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Abstract

In this study we gained insights into the effects of the supplementation with Lactobacillus aci-

dophilus D2/CSL (CECT 4529) in the chicken drinking water on crop and caeca micro-

biomes. The probiotic was supplemented at the concentrations of 0.2 g Lactobacillus

acidophilus/day/bird and 0.02 g Lactobacillus acidophilus/day/bird and its effect on the crop

and caeca microbiomes was assessed at 14 and 35 days of rearing. The results showed that

mean relative abundance of Lactobacillus acidophilus in the caeca did not show significative

differences in the treated and control birds, although Lactobacillus acidophilus as well as

Faecalibacterium prausnitzii, Lactobacillus crispatus and Lactobacillus reuteri significantly

increased over time. Moreover, the treatment with the high dose of probiotic significantly

increased the abundance of Clostridium asparagiforme, Clostridium hathewayi and Clostrid-

ium saccharolyticum producing butyrate and other organic acids supporting the chicken

health. Finally, at 35 days, the Cell division protein FtsH (EC 3.4.24.-) and the Site-specific

recombinase genes were significantly increased in the caeca of birds treated with the high

dose of probiotic in comparison to the control group. The results of this study showed that

Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in the drinking water at the

concentrations of 0.2 and 0.02 g Lactobacillus acidophilus/day/bird improved beneficial

microbes and functional genes in broiler crops and caeca. Nevertheless, the main site of

action of the probiotic is the crop, at least in the early stage of the chicken life. Indeed, at 14

days Lactobacillus acidophilus was significantly higher in the crops of chickens treated with

the high dose of LA in comparison to the control (14.094 vs 1.741%, p = 0.036).

Introduction

Probiotics are classified as live non-pathogenic microorganisms that are capable of maintain-

ing a normal gastrointestinal microbiota [1, 2]. They can contain one or many strains of

microbial species, with the more common ones belonging to the genera Lactobacillus,
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Bifidobacterium, Enterococcus, Bacillus and Pediococcus [3]. The primary function of the gas-

trointestinal tract is to digest and absorb nutrients and a well-balanced microbiota is crucial

for optimal animal health and performance [4].

Presently there is a great deal of interest in the possibility of altering the intestinal micro-

biota in a beneficial and “natural” way to improve animal health thus preventing the need to

use antibiotics. Indeed, the increasing incidence of antibiotic resistance is considered to be one

of the greatest threats to public health globally. Feeding broilers with probiotic Lactobacilli is

potentially a useful approach to address this concern. Lactobacilli become established in the

gastro-intestinal (GI) tract of chicks soon after hatching and their metabolic activity lowers

the pH of the digesta, which in turn inhibits the proliferation of enterobacteria and other

unwanted bacteria [5, 6].

Ideally, researchers select the promising probiotic strains from the indigenous intestinal

microbiota by supposing that these microorganisms have a symbiotic relationship with the

host, so they could colonize the GI tract. Modes of action of probiotic Lactobacilli include

competitive exclusion toward harmful bacteria, alteration of microbial and host metabolism,

and immunity modulation [1, 7–11]. The bacterial strain, the dosage (i.e., colony forming unit

(cfu)/bird/day), the duration of the treatment and the delivery strategy are among the critical

factors influencing the probiotics efficacy. There are many different methods for administering

probiotic preparations to broiler chickens. They are mainly represented by supplementation to

the feed or water, through gavage (including droplet or inoculations), spraying or via applica-

tion to the litter. However, adding the probiotic to the feed is the most commonly used method

in poultry production [12]. In contrast, it is known that introducing probiotics through drink-

ing water, into the crop by tube and syringe, with crumbles, or by spraying on the bird envi-

ronment and litter had no effect on their survival rate [13–15].

In a previous study [16] we evaluated the effects of supplementing Lactobacillus acidophilus
D2/CSL (CECT 4529) (LA) in broiler chicken feed on production performance, foot pad der-

matitis and caecum microbiome. The results showed that supplementation with Lactobacillus
acidophilusD2/CSL (CECT 4529) at the recommended dietary dosage of 1x109 cfu/kg of feed

significantly improved body weight at 28 days (commercial weight of 1.5 kg) and feed conver-

sion rate from 0 to 41 days, while reducing the incidence of pasty vent. Faecalibacterium praus-
nitzii and Subdonigranulum variabile, which are Clostridium cluster IV microorganisms

producing primarily butyrate, were not significantly different between treated and control

groups and the relative abundance of Lactobacillus acidophilus in the caeca of treated chickens

was comparable with that of the control group, although a positive effect of supplementing

Lactobacillus acidophilus was observed in regards to functional genes as β-glucosidase and

improving animal production performance and health.

In the present study we explored the effect of supplementing two concentrations of probi-

otic LA in the drinking water on the chicken crop and caeca microbiome sampled at day 1, 14

and 35.

Materials and methods

Animals and treatments

The experiment was approved by the Ethical Committee of the University of Bologna on 17/3/

2014 (ID: 10/79/2014). A total of 120 day-old male Ross 308 chicks, obtained from the same

breeder flock and hatching session, were used. Birds were vaccinated against infectious bron-

chitis virus, Marek’s disease virus, Newcastle and Gumboro diseases and coccidiosis at the

hatchery. At the housing time, chicks were divided into three separate rooms, labelled as A, B

and C, containing two pens each (20 birds/pen). The pens were equipped with pan feeders to
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assure at least 2 cm/bird of front space and an independent drinking system with 1 nipple/5

birds. Feed and not chlorinated water were provided ad libitum. The basal diet composition is

given in Table 1. The experiment lasted 35 days. Photoperiod and temperature programs were

set up according to the European welfare regulation 43/2007 [17]. The chicks housed in room

A drank approximately 0.2 g of probiotic each once a day. This concentration of LA was

defined as high (HD) and corresponded to 1010 colony forming unit (CFU) of LA/bird/day.

The chicks housed in room B drank approximately 0.02 g of probiotic once a day. This concen-

tration of LA was defined as low (LD) and corresponded to 109 CFU of LA/bird/day. Finally,

the chicks housed in room C drank water without supplementation of probiotic. To be able to

provide LA to chickens in the drinking troughs, the latter were taken out for 1.5 hours every

morning and supplemented again with or without the LA in drinking water. When the water

with or without the probiotic was supplemented after the 1.5 hour suspension period all the

birds drank from the drinking trough and we assumed that they ingested the targeted dose of

Table 1. Basal diets composition.

Starter (0–14 d) Grower (15–28 d) Finisher (29–41 d)

Ingredients, g/100 g

Corn 42.17 34.96 12.73

White corn 0.00 0.00 15.00

Wheat 10.00 20.00 25.01

Sorghum 0.00 0.00 5.00

Soybean meal 23.11 20.63 17.60

Expanded soybean 10.00 10.00 13.00

Sunflower 3.00 3.00 3.00

Corn gluten meal 4.00 3.00 0.00

Soybean oil 3.08 4.43 5.48

Dicalcium phosphate 1.52 1.20 0.57

Calcium carbonate 0.91 0.65 0.52

Sodium bicarbonate 0.15 0.10 0.15

Salt 0.27 0.27 0.25

Choline chloride 0.10 0.10 0.10

Lysine sulphate 0.59 0.55 0.46

Dl-methionine 0.27 0.29 0.30

Threonine 0.15 0.14 0.14

Xylanase 0.08 0.08 0.08

Phytase 0.10 0.10 0.10

Vitamin-mineral premix1 0.50 0.50 0.50

Proximate composition, g/100g

Dry matter 88.57 88.65 88.64

Protein 22.70 21.49 19.74

Lipid 7.06 8.24 9.74

Fiber 3.08 3.04 3.07

Ash 5.85 5.17 4.49

ME (kcal/kg) 3,076 3,168 3,264

1 Provided the following per kg of diet: vitamin A (retinyl acetate), 13,000 IU; vitamin D3 (cholecalciferol), 4,000 IU;

vitamin E (DL-α_tocopheryl acetate), 80 IU; vitamin K (menadione sodium bisulfite), 3 mg; riboflavin, 6.0 mg;

pantothenic acid, 6.0 mg; niacin, 20 mg; pyridoxine, 2 mg; folic acid, 0.5 mg; biotin, 0.10 mg; thiamine, 2.5 mg;

vitamin B12 20 μg; Mn, 100 mg; Zn, 85 mg; Fe, 30 mg; Cu, 10 mg; I, 1.5 mg; Se, 0.2 mg; ethoxyquin, 100 mg.

https://doi.org/10.1371/journal.pone.0228338.t001
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treatment. The probiotic strain L. acidophilusD2/CSL was isolated from the GI tract of a

healthy adult chicken [18] and supplied by Centro Sperimentale del Latte S.r.l. (Lodi, Italy).

Sample collection for metagenomics

To characterize the impact of the supplementation of LA at the difference concentrations in

drinking water on the crop and caecum microbiome, representing both the microbial popula-

tions and the genes related to their metabolic functions, 5 animals were randomly selected and

humanely euthanized at the arrival, before the LA application (day 1); 18 chickens (6/room

and 3/pen) were randomly selected and humanely euthanized at day 14; 30 chickens (10/room

and 5/pen) at the end of the rearing cycle at day 35. The entire gastrointestinal (GI) tract of

each bird was dissected out and a small sample (i.e., 0.5 to 2 g) of crop as well as cecum content

was collected into 2 ml sterile plastic tubes, flash freezed in liquid nitrogen and then stored at

-80˚C until further testing.

DNA extraction and sequencing

The DNA was extracted from each sample of caecum and crop content as previously described

[16]. Total DNA from each sample was fragmented and tagged with sequencing adapters using

the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA) and 82 extracted

DNA samples resulted in libraries of the appropriate size and concentration to be sequenced.

Shotgun metagenomic sequencing was performed using the HiScanSQ sequencer (Illumina)

at 100 bp in paired-end mode.

Bioinformatic and statistical analysis

Following sequencing, all reads were assessed for quality parameters and the paired end

merged. The MG-RAST pipeline [19] (metagenomics.anl.gov) was used to identify the relative

abundances of bacterial taxa performing a BLAST similarity search for the longest cluster rep-

resentative against the M5rna database, integrating SILVA [20], Greengenes [21] and RDP

[22]. Moreover, the sequenced reads were assigned to functional groups using the Kyoto Ency-

clopedia of Genes and Genome (KEGG) database (www.genome.jp/kegg/) [23] and their per-

centage of abundance was calculated.

Statistical analysis was performed separately for the crop and caeca samples on both taxo-

nomic and functional genes.

The effect of treatment and time over the abundance of taxonomic or functional genes was

evaluated using the package phyloseq 1.26.0 in R 3.5.1. In particular, DESeq was used to com-

pute a Negative Binomial Generalized Linear Model and to test for significance of coefficients.

The model was applied for the time interval between 14 and 35 days considering as covariates

the treatment, the sampling time as well as their interaction meaning whether treatment effects

were affected by time. The p-values, assessing the statistical significance of the variables, were

adjusted for multiple testing using the Benjamini-Hochberg procedure. For each intestinal

tract, DESeq was also used to perform a Likelihood Ratio Test at 14 days and 35 days to evalu-

ate the effect of treatment on both the taxonomic and functional genes abundances. Moreover,

pairwise comparisons between the three treatments (control, low dose and high dose of probi-

otic) were performed using the Wald test. Also in these cases, p-values were adjusted for multi-

ple testing using the Benjamini-Hochberg procedure.

Alpha diversity was computed using an in-house pipeline that computes the indices from

the normalized read counts. Alpha diversities of different groups were compared using the Stu-

dent’s t-test. P-values were adjusted for multiple testing using the Benjamini–Hochberg proce-

dure. In all statistical analysis, p values< 0.05 were considered statistically significant. Finally,
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Bray-Curtis beta diversity and Principal Coordinate analysis were computed using the scikit-

bio 0.4.2 library in python 3.6.3.

Results

Metagenomic results

Metagenomic sequencing yielded an average of 5.706 million mapped reads/sample, with a

Phread quality score always higher than 30. The 82 metagenomes sequenced are available from

MG RAST (http://metagenomics.anl.gov/linkin.cgi?project=13081). The metagenome IDs are

described in S1 Table.

Taxonomic composition of caeca and crop microbiome

Phyla identified in the caeca and crop microbiome. At 14 and 35 days, the most abun-

dant phyla did not show any significant differences in the caeca of birds belonging to the three

test groups (i.e., high dose, low dose and control) (S2 Table). The only exception was the Acti-

nobacteria at 35 days which showed a mean relative abundance (MRA) significantly lower in

the low dose group compared to the control group (3.046 vs 4.189%, p = 0.017). The same

result was observed in the caeca of birds belonging to the high dose group in comparison to

the control (3.012 vs 4.189%, p = 0.005). In contrast, the MRA of Actinobacteria in the caeca of

birds fed with the low and high dose of probiotic were not significantly different (S2 Table).

The covariate results including treatment, sampling time and their interaction showed signifi-

cant time (p = 0.003) and time by treatment (p = 0.021) interaction for the MRA of Actinobac-

teria found in the caeca of the tested groups, which significantly increased between 14 and 35

days. In comparison, the MRA of Bacteroidetes significantly decreased between 14 and 35

days due to both time (p = 0.008) and time and treatment interactions (p<0.000). In the crops

of chickens fed the low dose probiotic, the MRA of Firmicutes at 14 days was significantly

lower in comparison to the control group (77.768 vs 91.923%, p = 0.020) but this difference

was not detected at 35 days (S2 Table). At this sampling time, Actinobacteria were significantly

higher in the caeca of birds treated with the high dose of probiotic in comparison to the low

dose group (7.156 vs 0.653%, p = 0.048), whereas Proteobacteria were significantly higher in

the crops of birds receiving the low dose in comparison to the high dose treatment (13.945 vs

1.964%, p = 0.048). Between 14 and 35 days both Actinobacteria and the Firmicutes popula-

tions significantly increased in the crops of all tested treatments as influenced by time

(p<0.000 and p = 0.044, respectively).

Classes identified in the caeca and crop microbiome. Clostridia, Bacilli, Bacteroidia,

Erysipelotrichi, Actinobacteria, Gammaproteobacteria and Negativicutes were the most abun-

dant bacterial classes identified in the caeca and crops (S3 Table). The class Actinobacteria at

35 days showed a MRA in the caeca significantly lower in the low dose group in comparison to

the control group (3.059 vs 4.206%, p = 0.032). The same result was observed in the caeca of

birds belonging to the high dose group in comparison to the control (3.025 vs 4.206%,

p = 0.009). In the crops the same class at 35 days was significantly higher in the high dose

group in comparison to the low dose group (7.154 vs 0.653%, p = 0.039). The covariate results

showed that Actinobacteria and Bacilli significantly increased as effect of time in the tested

groups, both in the caeca (p = 0.005 and p<0.000) and in the crops (p<0.000 and p = 0.050),

whereas both Bacteroidia and Negativicutes significantly decreased in the caeca (p = 0.023 and

0.003) and only Negativicutes in the crops (p = 0.001).

Orders identified in the caeca and crop microbiome. Clostridiales, Bacteroidales, Lacto-

bacillales, Bacillales, Erysipelotrichales, Selenomonadales, Enterobacteriales, Actinomycetales,

Coriobacteriales and Xanthomonadales were the most abundant orders identified in the caeca

Lactobacillus acidophilus on chicken crop and caeca microbiome
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and crops of the tested chickens (S4 Table). At 35 days Coriobacteriales had a MRA in the

caeca significantly lower in both the low and high dose groups compared to the control group

(1.449 vs 2.087%, p = 0.002) (1.450 vs 2.087%, p<0.000). Moreover, at 35 days Actinomycetales

were significantly higher in the crops of the high dose group compared to the low dose group

(6.980 vs 0.508%, p = 0.026). The covariate results showed that Lactobacillales significantly

increased by time (p = 0.001 and 0.036) in both the caeca and crops of tested animals. Con-

versely, Selenomonadales significantly increased in the caeca (p = 0.001) whereas in the crops

they significantly decreased (p<0.000). In the caeca Coriobacteriales significantly increased

(p = 0.003) whereas Bacteroidales significantly decreased (p = 0.009). Finally, in the crops,

Actinomycetales significantly increased (p<0.000), whereas Bacillales and Xanthomonadales

significantly decreased (p = 0.003 and p<0.000).

Families identified in the caeca and crop microbiome. Lachnospiraceae, Eubacteriaceae,

Bacteroidaceae, Erysipelotrichaceae, Clostridiaceae, Ruminococcaceae, Bacillaceae, Lactobacil-

laceae, Streptococcaceae, Enterobacteriaceae, Enterococcaceae, Veillonellaceae and Xantho-

monadaceae were the 13 most abundant families identified in the caeca and crops of the tested

birds. Moreover, Coriobacteriaceae, Peptococcaceae and Thermoanaerobacteraceae were

detected in the caeca, whereas Staphylococcaceae and Corynebacteriaceae in the crops (S5

Table). At 35 days both Coriobacteriaceae and Lactobacillaceae showed a MRA in the caeca

significantly lower in the low and high dose groups in comparison to the control groups (LD:

1.507 vs 2.180%, p = 0.001; 2.503 vs 6.138%, p = 0.048) (HD; 1.509 vs 2.180%, p = 0.001; 1.831

vs 6.138%, p = 0.002). In the crops, at 14 days Lactobacillaceae were significantly lower in the

birds belonging to the low dose group in comparison to the control (56.940 vs 81.024%,

p = 0.042). Conversely, Staphylococcaceae were significantly higher in the low dose group in

comparison to the control (0.194 vs 0.182%, p = 0.045). At 14 days Enterococcaceae and Strep-

tococcaceae were significantly lower in the birds belonging to the low dose group in compari-

son to both the control (0.663 vs 1.313, p = 0.003; 2.166 vs 4.707%, p = 0.037) and the high

dose group (0.663 vs 1.173%, p = 0.041; 2.166 vs 8.097%, p = 0.029). Later on, at 35 days both

Corynebacteriaceae and Staphylococcaceae were significantly higher in the crops of birds

belonging to the high dose group (i.e., 3.653 and 3.118). The covariate analysis showed that

Bacteroidaceae significantly decreased in the caeca of the tested groups between 14 and 35

days (p = 0.008), whereas Coriobacteriaceae, Lactobacillaceae, Peptococcaceae and Thermoa-

naerobacteraceae significantly increased over time (p = 0.005, <0.000, 0.035, 0.039). Beside

time, the abundance of Lactobacillaceae was significantly affected by the interaction between

time and treatment (p = 0.043). In the crops Lactobacillaceae and Staphylococcaceae signifi-

cantly increased between 14 and 35 days (p = 0.029, p<0.000), whereas Veillonellaceae and

Xanthomonadaceae significantly decreased (p<0.001 and p<0.001). Moreover, within the low

dose group Enterococcaceae significantly decreased due to treatment (p = 0.045).

Genera identified in the caeca and crop microbiome. Faecalibacterium, Ruminococcus,
Eubacterium, Bacteroides, Clostridium, Subdoligranulum, Blautia, Lactobacillus, Bacillus, Strep-
tococcus, Enterococcus, Escherichia and Shigella were the 13 most abundant genera identified

in both caeca and crops of the tested animals (Table 1). Moreover, the genera Roseburia, Butyr-
ivibrio, Ethanoligenens,Holdemania, Anaerotruncus, Desulfitobacterium, Dorea, Coprococcus
and Eggerthella were identified only in the caeca, while Staphylococcus, Corynebacterium,

Xanthomonas and Klebsiella only in the crops (Table 2).

At 35 days, Eggerthella was significantly lower in the caeca of birds treated with the low

dose of probiotic in comparison to the control group (0.468 vs 1.072%, p<0.001). The same

trend was observed in the caeca of the birds treated with the high dose of probiotic in compari-

son to the control (0.450 vs 1.072%, p<0.001). Moreover, at the same sampling time (35 days),

Lactobacillus was significantly lower in the caeca of the high dose group in comparison to the
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PLOS ONE | https://doi.org/10.1371/journal.pone.0228338 January 24, 2020 6 / 18

https://doi.org/10.1371/journal.pone.0228338


control (1.813 vs 6.129%, p = 0.005). At 14 days, Enterococcus and Streptococcus were signifi-

cantly lower in the crops of chickens fed with the low dose of probiotic in comparison to the

control (0.641 vs 1.298%, p = 0.006; 1.987 vs 4.404%, p = 0.048). In contrast, Faecalibacterium
at 14 days was significantly higher in the crops of birds belonging to the low dose group in

Table 2. Genera identified in the caeca and crops with a MRA (%)> 1 in at least one treatment (i.e., day 1, high dose (HD) 14 and 35 days, low dose (LD) 14 and 35

days, control (C) 14 and 35 days).

Mean relative abundance (%) (standard error)

Day 1 HD 14d HD 35d LD 14d LD 35d C 14d C35 d

Caeca

Faecalibacterium 3.272 (0.917) 1.8 (0.088) 9.827 (1.251) 1.762 (0.066) 9.08 (1.756) 2.159 (0.136) 5.617 (0.714)

Ruminococcus 5.904 (0.86) 8.995 (0.487) 7.237 (0.2) 10.173 (0.991) 7.807 (0.336) 9.072 (0.999) 8.092 (0.537)

Eubacterium 4.541 (0.834) 7.153 (0.196) 6.629 (0.08) 7.309 (0.27) 6.67 (0.101) 7.071 (0.349) 6.489 (0.256)

Bacteroides 3.795 (0.528) 7.824 (0.792) 5.911 (0.211) 6.806 (0.877) 5.445 (0.303) 7.427 (0.865) 5.539 (0.419)

Clostridium 15.108 (2.482) 30.129 (1.687) 26.298 (0.711) 29.813 (0.829) 25.812 (0.845) 28.04 (1.594) 23.775 (0.676)

Subdoligranulum 2.461 (0.694) 1.723 (0.144) 2.963 (0.206) 1.513 (0.076) 3.947 (0.474) 5.176 (2.221) 4.588 (1.16)

Blautia 1.881 (0.366) 4.264 (0.587) 2.388 (0.181) 3.634 (0.354) 2.403 (0.078) 3.431 (0.463) 3.217 (0.338)

Lactobacillus 17.268 (4.092) 1.956 (0.49) 1.813 (0.351) 1.93 (0.71) 2.49 (0.439) 1.155 (0.165) 6.129 (1.509)

Bacillus 1.169 (0.251) 1.379 (0.088) 1.612 (0.079) 1.511 (0.165) 1.476 (0.065) 1.341 (0.055) 1.462 (0.061)

Roseburia 0.948 (0.154) 1.621 (0.097) 1.589 (0.042) 1.619 (0.061) 1.517 (0.063) 1.519 (0.112) 1.311 (0.062)

Butyrivibrio 0.859 (0.172) 1.56 (0.067) 1.53 (0.036) 1.631 (0.091) 1.563 (0.05) 1.634 (0.083) 1.37 (0.043)

Ethanoligenens 0.678 (0.116) 1.235 (0.062) 1.485 (0.021) 1.422 (0.169) 1.578 (0.049) 1.766 (0.171) 1.362 (0.14)

Holdemania 0.753 (0.116) 1.305 (0.048) 1.433 (0.058) 1.355 (0.063) 1.379 (0.052) 1.392 (0.035) 1.23 (0.029)

Streptococcus 1.019 (0.16) 2.045 (0.553) 1.41 (0.085) 1.226 (0.07) 1.357 (0.123) 1.191 (0.086) 1.224 (0.1)

Anaerotruncus 0.655 (0.06) 1.471 (0.102) 1.26 (0.093) 1.777 (0.226) 1.386 (0.159) 1.498 (0.135) 1.094 (0.089)

Desulfitobacterium 0.54 (0.135) 1.043 (0.045) 1.052 (0.029) 1.092 (0.06) 1.004 (0.03) 1.111 (0.055) 0.955 (0.031)

Dorea 0.894 (0.138) 1.37 (0.058) 1.022 (0.028) 1.384 (0.136) 1.051 (0.043) 1.251 (0.154) 1.147 (0.08)

Coprococcus 0.694 (0.097) 1.077 (0.042) 0.9 (0.012) 1.108 (0.089) 0.899 (0.033) 0.992 (0.104) 0.945 (0.056)

Enterococcus 1.253 (0.268) 0.843 (0.039) 0.834 (0.02) 0.827 (0.047) 0.803 (0.015) 0.712 (0.046) 0.788 (0.048)

Escherichia 7.608 (3.938) 1.296 (0.433) 0.497 (0.191) 0.942 (0.386) 0.686 (0.456) 0.619 (0.225) 1.008 (0.467)

Eggerthella 0.436 (0.107) 0.391 (0.015) 0.45 (0.013) 0.516 (0.026) 0.468 (0.019) 0.523 (0.043) 1.072 (0.161)

Shigella 1.148 (0.589) 0.203 (0.072) 0.075 (0.03) 0.153 (0.065) 0.105 (0.07) 0.098 (0.036) 0.157 (0.074)

Crops

Faecalibacterium 1.248 (0.417) 0.487 (0.191) 0.158 (0.066) 0.887 (0.153) 0.092 (0.067) 0.126 (0.015) 0.056 (0.015)

Ruminococcus 4.094 (1.287) 2.559 (1.298) 0.334 (0.155) 2.535 (0.366) 0.146 (0.1) 0.495 (0.067) 0.137 (0.048)

Eubacterium 2.407 (0.724) 1.389 (0.673) 0.231 (0.095) 1.475 (0.164) 0.126 (0.076) 0.374 (0.031) 0.127 (0.029)

Bacteroides 2.294 (0.455) 0.799 (0.427) 0.181 (0.078) 1.149 (0.187) 0.121 (0.08) 0.262 (0.028) 0.092 (0.02)

Clostridium 9.578 (2.476) 4.683 (2.122) 0.918 (0.338) 5.655 (0.506) 0.485 (0.311) 1.415 (0.098) 0.483 (0.105)

Subdoligranulum 1.597 (0.393) 0.302 (0.095) 0.125 (0.063) 0.539 (0.066) 0.085 (0.076) 0.104 (0.014) 0.051 (0.024)

Blautia 1.579 (0.533) 1.15 (0.57) 0.152 (0.082) 0.864 (0.116) 0.053 (0.043) 0.253 (0.022) 0.049 (0.024)

Lactobacillus 23.077 (5.819) 59.931 (12.434) 80.761 (6.911) 55.188 (9.781) 81.496 (14.061) 79.209 (5.72) 87.45 (4.139)

Bacillus 0.993 (0.129) 0.611 (0.158) 0.576 (0.235) 0.752 (0.212) 0.171 (0.028) 0.551 (0.13) 0.332 (0.08)

Streptococcus 0.699 (0.095) 7.536 (4.791) 1.134 (0.562) 1.987 (0.272) 0.612 (0.236) 4.404 (2.505) 1.708 (0.78)

Enterococcus 0.628 (0.045) 1.138 (0.446) 0.982 (0.425) 0.641 (0.072) 0.385 (0.103) 1.298 (0.279) 1.05 (0.323)

Escherichia 12.382 (6.287) 0.878 (0.404) 0.636 (0.287) 3.344 (1.948) 9.436 (9.311) 2.092 (1.34) 0.97 (0.801)

Staphylococcus 0.27 (0.113) 0.134 (0.023) 3.001 (1.338) 0.175 (0.038) 0.276 (0.079) 0.175 (0.035) 1.014 (0.391)

Corynebacterium 0.165 (0.117) 0.031 (0.017) 3.648 (2.112) 0.046 (0.024) 0.207 (0.058) 0.011 (0.003) 1.13 (0.79)

Shigella 1.858 (0.988) 0.11 (0.054) 0.095 (0.043) 0.491 (0.292) 1.468 (1.446) 0.312 (0.195) 0.15 (0.123)

Xanthomonas 1.859 (0.416) 0.87 (0.595) 0.039 (0.023) 2.025 (1.183) 0.043 (0.033) 0.306 (0.047) 0.012 (0.005)

Klebsiella 0.137 (0.058) 0.051 (0.024) 0.033 (0.012) 1.016 (0.627) 0.188 (0.171) 0.126 (0.051) 1.161 (1.149)

https://doi.org/10.1371/journal.pone.0228338.t002
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comparison to the control (0.887 vs 0.126, p = 0.022). Faecalibacterium increased also in the

high dose group in comparison to the control but that increase was not significantly different.

At 35 days, Corynebacterium and Staphylococcus were significantly higher in the crops of

chickens fed the high dose of probiotic in comparison to the low dose group (3.648 vs 0.207%,

p = 0.043; 3.001 vs 0.276%, p = 0.0137). Moreover, Klebsiella was significantly lower in the

crops of birds fed with the high dose of probiotic in comparison to the control (0.033 vs

1.161%, p = 0.011). The covariate results showed that Bacteroides significantly decreased in the

caeca of birds between 14 and 35 days across all treatments (p = 0.013), while Eggerthella, Fae-
calibacterium and Lactobacillus significantly increased (p<0.000, p<0.000, and p<0.000).

Nevertheless, the abundance of Eggerthella was also significantly affected by the interaction

between time and treatment (p = 0.041). In the crops, Lactobacillus and Staphylococcus
increased over time (p = 0.007 and p<0.000) while Xanthomonas significantly decreased

(p = 0.001).

Species identified in the caeca and crop microbiome. The species identified in both the

caeca and crops of the tested groups across sampling times were Bacteroides capillosus, Clos-
tridium saccharolyticum, Escherichia coli, Eubacterium rectale, Faecalibacterium prausnitzii,
Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus johnsonii,
Lactobacillus reuteri, Ruminococcus torques and Subdoligranum variabile (Table 3). Moreover,

specific species were associated with each of the intestinal tracts.

At 35 days, Blautia hydrogenotrophica and Lactobacillus crispatus were significantly lower

in the caeca of the birds fed the high dose group in comparison to the control (0.959 vs

1.274%, p = 0.035; 0.282 vs 1.661%, p = 0.007). The same trend was observed for Eggerthella
lenta in both the high dose and low dose groups in comparison to the controls (0.421 vs

1.005%, p<0.000; 0.439 vs 1.005%, p<0.000). On the contrary, at 35 days Clostridium asparagi-
forme, Clostridium hathewayi and Clostridium saccharolyticum were significantly higher in the

caeca of chickens belonging to the high dose group in comparison to the control (1.347 vs

1.056%, p = 0.038; 1.136 vs 0.882%, p = 0.044; 3.171 vs 2.465%, p = 0.044).

At 14 days, Lactobacillus acidophilus was significantly higher in the crops of chickens

fed with the high dose probiotic in comparison to the control group (14.094 vs 1.741%,

p = 0.036). Moreover, the same species was significantly higher in the high dose group in

comparison to the low dose group (14.094 vs 1.913%, p<0.000). Other Lactobacillus species

exhibited an opposite effect. Indeed, Lactobacillus plantarum and Lactobacillus salivarius
were significantly lower at 14 days in the crop of birds fed with low dose of probiotic in

comparison to the control (0.575 vs 1.626%, p = 0.019; 6.862 vs 20.247%, p = 0.027). Finally,

Lactobacillus ruminis was significantly lower in the crop of both low dose and high dose

groups at 14 days in comparison to the control (0.05 vs 1.233%, p<0.000; 0.085 vs 1.233%,

p = 0.0.36).

At 35 days, Klebsiella pneumoniae was significantly lower in the crops of birds fed the low

dose of probiotic in comparison to the control (0.183 vs 1.107%, p = 0.006). Lactobacillus rumi-
nis displayed the same trend at 35 days in both the low dose (0.021 vs 1.048%, p = 0.001) and

high dose groups (0.030 vs 1.048%, p<0.000). Finally, at 35 days Staphylococcus saprophyticus
was significantly higher in the crops of chickens fed the high dose of probiotic in comparison

to those fed the low dose treatment (1.198 vs 0.085%, p = 0.011).

The covariate analysis showed that Anaerotruncus colihominis, Bacteroides capillosus, Clos-
tridiales bacterium 1_7_47FAA, Clostridium bolteae, Clostridium hathewayi, Clostridium lep-
tum, Clostridium proteoclasticum, Clostridium saccharolyticum, Desulfitobacterium hafniense
and Ruminococcaceae bacteriumD16 significantly decreased in the caeca between 14 and 35

days whereas Clostridium thermocellum, Eggerthella lenta, Ethanoligenens harbinense, Faecali-
bacterium prausnitzii, Lactobacillus acidophilus, Lactobacillus crispatus and Lactobacillus
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Table 3. Species identified in the caeca and crops with a MRA (%)> 1 in at least one treatment (i.e., day 1, high dose (HD) 14 and 35 days, low dose (LD) 14 and 35

days, control (C) 14 and 35 days).

Mean relative abundance (%) (standard error)

Day 1 HD 14d HD 35d LD 14d LD 35d C 14d C 35 d

Caeca

Anaerotruncus colihominis 0.628 (0.055) 1.364 (0.095) 1.176 (0.084) 1.652 (0.207) 1.298 (0.147) 1.386 (0.122) 1.025 (0.082)

Bacteroides capillosus 3.159 (0.413) 6.444 (0.712) 4.694 (0.178) 5.491 (0.82) 4.265 (0.255) 6.059 (0.806) 4.438 (0.399)

Blautia hansenii 1.038 (0.225) 2.713 (0.523) 1.274 (0.14) 1.914 (0.328) 1.219 (0.073) 1.588 (0.234) 1.745 (0.264)

Blautia hydrogenotrophica 0.763 (0.133) 1.244 (0.075) 0.959 (0.04) 1.471 (0.095) 1.035 (0.035) 1.592 (0.226) 1.274 (0.088)

Clostridiales bacterium 1_7_47FAA 0.593 (0.127) 1.198 (0.131) 0.946 (0.055) 1.221 (0.127) 0.921 (0.048) 1.053 (0.086) 0.765 (0.036)

Clostridium asparagiforme 0.743 (0.115) 1.697 (0.223) 1.347 (0.054) 1.663 (0.131) 1.313 (0.07) 1.494 (0.154) 1.056 (0.044)

Clostridium bolteae 0.758 (0.107) 1.491 (0.13) 1.211 (0.052) 1.519 (0.129) 1.192 (0.071) 1.278 (0.119) 0.972 (0.037)

Clostridium botulinum 0.573 (0.083) 0.94 (0.033) 1.016 (0.022) 1.001 (0.038) 0.962 (0.023) 1.05 (0.056) 0.957 (0.033)

Clostridium difficile 0.938 (0.151) 1.738 (0.051) 1.507 (0.026) 1.753 (0.062) 1.578 (0.039) 1.559 (0.067) 1.65 (0.092)

Clostridium hathewayi 0.587 (0.079) 1.418 (0.118) 1.136 (0.073) 1.415 (0.154) 1.088 (0.057) 1.22 (0.136) 0.882 (0.044)

Clostridium leptum 0.806 (0.129) 1.365 (0.107) 1.226 (0.055) 1.598 (0.168) 1.485 (0.103) 1.797 (0.286) 1.303 (0.108)

Clostridium nexile 0.718 (0.134) 1.357 (0.044) 1.06 (0.024) 1.329 (0.1) 1.089 (0.039) 1.152 (0.133) 1.103 (0.074)

Clostridium phytofermentans 1.266 (0.227) 2.152 (0.088) 2.048 (0.065) 2.174 (0.09) 1.901 (0.049) 2.099 (0.094) 1.857 (0.072)

Clostridium proteoclasticum 0.653 (0.143) 1.2 (0.05) 1.168 (0.02) 1.269 (0.076) 1.227 (0.033) 1.284 (0.064) 1.062 (0.031)

Clostridium saccharolyticum 1.692 (0.306) 4.017 (0.411) 3.171 (0.172) 3.803 (0.37) 2.979 (0.106) 3.258 (0.29) 2.465 (0.112)

Clostridium scindens 0.704 (0.13) 1.111 (0.032) 0.915 (0.02) 1.13 (0.097) 0.873 (0.043) 1.061 (0.145) 1.03 (0.08)

Clostridium sp M62 1 1.065 (0.129) 2.867 (0.836) 1.799 (0.103) 2.166 (0.14) 1.782 (0.11) 1.843 (0.16) 1.437 (0.058)

Clostridium thermocellum 0.647 (0.152) 0.994 (0.065) 1.188 (0.036) 1.123 (0.082) 1.141 (0.045) 1.201 (0.097) 1.077 (0.052)

Desulfitobacterium hafniense 0.517 (0.127) 0.966 (0.04) 0.983 (0.026) 1.016 (0.054) 0.941 (0.025) 1.028 (0.049) 0.896 (0.028)

Eggerthella lenta 0.417 (0.1) 0.362 (0.014) 0.421 (0.012) 0.48 (0.024) 0.439 (0.018) 0.484 (0.039) 1.005 (0.15)

Escherichia coli 6.879 (3.556) 1.13 (0.382) 0.436 (0.169) 0.824 (0.342) 0.608 (0.409) 0.535 (0.197) 0.892 (0.418)

Ethanoligenens harbinense 0.649 (0.108) 1.144 (0.055) 1.388 (0.02) 1.323 (0.155) 1.48 (0.047) 1.634 (0.156) 1.276 (0.129)

Eubacterium eligens 0.809 (0.148) 1.306 (0.045) 1.246 (0.011) 1.295 (0.078) 1.204 (0.026) 1.254 (0.081) 1.176 (0.047)

Eubacterium rectale 1.87 (0.286) 2.917 (0.125) 2.574 (0.029) 2.875 (0.148) 2.572 (0.043) 2.762 (0.207) 2.428 (0.108)

Faecalibacterium prausnitzii 3.131 (0.877) 1.669 (0.081) 9.199 (1.19) 1.64 (0.06) 8.538 (1.669) 1.998 (0.124) 5.262 (0.664)

Holdemania filiformis 0.721 (0.107) 1.209 (0.044) 1.338 (0.051) 1.261 (0.057) 1.292 (0.045) 1.288 (0.03) 1.154 (0.026)

Lactobacillus acidophilus 1.801 (0.432) 0.074 (0.011) 0.164 (0.045) 0.086 (0.029) 0.256 (0.065) 0.053 (0.005) 0.827 (0.27)

Lactobacillus crispatus 3.887 (1.02) 0.055 (0.006) 0.282 (0.096) 0.112 (0.055) 0.48 (0.139) 0.056 (0.014) 1.661 (0.567)

Lactobacillus gasseri 1.201 (0.349) 0.131 (0.048) 0.08 (0.009) 0.151 (0.068) 0.114 (0.023) 0.082 (0.016) 0.227 (0.049)

Lactobacillus johnsonii 4.073 (1.061) 0.44 (0.217) 0.164 (0.034) 0.501 (0.307) 0.304 (0.094) 0.227 (0.07) 0.624 (0.152)

Lactobacillus reuteri 1.639 (0.477) 0.119 (0.035) 0.189 (0.07) 0.101 (0.034) 0.315 (0.097) 0.056 (0.006) 0.529 (0.16)

Marvinbryantia formatexigens 0.871 (0.13) 1.625 (0.085) 1.318 (0.027) 1.508 (0.087) 1.294 (0.031) 1.479 (0.163) 1.351 (0.08)

uminococcaceae bacterium D16 1.507 (0.178) 2.536 (0.155) 2.262 (0.07) 2.406 (0.342) 2.112 (0.131) 3.343 (0.466) 2.264 (0.276)

Ruminococcus albus 0.925 (0.2) 1.323 (0.044) 1.831 (0.052) 1.539 (0.098) 1.778 (0.061) 1.681 (0.081) 1.626 (0.085)

Ruminococcus gnavus 0.83 (0.119) 1.354 (0.068) 0.928 (0.041) 1.485 (0.184) 0.991 (0.058) 1.287 (0.194) 1.101 (0.105)

Ruminococcus lactaris 1.05 (0.077) 1.431 (0.143) 0.891 (0.066) 1.74 (0.311) 1.075 (0.106) 1.403 (0.262) 1.133 (0.162)

Ruminococcus obeum 0.639 (0.106) 0.968 (0.086) 0.782 (0.039) 1 (0.127) 0.893 (0.04) 0.962 (0.138) 0.98 (0.079)

Ruminococcus sp 5_1_39BFAA 0.661 (0.095) 1.034 (0.062) 0.842 (0.028) 1.049 (0.097) 0.856 (0.021) 0.964 (0.124) 0.944 (0.072)

Ruminococcus torques 1.298 (0.198) 1.936 (0.242) 1.159 (0.101) 2.317 (0.466) 1.373 (0.159) 1.751 (0.357) 1.493 (0.219)

Subdoligranulum variabile 2.356 (0.665) 1.597 (0.133) 2.772 (0.198) 1.408 (0.068) 3.705 (0.455) 4.795 (2.054) 4.298 (1.085)

Crops

Bacteroides capillosus 1.911 (0.393) 0.67 (0.386) 0.124 (0.062) 0.973 (0.151) 0.088 (0.072) 0.219 (0.023) 0.051 (0.02)

Clostridium saccharolyticum 1.175 (0.328) 0.625 (0.309) 0.096 (0.047) 0.621 (0.063) 0.046 (0.035) 0.135 (0.023) 0.04 (0.013)

Escherichia coli 11.565 (5.959) 0.825 (0.374) 0.597 (0.271) 3.13 (1.835) 8.864 (8.748) 1.982 (1.259) 0.912 (0.754)

(Continued)
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reuteri significantly increased over time. Within the crop, Klebsiella pneumoniae significantly

increased in the control group between 14 and 35 days (0.117 vs 1.107%), whereas within the

high and low probiotic groups this species significantly decreased over time (p = 0.006). Differ-

ent Lactobacillus species, including Lactobacillus acidophilus (p<0.000) as well as Lactobacillus
amylolyticus (p<0.000), Lactobacillus amylovorus (p<0.000), Lactobacillus crispatus p<0.000),

Lactobacillus fermentum (p = 0.023), Lactobacillus helveticus (p<0.000) and Lactobacillus
reuteri (p<0.000) increased over time in all tested groups. Moreover, at 14 days Lactobacillus
acidophilus was significantly increased by the high dose treatment (p<0.000). Finally, Lactoba-
cillus ruminis significantly decreased in the low dose treatment at at both sampling times

(p = 0.025).

Alpha and beta diversity associated to the genera identified in the caeca

and crop microbiome

The alpha diversity values for the genera identified in the caeca and crops of broilers tested in

the groups at each sampling time (i.e., 14 and 35 days) were calculated by the Simpson, Shan-

non and Pielou indexes (S6 Table). The results clearly showed that at the genus level the three

indexes of biodiversity calculated for the bacteria colonising the caeca and crops were compa-

rable. The only exception was for the Simpson indexes calculated for the caeca samples which

were significantly higher in comparison to the control (p = 0.039) (S7 Table). In relation to

the beta diversity, the genera identified in the caeca at day 1, as well as in the high dose group

at both 14 and 35 days and in the control group at 14 days clustered separately (Fig 1A),

while the genera identified in the low dose group at 14 and 35 days as well as in the control

group at 35 days were widely distributed (Fig 1A). In the crops, the genera clustered mainly

according to the sampling time. Therefore, the genera identified at day 1 and 14 in all tested

groups clustered together separately from the genera identified at 35 days in whatever group

(Fig 1B).

Table 3. (Continued)

Mean relative abundance (%) (standard error)

Day 1 HD 14d HD 35d LD 14d LD 35d C 14d C 35 d

Eubacterium rectale 1.015 (0.318) 0.627 (0.311) 0.102 (0.045) 0.663 (0.085) 0.052 (0.03) 0.162 (0.016) 0.059 (0.015)

Faecalibacterium prausnitzii 1.21 (0.399) 0.477 (0.184) 0.157 (0.066) 0.873 (0.15) 0.092 (0.067) 0.126 (0.015) 0.056 (0.015)

Klebsiella pneumoniae 0.131 (0.054) 0.047 (0.021) 0.031 (0.011) 0.914 (0.566) 0.183 (0.167) 0.117 (0.046) 1.107 (1.096)

Lactobacillus acidophilus 2.417 (0.58) 14.094 (4.482) 9.331 (1.966) 1.913 (0.297) 7.699 (1.675) 1.741 (0.078) 11.805 (1.49)

Lactobacillus amylovorus 0.346 (0.117) 0.778 (0.232) 1.203 (0.171) 0.569 (0.122) 1.046 (0.183) 0.708 (0.115) 1.646 (0.273)

Lactobacillus crispatus 5.229 (1.365) 1.739 (0.493) 18.934 (4.468) 2.267 (0.504) 15.572 (3.473) 2.151 (0.369) 21.435 (1.817)

Lactobacillus fermentum 0.165 (0.042) 0.45 (0.208) 0.435 (0.175) 0.344 (0.062) 0.619 (0.189) 0.777 (0.223) 1.082 (0.19)

Lactobacillus gasseri 1.709 (0.529) 5.159 (1.745) 5.964 (1.372) 7.088 (1.58) 5.843 (1.128) 7.828 (1.365) 4.451 (0.645)

Lactobacillus helveticus 1.084 (0.266) 0.982 (0.246) 4.053 (0.781) 0.789 (0.162) 3.479 (0.73) 0.949 (0.119) 6.141 (1.234)

Lactobacillus johnsonii 6.757 (2.042) 20.424 (7.671) 29.669 (8.448) 28.993 (6.939) 30.582 (6.877) 36.287 (7.339) 19.769 (4.086)

Lactobacillus plantarum 0.172 (0.021) 0.862 (0.532) 0.262 (0.055) 0.575 (0.171) 0.255 (0.061) 1.626 (0.423) 0.877 (0.341)

Lactobacillus reuteri 2.158 (0.488) 1.326 (0.45) 4.349 (1.735) 2.872 (1.177) 8.921 (2.385) 1.823 (0.256) 5.861 (1.37)

Lactobacillus ruminis 0.028 (0.017) 0.085 (0.032) 0.03 (0.004) 0.05 (0.011) 0.021 (0.003) 1.233 (1.14) 1.048 (0.648)

Lactobacillus salivarius 0.328 (0.077) 11.266 (8.419) 1.408 (0.494) 6.862 (2.389) 0.87 (0.446) 20.247 (5.053) 3.467 (1.403)

Ruminococcus torques 1.022 (0.34) 0.66 (0.313) 0.075 (0.037) 0.625 (0.135) 0.033 (0.024) 0.118 (0.023) 0.027 (0.009)

Staphylococcus saprophyticus 0.041 (0.041) 0.014 (0.009) 1.198 (0.548) 0.019 (0.008) 0.085 (0.029) 0.011 (0.003) 0.354 (0.163)

Subdoligranulum variabile 1.551 (0.377) 0.296 (0.091) 0.124 (0.063) 0.53 (0.064) 0.085 (0.076) 0.103 (0.014) 0.051 (0.024)

https://doi.org/10.1371/journal.pone.0228338.t003
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Functional gene composition of caeca and crop microbiome

Table 4 summarizes the functional genes showing a MRA (%)> 0.5 in at least one treatment.

The genes decarboxylase, DNA directed RNA polymerase beta subunit EC.2.7.7.6, DNA poly-

merase III alpha subunit EC.2.7.7.7 and GTP binding protein were detected in both the intesti-

nal tract samples while other genes were associated to a specific region.

At 35 days, the Cell division protein FtsH (EC 3.4.24.-) gene significantly increased in the

caeca of birds treated with the high dose of probiotic in comparison to the control group

(0.475 vs 0.428%, p = 0.016). Moreover, the Site-specific recombinase gene significantly

increased in both the low dose and high dose groups in comparison to the control (0.712 vs

0.518%, p = 0.007; 0.681 vs 0.518%, p = 0.017). In contrast, the Copper-translocating P-type

ATPase (EC 3.6.3.4) gene significantly decreased at 35 days in the caeca of birds treated with

the high dose of probiotic in comparison to the control (0.407 vs 0.469%, p = 0.044). The

covariate analysis showed that in the caeca the DNA polymerase III alpha subunit (EC 2.7.7.7)

Fig 1. PCoA of beta diversity for the genera identified in the caeca (A) and crops (B) sampled in the control (C),

high dose (HD) and low dose (LD) groups at 14 and 35 days.

https://doi.org/10.1371/journal.pone.0228338.g001
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gene significantly increased between 14 and 35 days (p = 0.005), whereas DNA topoisomerase

III (EC 5.99.1.2) significantly decreased. Within the crop, the decarboxylase gene significantly

decreased over time (p = 0.005) whereas DNA polymerase III alpha subunit (EC 2.7.7.7) and

Oligopeptide ABC transporter, periplasmic oligopeptide-binding protein OppA (TC 3.A.1.5.1)

significantly increased (p = 0.024 and p = 0.032).

Discussion

In this research we deeply explored the effects of supplementing LA in broiler drinking water

on the caeca and crop microbiome in terms of taxonomic and functional gene composition

Table 4. Functional genes with a MRA (%)> 0.5 and corresponding standard error in caeca and crops in at least one treatment (i.e., day 1, high dose (HD) 14 and

35 days, low dose (LD) 14 and 35 days, control (C) 14 and 35 days).

Mean relative abundance (%) (standard error)

Day 1 HD 14d HD 35d LD 14d LD 35d C 14d C35 d

Caeca

Cell division protein FtsH EC.3.4.24 0.576

(0.038)

0.39

(0.016)

0.475

(0.011)

0.383

(0.012)

0.452

(0.013)

0.385

(0.026)

0.428

(0.009)

Copper translocating P type ATPase EC.3.6.3.4. 0.19

(0.033)

0.462

(0.018)

0.407

(0.009)

0.508

(0.022)

0.448

(0.017)

0.489

(0.016)

0.469

(0.014)

Decarboxylase 0.661

(0.167)

0.265

(0.006)

0.25

(0.008)

0.276

(0.014)

0.253

(0.011)

0.28

(0.011)

0.242

(0.008)

DNA directed RNA polymerase beta subunit EC.2.7.7.6. 0.31

(0.075)

0.467

(0.02)

0.576

(0.02)

0.45

(0.015)

0.573

(0.03)

0.439

(0.017)

0.542

(0.023)

DNA polymerase III alpha subunit EC.2.7.7.7. 0.273

(0.05)

0.572

(0.022)

0.752

(0.025)

0.577

(0.011)

0.74

(0.035)

0.576

(0.018)

0.699

(0.03)

DNA topoisomerase III EC.5.99.1.2. 0.164

(0.037)

0.728

(0.096)

0.586

(0.006)

0.747

(0.072)

0.617

(0.024)

0.755

(0.047)

0.563

(0.043)

Excinuclease ABC subunit A 0.352

(0.067)

0.583

(0.035)

0.635

(0.019)

0.643

(0.028)

0.672

(0.014)

0.652

(0.028)

0.695

(0.022)

GTP binding protein 1.057

(0.052)

0.274

(0.005)

0.293

(0.005)

0.28 (0.01) 0.29

(0.009)

0.295

(0.009)

0.304

(0.007)

Retron type reverse transcriptase 0.165

(0.025)

0.431

(0.033)

0.539

(0.022)

0.425

(0.034)

0.404

(0.027)

0.375

(0.058)

0.362

(0.047)

Site specific recombinase 0.188

(0.035)

0.733

(0.019)

0.681

(0.025)

0.815

(0.029)

0.712

(0.034)

0.658

(0.088)

0.518

(0.043)

Crops

Carbamoyl phosphate synthase large chain EC.6.3.5.5. 0.541

(0.03)

0.495

(0.049)

0.559

(0.038)

0.676

(0.166)

0.475

(0.065)

0.464

(0.069)

0.466

(0.015)

Decarboxylase 0.705

(0.063)

0.624

(0.052)

0.335

(0.019)

0.497

(0.095)

0.285

(0.013)

0.453

(0.014)

0.249

(0.016)

DNA directed RNA polymerase beta subunit EC.2.7.7.6. 0.199

(0.055)

0.342

(0.088)

0.555

(0.031)

0.339

(0.066)

0.508

(0.058)

0.436

(0.051)

0.565

(0.018)

DNA polymerase III alpha subunit EC.2.7.7.7. 0.208

(0.03)

0.415

(0.079)

0.663

(0.012)

0.382

(0.057)

0.576

(0.084)

0.435

(0.047)

0.632

(0.028)

Glycosyltransferase 0.532

(0.047)

0.525

(0.075)

0.427

(0.027)

0.511

(0.017)

0.452

(0.055)

0.527

(0.049)

0.437

(0.027)

GTP binding protein 1.491

(0.179)

1.059

(0.251)

0.334

(0.025)

1.054

(0.181)

0.358

(0.034)

0.716

(0.026)

0.309

(0.011)

Oligopeptide ABC transporter periplasmic oligopeptide binding protein

OppA TC.3.A.1.5.1.

0.087

(0.029)

0.511

(0.109)

0.766

(0.071)

0.372

(0.078)

0.639

(0.093)

0.606

(0.067)

0.785

(0.059)

X6 phospho beta glucosidase EC.3.2.1.86. 0.153

(0.037)

0.403

(0.097)

0.512

(0.073)

0.349

(0.096)

0.51

(0.081)

0.589

(0.043)

0.484

(0.053)

https://doi.org/10.1371/journal.pone.0228338.t004
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without considering the impact of the treatment on animal performance parameters. However,

besides the probiotic administration strategy and the animal numerousness, the birds investi-

gated in this study were reared as described in a previous study where we assessed the effects

of the supplementation of the same probiotic in the chicken feed on productive performances

and foot pad dermatitis.

The results showed that the MRA of Lactobacillus acidophilus in the caeca did not show sig-

nificative differences between the treated and control birds, although Lactobacillus acidophilus
as well as other microorganisms promoting the chicken’s health, including Faecalibacterium
prausnitzii, Lactobacillus crispatus and Lactobacillus reuteri, significantly increased over time.

Conversely, the administration of the high dose probiotic significantly affected the abundance

of Lactobacillus acidophilus in the chicken crops, at least in the first rearing period, demon-

strating that the crop is the main site where the effects of the probiotic initially take place.

Indeed, at 14 days Lactobacillus acidophilus was significantly higher in the crops of chickens

treated with the high dose of LA in comparison to the control (14.094 vs 1.741%, p = 0.036).

At 35 days this difference disappeared but there was an overall increase of other Lactobacillus
species, including Lactobacillus amylolyticus, Lactobacillus amylovorus, Lactobacillus crispatus,
Lactobacillus fermentum, Lactobacillus helveticus and Lactobacillus reuteri which might in

some way compete with Lactobacillus acidophilus thus affecting its abundance. A further

explanation might be found in the covariate analysis results (treatment, sampling time and

their interactions) since the increase of the microbial diversity over time may decrease the abil-

ity to detect treatment effects on the abundance of Lactobacillus acidophilus as well as other

species. Therefore, the treatment effect may only be detectable within each separate sampling

time.

In the crop, the effect of the different concentrations of probiotic showed up and the better

results were obtained with the low dose probiotic treatment which significantly increased the

abundance of the genus Faecalibacterium compared to the control while no difference was

observed between the high dose and the control group. Faecalibacterium is one of the most

abundant butyrate producers in the hindgut of both humans and other monogastric animals

[24, 25]. It plays a key role in maintaining gut health as the major source of energy to the

colonic mucosa and is an important regulator of gene expression, inflammation, differentia-

tion, and apoptosis in host cells [26–28]. One hypothesis to the better effect of the LA supple-

mented in the low dose in comparison to the high dose on the improvement of the beneficial

microbes in the broiler gastrointestinal tract might be the hormesis, a dose–response phenom-

enon in which opposite effects are observed at low, compared to high doses for the same mea-

sured parameter [25]. However, this phenomenon has been never described for lactic acid

bacteria.

Within the caeca, a positive high dose treatment effect was the significant increase in the

abundance of Clostridium asparagiforme, Clostridium hathewayi and Clostridium saccharolyti-
cum in comparison to the control group at 35 days. Clostridium saccharolyticum can utilize

carbohydrates or polysaccharides as carbon sources and produce acetate, propionate and buty-

rate as fermented products [29]. Moreover, Clostridium hathewayi produce acetate and Clos-
tridium asparagiforme lactate [30].

At 35 day, the decrease of Actinobacteria in the caeca of chickens belonging to the low and

high dose groups in comparison to the control group corresponded to the decrease of the

genus Corynebacterium and the species Eggerthella lenta. This species has been described by

Haiser et al., 2013 [31] as part of the human gut microbiome. The same study showed that the

fastidious growth of Eggerthella lenta is promoted by growth factors supplied by the gut micro-

biota and its abundance increased in the presence of a complex microbial community. In our

study the overall microbial complexity, calculated at the genus level, was quite similar in the
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caeca of chickens tested at 35 days in all groups, although the Simpson index calculated for the

caeca of the birds treated with the probiotic was significantly higher than the control group,

which translates to a less diverse microbial composition in the caeca of treated birds in com-

parison to the control. Although this trend was detected using the Simpson index only, our

hypothesis to explain the decrease of Eggerthella lenta in the caeca of the treated animals is the

overall decrease of the microbial biodiversity in those groups. A second hypothesis might be

that the supplemented Lactobacillus acidophilus competes with Eggerthella lenta for arginine.

Indeed, Trinchieri et al., 2011 [27] showed that some lactic acid bacteria are rich in arginine

deiminase which catalyses the irreversible conversion of arginine to citrulline and ammonia.

This conversion decreases the availability of arginine, which is an important energy source for

Eggerthella lenta that possesses genes for arginine deiminase (arcA), ornithine carbamoyltrans-

ferase (argF or agI), and carbamate kinase (arcC) [32].

In relation to the beta diversity, the genera identified in the caeca at day 1 (Fig 1A) clustered

all together. This finding was expected because the intestinal microbiota richness, i.e., the

number of different microbial taxa, increases over time [33–35]. More interestingly, the genera

identified in the high dose groups at both 14 and 35 days clustered separately. This result dem-

onstrates that beside the variations in the abundance of single taxonomic groups, the overall

caeca population was affected by the administration of LA at the highest dose in terms of com-

position. However, this effect was not observed in the crops, where the genera clustered mainly

according to the sampling time (Fig 1B).

The most abundant functional genes were different in between the crop and caeca. At 35

days, the Cell division protein FtsH (EC 3.4.24.-) and the Site-specific recombinase gene were

significantly increased in the caeca of birds treated with the high dose of probiotic in compari-

son to the control group. The cell division protein FtsH is a peptidase essential in bacterial

stress response, including Lactococcus lactis and Bacillus subtilis [36]. Therefore, its increase in

the caeca of birds fed with the high dose of probiotic highlights an overall beneficial effect of

the probiotic on the microorganisms colonizing the gut of treated animals. The increase in

abundance of the site-specific recombinase gene is more difficult to explain, although it might

be related to some form of stress response because the site-specific recombinase gene in pro-

karyotes is part of the inversional switching systems along with the invertible DNA segments

and they mediate alternative expression of sets of genes [37]. Besides these potential positive

effects of the high dose probiotic treatment on the caeca microbiome, there was a negative

effect related to the decrease of the Copper-translocating P-type ATPase (EC 3.6.3.4) gene.

This gene encodes for one of the proteins required for the transport and delivery of copper, an

essential cellular component which is required for a broad range of enzymes involved in

numerous metabolic pathways, including respiration and free radical scavenging [38]. Only

trace amounts of copper are needed to sustain life and the decrease of the Copper-translocat-

ing P-type ATPase gene in the caeca of treated animals might result in an excess of copper in

the cells which is extremely toxic for their viability.

Conclusions

The results of this study showed that Lactobacillus acidophilusD2/CSL (CECT 4529) supple-

mentation in the drinking water at the concentrations of 0.2 and 0.02 g Lactobacillus acidophi-
lus/day/bird improved beneficial microbes and functional genes in broiler crops and caeca

although the main site of action of the probiotic is the crop. In the crop, the better effect on the

beneficial microbes was obtained supplementing the probiotic in the drinking water at the

lower dose.
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