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Abstract. Let M̃m(c) be a complex m-dimensional space form of holomorphic sectional
curvature c and Mn be a complex n-dimensional Kaehlerian submanifold of M̃m(c). We
prove that if Mn is pseudo-parallel and Ln− 1

2
(n+2)c > 0 then M n is totally geodesic.

Also, we study Kaehlerian submanifolds of complex space form with recurrent second
fundamental form.
Keywords. Pseudo-parallel submanifolds; Kaehlerian submanifolds; recurrent second
fundamental form.

1. Introduction

Among all submanifolds of an almost Hermitian manifold, there are two typical
classes: one is the class of holomorphic submanifolds and the other is the class of
totally real submanifolds. A submanifold M of an almost Hermitian manifold M̃ is
called holomorphic (resp. totally real) if each tangent space of M is mapped into
itself (resp. the normal space) by the almost complex structure of M̃. There are
many results in the theory of holomorphic submanifolds.

The class of isometric immersions in a Riemannian manifold with parallel second
fundamental form is very wide, as it is shown, for instance, in the classical Ferus
paper [10]. Certain generalizations of these immersions have been studied, obtaining
classification theorems in some cases.

Given an isometric immersion f : M −→ M̃ , let h be the second fundamental
form and ∇ the van der Waerden-Bortolotti connection of M . Then J. Deprez
defined the immersion to be semi-parallel if

R̄(X,Y ) · h = (∇X∇Y −∇Y ∇X −∇[X,Y ])h = 0,(1.1)
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holds for any vector fields X,Y tangent to M . J. Deprez mainly paid attention to
the case of semi-parallel immersions in real space forms (see [5] and [6]). Later, Ü.
Lumiste showed that a semi-parallel submanifold is the second order envelope of
the family of parallel submanifolds [13]. In the case of hypersurfaces in the sphere
and the hyperbolic space, F. Dillen showed that they are flat surfaces, hypersurfaces
with parallel Weingarten endomorphism or rotation hypersurfaces of certain helices
[9].

In [8], the authors obtained some results in hypersurfaces in 4-dimensional space
form N4(c) satisfying the curvature condition

R̄ · h = LQ(g, h).(1.2)

The submanifolds satisfying the condition (1.2) are called pseudo-parallel (see [1]
and [2] ).

In [1], Asperti et al. considered the isometric immersions f : M −→ M̃n+d(c)
of n-dimensional Riemannian manifold into (n + d)-dimensional real space form
M̃n+d(c) satisfying the curvature condition (1.2). They have shown that if f is
pseudo-parallel with H(p) = 0 and Lh(p) − c ≥ 0 then the point p is a geodesic
point of M , i.e. the second fundamental form vanishes identically, where H is the
mean curvature vector of M.

They also showed that a pseudo-parallel hypersurfaces of a space form is either
quasi-umbilical or a cyclic of Dupin [2].

The study of complex hypersurfaces was initiated by Smyth [18]. He classified
the complete Kaehler-Einstein manifolds which occur as hypersurfaces in complex
space forms. The corresponding full local classification was given by Chern [4]. Sim-
ilar classification under the weaker assumption of parallel Ricci tensor was obtained
by Takahashi [19] and Nomizu and Smyth [16]. A classification of the complete
Kaehler hypersurfaces of space forms which satisfy the condition R · R = 0 and a
partial classification (the case c 6= 0) of such hypersurfaces satisfying the condition
R · S = 0 were given by Ryan in [17]. He also classified the complex hypersurfaces
of Cn+1 having R · S = 0 and constant scalar curvature.

In [7], Deprez et al. presented a new characterization of complex hyperspheres in
complex projective spaces, of complex hypercylinders in complex Euclidean spaces
and of complex hyperplanes in complex space forms in terms of the conditions on
the tensors R, S, C and B, where B is the Bochner tensor which was introduced
as a complex version of the Weyl conformal curvature tensor C of a Riemannian
manifold [3]. In [23], Yaprak studied pseudosymmetry type curvature conditions on
Kaehler hypersurfaces. The submanifolds in a complex space form M̃m(c) n > 2,of
constant holomorphic sectional curvature 4c, parallel second fundamental form were
classified by H.Naitoh in [15]. S.Maeda [14] studied semi-parallel real hypersurfaces
in a complex space form M̃m(c) for c > 0 and n > 3. In [12] Lobos and Ortega
classify all connected Pseudo-parallel real hypersurfaces in a non-flat complex space
form. Then, Yıldız et al. [22] studied C-totally real pseudo-parallel submanifolds in
Sasakian space forms.
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In the present study, we have generalized their results for the case of Mn, that
is a Kaehlerian submanifold of complex space form M̃m(c) of holomorphic sectional
curvature c. We will prove the following:

Theorem 1.1. Let M̃m(c) be complex m-dimensional space form of constant holo-
morphic sectional curvature c and Mn be a complex n-dimensional Kaehlerian sub-
manifold of M̃(c). If Mn is pseudo-parallel and Ln − 1

2 (n + 2)c > 0, then Mn is
totally geodesic.

Also, we study Kaehlerian submanifolds of complex space form with recurrent
second fundamental form.

2. Basic Concepts

Let M̃(c) be a non-flat complex space form endowed with the metric g of constant
holomorphic sectional curvature c. We denote by ∇, R, S and τ the Levi-Civita
connection, Riemann curvature tensor, the Ricci tensor and scalar curvature of
(M, g), respectively. The Ricci operator S is defined by g(SX,Y ) = S(X,Y ),
where X,Y ∈ χ(M), χ(M) being Lie algebra of vector fields on M . We next define
endomorphisms R(X,Y ) and X ∧B Y of χ(M) by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,(2.1)

(X ∧B Y )Z = B(Y, Z)X −B(X,Z)Y,(2.2)

respectively, where X,Y, Z ∈ χ(M) and B is a symmetric (0, 2)-tensor.

The concircular curvature tensor Z̃ in a Riemannian manifold (Mn, g) is defined
by

Z̃(X,Y ) = R(X,Y )−
τ

n(n− 1)
(X ∧g Y ),(2.3)

respectively, where τ is the scalar curvature of Mn.

Now, for a (0, k)-tensor field T , k ≥ 1 and a (0, 2)-tensor field B on (M, g) we
define the tensor Q(B, T ) by

Q(B, T )(X1, ..., Xk;X,Y ) = −T ((X ∧B Y )X1, X2, ..., Xk)

−...− T (X1, ..., Xk−1, (X ∧B Y )Xk),(2.4)

respectively. Putting into the above formula T = h and B = g, we obtain the tensor
Q(g, h).

Let f : Mn −→ M̃m(c) be an isometric immersion of an complex n-dimensional
(of real dimension 2n) M into complex m-dimensional (of real dimension 2m) space

form M̃m(c). We denote by∇ and ∇̃ the Levi-Civita connections ofMn and M̃m(c),
respectively. Then for vector fields X,Y which are tangent to Mn, the second
fundamental form h is given by the formula h(X,Y ) = ∇̃XY −∇XY. Furthermore,



324 A. Yıldız

for ξ ∈ N(Mn), Aξ : TM −→ TM will denote the Weingarten operator in the ξ

direction, AξX = ∇⊥

Xξ − ∇̃Xξ, where ∇⊥ denotes the normal connection of M .
The second fundamental form h and Aξ are related by g̃(h(X,Y ), ξ) = g(AξX,Y ),
where g is the induced metric of g̃ for any vector fields X,Y tangent to M . The
mean curvature vector H of M is defined to be

H =
1

n
Tr(h).

A submanifold M is said to be minimal if H = 0 identically.

The covariant derivative ∇h of h is defined by

(∇Xh)(Y, Z) = ∇⊥

X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ),(2.5)

where, ∇h is a normal bundle valued tensor of type (0, 3) and is called the third
fundamental form of M . The equation of Codazzi implies that ∇h is symmetric
hence

(∇Xh)(Y, Z) = (∇Y h)(X,Z) = (∇Zh)(X,Y ).(2.6)

Here, ∇ is called the van der Waerden-Bortolotti connection of M . If ∇h = 0, then
f is called parallel, [10].

The second covariant derivative ∇
2
h of h is defined by

(∇
2
h)(Z,W,X, Y ) = (∇X∇Y h)(Z,W )

= ∇⊥

X((∇Y h)(Z,W ))− (∇Y h)(∇XZ,W )(2.7)

−(∇Xh)(Z,∇Y W )− (∇∇XY h)(Z,W ).

Then we have

(∇X∇Y h)(Z,W )− (∇Y ∇Xh)(Z,W ) = (R̄(X,Y ) · h)(Z,W )

= R⊥(X,Y )h(Z,W )− h(R(X,Y )Z,W )(2.8)

−h(Z,R(X,Y )W ).

where R̄ is the curvature tensor belonging to the connection ∇.

3. Kaehlerian Submanifolds

Let M̃ be a Kahlerian manifold of complex dimension m (of real dimension 2m)
with almost complex structure J and with Kahlerian metric g. Let M be a complex
n-dimensional analytic submanifold of M̃ , that is, the immersion f : M −→ M̃

is holomorphic, i.e., J · f∗ = f∗ · J , where f∗ is the differential of the immersion
f and we denote by the same J the induced complex structure on M. Then the
Riemannian metric g, which will be denoted by the same letter of M̃ , induced on
M is Hermitian. It is easy to see that the second fundamental form with this
Hermitian metric g is the restriction of the second fundamental form of M̃ and
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hence is closed. This show that every complex analytic submanifold M a Kaehlerian
manifold M̃ is also a Kaehlerian manifold with respect to the induced structure. We
call such a submanifold M of a Kaehlerian manifold M̃ a Kaehlerian submanifold.
In the other words, a Kaehlerian submanifold M of a Kaehlerian manifold M̃ is
an invariant submanifold under the action of the complex structure J of M̃ , i.e.,
JTx(M) ⊂ Tx(M) for every point x of M [21].

For each plane p in the tangent space Tx(M), the sectional curvature K(p)
is defined to be K(p) = R(X,Y,X, Y ) = g(R(X,Y )Y,X), where {X,Y } is an
orthonormal basis for p. If p is invariant by J , then K(p) is called holomorphic
sectional curvature by p. If K(p) is a constant for all J-invariant planes p in
Tx(M) and for all points x ∈ M is called a space of constant holomorphic sectional
curvature or a complex space form. Sometimes, a complex space form is defined
to be a simply connected complete Kaehlerian manifold of constant holomorphic
sectional curvature defined by [21]

R̃(X,Y )Z =
1

4
c {g(X,Z)Y − g(Y,Z)X + g(JX,Z)JY − g(JY,Z)JX + 2g(JX, Y )JZ} ,

for any vector fields X , Y and Z on M. If this space is complete and simply con-
nected, it is well known that it is isometric to

• a complex projective space CPm(c), if c > 0;

• the complex Euclidean space Cm , if c = 0;

• a complex hyperbolic space CHm, if c < 0.

The equations of Gauss and Ricci are

g(R(X,Y )Z,W ) =
1

4
c[g(Y, Z)g(X,W )− g(X,Z)g(Y,W ) + g(JY, Z)g(JX,W )

−g(JX,Z)g(JY,W ) + 2g(X, JY )g(JZ,W )](3.1)

+g(h(Y, Z), h(X,W ))− g(h(X,Z), h(Y,W )),

and

g(R(X,Y )U, V ) + g([AV , AU ]X,Y ) =
1

2
cg(X, JY )g(JU, V ),(3.2)

respectively. For an orthonormal frame field {e1, e2, ..., en} of M , the Ricci tensor
S is defined by

S(X,Y ) =

n∑

k=1

g(R(ek, X)Y, ek).(3.3)

Consequently, by the use of (3.1) the equation (3.3) turns into

S(X,Y ) =
1

2
(n+ 1)cg(X,Y )−

∑

i

g(h(X, ei), h(Y, ei)).(3.4)
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Lemma 3.1. [21] The second fundamental form h of a Kaehlerian submanifold
M satisfies

h(JX, Y ) = h(X, JY ) = Jh(X,Y ),

or equivalently

JAV X = −AV JX = AJV X.

Proposition 3.1. [21] Any Kaehlerian submanifold M is a minimal submanifold.

Theorem 3.1. [21] Let Mn be a Kaehlerian hypersurface of a complex space form
M̃n+1(c). Then the following conditions are equivalent:

(i) The Ricci tensor S of Mn is parallel;

(ii) The second fundamental form of Mn is parallel;

(iii) M is an Einstein manifold.

4. Proof of the Theorem 1.1

Let Mn be a complex n-dimensional (of real dimensional 2n) Kaehlerian sub-
manifold with complex structure J of a complex m-dimensional (of real dimensional
2m) space form M̃m(c) of constant holomorphic sectional curvature c. Take an or-
thonormal basis e1, e2, ..., e2n in TX(M) such that en+t = Jet (t = 1, ..., n) and an
orthonormal basis v1, ..., v2p for TX(M)⊥ such that vp+s = Jvs (s = 1, ..., p), where
we have put p = m − n. Then for 1 ≤ i, j ≤ n, 1 ≤ α ≤ p, the components of the
second fundamental form h are given by

hα
ij = g(h(ei, ej), eα).(4.1)

Similarly, the components of the first and the second covariant derivative of h
are given by

hα
ijk = g((∇ekh)(ei, ej), eα) = ∇ekh

α
ij ,(4.2)

and

hα
ijkl = g((∇el∇ekh)(ei, ej), eα)

= ∇elh
α
ijk(4.3)

= ∇el∇ekh
α
ij ,

respectively.

If f is pseudo-parallel, then by definition, the condition

R̄(el, ek) · h = L[(el ∧g ek)]h(4.4)
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is fulfilled where

[(el ∧g ek)h] (ei, ej) = −h((el ∧g ek)ei, ej)− h(ei, (el ∧g ek)ej)(4.5)

for 1 ≤ i, j, k, l ≤ n. Substituting (2.2) into (4.5), we get

[(el ∧g ek)h](ei, ej) = −g(ek, ei)h(el, ei) + g(el, ei)h(ek, ei)

−g(ek, ej)h(el, ei) + g(el, ej)h(ek, ei).(4.6)

By (2.8) we have

(R̄(el, ek) · h)(ei, ej) = (∇el∇ekh)(ei, ej)− (∇ek∇elh)(ei, ej).(4.7)

Making use of (4.1), (4.3), (4.6) and (4.7), the pseudo-parallelity condition (4.4)
turns into

hα
ijkl = hα

ijlk − L{δkih
α
lj − δlih

α
kj + δkjh

α
il − δljh

α
ki},(4.8)

where g(ei, ej) = δij and 1 ≤ i, j, k, l ≤ n, 1 ≤ α ≤ p.

Recall that the Laplacian ∆hα
ij of hα

ij is defined by

∆hα
ij =

n∑

i,j,k=1

hα
ijkk .(4.9)

Then we obtain
1

2
∆(‖h‖

2
) =

n∑

i,j,k=1

p∑

α=1

hα
ijh

α
ijkk +

∥∥∇h
∥∥2 ,(4.10)

where

‖h‖2 =
n∑

i,j,k=1

p∑

α=1

(hα
ij)

2,(4.11)

and
∥∥∇h

∥∥2 =
n∑

i,j,k=1

p∑

α=1

(hα
ijkk)

2,(4.12)

are the square of the length of second and the third fundamental forms of Mn,
respectively. In addition, making use of (4.1) and (4.3), we obtain

hα
ijh

α
ijkk = g(h(ei, ej), eα)g((∇ek∇ekh)(ei, ej), eα)

= g((∇ek∇ekh)(ei, ej)g(h(ei, ej), eα), eα)(4.13)

= g((∇ek∇ekh)(ei, ej), h(ei, ej)).

Therefore, due to (4.13), the equation (4.10) becomes

1

2
∆(‖h‖

2
) =

n∑

i,j,k=1

g((∇ek∇ekh)(ei, ej), h(ei, ej)) +
∥∥∇h

∥∥2 .(4.14)
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Further, by the use of (4.4), (4.6) and (4.7), we get

g((∇ek∇ekh)(ei, ej), h(ei, ej) = g((∇ek∇eih)(ek, ej), h(ei, ej))

= g((∇ei∇ekh)(ej , ek), h(ei, ej))

−L{g(ei, ej)g(h(ek, ek), h(ei, ej))(4.15)

−g(ek, ej)g(h(ek, ei), h(ei, ej))

+g(ek, ei)g(h(ej , ek), h(ei, ej))

−g(ek, ek)g(h(ei, ej), h(ei, ej))}.

Substituting (4.15) into (4.14), we have

1

2
∆(‖h‖

2
) =

n∑

i,j,k=1

[g((∇ei∇ejh)(ek, ek), h(ei, ej))

−L{g(ei, ej)g(h(ek, ek), h(ei, ej))

−g(ek, ej)g(h(ek, ei), h(ei, ej))(4.16)

+g(ek, ei)g(h(ej , ek), h(ei, ej))

−g(ek, ek)g(h(ei, ej), h(ei, ej))}] +
∥∥∇h

∥∥2

Furthermore, by definition

‖h‖
2
=

n∑

i,j=1

g(h(ei, ej), h(ei, ej)),(4.17)

Hα =

n∑

k=1

hα
kk,

‖H‖2 =
1

n2

p∑

α=1

(Hα)2,

and after some calculations, we get

1

2
∆(‖h‖

2
) =

n∑

i,j=1

p∑

α=1

hα
ij(∇ei∇ejH

α)(4.18)

−L{n2 ‖H‖
2
− n ‖h‖

2
}+

∥∥∇h
∥∥2 .

Using Proposition 3.1, the equation (4.18) is reduced to

1

2
∆(‖h‖

2
) = Ln ‖h‖

2
+
∥∥∇h

∥∥2 .(4.19)
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Yano and Kon have shown in [21], that

1

2
∆(‖h‖2) =

∥∥∇h
∥∥2 −

p∑

α,β=1

{[Tr(Aα ◦Aβ)]
2 + ‖[Aα, Aβ ]‖

2(4.20)

+
1

2
(n+ 2)c ‖h‖

2
.

Hence comparing the equation (4.19) with (4.20), one can get

0 = (Ln−
1

2
(n+ 2)c) ‖h‖

2

+

p∑

α,β=1

{
[Tr (Aα ◦Aβ)]

2 + ‖[Aα, Aβ ]‖
2
}
.

If Ln− 1
2 (n+ 2)c ≥ 0 then Tr (Aα ◦Aβ) = 0. In particular, ‖Aα‖

2
= Tr(Aα ◦

Aα) = 0, hence h = 0. This completes the proof of our Theorem.

Corollary 4.1. Let M̃m(c) be complex m-dimensional space form of constant holo-
morphic sectional curvature c and Mn be a complex n-dimensional Kaehlerian sub-
manifold of M̃m(c). If Z̃(X,Y ) ·h = 0 and τ

(n−1) −
1
2 (n+2)c ≥ 0 then M is totally

geodesic.

We recall the following well-known:

Theorem 4.1. ([4], [16], [19]) Let Mn be a Kaehlerian hypersurface of a complex
space form M̃n+1(c) with parallel Ricci tensor. If c ≤ 0, then Mnis totally geodesic.

If c > 0, then either M is totally geodesic, or an Einstein manifold |A|
2
= nc and

hence τ = n2c.

Using Theorem 3.1 and Theorem 4.1, we can easily obtain the following:

Corollary 4.2. Let Mn be a Kaehlerian hypersurface of a complex space form
M̃n+1(c) with parallel second fundamental form. If c ≤ 0, then Mn is totally
geodesic.

Using Theorem 1.1, we get the following:

Corollary 4.3. Let Mn be a complex n-dimensional Kaehlerian submanifold of
M̃(c) with semi-parallel. If c ≤ 0, then Mn is totally geodesic.

Remark 4.1. (i)The main Theorem is generalization of Corollary 4.2 and Corollary 4.3.
(ii)İf second fundamental form of Mn is parallel then it is semi-parallel. But the converse

is not necessary to be parallel.
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5. Kaehlerian submanifolds of comlex space form with recurrent

second fundamental form

In this section, we will consider the condition by which the second fundamental
tensor A is recurrent, i.e., there exists a 1-form α such that ∇̄A = α⊗A. We may
regard parallel condition as a special case. We know that the recurrent condition
has a close relation to a holonomy group (cf,[11], [20]). Using definition of recurrent
second fundamental form, we get

∇̄X∇̄Y A = (Xα(Y ) + α(X)α(Y ))A,

which implies that

R̄(X,Y ) · A = ∇̄X∇̄Y A− ∇̄Y ∇̄XA− ∇̄[X,Y ]A

= (Xα(Y ) + α(X)α(Y ))A− (Y α(X) + α(Y )α(X))A

−α([X,Y ])A(5.1)

= (Xα(Y )− Y α(X)− α([X,Y ])A

= 2dα(X,Y )A.

We now define a function on Mn by f2 = g(A,A), where the metric g is extended
to the inner product between the tensor fields in the standard fashion [11]. Using
the fact that ∇g = 0 it follows from f2 = g(A,A) that

f(Y (f)) = f2α(Y ).(5.2)

So from (5.2), we have
Y f = fα(Y ) 6= 0.(5.3)

Therefore we get

{∇̄X∇̄Y − ∇̄Y ∇̄X − ∇̄[X,Y ]}f = {Xα(Y )− Y α(X)− α([X,Y ]}f.(5.4)

Since the left hand side of the above equation is identically zero and f 6= 0 on M

by our assumption, we obtain
dα(X,Y ) = 0,(5.5)

that is, the 1-form α is closed. Hence, from (5.1) and (5.5), we get

R̄(X,Y ) ·A = 0.(5.6)

It means that M is semi-parallel. So, by the use of Corollary 4.3, we can give the
following:

Theorem 5.1. Let M̃m(c) be complex m-dimensional space form of constant holo-
morphic sectional curvature c. If c ≤ 0, there are no Kaehler submanifolds with
non-trivial recurrent second fundamental form of M̃m(c).
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