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Abstract

Introduction

Meta-analysis is a powerful means for leveraging the hundreds of experiments being run

worldwide into more statistically powerful analyses. This is also true for the analysis of omic

data, including genome-wide DNA methylation. In particular, thousands of DNA methylation

profiles generated using the Illumina 450k are stored in the publicly accessible Gene

Expression Omnibus (GEO) repository. Often, however, the intensity values produced by

the BeadChip (raw data) are not deposited, therefore only pre-processed values -obtained

after computational manipulation- are available. Pre-processing is possibly different among

studies and may then affect meta-analysis by introducing non-biological sources of

variability.

Material and methods

To systematically investigate the effect of pre-processing on meta-analysis, we analysed

four different collections of DNA methylation samples (datasets), each composed of two

subsets, for which raw data from controls (i.e. healthy subjects) and cases (i.e. patients) are

available. We pre-processed the data from each dataset with nine among the most common

pipelines found in literature. Moreover, we evaluated the performance of regRCPqn, a modi-

fication of the RCP algorithm that aims to improve data consistency. For each combination

of pre-processing (9 × 9), we first evaluated the between-sample variability among control

subjects and, then, we identified genomic positions that are differentially methylated

between cases and controls (differential analysis).
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Results and conclusion

The pre-processing of DNA methylation data affects both the between-sample variability

and the loci identified as differentially methylated, and the effects of pre-processing are

strongly dataset-dependent. By contrast, application of our renormalization algorithm

regRCPqn: (i) reduces variability and (ii) increases agreement between meta-analysed

datasets, both critical components of data harmonization.

Introduction

The public availability of thousands of human DNA methylation datasets offers the possibility

to gain appropriate statistical power to test hypotheses relevant to the mechanisms involved

with methylation, to reveal and validate its role in health and disease and to identify stable epi-

genetic signatures, via meta-analysis. However, together with the opening of great opportuni-

ties, meta-analysis also brings critical challenges associated to data harmonization. This is

particularly true for DNA methylation, where data are often available only in pre-processed

rather than raw forms and where numerous pre-processing pipelines exist.

The popular international public repository Gene Expression Omnibus (GEO, [1]) contains

over 100000 human DNA methylation samples, mostly measured using the Illumina Infinium

HumanMethylation450 BeadChip [2] technology (GEO accession number GPL13534) (see

Table 1).

The Illumina 450K BeadChip contains 485577 probes targeting 99% of RefSeq genes,

besides several other locations on the genome [2]. Overall, the 450k probes target both CpG

sites that are isolated on the genome (i.e. CpG OpenSeas) and CpG sites that reside in regions

of variable density (CpG Islands, Shelves or Shores), targeting 96% of the CpG Island regions.

Unlike the previous Illumina Infinium HumanMethylation27 BeadChip, this array incorpo-

rates two different chemical assays: Infinium I, that includes 135501 probes, and Infinium II,

that includes 350076 probes. Each CpG site of Infinium I is targeted by two probes that respec-

tively detect methylated (M) and unmethylated (U) signal intensities, while each CpG site of

Infinium II is targeted by a single probe with 2 different dye colors (green and red) that distin-

guish M and U signal intensities.

The pre-processing pipeline designed to obtain methylation profiles from raw experimental

data (.idat files) in the form of β-values (β = M/(M + U + α), where typically α = 100 [3]) is not

standardized, even within the same technological platform, as illustrated in Table 2. Indeed,

different pre-processing methods make different assumptions on the data regarding their dis-

tribution, their correlation structure and the extent (localized or global) of the DNA methyla-

tion variability on the genome [4], since this is still a matter of debate [5].

Table 1. Summary of human DNA methylation data available on GEO listed by sequencing technology on 01/03/2019.

Technology (GEO accession number) Year Num of Series Num of Samples

Illumina Infinium HumanMethylation27 BeadChip (GPL8490) 2009 340 18783

Illumina Infinium HumanMethylation450 BeadChip (GPL13534) 2011 1205 84898

Illumina Infinium MethylationEPIC BeadChip (GPL21145) 2015 100 3397

Bisulphite high throughput sequencing − 31 18

https://doi.org/10.1371/journal.pone.0229763.t001
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Notice that the pre-processing transformations of the data aim at reducing the experimental

variability but may also affect the biological variation of the samples. The magnitude of such

undesired effect depends on the pre-processing method that was applied and remains a critical

and ambiguous point in DNA methylation data analysis that will not be addressed here.

Besides the peculiarities of each pre-processing method, it is possible to identify a number

of common computational manipulations applied to the raw data. These include probe type

and colour bias adjustment, background signal subtraction and average normalization to

reduce the effects of experimental variation early in the pipeline; and intra- and inter-sample

normalization as well as batch effect correction, that are usually taken into consideration fur-

ther down in the pipeline [6, 7].

When analysing a single dataset, the choice of the pre-processing pipeline must be done

carefully to maximize the statistical power of the analysis and the robustness of the results [8].

In meta-analysis two further critical issues arise: dataset and sample selection, and also data

harmonization. Meta-analysis can be performed in different ways: some approaches first ana-

lyse separately individual datasets and then combine the results into a final estimate; others

first pool data from all the datasets and then analyse the pooled data using a single model. The

first class of approaches includes Aggregated Data (AD) and two-step Individual Participant
Data (IPD) meta-analyses [9]. The main advantage of these approaches is the relatively low

complexity of their implementation. The main drawback is the need for raw data. The second

class of approaches is referred to as one-step IPD meta-analysis. Although one-step IPD
approaches are expected to behave similarly to the two-steps IPD ones [9], they allow additional

flexibility (e.g. no need to start from raw data) and, for example, give the possibility to compare

different models and investigate interactions [9]. An important assumption of the one-step
IPD meta-analyses is the comparability of the variables measured in different datasets [10],

and this is why data harmonization is crucial to guarantee that methylation samples of the

same type (same tissue, health state, age, sex, etc.) from different datasets can be compared.

Knowing that less than half of the Illumina BeadArrays datasets in GEO include raw data

(521 over 1205 studies considering the Illumina 450K BeadChip) we here propose a one-step
IPD approach to systematically assess the effects of different pre-processing methods on meta-

analysis.

Finally, we introduce regRCPqn (regional Regression on Correlated Probes with quantile

normalization), as a possible solution (and currently the only one, to the best of our knowl-

edge) to reduce a posteriori the variability and compensate for the artefacts in the β-value dis-

tribution resulting from different choices of pre-processing protocols. Enhancing existing

Table 2. Summary of the pre-processing methods considered in the study.

SWAN BMIQ noob FunNorm dasen pQuantile RCP

Background

adjustment

No Yes Yes No Yes No Yes

Variables type I/II type I/II dye bias sex M/F, control

probes

type I/II type I/II, sex M/F type I/II, local

correlation

Genomic regions No No No No No Yes Yes

Statistical method Subset quantile

norm.

3 state β−mixture

quantile norm.

Normal-exponential

quantile norm.

Functional norm. β−mixture

quantile norm.

Stratified

quantile norm.

Quantile norm.

Normalization type within array within array within array between array between array between array within array

Pre-processing methods considered in the study, detailed by: background adjustment; variables considered such as probe type, subset of probes, sex or fluorescence

color channel; genomic region; underlying statistical approach; normalization type. In addition, NOOB + BMIQ and raw β-values pipelines were obtained applying two

of the above in sequence and considering unprocessed values, respectively, for a total of nine pre-processing methods.

https://doi.org/10.1371/journal.pone.0229763.t002
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methods (RCP [11]), regRCPqn enables meta-analyses even when raw data are not publicly

available. To validate our method, we propose differential analysis as a ubiquitous and flexible

approach to show the results of our findings.

Materials and methods

To evaluate the effects of pre-processing on the between-sample variability and on the identifi-

cation of Differentially Methylated Positions (DMPs) in case-control studies, we analyse four

different collections of datasets. The datasets have been selected based on their sample size and

on the assumption that there is no global DNA methylation variation among samples (see

Introduction and [5]). This assumption is required to apply methods that are based on quantile

normalization [4, 6]. In the following, we first describe the datasets (Section Materials) and the

nine pre-processing methods that we tested (Section Pre-processing). We then introduce

regRCPqn (Section Regional RCP with quantile normalization (regRCPqn)), and finally, we

specify how the datasets are pre-processed (Section Datasets pre-processing), as well as which

model and variables are used for the differential analysis (Section Statistical Analysis).

Materials

We consider four datasets, each composed of two studies, characterized by features that are

progressively challenging from the harmonization point of view: the first one (BloodIBD) is a

dataset from a single project and laboratory, where samples are processed at two different

dates, mimicking two datasets; the second one (BloodParkinson) artificially breaks one study

into two batches; the third (NasalAsthma) and the fourth (BuccalFetalAlcohol) datasets repre-

sent real life scenarios, where independent projects address the same clinical issue (atopic

asthma and foetal alcohol spectrum disorder (FASD), respectively) in different laboratories,

different dates, different clinical centres and heterogenous patients enrolment. In all cases, the

datasets raw.idat files were available in GEO.

1. BloodIBD: the dataset from [12], GSE87648, includes whole blood DNA methylation data

from 384 samples (18-79 y.o.), 204 subjects with Inflammatory Bowel Disease (IBD) and

180 healthy controls. Samples were processed in two different dates: 192 samples (90 IBD

and 102 Controls) were scanned on 11/13 (date1), while 192 samples (90 IBD and 102 Con-

trols) were scanned on 11/20 (date2). Here we simulate a meta-analysis by considering the

two batches (dates) as two distinct studies with limited experimental variation, since sub-

jects were selected according to the same criteria and samples were sequenced in the same

laboratory and with the same protocols.

2. BloodParkinson: the dataset from [13], GSE111629, includes whole blood DNA methyla-

tion data from 563 samples (35-92 y.o.), 329 subjects with Parkinson’s disease (PD) and 234

from healthy PD-free control subjects. Here the presence of two studies was simulated by

artificially dividing the samples into two groups through a stratified sampling based on

health status. One study includes 281 subjects (164 PD and 117 controls), while the other

includes 282 subjects (165 PD and 117 controls). No batch effect is expected to exist

between the two simulated studies, but we still use different pre-processing methods to

investigate their effects on the results.

3. NasalAsthma: in this meta-analysis we consider two datasets that include DNA methylation

data of nasal epithelial cells from children with persistent atopic asthma and controls. The

first dataset (GSE65163) includes 72 subjects (9-12 y.o.), 36 asthmatics and 36 controls. The

second dataset (GSE109446) includes 58 subjects (5-18 y.o.), 29 asthmatics and 29 controls.
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4. BuccalFetalAlcohol: in this meta-analysis we consider two datasets that include DNA meth-

ylation data of buccal epithelial cells from children with FASD and controls. The first data-

set (GSE80261 [14]) includes 202 subjects (5-18 y.o.), 106 FASD and 96 controls, that were

processed in two different dates, 89 on 04/12 (44 FADS and 45 controls) and 113 on 06/13

(62 FADS and 51 controls). The second dataset (GSE109042 [15]) includes 54 subjects (4-

18 y.o.), 26 FASD and 27 controls.

Raw data of each study (.idat files) were downloaded from the GEO database and pre-pro-

cessed with the R packages minfi 1.28.0 [6], wateRmelon 1.26.0 [7] and ENmix 1.18.1 [16]. In

all cases, samples and probes were first filtered according to the recommended criteria [6] and

then pre-processed. Specifically, samples were discarded if > 5% of the probes had detection

p-value > 0.05. Probes were filtered out if the detection p-value was > 0.05 in > 1% of the

samples. Samples whose median intensities in both the methylated (M) and unmethylated (U)

channels were lower than most cases were also removed. For the BloodIBD dataset, 256 sam-

ples over 384 were finally retained: 111 (60 IBD and 51 Controls) scanned on date1 and 154

(87 IBD and 67 Controls) scanned on date2. For the BloodParkinson dataset all samples passed

the pre-processing filters in both simulated batches. For the NasalAsthma meta-analysis 3 sam-

ples were discarded from GSE65163 and none from GSE109446. For the BuccalFetalAlcohol

study 18 samples were removed from GSE80261, leaving 94 FASD and 90 controls, while 22

samples were removed from GSE109042, leaving 16 FASD and 16 controls.

Methods

Raw data were pre-processed using eight of the most commonly used algorithms in literature

[8]: 1) subset-quantile within array normalization (SWAN) [17], 2) Functional normalization

(FunNorm) [4], 3) dasen [7], 4) stratified quantile normalization (pQuantile) [6], 5) normal-

exponential using out-of-band probes (noob) [18], 6) Regression on Correlated Probes (RCP)

[11], 7) Beta-Mixture Quantile Method (BMIQ) [19], and 8) the combination of noob and

BMIQ, that was proven to outperform the other methods in [8].

Although a careful review of all methods can be found in [8], we here briefly recall their

main features, further summarized in Table 2. In short, SWAN [17] performs within-array

normalization separately for the methylated and unmethylated channels. First, it selects a ran-

dom subset of type I and type II probes matched on the number of underlying CpG and it per-

forms a quantile normalization. Then, it uses a linear interpolation to adjust the intensities of

the remaining probes, separately for each probe type.

BMIQ [19] is a within-array normalization method that adjusts for probe type bias. It sepa-

rately fits the β-values distribution of type I and type II probes with a three-state beta mixture

model, where the three states correspond to unmethylated, 50% methylated and fully methyl-

ated probes. Then, BMIQ quantile normalizes type II probes by state on the distribution of

type I probes of the same state.

Noob [18] is a within-array normalization method that first performs background subtrac-

tion by estimating the background mean intensity from the out-of-band control probes using

a normal-exponential convolution model, and then normalizes the background-corrected

intensities of the red and green channels based on the positive control probes.

Differently from the previous methods, dasen [7] performs a between-sample normaliza-

tion. It equalizes type I and type II backgrounds and then quantile normalizes methylated and

unmethylated intensities individually, considering separately type I and type II probes.

FunNorm [4] is also a between-sample normalization that uses the internal control probes

to estimate and adjust for technical variations. It normalizes separately the two probe types,

and the methylated/unmethylated signals. Moreover, it processes separately for males and
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females the probes that are located in chromosome X or Y. FunNorm is particularly suitable

when global changes of the methylome are expected between samples (i.e. in cancer-control

studies or when comparing the DNA methylation of different tissues), as it does not rely on

the assumptions of quantile normalization.

Stratified quantile normalization (preprocessQuantile, here pQuantile) [6] is a between-sam-

ple normalization that takes into account the probe genomic region, known to affect the DNA

methylation. It first quantile normalizes type I and type II intensities and then interpolates a

reference distribution against which type I probes are normalized. This is done separately in

each region and also separately for males and females for probes located in chromosome X

and Y. Background correction is not used, but very small intensities are identified as outliers

and removed.

Finally, RCP [11] is a within-array normalization that exploits the spatial correlation of

DNA methylation on CpG sites. Namely, it uses type I and type II probes pairs that are closer

than 25 base pairs and that share the same genomic context (Island, N_Shelf, N_Shore,

S_Shelf, S_shore or OpenSea) to estimate the calibration transformation between type I and

type II intensities.

In addition to the eight normalizations we also assessed raw data. In all cases, M-values

(logit2 of β-values) rather than β-values were used for further analysis, as suggested in [20].

Regional RCP with quantile normalization (regRCPqn)

Given the impact of heterogeneous normalizations on meta-analysis (see section Results and

discussion), we propose an additional step to harmonize datasets that were pre-processed with

different algorithms. Notice that our method does not require the raw.idat files and can hence

be applied also to datasets with only pre-processed β-values available, a common real-life sce-

nario. Our procedure, regRCPqn, outlined in Algorithm 1, specifically enhances RCP with the

inclusion of three features to address the issue under study (i.e. meta-analysis from possibly

differently pre-processed datasets). First (lines 4-8 in Algorithm 1), it computes the RCP nor-

malization separately for each genomic region type (i.e. for CpG belonging to Islands, Shores,

Shelves or OpenSeas), as the distribution of DNA methylation values is different in each of

these regions [21] (RCP considers the regions to compute the transformation, but it does not

normalize separately the CpG that belong to different regions). Then, it performs a between-

sample quantile normalization where the CpG values of all samples are quantile normalized

separately for each CpG region and for type I and type II probes (lines 11-12). Finally, it intro-

duces the possibility to save a reference distribution and to use it to perform a reference-based

quantile normalization of the samples from the other dataset(s) (lines 14-17). The reference

distribution is computed separately for each region type and for type I and type II probes and

it is computed as the average of the values obtained over the samples. When available, such dis-

tribution is used by regRCPqn to perform the reference-based normalization, again separately

for each region and probe type (lines 21-22).

Notice that, as it is the case for some pre-processing methods, e.g. dasen and pQuantile, the

regRCPqn algorithm performs a between-sample quantile normalization. Hence it should not

be applied when global differences are expected, such as in cancer-control studies or when

comparing the DNA methylation of different tissues. The X- and Y-chromosomes are

removed from the analysis to avoid gender bias [22].

regRCPqn is implemented in R 3.5.1. It is available as open source R package on GitHub

(https://github.com/regRCPqn/regRCPqn) and can be installed using the devtools command

install_github(“regRCPqn/regRCPqn”).
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Algorithm 1 regRCPqn
Require: Mdata is a matrix of M-values; annot450k is a matrix of CpG
region annotations that includes CpG region and probe type; refPDF =
{refPDF.I, refPDF.II} are (optional) reference distributions of type I
and II
1: function REGRCPQN(Mdata, annot450k, refPDF)
2: Mdata_out  Mdata
3: for R 2 {OpenSea,Island,Shelve,Shore} do
4: CpGR  CpG in region R from annot450k
5: probe.I  type I CpGR
6: probe.II  type II CpGR
7: MdataR  Mdata[GpGR] . Submatrix in region R
8: RCP(MdataR) . Run RCP on region R data
9: if refPDF = NULL then
10: . Quantile normalization for each probe type
11: MdataR[probe.I]  QN(MdataR[probe.I])
12: MdataR[probe.II]  QN(MdataR[probe.II])
13: . Save reference distribution on file
14: refPDF.I  mean(MdataR[probe.I])
15: refPDF.II  mean(MdataR[probe.II])
16: refPDF  {refPDF.I, refPDF.II}
17: save(refPDF)
18: else
19: .Quantile normalization for each probe type
20: .wrt reference refPDF = {refPDF.I, refPDF.II}
21: MdataR[probe.I] QN(MdataR[probe.I],refPDF.I)
22: MdataR[probe.II] QN(MdataR[probe.II],refPDF.II)
23: end if
24: .Save region R normalized data
25: Mdata_out[GpGR,]  MdataR
26: end for
27: return Mdata_out
28: end function

Datasets pre-processing

We pre-processed the two studies of each dataset considering each possible combination of the

nine pre-processing methods (eight pre-processing pipelines plus raw data). Then, we evalu-

ated the effect of pre-processing on meta-analysis by performing a differential methylation

analysis using the health status as variable of interest. In each meta-analysis we always consid-

ered the case of data re-normalized with regRCPqn. When regRCPqn was used, we first applied

the re-normalization to one of the two studies (data from 11/13 for BloodIBD, first random

subset for BloodParkinson, GSE65163 for NasalAsthma and GSE109042 for BuccalFetalAlco-

hol), and then we used the obtained reference distribution to normalize the samples from the

other study. Before proceeding with the differential analysis we performed batch effect correc-

tion using Combat [23].

Statistical analysis

We perform differential analysis to identified differentially methylated positions (DMPs)

between cases and controls by computing a linear regression model for each CpG site. The

analysis was performed in R 3.5.1. Each DNA methylation value (M-value) was regressed

against the health status, while adjusting for confounding variables, an approach widely used

in literature [12–15]. In BloodIBD, the confounding variables included age, sex, smoking sta-

tus and cell counts, estimated with minfi [24]. In BloodParkinson and BuccalFetalAlcohol,
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smoking status was not available, but we included ethnicity. In BuccalFetalAlcohol we con-

strained the analysis to the 648 CpG sites that were investigated by the authors [15]. The Nasa-

lAsthma dataset GSE109446 included pairs of siblings, hence we introduced a random effect to

model the correlations among family members. We fitted the model using the R libraries lme4

1.1.19 [25] and lmerTest 3.1.0 [26] and we included age, sex and ethnicity as confounding

variables.

In all cases, statistical significance was set at p-value<0.05 following adjustment for multi-

ple testing using the Benjamini-Hochberg correction.

Finally, we computed the variability in the number of DMPs obtained by the different pre-

processing combinations as the Median Absolute Deviation (MAD). To test whether the

MADs obtained using regRCPqn are lower than those obtained without regRCPqn harmoniza-

tion, we performed a bootstrap resampling with 1000 iterations. Then, we tested for statistical

significance using a one-tailed t-test. Finally, we identified outliers as points whose absolute

distance from the median is larger than three times the dataset MAD.

Results and discussion

Between-sample variability

To investigate the impact of pre-processing on the distribution of M-values we estimated the

global between-sample variability. For each meta-analysis, we considered all the control sub-

jects (from both subsets), and we computed the standard deviation (SD) of each CpG site (M-

value). Finally, we used the average SD as a measure of between-sample variability. The com-

putation was performed for each of the nine pre-processing procedures outlined above, con-

sidering all combinations, including same pre-processing method for both studies.

The average between-sample variability depends on the pre-processing. When both datasets

are pre-processed in the same way, we observe that the highest average SD is obtained when

using BMIQ or noobBMIQ, while the lowest one is achieved with dasen and pQuantile (Fig 1

top, S1 Table), in agreement with the results obtained by Liu et al. [8]. Interestingly, BMIQ and

Fig 1. Heat maps representing the average of the M-values between-sample standard deviations. The x-axis and the y-axis indicate

which pre-processing method was applied to the two datasets of the same analysis. Results are shown with (bottom) and without (top)

application of regRCPqn and refer from left to right to datasets BloodIBD, BloodParkinson, NasalAsthma and BuccalFetalAlcohol.

https://doi.org/10.1371/journal.pone.0229763.g001
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noobBMIQ perform a within-sample normalization adjusting for probe type bias and, in the

case of noobBMIQ, for the background, while dasen and pQuantile implement a between-sam-

ple normalization, a feature that could explain our results. Although absolute performances

are not the aim of our study, we observe that when applying regRCPqn, the global between-

sample variability is generally reduced, as proven by the one-tailed t-test p-values in S1 Table

and shown at the bottom plot of Fig 1. This suggests that applying regRCPqn on top of a meta-

analysis helps reducing data harmonization issues.

In particular, if the pre-processing of the two datasets is different, then the observed vari-

ance mainly depends on the method used in the first dataset, normalized using regRCPqn with-

out reference distributions. This indicates that using the reference-based version of regRCPqn
masks the effect of the pre-processing choice on the second dataset.

Differential analysis is affected by pre-processing

We evaluated the effect of pre-processing on differential analysis by counting the number of

DMPs obtained when using different methods. We considered all the nine pre-processing

pipelines and we assessed the results pre-processing the two subsets of each meta-analysis both

with the same method and with different ones.

Notice that the number of DMPs per se is not a metric of success of the method. However,

since a pre-processing independent ground truth cannot be known a priori, the consensus

among methods was used as a proxy of the robustness of the finding [27]. Therefore, we inves-

tigated the variability in the number of DMPs and the concordance between results obtained

with the various methods.

The number of DMPs found by each analysis was highly variable (from 1 to 3 orders of

magnitude) depending on the pre-processing method used, as shown in Table 3. Such variabil-

ity was observed even when using the same pre-processing method for both datasets (Table 4),

confirming the pertinence of this analysis in the methylation meta-analysis context. Fig 2 and

S2 Table show that, on average, the minimum number of DMPs was obtained when using Fun-
Norm, followed by raw data. The result on FunNorm was in line with the findings of Liu et al.

[8], showing that this method has a higher sensitivity than raw data but performs worse than

other within-samples normalization methods. It was also expected for the raw data approach

Table 3. Summary statistics of the number of DMPs found by the differential analysis.

without regRCPqn with regRCPqn

Study Min Max Median IQR max-min Min Max Median IQR max-min

BloodIBD 48 790 254 222 742 655 994 792 98 339

BloodParkinson 12 11915 1683 3861 11903 7 2569 272 405 2562

NasalAsthma 9 6208 171 1279 6199 43 1791 1196 1434 1748

BuccalFetalAlcohol 7 64 18 19 57 9 32 16 3 23

https://doi.org/10.1371/journal.pone.0229763.t003

Table 4. Summary statistics of the number of DMPs found by the differential analysis when the two subsets of each study are pre-processed with the same method.

without regRCPqn with regRCPqn

Study Min Max Median IQR Max-Min Min Max Median IQR Max-Min

BloodIBD 48 790 492 347 742 662 994 850 100 332

BloodParkinson 142 11915 4729 3577 11773 15 2569 465 1041 2554

NasalAsthma 27 6153 1432 2187 6126 43 1791 1636 1612 1748

BuccalFetalAlcohol 13 53 39 18 40 13 27 19 3 14

https://doi.org/10.1371/journal.pone.0229763.t004
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to identify less DMPs than other methods. In fact, the lack of a normalization step should gen-

erate more noisy data, hence the differences between cases and controls are more difficult to

detect. Finally, the maximum number of DMPs was obtained with RCP, confirming previous

findings [11].

In general, our results were not stable when considering different datasets, an issue also pre-

viously reported [8]. For example, using noob, we observed the minimum number of DMPs in

BuccalFetalAlcohol, while in BloodParkinson we obtained a number of DMPs equal to 98% of

the maximum number of DMPs observed for this meta-analysis. However, sorting the pre-

processing methods according to the average fraction of detected DMPs, we could observe the

trend shown on the x-axis of Fig 2 (see S2 Table for numeric values).

The high variability in the number of DMPs was reduced when using regRCPqn. In fact,

Table 3 shows that the Inter Quartile Range (IQR) of the number of DMPs decreased after the

application of regRCPqn in all meta-analyses but NasalAsthma, and that the difference between

the maximum and minimum number of DMPs also decreased in all meta-analyses. The heat

maps in Fig 3 graphically display these results.

In all analyses, heat maps are shown with (right) and without (left) regRCPqn. In general,

when applying regRCPqn, the number of DMPs found with different pre-processing became

closer to the median number of DMPs. S3 Table reports the MADs obtained with and without

regRCPqn. Bootstrap p-values show that in all studies but NasalAsthma we obtained a lower

MAD when using regRCPqn. Moreover, when regRCPqn was applied, the number of outliers

was reduced in half of the datasets. These results are visually shown in Fig 3, where heat maps

have lighter colours (i.e. number of DMPs closer to the median) when regRCPqn is used (plots

on the right), and box plots have longer boxes (wider Inter Quartile Range) when regRCPqn is

not used.

Finally, we investigated the concordance between the results obtained with different pre-

processing methods, counting the number of DMPs that are identified by more than one

method. This was achieved using two approaches: first, comparing the results of each pair of

pre-processing methods; second, considering the same pre-processing for both subsets of each

meta-analysis and evaluating the concordance between each method and all the others. To

Fig 2. Relative number of DMPs found in each meta-analysis when using the same pre-processing for both datasets. Counts of each

meta-analysis have been normalized dividing for the maximum number of DMPs. Pre-processing methods are listed on the x-axis in

ascending order according to the average relative number of DMPs obtained in the four meta-analyses.

https://doi.org/10.1371/journal.pone.0229763.g002
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evaluate the pairwise concordance, we considered each pair of pre-processing pipelines and

computed the number of DMPs recognized by both methods (co-occurrence matrix). The

box plots in Fig 4, display the distribution of the number of co-occurring DMPs considering

all possible pairwise combinations of pre-processing methods with (right) and without (left)

regRCPqn. The fraction of co-occurring DMPs varies from less than 0.25 to 1 and depends on

the pair of methods and on the meta-analysis under investigation. Moreover, in general, the

Fig 3. Heat maps and box plots representing the number of DMPs found in the four studies (from top to bottom: BloodIBD,

BloodParkinson, NasalAsthma and BuccalFetalAlcohol) when using different pre-processing methods. For each study, the two heat

maps correspond to the case where regRCPqn was (right) or was not (left) applied. The colour of each cell is representative of the

number of DMPs found when the datasets under consideration are pre-processed according to the methods specified on the x and y

axes. Here, yellow corresponds to the minimum number of DMPs (with or without regRCPqn), purple to the maximum and green to the

median. The cells on the diagonal indicate that both datasets were pre-processed with the same method and show that DPMs remain

highly variabile.

https://doi.org/10.1371/journal.pone.0229763.g003
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concordance increases using regRCPqn: for all datasets, one-tailed Welch’s test p-values are

less than 10−16.

The concordance between each method and all the others was evaluated by computing the

number of DMPs that are found by all, some or none of the other approaches. S4 Table and

the bar plots in Fig 5 show for each method the number of identified DMPs that are also

detected by all, some, or none of the other methods. Without using regRCPqn (Fig 5, panel a)),

all meta-analyses contained a subset of DMPs that were identified by all methods and unique
DMPs were obtained mainly by methods that identified a greater number of DMPs (RCP and

pQuantile). One-tailed Welch’s test p-values (S4 Table) suggested that applying regRCPqn
improves the outcome. In fact, even if the statistical significance was low for two out of four

datasets, our results showed that the use of regRCPqn tends to increase the number of DMPs

Fig 4. Box plots of the fraction of co-occurring DMPs computed as the number of DMPs found by one pair of analyses divided by

the number of DMPs found by the analysis with less DMPs (within the pair). Results are shown for the four datasets (from left to

right: BloodIBD, BloodParkinson, NasalAsthma and BuccalFetalAlcohol) and considering the cases where regRCP was or was not

applied, as indicated on the x-axis.

https://doi.org/10.1371/journal.pone.0229763.g004

Fig 5. Bar plots of the number of DMPs found by each pre-processing method, considering both datasets pre-processed in the

same way. Colours indicate: (i) the number of DMPs that are found by at least one other method (Common to some), (ii) by all the

methods (Common to all) or (iii) only by that method (Unique). Results are shown for the four analyses: BloodIBD (top-left),

BloodParkinson (top-right), NasalAsthma (bottom-left), BuccalFetalAlcohol (bottom-right). Panel a) refers to the case where regRCPqn
is not applied, while panel b) shows the results obtained using regRCPqn.

https://doi.org/10.1371/journal.pone.0229763.g005
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shared by all methods while decreasing the number of unique DMPs identified by only one

method (Fig 5, panel b).

Our results, hence, suggested that harmonizing the data with regRCPqn reduces the vari-

ability related to the use of different pre-processing procedures in the two datasets.

Conclusion

The high availability of public DNA methylation datasets opens to the possibility of perform-

ing meta-analyses. Often, however, data are pre-processed in different ways, due to the lack of

consensus on pre-processing and on potentially different needs associated to the specificities

of the study. Further, owing to the limited compliance to GEO guidelines and standards, raw

data are seldom made available. In order to assess the impact of this on further analyses we sys-

tematically investigated the effects of different pre-processing methods. We found that pre-

processing affects both the between-sample variability and the results of meta-analysis, using

as exemplar differential analysis. In general, results are highly variable depending on the

dataset under investigation. We must notice that our results are based on a selection of dataset

sufficiently diverse to grant generalization, but limited (4 dataset pairs) and that dataset agree-

ment is used as a performance metric, as ‘ground truth’ is not available for this type of analyses.

Nevertheless, we were able to identify some general trends. Concerning the between-sample

variability, we show that the lowest variability among control samples is achieved when pre-

processing methods that perform a between-sample normalization are applied (i.e. dasen or

pQuantile), while the highest variability is obtained when using BMIQ or noobBMIQ. The

dependence on the pre-processing method was also observed for the results of the differential

analysis. Specifically, the number of DMPs identified in the comparison between cases and

controls can vary by more than a few thousands when changing the pre-processing method,

and the concordance between the identified DMPs is only partial.

Data harmonization remains a main issue of meta-analysis. Our algorithm, named

regRCPqn, largely relies on RCP and can reduce the global variability between control samples

and increase the stability of the differential analysis.

Supporting information

S1 Table. For each combination of pre-processing, we show the between-sample variability

(average SD) with and without regRCPqn. T-test was performed to test if the difference in

average SD using regRCPqn or not is statistically significant.

(XLSX)

S2 Table. For each pre-processing we report the number of DMPs found in each meta-

analysis. Mean and standard deviation of the number of DMPs across the 4 studies are also

reported. Only the case in which the same pre-processing is used for both datasets of the meta-

analysis is considered.

(XLSX)

S3 Table. For each dataset, we report the MAD of the number of DMPs obtained when

using different preprocessing. Outliers and boostrap p-values that tests whether using

regRCPqn reduces MAP, are also reported.

(XLSX)

S4 Table. For each dataset, we report for each pre-processing method the number of DMPs

also found by all the others (Common to all), by at least one other (Common to other) and

by none of the others (Unique). To test whether using regRCPqn increases the number of

DMPs common to all methods and decreases the number of unique DMPs, we considered the
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difference between the fractions obtained with and without regRCPqn and we used a one-tailed

Welch’s test. Finally, we report a summary table in which the number of DMPs obtained for

each dataset and for each pre-processing method, using and not using regRCPqn, is indicated.

Only the case in which the same pre-processing is used for both datasets of the meta-analysis is

considered.

(XLSX)
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