
∑

v∈V3

fKm,n,p
(v) +

∑

v∈V2

fKm,n
(v).

Note that For any v ∈ V2, the degree of v in Km,n is even and hence fKm,n
(v) ≤

0. Therefore w(f) ≤ 0. Hence β′

1(Km,n,p) ≤ 0. Now consider the function g :
E(Km,n,p) −→ {1,−1} as follows:

g(uivj) = (−1)i+j , g(uiwj) = (−1)i+j , g(wivj) = (−1)i+j .

It is not difficult to see that g is a signed matching and w(g) = 0. Therefore,, in
this case β′

1(Km,n,p) = 0.
Now suppose that m ≡ n ≡ 1 (mod 2) and p ≡ 0 (mod 2). Again, every vertex of V3

has even degree. Therefore fKm,n,p
(v) ≤ 0 for any v ∈ V3. By the same argument

as above we have

w(f) =
∑

v∈V3

fKm,n,p
(v) + f(E(Km,n)) ≤ f(E(Km,n)).

But f(E(Km,n)) ≤ min{m,n} by Theorem 2.3. Hence β′

1(Km,n,p) ≤ min{m,n}
By the same argument as above β′

1(Km,n,p) = min{m,n}.

Theorem 2.5. Suppose that a and b are two integers. Then

β′

1(DSa,b) =







3 if a ≡ b ≡ 0 (mod 2)
1 if a ≡ b ≡ 1 (mod 2)
2 if a ≡ 1 (mod 2), b ≡ 0 (mod 2)

Proof. Let u and v be centers of double star DSa,b of degrees a + 1 and b + 1.
Suppose that f : E(DSa,b) −→ {1,−1} is a signed matching set. Hence w(f) =
fDSa,b

(u) + fDSa,b
(v)− f(uv).

If a ≡ b ≡ 1 (mod 2), then deg(u) and deg(v) are even. Therefore, it follows that
fDSa,b

(u), fDSa,b
(v) ≤ 0. We conclude w(f) ≤ −f(uv) ≤ 1. Hence β′

1(DSa,b) ≤
1. Now consider g : E(DSa,b) −→ {1,−1} such that g(e) = 1 for a+1

2 edges of

EDSa,b
(v)\{uv} and b+1

2 edges of EDSa,b
(u)\{uv} and g(e) = −1 for the remaining

edges of EDSa,b
(v)∪EDSa,b

(u). Clearly g is a signed matching and w(g) = 1. Hence
β′

1(DSa,b) ≥ 1 and we conclude β′

1(DSa,b) = 1.

If a ≡ b ≡ 0 (mod 2), then deg(u) and deg(v) are odd. Therefore, it follows
fDSa,b

(v)), fDSa,b
(u) ≤ 1. We conclude that w(f) ≤ 2 − f(uv) ≤ 3. Hence
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β′

1(DSa,b) ≤ 3. Now consider g : E(DSa,b) −→ {1,−1} such that g(e) = 1 for
a+2
2 edges of EDSa,b

(v) \ {uv} and b+2
2 edges of EDSa,b

(u) \ {uv} and g(e) = −1 for
the remaining edges of E(v) ∪ E(u). Again g is a signed matching with w(g) = 3
and we conclude that β′

1(DSa,b) = 3.
For the last case, suppose that a ≡ 0 (mod 2) and b ≡ 1(mod 2). By the same
argument as above, we conclude that β′

1(Sa,b) = 2.

Theorem 2.6. Let n be an integer. Then

β′

1(Wn) =

{

⌊n+1
2 ⌋ if n ≡ 0, 3 (mod 4),

⌊n+1
2 ⌋ − 1 if n ≡ 1, 2 (mod 4).

Proof. Suppose that E(Wn) = {vivi+1, uvi : 1 ≤ i ≤ n}, where indices computing
in module n. Note that the vertex u has degree equal to n, and other vertices
have degree 3. If n ≡ 0 (mod 4), then Wn has n vertices of odd degree. Hence
β(Wn) ≤

n
2 = ⌊n+1

2 ⌋ by Theorem 2.2. Now define f : E(Wn) −→ {1,−1} by

f(uv4i+1) = f(uv4i+2) = f(v4i+2v4i+3) = f(v4i+3v4i+4) = f(v4i+4v4i+5) = 1

for 0 ≤ i ≤ n
4 − 1 and f(e) = −1 for other edges of Wn. Clearly f is a signed

matching with w(f) = n
2 = ⌊n+1

2 ⌋. So β′

1(Wn) ≥ ⌊n+1
2 ⌋. Hence β′

1(Wn) = ⌊n+1
2 ⌋.

The case n ≡ 3 (mod 4) is obtained by a similar argument as the above.
Now suppose that n ≡ 2 (mod 4). Hence β′

1(Wn) ≤ n
2 by Theorem 2.2. But

β′

1(Wn) 6= n
2 by Proposition 2.1 and therefore β′

1(Wn) ≤ n
2 − 1. Now define f :

E(Wn) −→ {1,−1} by

f(uvn−1) = f(v1vn) = 1,

f(uv4i+1) = f(uv4i+2) = f(v4i+2v4i+3) = f(v4i+3v4i+4) = f(v4i+4v4i+5) = 1

for 0 ≤ i ≤ n−6
4 and f(e) = −1 for other edges of Wn. Clearly f is a signed

matching with w(f) = n
2 − 1 = ⌊n+1

2 ⌋ − 1. So β′

1(Wn) ≥ ⌊n+1
2 ⌋ − 1.

Theorem 2.7. Let n be an integer. Then

β′

1(Fn) =

{

⌊n−1
2 ⌋ − 1 if n ≡ 0, 3 (mod 4),

⌊n−1
2 ⌋ if n ≡ 1, 2 (mod 4).

Proof. The result follows by a similar argument as the proof of Theorem 2.6.

Theorem 2.8. Let n be an integer. Then

β′

1(Frn) =

{

0 if n ≡ 0 (mod 2)
−1 if n ≡ 1 (mod 2)

Proof. Since the graph Frn is an Eulerian graph, the result follows from Theorem
2.1.



546 S. Javan and H.R. Maimani

Theorem 2.9. Let G be a graph and e be an edge of G. If S(G) is the subdivision
of G by edge e, then

β′

1(G)− 1 ≤ β′

1(S(G)) ≤ β′

1(G) + 1.

In addition these bounds are sharp.

Proof. Suppose that e = uv and S(G) = G \ {e} ∪ {xu, xv}, where x is the new
vertex. Let f be a β′

1-signed matching of G. If f(e) = 1 (or f(e) = −1), then
define g : E(S(G)) −→ {1,−1} by g(xu) = 1(or g(xu) = −1), g(xv) = −1 and
g(w) = f(w) for other edges of S(G). Clearly g is a signed matching on S(G) and
w(g) = β′

1(G)− 1. Hence β′

1(G) − 1 ≤ β′

1(S(G)).
Now suppose that f is a β′

1-signed matching of S(G). Define signed matching g

on G by g(e) = −1 and g(w) = f(w) for other edges of G. we conclude that
β′

1(S(G)) ≤ β′

1(G) + 1.
For any positive integer n, we have S(Cn) = Cn+1. If n is even, then β′

1(Cn) = 0
and β′

1(Cn+1) = −1 by Corollary 2.1 and the lower bound is occurred. If n is odd,
then β′

1(Cn) = −1 and β′

1(Cn+1) = 0 by Corollary 2.1 and the we obtain the upper
bound.

Theorem 2.10. Let G be a graph. Then

β′

1(G)− 3 ≤ β′

1(G− e) ≤ β′

1(G) + 1.

In addition these bounds are sharp.

Proof. Suppose that e = uv. Let f be a β′

1-signed matching of G. If f(e) = 1, then
define g : E(G− e) −→ {1,−1} by g(x) = f(x) for any edge x of G− e. Clearly g is
a signed matching on G− e and w(g) = β′

1(G) − 1. Hence β′

1(G)− 1 ≤ β′

1(G− e).
If f(e) = −1, change the label of two edges e1 and e2 (which are adjacent to u and
v in G− e, respectively) from 1 to −1. Hence we have a signed matching on G− e

of weight β′

1(G)− 3 and hence β′

1(G) − 3 ≤ β′

1(G− e).
Now suppose that f is a β′

1-signed matching of G − e. Define signed matching g

on G by g(e) = −1 and g(w) = f(w) for other edges of G. We conclude that
β′

1(G− e) ≤ β′

1(G) + 1.
Suppose that n is an even integer. We have β′

1(DSn,n) = 3 by Theorem2.5. If
x, y are centers of double star and e = xy, then DSn,n − e = 2K1,n and we have
β′

1(DSn,n− e) = 0 by Theorem 2.3. Hence the lower bound is obtained. If n is even
and m is odd, then β′

1(K1,n ∪K1,m) = 1 by Theorem 2.3. But K1,n ∪K1,m + e =
DSm,n, where e joint two stars K1,m and K1,n. Hence β′

1(DSm.n) = 2 and upper
bound is occurred.
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