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Abstract
Heterogeneous computers combine a general-purpose host
processor with domain-specific programmable many-core

accelerators, uniting high versatility with high performance

and energy efficiency. While the host manages ever-more ap-

plication memory, accelerators are designed to work mainly

on their local memory. This difference in addressed memory

leads to a discrepancy between the optimal address width of

the host and the accelerator. Today 64-bit host processors are

commonplace, but few accelerators exceed 32-bit address-

able local memory, a difference expected to increase with

128-bit hosts in the exascale era. Managing this discrepancy

requires support for multiple data models in heterogeneous

compilers. So far, compiler support for multiple data models

has not been explored, which hampers the programmability

of such systems and inhibits their adoption.

In this work, we perform the first exploration of the feasi-

bility and performance of implementing a mixed-data-model

heterogeneous system. To support this, we present and evalu-

ate the first mixed-data-model compiler, supporting arbitrary

address widths on host and accelerator. To hide the inherent

complexity and to enable high programmer productivity, we

implement transparent offloading on top of OpenMP. The

proposed compiler techniques are implemented in LLVM
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and evaluated on a 64+32-bit heterogeneous SoC. Results

on benchmarks from the PolyBench-ACC suite show that

memory can be transparently shared between host and ac-

celerator at overheads below 0.7 % compared to 32-bit-only

execution, enabling mixed-data-model computers to execute

at near-native performance.

Keywords Compilers, Heterogeneous Computer Architec-

tures, Offloading, Memory Sharing, Data Models, Runtime

Libraries, OpenMP

1 Introduction
Heterogeneous computers unite high versatility with high

performance and energy efficiency by combining a general-

purpose host processor with domain-specific programmable

many-core accelerators (PMCAs). The host manages input

and output data as well as the application memory and of-
floads tasks that are highly parallel and/or domain-specific to

one or multiple suitable accelerators [16, 38]. Due to the com-

plexity of programming these systems, significant effort has

been spent on developing programming models that retain

high programmer productivity. A common way is to abstract

the complexity through code annotations, indicating which

code is to be offloaded, providing one unified code base. One

de-facto standard programming model is OpenMP [34].

OpenMP 4.0+ [44] enables work to be offloaded from

host to accelerators with the target directive and has been

adopted for GPUs [2] and PMCAs in general [33]. Data is

shared by copying from the application memory, which is
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managed by the host, to the local memory of the accelerator

before the offload and back after the offload.

Application memory is growing rapidly: today 64-bit ad-

dresses are sufficient to handle data of hundreds of petabytes

distributed over multiple nodes [55], but when multiple ex-

abytes of data need to be addressed, 128-bit host processors

will be required to manage application memory. Accelera-

tors, on the other hand, are designed to work mainly on data

in their local memory, which inherently grows at a lower

rate than total application memory. The same trend can be

observed in heterogeneous systems on chip (SoCs), where 64-

bit hosts are common today, although accelerator memory

is within the 32-bit addressable range [12].

This growing disproportion raises the question whether

there is a fundamental need for accelerators to increase their

data width solely to share pointers with the host. For each

accelerator core, doubling the data width at least doubles the

size of most of its components – the frontend, the register

file, the arithmetic logic unit (ALU) (where the multiplier

even grows quadratically), the load/store unit (LSU), and

most internal buffers [63]. Furthermore, it usually doubles

the longest combinatorial path, requiring at least one addi-

tional pipeline stage to prevent a reduction of the maximum

frequency. For every executed accelerator instruction that

does not fully exploit the wider data path (doubling SIMD

parallelism), performance per area and efficiency of the accel-

erator effectively decreases. As with most other properties

of accelerators [22], it is thus desirable to design the data

width to match the needs of the target domain. To achieve

this in the long term, as the application memory continues

to grow, mixed-data-width systems are required.

The challenge in mixed-data-width systems is to trans-

form offloaded pointers and types that have a data-model-

dependent size fromwide host values to narrower accelerator

values while preserving their semantics and incurring as lit-

tle run-time overhead as possible. While this could be done

manually, doing so is error-prone and requires to rewrite

existing libraries and applications. Therefore, heterogeneous

compilers need to support multiple data models to bridge

the disproportionate data widths in heterogeneous systems.

However, to date, no heterogeneous compiler practically sup-

ports accelerators with a data model that differs from that

of the host. Additionally, minimal hardware support to let

accelerators access addresses outside their native data width

has not been explored.

Contributions. In this work, we address these challenges.

To our knowledge, this work is the first to:

1. Design and implement a mixed-data-model (64+32-

bit) heterogeneous compiler, including full support for

OpenMP offloading.

2. Discuss the challenges and options for implementing

mixed-data-model compilation in current versions of

the two main compilers, GCC and LLVM.
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Figure 1. Architectural template of heterogeneous comput-

ers targeted by this work.

3. Discuss novel hardware options for extended address-

ing and implement and evaluate aminimal, non-intrusive

option that does not require modification of any core

or ISA.

Outline. This paper is structured as follows: After intro-

ducing the relevant background concepts in § 2, we explore

the solution space to mixed-data-model OpenMP offloading

in § 3, present our compiler solution in § 4, and describe

the minimal accelerator hardware support for extended ad-

dresses in § 5. We show that our solution allows a 32-bit

accelerator to transparently share memory with a 64-bit host

at overheads below 0.7 % on PolyBench-ACC kernels in § 6.

We compare to related work in § 7 and conclude in § 8.

2 Background
In this section, we introduce the heterogeneous compute and

memory architecture targeted by this work (§ 2.1), OpenMP

(§ 2.2), and data models (§ 2.3), and we discuss the state-of-

the-art in offloading (§ 2.4) and heterogeneous compilation

(§ 2.5).

2.1 Target Architecture
Fig. 1 shows the architectural template of heterogeneous

computers we target in this work. The general-purpose host

CPU is coupled to one or multiple PMCAs via an inter-

connect over which they share the external main mem-

ory and I/O peripherals, such as the network interface con-

troller (NIC). The host CPU consists of one or more general-

purpose application-class processing cores and has a mem-

ory hierarchy of virtually-addressed caches. The PMCAs

consist of many minimal, domain-specific processing ele-

ments (PEs), potentially grouped in clusters, have a mem-

ory hierarchy of physically-addressed, software-managed

scratchpad memorys (SPMs), and include an input/output

memory management unit (IOMMU) to share the virtual

memory space with the host. Host and PMCAs may imple-

ment different instruction set architectures (ISAs). There are
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Data model Width (in bits) of
int long pointers

ILP32 32 32 32
LLP64 32 32 64
LP64 32 64 64

Table 1. 32- and 64-bit data models common today.

many examples of such architectures in products ranging

from high-performance computing (HPC) [24, 38] over high-

performance SoCs [16] to low-power SoCs [17, 52] as well

as in research [9, 21, 28, 59].

2.2 OpenMP and Offloading
OpenMP [44] defines a target-agnostic API based on pre-

processor directives that are translated by the compiler into

calls to runtime library (RTL) functions. Since version 4.0,

OpenMP supports offloading of computation to accelera-

tors with the target directive and data sharing through

the map directive. The target directive determines which

code is compiled for the host, the accelerator, or both. GCC

and LLVM implement this heterogeneous compilation in very

different ways (§ 2.5), and we focus on how this impacts

handling different data widths of host and accelerator.

The map clause of the target directive specifies data to

be shared for each offloaded kernel. OpenMP’s data sharing

model is copy-based: The host copies data from its virtual

memory space to a physically-contiguous memory section,

which accelerators can access without participating in the

virtual memory system of the host. This restricts map to data
structures that do not contain pointers. However, extensions

for shared virtual memory (SVM) have been proposed and

implemented [29, 33, 58]. That generalized variant of map
effectively reduces offloading to passing pointers to shared

data to the accelerator.

Such true pointer sharing is essential for three aspects:

First, it eliminates one level of copying (from the host to

the device memory space (still DRAM) and back). Second, it

allows the accelerator to transfer only the data it requires di-

rectly to its closest memory level. Third, it enables offloading

of pointer-based data structures. OpenMP 5.0 introduced the

required directivewith the associated unified_shared_me-
mory clause, which provides these pointer sharing semantics

and makes map clauses on target constructs optional.

Our work supports both data-copy and pointer-passing

offloading. When only copy-based offloading is required,

simpler solutions could be found because the physically-

contiguous memory section of the accelerator must inher-

ently be addressable by the 32-bit accelerator.

2.3 Data Models
A data model defines the width of pointers and integer types

that have a platform-dependent width. Table 1 lists 32- and

64-bit data models common today. In this work, we focus on

host ELFhetero-
geneous
source

front-
end

host IR host IR host assembly

device assembly

optimizer back-
end

back-
end linker

linker

device bin

triggers

opti-
mizer

Figure 2. GCC implementation of OpenMP offloading. Red

parts pertain to host compilation (top), blue parts pertain to

accelerator/device compilaton (bottom). For device compila-

tion, only a subset of optimization passes get executed.

pointers and discuss the challenges of offloading from a host

with one data model to an accelerator with another in § 3.

2.4 Accelerator Address Space Restricted Offloading
There are already computers where accelerators have a nar-

rower address width than the host [9, 17, 23, 48]. To share

addresses between host and accelerators on such comput-

ers without compiler support, different fallback options are

being used. All these options restrict the address space of

user-space applications on the host while keeping the op-

erating system (OS) in the native address space. First, host

applications could be compiled for a different ISA that has a

smaller addresswidth but is compatible with the host ISA. For

example, 64-bit ARMv8-A cores are user-space compatible

with the 32-bit ARMv7-A ISA [3] and RV64 cores optionally

implement an RV32 mode [60]. However, this is not possible

for all ISAs. Second, host applications could be compiled for

a different data model that has a smaller address width. For

example, Intel introduced x32 for x86-64 [31]. A major draw-

back of this option is that it requires changes to the compiler,

the standard library, and the kernel, which are relatively

complex to maintain for the limited benefits it offers [32].

Third, some OSes, such as Linux, support restricting stack

and heap addresses to a subset of the address space [25].

However, none of these fallback options allow host applica-

tions to use the full 64-bit address space, so they do not solve

the problem we address.

2.5 Heterogeneous Compilation: State of the Art
GCC separates host and accelerator compiler to compile an

application with OpenMP offloading, as shown in Fig. 2. The

host compiler drives the compilation of a heterogeneous ap-

plication and first lowers the source code to the GIMPLE in-

termediate representation (IR). When the host compiler finds

a target section, it creates a new outlined function. Next,

in the expansion phase, the host compiler replaces OpenMP

directives with calls to functions in the host libgomp RTL.
Finally, after optimizing the GIMPLE IR and as part of link-

time optimization (LTO), the device compiler is invoked to

transform GIMPLE IR to accelerator machine code [6].

In contrast to GCC, LLVM can natively compile for differ-

ent targets and implements heterogeneous compilation as

two separate compilations, as shown in Fig. 3. The necessary

infrastructure was first presented in [2], the key feature be-

ing that the device compilation is largely independent from
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Figure 3. LLVM implementation of OpenMP offloading. Red

parts pertain to host compilation (top), blue parts pertain to

accelerator/device compilaton (bottom).

the host compilation, except for two points. First, the host

compiler is responsible for annotating the parts of the source

code that are visible to the accelerator, and forwards this

information to the device toolchain. Importantly, this is done

before the host has assumed any data model upon the code.

Second, the host link action depends on the completion of the

accelerator compilation, such that the accelerator code can

be linked into a fat host executable and linkable format (ELF)

file. We will discuss the impact of the different approaches

of GCC and LLVM in § 4.1.

3 Mixed-Data-Model Offloading
The central problem in mixed-data-model offloading is to

overcome the difference in the width of pointers between

host and accelerator. As a practical example, consider shar-

ing 64-bit pointers from an LP64 host with an ILP32 device.

The device’s ILP32 data model defines pointers to be 32 bit

wide, so host pointers cannot be used as function arguments

on the device. The device ISA defines memory access in-

structions on 32-bit registers (and potentially immediates),

but provides no way to access 64-bit addresses. Thus, even

though data values wider than 32 bit can be shared with

32-bit devices, they cannot be used as pointers or, from a

lower-level perspective, as memory addresses.

To access addresses wider than the native width, the de-

vice needs to provide minimal hardware support, which the

compiler can use through builtin functions. We will describe

the hardware implementation of these functions in § 5; but

for now we assume there are two runtime functions the

wide-address load wide_load(uint64_t wideaddr) and

the wide-address store wide_store(uint64_t wideaddr)
that take fixed-width integers (e.g., uint64_t in C), wide

enough to represent the host pointers, as arguments and

perform the load from or store to the given address.

3.1 Mixed-Data-Model OpenMP Offloading
To use host pointers as arguments to the extended load and

store functions, they need to be converted to fixed-width

integers in all OpenMP target code and the map clause. In C,

this could be achieved by replacing all host pointer typeswith

uint𝑁_t and all reading or writing dereferences with calls

to the load or store function, respectively. In C++, this could

be achieved by defining a class that wraps a host pointer

and overloading its dereference and assignment operator.

When this transformation is left to the programmer, it is

highly intrusive and requires changes to applications and

libraries, which opposes the goal of transparent offloading.

Moreover, this transformation is incompatible with copy-

based OpenMP offloading for arrays because the array di-

mensions are stripped from the map argument.

The concept of passing host pointers as fixed-width in-

tegers and replacing their use in device code with calls to

functions is nonetheless valid, but the transformation has to

be performed by the compiler.

4 Mixed-Data-Model Compilation
In this section, we discuss options to implement mixed-data-

model compilation based on the concept presented in § 3 in

GCC and LLVM.

4.1 Feasibility in GCC and LLVM
GCC lowers the source code of host and accelerator to the

same IR, which is determined by the host compiler (details

in § 2.5). This implies that the data model of the host must

be used also for the device, and since GCC treats all point-

ers uniform in this respect, that the data model of the host

defines the width of all pointers. Unless GCC’s approach to

heterogeneous compilation is changed fundamentally and

the GIMPLE IR can represent pointers of different width,

mixed-data-model compilation is infeasible in GCC.

LLVM, on the other hand, separates compilation for host

and accelerator asmuch as possible (details in § 2.5) including

the use of multiple device-specific IR modules. Also, LLVM

supports different address spaces, each of which can have its

own width, and allows to assign pointers to address spaces.

Address spaces are defined in the data layout string, and each
heterogeneous target architecture can define its own data

layout. This makes LLVM a natural choice for our mixed-

data-model compiler.

4.2 Front-end or Optimizer?
The first question to address is where to implement the trans-

formation of pointers. The choice is between front-end or

optimizer, because by the time the code reaches the back-

end, it has to be reduced to types and operations that the

target supports natively. In the front-end, the transforma-

tion would traverse the abstract syntax tree (AST) of the

application. It would identify each host pointer that is of-

floaded to the device, replace its type with a fixed-width

one, and replace its use with a function call. The main draw-

backs of this option are that matching all relevant patterns

in the AST is difficult and that it has to be implemented

specifically for each language that is to be supported. In the

optimizer, the transformation would operate on the IR of

the compiler. LLVM’s IR is in static single assignment (SSA)

form, which allows for use-def chain traversals that are natu-

ral for replacing a pointer and all its uses. Also, the IR format

is independent of the source language, so this option can be

generalized to any language supported by the compiler. For
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these reasons, we implement our mixed-data-model compiler

through optimizer passes.

4.3 Our Mixed-Data-Model Compiler in LLVM
To keep track of which pointers address values in the host

and the accelerator memory, we assign them to separate

host and accelerator address spaces (ASes). We refer to the

accelerator AS as device AS to be aligned with common

terminology. The generic AS defines the AS of pointers that
are not explicitly assigned to an AS.

As shown in Fig. 4, we extend the compiler mid-end for the

accelerator with two passes. The first pass assigns pointers

from the generic AS to the host or the device AS. The second

pass converts host pointers to fixed-width integers used to

call the wide_load() and wide_store() builtin functions.

The passes will be described in § 4.3.2 and § 4.3.3 respectively.

First, we will select which AS to use as generic AS for the

accelerator.

4.3.1 Choosing the generic address space
As host and device compilation are separate in LLVM, the

compiler assigns the native AS as the generic AS for compila-

tion. However, using the native accelerator AS as generic AS

leads to problems when the device also has to handle wider-

than-native pointers: dereferencing a host pointer that is not

assigned to the host AS on the device uses only the lower

bytes of the address, which results in an illegal memory ac-

cesses. To ensure correctness, the compiler must guarantee

that each pointer is assigned to an AS that is wide enough

to cover the full addressable memory.

Compiler assignment of pointers to an AS is simple in

many cases, e.g., pointers used in OpenMP offloading (map
clause) are always in the host AS. In full generality, however,

use-def chains can trace to a load from memory, where po-

tential aliases make the identification of all possible values,

and thus the decision between host and device AS, a difficult

problem. To avoid this pitfall, we argue that the native de-

vice AS is no longer a suitable generic AS when considering

mixed-data-width compilation.

We therefore switch to using the host AS as generic AS

also on the device. As host pointers are assumed to be wider

than accelerator pointers, the host AS is a superset of the

device AS. This gives trivial guarantees for correctness as the

generic AS is wide enough to represent any pointer. Having

the fundamental correctness guarantees, the compiler can

optimize for performance by assigning pointers to the device

AS when it is guaranteed to preserve correctness.

For this reason, we use the host AS as generic AS and

optimize as many pointers as possible into the device AS.

4.3.2 Assigning pointers to the device address space
Our solution for assigning pointers to address spaces has

two stages. First, we introduce a __device qualifier and

let Clang expand that to an __attribute(address_space)
corresponding to the device AS, which propagates the AS

assignment to the IR. The intention of this qualifier is that

developers of accelerator libraries (e.g., device stdlib and

OpenMP RTL) use it on pointer arguments and return values

to give the compiler anchor points for device pointers. For
instance, a malloc in accelerator SPM will return a device

pointer, and data transfers to the local accelerator SPM will

take a device pointer as dst argument. All stack allocations

in the device code are automatically in the device AS. The

second step is to propagate the AS from the anchor points
during compilation, such that the burden is not put on the

programmer.

Algorithm 1 Assign pointers to device AS if possible.

1: 𝐸𝑛𝑡𝑟𝑦𝑃𝑡𝑟𝑠 ← {}
2: for each module𝑀 do
3: for each alloca 𝐴 ∈ 𝑀 do
4: if 𝐴 allocates a pointer of depth one then
5: append 𝐴 to 𝐸𝑛𝑡𝑟𝑦𝑃𝑡𝑟𝑠

6: end if
7: end for
8: end for
9: for each pointer 𝑃 ∈ 𝐸𝑛𝑡𝑟𝑦𝑃𝑡𝑟𝑠 do
10: if HoldsOnlyDeviceASPointer(𝑃 ) then
11: 𝑁𝑒𝑤𝑃 ← alloca of 𝑃 in device AS

12: ReplacePtr(𝑃 , 𝑁𝑒𝑤𝑃 )

13: end if
14: end for

The AS assignments are propagated through pointers that

only have dependencies to the known anchor points. For
all pointers passed directly through use-def chains, LLVM

does this implicitly. For pointers passed via memory (e.g.,

explicitly in C as pass-by-reference, when invoking OpenMP

kernels, or due to a transformation), the AddressSpace-
Assigner pass, shown in Algorithm 1, ensures that the AS

is properly propagated. We subsequently call the pointer

stored in memory inner pointer and the pointer to it outer
pointer. That is, the outer pointer is used to pass the inner
pointer via memory. AddressSpaceAssigner first adds all

stack-allocated outer pointers that store an inner pointer to

the 𝐸𝑛𝑡𝑟𝑦𝑃𝑡𝑟𝑠 set (lines 1 to 8). On lines 9 to 14, the pass

checks if each outer pointer 𝑃 ∈ 𝐸𝑛𝑡𝑟𝑦𝑃𝑡𝑟𝑠 only ever holds
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device-AS inner pointers (Algorithm 2). If it does, it replaces

the generic-AS inner pointer in 𝑃 with a device-AS inner

pointer in a new outer pointer 𝑁𝑒𝑤𝑃 , and recursively re-

places all uses of 𝑃 with 𝑁𝑒𝑤𝑃 (Algorithm 3).

Algorithm 2 Determine whether an outer pointer 𝑃 always

holds an inner pointer in the device AS.

1: function HoldsOnlyDeviceASPointer(pointer 𝑃 )

2: ⊲Check if each use𝑈 doesnot set the inner pointer of 𝑃 outside
the device AS.

3: for each use𝑈 of 𝑃 do
4: if 𝑈 is ptrtoint or load from 𝑃 then
5: continue
6: end if
7: if 𝑈 is cast or getelementptr then
8: ⊲Casts and GEPs return a new pointer to recurse on.
9: if HoldsOnlyDeviceASPointer(𝑈 ) then
10: continue
11: end if
12: end if
13: ⊲ Ensure that each inner pointer ever stored to 𝑃 is in

device AS.
14: if 𝑈 is store 𝑆 to 𝑃 and value of 𝑆 is

addrspacecast from device AS then
15: continue
16: end if
17: ⊲ Ensure that each function called with argument 𝑃 does

not modify the inner pointer of 𝑃 .
18: if 𝑈 is direct call to function 𝐹 and 𝑃 is used

read-only by 𝐹 then
19: continue
20: end if
21: ⊲ If no match, inner pointer of 𝑃 could be outside device

AS.
22: return false

23: end for
24: return true

25: end function

HoldsOnlyDeviceASPointer in Algorithm 2 determines

whether an outer pointer 𝑃 always holds a device-AS inner

pointer. For this, the pass matches all uses of 𝑃 against condi-

tions known to not change the AS of the inner pointer. The

list of conditions constitutes the bulk of Algorithm 2, but may

not be complete. Since this is an optimization pass, the gist is

to preserve correctness: If the conditions in the algorithm do

not ensure that a pointer cannot be assigned a value outside

the device AS, the AS migration is aborted on line 22. Addi-

tional conditions that preserve correctness could be added

to further improve the optimization, but their omission does

not compromise the correctness of Algorithm 2.

ReplacePtr in Algorithm 3 replaces each use of a pointer

𝑂𝑃 with a new pointer 𝑁𝑃 . We use it on line 12 of Algo-

rithm 1 to replace host-AS pointers with device-AS pointers.

Algorithm 3 Replace all uses of a pointer.

1: function ReplacePtr(old pointer𝑂𝑃 , new pointer 𝑁𝑃 )

2: for each use𝑈 of 𝑂𝑃 do
3: if can replace 𝑂𝑃 by 𝑁𝑃 in𝑈 then
4: 𝑁𝑈 ← clone of𝑈 with 𝑂𝑃 replaced by 𝑁𝑃

5: if type of 𝑁𝑈 ≠ type of𝑈 then
6: ReplacePtr(𝑈 , 𝑁𝑈 )

7: end if
8: else
9: 𝐶𝐼 ← 𝑁𝑃 addrspacecast to type of 𝑂𝑃

10: replace use of 𝑂𝑃 in𝑈 with 𝐶𝐼

11: end if
12: end for
13: replace 𝑂𝑃 with 𝑁𝑃

14: end function

For each instruction 𝑈 that depends on the old pointer 𝑂𝑃 ,

the algorithm first checks whether the use of 𝑂𝑃 in 𝑈 can

be replaced with the given new pointer 𝑁𝑃 (line 3). Such

a replacement is not possible, e.g., if 𝑈 is a call to an ex-

ternal function: Because LLVM IR is strongly typed – in-

cluding ASes – the AS of every use of the argument within

the external function would have to be changed, which is

not possible if the function is not visible to the compiler. In

this case, ReplacePtr casts the resulting pointer back to the
original AS (lines 9 to 10), to remain compatible. If 𝑂𝑃 can

be replaced (lines 4 to 7), 𝑈 is cloned into 𝑁𝑈 , which uses

the new pointer 𝑁𝑃 instead of 𝑂𝑃 . For dereference chains,

ReplacePtr needs to replace the entire chain with the new

AS. Due to strong typing, instructions that return pointers

have their type changed when the AS is modified. This is

detected on line 5 and triggers a recursive call on line 6. The

base case occurs when the type of 𝑁𝑈 is the same as the

type for 𝑈 , i.e., the instruction returns a non-pointer value.

Once 𝑂𝑃 has been replaced in all uses, the original pointer

𝑂𝑃 is replaced by 𝑁𝑃 on line 13.

Following the AS assignment, the bulk of built-in optimiza-

tion passes (e.g., canonicalization and loop optimizations)

are executed on the resulting IR.

4.3.3 Legalizing accesses to host pointers
Before the late built-in optimizations, our second pass uti-

lizes the AS assignments to legalize pointers before the IR

is passed on to the back-end. Legalization is the process of

converting generic IR types and operations to target-specific

ones supported by the back-end. As all major ISAs today

treat pointers like integers in terms of operations and reg-

ister storage, pointers are just fixed-width integers in the

back-end. The LLVM back-end can legalize operations on

wider-than-native integers to multiple native instructions

on multiple native registers. However, it can not generically

legalize memory accesses to wider-than-native addresses.
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Algorithm 4 Legalizing accesses to host pointers.

1: for each module𝑀 do
2: for each load 𝐿 ∈ 𝑀 do
3: if 𝐿 loads from host AS then
4: 𝑆𝑍 ← size in bits of 𝐿

5: 𝐼𝐴← integer address of 𝐿

6: replace 𝐿 with wide_load call of 𝑆𝑍 to 𝐼𝐴

7: end if
8: end for
9: for each store 𝑆 ∈ 𝑀 do
10: if 𝑆 stores into host AS then
11: 𝑆𝑍 ← size in bits of 𝑆

12: 𝐼𝐴← integer address of 𝑆

13: replace 𝑆 with wide_store call of 𝑆𝑍 to 𝐼𝐴

14: end if
15: end for
16: for each addrspacecast 𝐴 ∈ 𝑀 do
17: 𝑆𝐴← integer source address of 𝐴

18: if 𝑆𝐴 in device AS then
19: 𝐷𝐴← zero extension of 𝑆𝐴

20: else if 𝑆𝐴 in host AS then
21: 𝐷𝐴← truncation of 𝑆𝐴

22: end if
23: replace 𝐴 with pointer from address 𝐷𝐴

24: end for
25: end for

This problem is solved by our HostPointerLegalizer
pass, shown in Algorithm 4, by utilizing the assigned ad-

dress spaces. Wide host pointer accesses are legalized by

replacing them with calls to builtin functions wide_load()
and wide_store() (as introduced in § 3, and to be defined in

§ 5), by replacing the wide pointers with fixed-width integer
types that the back-end can already legalize. Specifically, the

pass does the following for every module in device code. On

lines 6 and 13, it replaces all loads from the host AS with

calls to the wide_load function and all stores to the host AS

with wide_store calls. Note that memory can additionally

be accessed through intrinsic functions (e.g., memcpy), and
the device RTL needs to provide implementations of these

functions that can work with host-AS arguments. Finally, on

line 23, the pass resolves AS casts from device to host AS by

zero extension and from host to device AS by truncation of

the source address. This truncation is lossless as Algorithm 2

ensured that the pointer only ever holds inner pointers in

the device AS.

Once pointers are legalized, late built-in optimizations

(e.g., target specialization) can be applied before the IR is

passed on to the target-specific back-end. Importantly, the

inline pass is executed at this stage, to minimize the per-

formance impact of the wide_load() and wide_store()
functions.

Option Requires mod. Instrs. Cycles
ISA Core

Wider loads & stores Y Y 1 𝐿 + 1

Adding CSRs N Y 4 𝐿 + 𝐿′ + 2

Mem.-mapped ext. reg. N N 6 𝐿 + 𝐿′ + 4

Table 2. Alternatives for accessing memory addresses wider

than the data width of a core. The two right-most columns

quantify the instructions and number of cycles of each alter-

native for loading (storing) a 64-bit value from (to) a 64-bit

address with a 32-bit core. 𝐿 is the latency of the first (or

only) memory access, 𝐿′ the latency of the subsequent access
with an offset of 4 on the same base address. Modifications to

the ISA also require modifications to the compiler backend.

5 HW Support for Extended Addressing
In the previous sections we left the wide_load() and wide_-
store() functions, which implement address-extended loads

and stores, as black boxes. We will now define them. There

are several options to implement this functionality in the un-

derlying hardware. In this section, we present three options

with decreasing degrees of intrusiveness, listed in Table 2,

and implement the least intrusive option to show the gener-

ality of our solution and to upper-bound its overhead. For

generality and because 64-bit addresses also induce a consid-

erable amount of 64-bit data accesses, the examples discuss

loading and storing 64-bit values. The reduction of the ex-

amples to 32-bit (and smaller) values with 64-bit addresses

is trivial.

5.1 Additional, Wider Load & Store Instructions
The most intrusive option is to extend the ISA with custom

load and store instructions that operate on paired registers.

For example, a 32-bit ISA could be extended with instructions

such as ldd x0, 0(x2) to load from x3 (upper 32 address bits)
and x2 (lower 32 address bits) into the registers x1 (upper 32
data bits) and x0 (lower 32 address bits). Assuming a standard

register file (RF) with two read and one write ports, each

such load and store would take one extra cycle on top of the

latency of the memory access, because the wider load needs

to write the upper half of data to the RF and the wider store

needs to read the upper half of address and data from the

RF. Thus, this ISA extension allows a 32-bit core to access

64-bit addresses with one instruction and 𝐿 + 1 cycles, where
𝐿 is the latency of the access. The compiler backend would

need to be modified to know the double-register semantics

of such instructions. This option requires logic to decode

the additional instructions and a state register to control the

address extension within the core but no additional register

to hold the address extension.

5.2 Additional Control and Status Registers (CSRs)
As extending the ISA might not be possible, a less intrusive

option is to add control and status registers (CSRs) to hold the
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part of an address that does not fit into registers. For example,

one 32-bit CSR, which the LSU uses as upper 32 address bits,

allows a 32-bit core to access 64-bit addresses. If the CSR

is defined to clear on the next memory access and disable

interrupts until the memory access (to prevent the address

extension from corrupting memory accesses in interrupts), a

32-bit core can load a 64-bit value from a 64-bit address with

the following four standard RISC-V
1
instructions:

csrrw x0, csr_addr_ext, x3 // set upper half of address

// and disable interrupts

lw x0, 0(x2) // load lower half of data

// and reenable interrupts

csrrw x0, csr_addr_ext, x3 // set upper half of address

// and disable interrupts

lw x1, 4(x2) // load upper half of data

// and reenable interrupts

where pre- and post-conditions on the registers are as in the

last paragraph. The instructions setting the address extension

CSR take one cycle each. The first lwmight miss in the cache

(latency 𝐿), while the second lwwith an offset of four bytes to
the same base address almost certainly hits (latency 𝐿′). Thus,
this solution allows a 32-bit core with one additional 32-bit

CSR to access a 64-bit address with 4 standard instructions

and 𝐿 + 𝐿′ + 2 cycles.

5.3 Memory-Mapped External Register
The least intrusive option is to place an address extension

register right outside the core and map it to the I/O address

space of the core. For example, one 32-bit external register

that extends the 32-bit address provided by the LSU of that

core allows to access 64-bit addresses from an unmodified

32-bit core. Like the CSR, this register is defined to clear on

the next memory access. A load with the same semantics as

in the other examples can be performed with the following

six standard RISC-V instructions:

csrrci x4, csr_status, 3 // disable interrupts

sw x3, 0(mem_addr_ext) // set upper (sic!) half of address
lw x0, 0(x2) // load lower half of data

sw x3, 0(mem_addr_ext) // set upper half of address

lw x1, 4(x2) // load upper half of data

csrrw x0, csr_status, x4 // reenable interrupts

Like a CSR, a register directly after the core can generally be

accessed in one cycle. Thus, this solution allows an entirely

unmodified 32-bit core to access a 64-bit address with 6

standard instructions and 𝐿 + 𝐿′ + 4 cycles. The required

extra hardware is one 32-bit register outside the core.

We implement this last option as it is the most generic

and puts an upper bound on the overhead of our solution.

1
Similar constructs are possible in other ISAs, we use RISC-V as a concrete

example.

6 Evaluation
We show that our solution enables OpenMP offloading across

data model boundaries with an average run-time overhead

below 0.7 % compared to offloading restricted, native-accele-

rator-width addresses over a wide range of benchmarks.

6.1 Methodology
We implement our compiler in LLVM 8.0.0 [30], and we use

a custom version of the open-source HERO heterogeneous

research platform [27, 28] to implement extended addressing

as described in § 5.3. We use a 64-bit RISC-V Ariane core [63]

as host and a cluster from the PULP project [49] with 8 32-bit

RISC-V PEs [18], one DMA engine, and 256 KiB of L1 SPM in

16 banks that the PEs can access in a single cycle, as PMCA.

Each PE has a memory-mapped external 32-bit register to

extend addresses to 64 bits. All hardware is implemented

in synthesizable hardware description language (HDL) and

benchmarks are measured in cycle-accurate hardware simu-

lation using Questa 10.7b [35].

Kernel Parallelized computation Complexity
space comput.

2mm 𝐶𝑖, 𝑗 =
∑𝑁
𝑘=1

𝛼𝐴𝑖,𝑘𝐵𝑘,𝑗 O
(
𝑁 2

)
O

(
𝑁 3

)
3mm 𝐸 = 2mm(𝐴, 𝐵) → 𝐹 = 2mm(𝐶, 𝐷)

→ 𝐺 = 2mm(𝐸, 𝐹 )
O

(
𝑁 2

)
O

(
𝑁 3

)
atax 𝐵𝑖 =

∑𝑁
𝑗=1𝐴𝑖, 𝑗𝑋 𝑗

→ 𝑌𝑖 =
∑𝑁

𝑗=1𝐴 𝑗,𝑖𝐵 𝑗

O
(
𝑁 2

)
O

(
𝑁 2

)
bicg 𝑄𝑖 =

∑𝑁
𝑗=1𝐴𝑖, 𝑗𝑃 𝑗

→ 𝑆 𝑗 =
∑𝑁
𝑖=1 𝑅𝑖𝐴𝑖, 𝑗

O
(
𝑁 2

)
O

(
𝑁 2

)
conv2d 𝐵𝑖, 𝑗 =

∑(1,1)
(𝑘,𝑙)=(−1,−1) 𝑐𝑘,𝑙𝐴𝑖+𝑘,𝑗+𝑙 O

(
𝑁 2

)
O

(
𝑁 2

)
covar 𝐸 𝑗 = 𝛼

∑𝑀
𝑖=1 𝐷𝑖, 𝑗 ; 𝐷𝑖, 𝑗 −= 𝐸 𝑗 ;

𝑆𝑖, 𝑗 = 𝑆 𝑗,𝑖 =
∑𝑁
𝑘=1

𝐷𝑘,𝑖𝐷𝑘,𝑗

O
(
𝑁 2

)
O

(
𝑁 3

)
gemm 𝐶𝑖, 𝑗 = 𝛽

(∑𝑁
𝑘=1

𝛼𝐴𝑖,𝑘𝐵𝑘,𝑗

)
O

(
𝑁 2

)
O

(
𝑁 3

)
Table 3. Evaluated kernels. Subscripts denote indices, upper-
case letters are variables, and lowercase letters are constants.

Arrows (→) denote consecutive offloads. Semicolons (;) de-

note consecutive parallel phases within the same offload.

We evaluate the seven kernels listed in Table 3. From the

Polybench/ACC benchmark suite [19], 2mm, 3mm, atax, bicg,
and gemm are linear algebra kernels, conv2d is part of the

“stencil” domain, and covar is part of the “datamining” do-

main. Together, these commonly accelerated kernels span

a wide range of memory access patterns and operational

intensities. All matrices are stored in row-major arrays. Data

is copied to and from accelerator L1 SPM with the DMA

engine at the beginning and end of each offload phase, re-

spectively. Computations of the accelerator thus exclusively

use the L1 SPM. The accelerator PEs execute the computa-

tion in the second column of Table 3 in parallel. 3mm, atax,
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and bicg are composed of consecutive offloads, denoted by

arrows (→) in the table, all other kernels consist of a sin-

gle offload. All benchmarks are compiled with -O3 but no

specific optimization flags.

We measure the run time of each kernel in accelerator

clock cycles, starting before the first DMA transfer of input

data and stopping after the last DMA transfer of output data.

In the baseline, the accelerator works exclusively with 32-bit

addresses, i.e., the benchmarks are compiled for a 32-bit host

and accelerator. We compare two implementations, where

the benchmarks are compiled for a 64-bit host and a 32-bit

accelerator with 64-bit generic AS, to the baseline: First, to

analyze the performance impact of handling 64-bit pointers

within the kernels on the 32-bit accelerator, we do not run

the AS assignment pass. In other words, all accesses require

64-bit extension and take 𝐿 + 𝐿′ + 4 cycles, as described in

§ 5.3. Second, to analyze the efficiency of our solution, we

run our full compiler including the AS assignment pass.

6.2 Benchmark Results
As the performance-critical part of each benchmark operates

exclusively on device memory, which can be addressed with

32-bit pointers, our hypothesis is that the run-time overhead

of our mixed-data-model compiler converges to zero with

increasing data sizes. The evaluation is focused on small data

sizes to analyze the effect on fine-grained offloading and the

rate of convergence.

Fig. 5 shows the execution time of all benchmarks and

both implementations relative to the baseline, where the

accelerator works exclusively with native 32-bit addresses.

For each benchmark, four bars represent different data sizes;

for example, size 8 means that all matrices in a benchmark

are 8 × 8 and vectors have length 8.

In the left part, where the accelerator has to work with 64-

bit addresses also for local memory, the run time is multiplied

by a factor of 1.4 to 5.8. For 3mm, 2mm, gemm, and covar, the
relative run time converges to more than 4×. Those three
kernels are dominated by computations and thus also by

local memory accesses by the PEs using wide_load/store,
and each access to a 32-bit word in L1 now takes 4 instead of

1 cycle. In addition, the wide_* memory accesses leave the

compiler less freedom for scheduling memory accesses: it is

currently not possible to define ordering constraints related

to 64-bit addresses in a 32-bit compiler, so the order of every

wide_* with respect to any other memory access needs to

be preserved. The overhead is less pronounced for the other

kernels, which are more balanced between data transfers

through the DMA engine and memory accesses by the PEs.

Nonetheless, the run-time overhead of using a 64-bit AS as

generic AS for the device is clearly prohibitive, constituting

the need for our AS assignment compiler pass.

In the right part of Fig. 5, where our compiler pass assigns

as many device pointers to the 32-bit device AS as possible,

the situation is completely different. Even for very small

data sets (8 × 8 matrices and 8 × 1 vectors), the run-time

overhead never exceeds 22 %. Even more importantly, the

overhead rapidly converges to zero for all kernels, and al-

ready is below 0.7 % on average for still small data sets of size

64. This demonstrates the effectiveness of our AS assignment

pass and proves that our compiler enables mixed-data-model

offloading with negligible overheads in run time.

7 Related Work
To our knowledge, no computer today supports sharing data

in the full host address space with accelerators that have

a shorter data width. The concept of passing pointers as

fixed-width integers (see § 3) could apply to such comput-

ers as well, given minimal hardware support for extended

addressing (see § 5). However, we know no related work

that includes these contributions (and consequently neither

the compiler in § 4). In this section, we discuss how related

works implement offloading by avoiding mixed data models.

Existing heterogeneous computers with mixed-width com-

ponents (e.g., [9, 17, 23, 28, 48]) do not support OpenMP

offloading or restrict the address space of offloaded applica-

tions to that of the accelerator (see § 2.4).

Most general-purpose GPUs (GPGPUs) used today in het-

erogeneous computers can natively access 64-bit addresses [1,

41]. GPGPUs, which implement double-precision floating-

point arithmetics in hardware and are designed for SIMD

(and SIMT) parallelism, naturally have a wide data path, so

64-bit addressing comes at very little additional cost. This

also applies to CPU+GPU SoCs; for example, Nvidia’s Tegra

today fully supports offloading in 64-bit applications [40],

although earlier versions restricted the address space of

offloaded applications to 32 bit [39]. Many works address

OpenMP offloading from 64-bit hosts to 64-bit GPUs with

LLVM [2, 4, 45].

Digital signal processors (DSPs) are an important class of

accelerators that benefit much less from a 64-bit data path

because they usually operate on sensor data, which does

not exceed 32 bit in precision (although DSPs are also de-

signed for SIMD parallelism). Today, even high-end DSPs are

32-bit machines [54] and the SoCs they are used in feature

32-bit host processors [52], even for driver assistance sys-

tems that include graphics accelerators [53]. Many of these

fully-32-bit DSP SoCs support OpenMP offloading [37, 51].

Other DSPs [5, 10, 17] and DSP-like accelerators [13, 43] that

feature 32-bit very long instruction word (VLIW) ISAs are

typically programmed through application-specific libraries

such as OpenCV [46] and OpenVX [26]. Provided a mini-

mal OpenMP device RTL and support for the ISA in LLVM,

our work could enable to use these accelerators as OpenMP

offload targets in modern SoCs with 64-bit host processors.

Address spaces are also used in CUDA [11] to define the

memory location of functions and variables. Clang compiles

CUDA code with address specifiers such as __device__ to
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Figure 5. Execution time relative to using only 32-bit addresses without (left) and with (right) our compiler pass that assigns

device pointers to the 32-bit device address space.

addrspace attributes in LLVM IR. In contrast to our work, no

two CUDA address spaces overlap, so they are not used for

accessing host memory from the device (or vice-versa) [42].

Address spaces in LLVM can further define pointers to be

non-integral, which has been used to implement “fat” point-

ers with hardware support for memory protection [8, 62].

OpenACC [7] is a heterogeneous programming alternative

to OpenMP. Its data model [61] is more generic than that

of OpenMP but also supports accelerator-private memory.

In Clang, OpenACC is being implemented by translating to

OpenMP [15], so our work naturally extends to OpenACC

as far as implemented in Clang.

Different approaches enable automatic offloading to GPUs.

Graphite-OpenCL [47] first proposed static offloading of par-

allel loops to GPUs, relying on polyhedral analysis tech-

niques to identify suitable subprograms. In the context of

LLVM, several approaches use Polly [20] as a foundation

for automatic accelerator mapping. Examples are Kernel-

Gen [36] which introduced a device focused approach only

falling back to the host system if unavoidable, Damschen

et al.’s approach [14] using a sophisticated client-server ap-

proach to orchestrate computations on Xeon Phi systems,

and Polly-ACC [21] that introduces cross-kernel analysis to

reduce overall data movement. To our understanding, all ap-

proaches target 64-bit devices and do not address offloading

to devices with a data width that differs from that of the

host. As our proposed concept for mixed-data-model compi-

lation and offloading is not restricted to OpenMP but relies

on generic IR analysis and transformations, it could apply to

OpenCL and related frameworks as well.

Extended addressing has been implemented in processors

for different purposes. In x86’s Physical Address Extension

(PAE) [50], page table entries are 64-bit but the (virtual)

addresses used by processors remain 32 bit. Using address

translation to access a wider host address space from accel-

erators is theoretically possible, but maintaining a virtual

address space that is different from that of the host is not

trivial, so we prefer simple address extension. Similar to the

first of our address extension options, [57] extended a 32-

bit ISA with 64-bit load and store instructions and added

a special-purpose register for address extension (whereas

our first option does not require additional registers). They

observe that SPEC CPU2006 uses less than 4GiB memory

and thus use 32-bit load/store instructions whenever possi-

ble. The authors have recently integrated that work into a

proposed composite ISA [56], which includes a 32-bit instruc-

tion subset. The focus of our work, in contrast, is to enable

the first-class integration of 32-bit accelerators in a 64-bit

addressed computer, and we design and implement compiler

optimizations to do this in prevalent heterogeneous program-

ming models and without restrictions or assumptions on the

used memory space.

8 Conclusion
Our work extends prevalent programming models for hetero-

geneous computers (e.g., OpenMP, OpenACC) to computers

with mixed data widths (e.g., 64-bit host and 32-bit accelera-

tor) for the first time. We presented the general concept of

mixed-data-model offloading in § 3 and designed and imple-

mented an LLVM-based compiler to implement our solution

fully transparently to the programmer in § 4. We discussed

hardware support for extended addressing in § 5 and imple-

mented the least intrusive variant to show the generality

of our solution and upper-bound its overhead. Results on

benchmarks from the PolyBench-ACC suite show that a 32-

bit accelerator can transparently share memory with a 64-bit
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host at an average overhead below 0.7 % compared to 32-

bit-only execution, enabling mixed-data-model systems to

execute at near-native performance.
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