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Abstract. In the Nile Delta, a complex network of canals collects drainage water from surface-irrigated 

fields, but also municipal wastewater. The goal of this work was to assess the technical, environmental and 

financial feasibility of the upgrade of a drainage canal (DC) into either an in-stream constructed wetland 

(ICW) or a canalized facultative lagoon (CFL), in order to produce a water re-usable in agriculture according 

to the Egyptian law. The model-based design of the proposed technologies was derived from field 

experimental data for the ICW and laboratory data for the CFL. Both technologies, integrated by a 

sedimentation pond and a disinfection canal, led to the attainment of the water quality standards imposed by 

Egyptian Law 92/2013 for the reuse of drainage water. The life cycle assessment indicated that the upgrade 

of an existing DC to either an ICW or a CFL results in an extremely small environmental burden,  0.3% of 

that of a traditional activated sludge process. The cost/benefit analysis (CBA) was based on the assumptions 

that (i) farmers currently irrigate a non-food crop (cotton) with the low-quality drainage water present in the 

DC, and (ii) thanks to the upgrade to a ICW or CFL, farmers will irrigate a food crop characterized by a 

higher market price (rice). The CBA indicated that the DC upgrade to an ICW represents an attractive 

investment, as it leads to a financial rate of return > 10% over a wide range of cotton market prices. 

Conversely, the upgrade to a CFL is less attractive due to high investment costs. In conclusion, the upgrade 

of DCs to ICWs appears a promising option for the treatment of drainage canal water in the Nile Delta, 

thanks to the high pollutant removal performances, low cost and negligible environmental burden. 

Keywords: drainage and municipal wastewater, constructed wetlands, facultative lagoons, life cycle 

assessment, cost benefit analysis. 

EDITOR’S NOTE. This paper represents 1 of 14 articles in the special series “Improving Water Security 

in Africa.” The work is the culmination of 7 Horizon 2020 projects focused on the environmental and social 

challenges of improving water security in African countries. 

 

  



 

 

KEYPOINTS 

 Evaluation of the technical, environmental and financial feasibility of the upgrade of an Egyptian 

drainage canal into an in-stream constructed wetland (ICW) or a canalized facultative lagoon (CFL) in order 

to turn drainage canal water into water re-usable in agriculture according to Egyptian law. 

 Both technologies, integrated by a sedimentation pond and a disinfection canal, led to the attainment 

of the water quality standards imposed by Egyptian Law 92/2013 for the reuse of drainage water. 

 The upgrade of a drainage canal to an ICW or CFL presents a negligible environmental impact 

(0.3% of the average impact of an activated sludge process) and leads to a marked improvement in water 

quality (90-99% decrease in BOD, 71-94% decrease in total nitrogen, 2.6-4.3 Log reduction in fecal 

coliforms). 

 The cost benefit analysis indicated that the upgrade of a drainage canal to an ICW represents an 

attractive investment, leading to a financial rate of return > 10% over most market conditions examined. 

Conversely, the upgrade to a CFL is less attractive due to the high investment costs. 

 

INTRODUCTION 

In the Nile Delta region in Egypt, agriculture represents a crucial economic activity, and all the 

agricultural surface is irrigated with freshwater ultimately provided by the Nile river through a complex 

network of canals. Surface irrigation is widely applied, and the excess irrigation water, contaminated with 

fertilizers and pesticides, is collected by means of an intricate network of drainage water canals. However, 

several villages in Egypt are still suffering from low sanitation coverage and poor sanitary technology. 

Therefore, small drainage canals are often used to dispose untreated municipal wastewater (MWW) and 

industrial wastewater. The contaminated drainage canal water (DCW) is typically discharged in main drains, 

which eventually discharge in the Mediterranean sea (Frascari et al. 2018). The treatment of drainage canal 

water potentially represents an important option for the Nile Delta, with the double purpose to produce water 

that can be reused for irrigation or for aquaculture and to reduce the pollutant load discharged in the 

Mediterranean. Thus, simple, low-tech, low-energy water treatment technologies are needed to treat drainage 

water up to irrigation-quality water.  

Two technologies are in line with these requirements: constructed wetlands (CWs) and facultative 

lagoons (FLs). CWs are characterized by a low investment and operational cost, and they are suitable for the 

treatment of several wastewater types. The use of CWs is a growing practice to mitigate the impacts of point 

and non-point source pollution. Wetlands promote physical, chemical and biological processes that attenuate 

pollution leading to an improved water quality (Bass 2000; Gorgoglione and Torretta 2018; Almuktar et al. 

2018; Martinez-Guerra et al. 2015). Decreased velocities promote deposition of suspended solids in the 

wetland. Dense vegetation in wetlands can improve physical filtering of sediment, trash, and organic 

materials. Vegetation also shades shallow and slower moving waters to help reduce algae growth (Mitsch 

and Gosselink 2000).  

In the specific context of the Nile Delta, the presence of a high number of canals carrying a mixture of 

drainage water and untreated MWW suggests the opportunity to convert the existing canals into in-stream 

constructed wetlands (ICWs). In general, an ICW consists of a primary sedimentation pond, a constructed 

wetland section, a disinfection section and a gated weir that governs the hydraulic retention time (Rashed 

and Abdel-Rashid 2008). The upgrade of an existing drainage canal to an ICW does not determine any 

additional occupation of land. This makes the proposed upgrade particularly attractive, as in the Nile Delta 

all the land not occupied by residential or industrial activities is dedicated to agriculture.  

Facultative lagoons are increasingly applied for MWW and agricultural water treatment, particularly 

in remote and/or rural communities, as they can offer completely natural water treatment processes. In 

addition they are simpler to operate and they require less energy than aerated lagoons (US EPA 2002; Ho et 

al. 2017; Ewing et al. 2014; Liu et al. 2010). Facultative lagoons are usually 1.2 to 2.4 m deep and they are 

not mechanically mixed or aerated. The water layer near the surface contains dissolved oxygen due to 

atmospheric reaeration, a condition that supports aerobic organisms contributing to COD removal and 

ammonium oxidation to nitrate. The bottom, anoxic layer of the lagoon includes sludge deposits and supports 

facultative and anaerobic organisms contributing to nitrate reduction to nitrogen and partially to COD 

removal. In cold climates, fermentation reaction rates are significantly reduced during the winter and early 



 

spring, reducing drastically the effluent quality. Therefore, facultative lagoons systems perform better in 

warm climates, where effective removal of pathogens and coliforms can also be achieved. Most existing 

facultative lagoons are large, single-cell systems with the inlet located near the centre of the cell. This 

configuration can result in short-circuiting and ineffective use of the design volume of the system, as well 

as in difficulties to control ammonia levels in the effluent, due to limitations in the activity of ammonium-

oxidizing bacteria in the aerobic layer. Recently, canals receiving partially treated and untreated municipal 

effluents resulted in interesting water treatment performances (Mancini 2008). Therefore, canalised 

facultative lagoons (CFLs) can attain simultaneous COD removal, nitrification and denitrification, provided 

that the canal depth and turbulence allow the establishment of (i) an upper, aerobic layer in which high 

oxygen concentrations maintained through dissolution from air allow aerobic bacteria to perform BOD 

oxidation and ammonia nitrification; (ii) a bottom, dark anoxic layer receiving nitrates from the upper one; 

and (iii) an adequate mass transfer of nitrate and BOD between the upper and lower layer  (Mancini 2008). 

In the specific context of the Nile Delta, for the above-illustrated reasons, the upgrade of existing drainage 

canals into CFLs represents a potentially promising solution. 

The main goal of this work was to assess the technical, environmental and financial feasibility of the 

upgrade of a typical drainage canal into either an ICW or a CFL. More specifically, the drainage canal 

upgrade was evaluated in terms of (i) the capacity of the proposed technologies to produce a treated effluent 

compliant with the limits imposed by the Egyptian law for the agricultural reuse of drainage water, (ii) the 

environmental impact and (iii) the attractiveness of the required investment for a farmer or a farmers’ 

association, making reference to the specificities of the Egyptian context. 

The upgrade of a typical tertiary drainage canal to either an ICW or a CFL was thus assessed in terms 

of Life Cycle Assessment (LCA) and Cost Benefit Analysis (CBA). This approach required a preliminary 

model-based design of both technologies. To this goal, two different approaches were applied for the ICW 

and for the CFL. For the first technology, on the basis of the encouraging results obtained by the National 

Water Research Council of Egypt in previous pilot-scale tests of DCW treatment by means of constructed 

wetlands (Rashed 2016; Rashed and Gammal 2018), an actual tertiary drainage canal – the Edfina DC in the 

Western Nile Delta – was upgraded to an ICW and the resulting water treatment performances were 

monitored for 18 months. The model-based design of the ICW used for the LCA and CBA was thus 

performed on the basis of the results obtained in the experimental full-scale ICW. Conversely for the CFL, 

given (i) the lack of previous field experiences in Egypt or in similar contexts and (ii) the higher excavation 

and building costs associated to the upgrade of an existing tertiary DC to a CFL, the model-based design 

used for the LCA and CBA was performed on the basis of the results obtained in a laboratory-scale pilot 

plant. To this goal, two stirred tank reactors (STRs) were set up and operated in batch mode, with a variable 

flow rate of mutual exchange between them, in order to simulate the biodegradation phenomena occurring 

in an actual CFL in the upper aerobic layer and in the lower anoxic layer. The results obtained in these two 

batch reactors were used to predict the profiles of pollutants concentration versus space along the actual CFL 

– represented as a continuous plug-flow reactor (PFR) – according to the equivalence between the time 

evolution of concentrations and reaction rates in a batch reactor and the variation of the same parameters 

with retention time in a PFR (Levenspiel 1999).  

This work presents two main novelties. In the first place, even though CWs and facultative lagoons 

are well-known water treatment technologies, in this work for the first time these technologies were adapted 

to the Egyptian context, and more specifically an existing drainage canal was upgraded to an in-stream CW 

or facultative lagoon. In particular, even though a limited number of previous articles refers to the concept 

of “in-stream constructed wetland” (Stone et al. 2003; Bass 2000; Kasak et al. 2018), in none of these articles 

the CW was obtained within an existing canal, and therefore the CW was always characterized by an 

additional occupation of land. Conversely, both the ICW and the CFL object of this work do not require any 

additional land occupation, a crucial advantage in a highly cultivated context such as the Nile Delta. In the 

second place, the integration of technical performances, LCA and CBA in order to select the most promising 

water treatment technology among a range of proposed technologies represents an innovative approach in 

the literature. 

This work contributes to the achievement in Egypt of sustainable development goal (SDG) 6 “Ensure 

availability and sustainable management of water and sanitation for all”, with specific emphasis on targets 

6.3 “Improve water quality by reducing pollution, halving the proportion of untreated wastewater and 

substantially increasing recycling and safe reuse” and 6.6 “Protect and restore water-related ecosystems”. 



 

 

MATERIALS AND METHODS 

Analytical methods 

The analyses of chemical oxygen demand (COD), total suspended solids (TSS), total N, NO3
- and 

NH4
+ were performed according to the following ISO standards: COD, ISO 15705:2002; TSS, ISO 

11923:1997; total N, ISO 11905:1997; NO3
-, ISO 7890 1-2:1986; NH4

+, ISO 7150-1:1984. For all these 

analyses, Hach-Lange cuvette tests were used. The analysis of biochemical oxygen demand BOD (5 days, 

20°C), Fecal Coliforms (FC) and Total Coliforms (TC) were performed according to the methods described 

by the American Public Health Association (APHA 2000). 

Description of the Edfina Drainage Canal (DC) and drainage canal water characterization 

Edfina village and drainage canal (DC) are located in West of the Nile River Delta (31° 17’ 45.14’’ N 

and 30° 30’ 18.9’’2 E). The drain, that receives daily 300 m3 of raw sewage, serves 200 hectares of croplands. 

Further details on the Edfina DC are reported in Table S1 in the Supplemental Data. TSS, BOD, COD, total 

N and FC were monitored in the Edfina DC for 18 months to investigate the natural pollutant depuration 

along the drain. Six sampling locations were placed along the DC. 

Laboratory tests for the model-based design of a canalised facultative lagoon 

An average sample of DCW was used to produce an enriched microbial consortium to be used in the 

aerobic/anaerobic nitrification/denitrification tests aimed at simulating a canalised facultative lagoon. The 

procedure for the growth of the aerobic and facultative fractions of the bacterial community sampled from 

the DC is illustrated in Tables S2 and S3 in the Supplemental Data. 

In order to gain insight on the performances in COD reduction and nitrification/denitrification 

attainable in a CFL using the microbial consortium enriched from drainage canal water, a laboratory-scale 

pilot plant comprising 2 bioreactors, one mimicking the aerobic and one the anoxic layer of an actual CFL, 

was designed and assembled. Two jacketed glass stirred tank reactors (STR) were used (Sartorius, Germany). 

The two STRs were hydraulically connected to each other and water was recirculated with a controlled 

exchange volumetric flow rate f (L/h) by means of a peristaltic pump, in order to simulate the exchange 

between the aerobic and anoxic layers of an actual CFL (Figure 1e). Further details on the layout and 

operational conditions of this plant are reported in Table S4 in the Supplemental Data. 

LCA and CBA of the upgrade of an existing canal to an ICW or CFL 

The core idea of this work consists in valorizing the presence of numerous drainage canals in the Nile 

Delta by upgrading them into an ICW or CFL, so as to (i) develop an effective water treatment technology 

without any additional land occupation, and (ii) minimizing environmental impact and cost relative to the 

implementation of the proposed technologies. Thus, the main goal of the LCA and CBA was to compare the 

upgrade of an existing canal to an ICW to the upgrade of the same canal to a CFL in terms of environmental 

impact and costs/benefits. For this reason, both the LCA and CBA were not referred to the construction of 

an ICW or CFL from scratch, but rather to the conversion of an existing DC to an ICW or CFL. The LCA 

was performed according to the ISO 14040 standard (ISO 2006). The LCA inventory was based on the 

design of a full-scale (350 m3/d) CFL or ICW. A 30 year lifetime was considered. All values were referred 

to 1 m3 of drainage canal water (functional unit). The software SimaPro 8.4.0 and the database Ecoinvent 

3.3 were utilized (PRé Consultants 2017; Wernet et al. 2016). The LCA method ILCD 2011 Midpoint+ 

V1.10/EC-JRC Global, equal weighting, a widely recognized and harmonized method at European level, 

was applied (European Commission 2011). 

The CBA of the upgrade of an existing drainage canal to an ICW or to a CFL was performed according 

to the European Union guidelines for the appraisal of investment products (European Commission 2014). 

The starting assumption of the CBA was that a successful implementation of the proposed technologies for 

DCW treatment requires a positive financial perspective for the farmer. The goal of the CBA was thus to 

assess the financial sustainability of the DC modification by comparing the Financial Rate of Return (FRR) 

of the investment relative to the upgrade of an existing canal to an ICW or CFL with a reasonable value of 

the Weighted-Average Cost of Capital (WACC) for the Egyptian context. The WACC represents the rate 

that a company is expected to pay on average to all its creditors and owners, to finance its assets. On the 

basis of specific studies relative to the Egyptian context, the minimum WACC required to generate a positive 



 

business case for the farmers was set to 10% (Dailami and Dinh, 1991. World Bank, 1998). The Financial 

Net Present Value (FNPV) of both options was calculated as well. The FNPV represents the sum of all the 

costs and benefits for each period of an investment, actualized to the present value on the basis of the selected 

discount rate. A positive FNPV means that the overall benefits of a project are larger than the overall costs. 

The CBA was referred to a 30-year period. The CBA was based on the assumptions that (i) farmers currently 

irrigate a non-food crop (namely cotton) with the low quality drainage water present in the DC, and (ii) 

thanks to the upgrade to a ICW or CFL, farmers will use the resulting higher-quality water - after dilution 

1:1 with fresh Nile water -  to irrigate a higher-value food crop that can be consumed after thermal treatment 

(rice). More details on the CBA methodology are reported in Table S5 in the Supplemental Data. 

 

RESULTS AND DISCUSSION 

Natural attenuation in the drainage canal (DC) and legal limits for the reuse of treated water for 

irrigation 

In order to assess the natural biological depuration occurring in the DC before its upgrade to an ICW 

or CFL, a water sampling campaign was carried out in 6 locations along the DC (Figure 1a). The results, 

summarized in the upper part of Table 1, show that natural attenuation occurred in the DC, with BOD, COD 

and TSS removals in the 80-90% range, and a 2.2 Log reduction of fecal coliforms. The profiles of 

concentrations vs residence time obtained from the data reported in Table 1 were satisfactorily interpolated 

with a first order model: 𝑐𝑡 = 𝑐𝐼𝑁 ∙ 𝑒−𝑘 𝑡, where t indicates the retention time corresponding to each sampling 

point, at the average flow rate of 350 m3/d. The resulting first-order constants are reported in the last column 

of Table 1. This natural depuration was not sufficient to meet the water quality standards imposed by art. 51 

of the Egyptian law 92/2013 (Table 1), which applies to drainage water that can be reused to irrigate crops 

after 1:1 dilution with high quality Nile water. The standards defined by art. 51 represent the minimum target 

to be achieved in DCW treatment. The ISO 16075 limits for the agricultural reuse of treated wastewater are 

shown in Table 1 as well. 

Design and operation of the in-stream constructed wetland (ICW) 

As first step in the ICW design, a 350 m3/d volumetric flow rate was selected, 14% higher than the 

actual one, to cope with expected future population growth. The potential effect of the irrigation events on 

the treated flow rate was neglected in the ICW and CFL design, according to the rationale illustrated in Table 

S6 in the Supplemental Data. 

As first stage of the treatment train, a sedimentation pond was excavated at the beginning of the Edfina 

DC, in correspondence of the sewage discharge. This pond is 2 m wide, 1.5 m deep and 200 m long, leading 

to a total volume of 600 m3 and a mean residence time of 1.7 d. The sediment is dredged once a year. 

As a second stage of the treatment, after the sedimentation pond, 4 in-series free water surface 

constructed wetlands were designed and constructed. In the first 3 cells, reeds (phragmites australis) were 

planted at the drain bottom and sides. In the last cell floating duckweeds and water hyacinth were combined. 

This aquaculture composition was selected to cope with hyacinth death during cold winters, since duckweeds 

are cold tolerant. The CW was designed on the basis of a first order model. In particular, HRTi - the HRT 

required for each pollutant i taken into consideration – was calculated as: 𝐻𝑅𝑇𝑖 = 𝑙𝑛(𝑐𝑖,𝐼𝑁 𝑐𝑖,𝑂𝑈𝑇⁄ ) ∙ (1 𝑘𝑖⁄ ). 

The design HRT was calculated as the maximum of the HRTi relative to the single pollutants. First-order 

constants ki assessed from a previous wetland project relative to the treatment of drainage canal water in the 

Lake Manzala region, Egypt were utilized (Rashed and Abdel-Rashid, 2008). The wetland area resulted 

equal to 1800 m2, with an 800 m length, a mean 0.6 m depth and a width of 2.25 m. Each cell was 200 m 

long, 2.25 m wide, 0.5 m deep, resulting in a mean residence time of 0.64 d. Thus, the total residence time 

in the ICW was 2.6 d. Submerged precast plan concrete weirs were placed along the canal between treatment 

cells to enhance aeration, and to uniformly redistribute the outlet water from the previous cell to the inlet of 

the following cell. A steel screen was placed after the hyacinth cell to avoid plants dispersion into the 

following open-water disinfection canal (Figure S1 in the Supplemental Data). 

To complete the treatment train, the remaining 1200 m of the DC length were dedicated to a shallow, 

plant-free canal (2.25 m wide, 0.75 m deep, with a mean residence time of 2.6 days) in which sun radiation 

and air-water interaction determine pathogens disinfection and tertiary removal of TSS and BOD remaining 



 

after the previous two stages. Schemes of the whole ICW treatment train are shown in Figure 1b and in 

Figure S1 in the Supplemental Data. 

The monitoring of the ICW performances started 6 months after the ICW start-up, when a sufficient 

plant growth and a stable bacterial biofilm had been achieved. The monitoring continued for 18 months. The 

mean results of this monitoring campaign are shown in Table 1, in section “Existing ICW”. The ICW led to 

an increase in removal from 89 to 97% for TSS, from 81 to 91% for BOD, from 82 to 92% for COD, and 

from Log 2.2 to Log 3.8 for fecal coliforms. The average FC level at the ICW outlet (990 MPN/100 mL) is 

in line with the limit of 1000 MPN/100 mL imposed by the ISO 16075 standard for the irrigation of cereals 

(cat. B, Table 1). In addition, this average FC level corresponds – according to the average TC/FC ratio in 

Egyptian DCW resulting from over 100 analysis – to about 2600 MPN/100 mL, a value well below the 5000 

MPN/100 mL limit prescribed by art. 51 of the Egyptian law 92/2013 for TC. The profiles of concentrations 

vs residence time obtained from the data reported in Table 1 were satisfactorily interpolated with a first order 

model: 𝑐𝑡 = 𝑐𝐼𝑁 ∙ 𝑒−𝑘𝑡, where t indicates the retention time corresponding to each sampling point, at the 

average flow rate of 350 m3/d. The resulting first-order constants, as well as the surface loading rates and 

the surface removal rates are reported in Table 1. The constant for TC was assumed to be equal to that for 

FC. Both the TN 1st order constant (0.58 d-1) and surface removal rate (1.6 g/d/m2) are in good agreement 

with the corresponding ranges reported in the literature for subsurface wetlands (0.5-0.9 d-1 and 0.2-1.2 

g/d/m2, respectively) (Tuncsiper et al. 2006; Garfì et al. 2012; Vymazala and Kröpfelováb 2015). 

Conversely, the in-stream ICW technology allowed the attainment of a rather high BOD surface removal 

rate (47 g/d/m2) in comparison to the typical literature values (3-10 g/d/m2) (Garfì et al. 2012; Gorgoglione 

and Torretta 2018). 

Despite these satisfactory performances, as shown in Table 1 the ICW was not capable to reach the 

limits imposed by art. 51 of Law 92/2013 for BOD and COD. This determined the need to re-design the 

ICW, increasing the length of the constructed wetland section and reducing the length of the disinfection 

canal. The actual constructed wetland residence time – and therefore length – required to attain the limits of 

art. 51 of Law 92/2013 for BOD (30 mg/L) and COD (50 mg/L) was assessed on the basis of the 1st order 

constants obtained in the experimental ICW (Table 1). The average concentrations measured after the 

sedimentation pond were used as inlet concentrations for the designed CW. The art. 51 limits were used as 

target values at the ICW outlet (ci,out), and the required mean residence time was calculated for each 

parameter as follows: 𝐻𝑅𝑇𝑖 = 𝑙𝑛(𝑐𝑖,𝐼𝑁 𝑐𝑖,𝑂𝑈𝑇⁄ ) ∙ (1 𝑘𝑖⁄ ). The resulting values are: BOD = 4.5 d, COD = 3.8 

d, TN = 1.7 d, FC and TC = 3.4 d. The highest value (4.5 d) was taken as design value. The resulting CW 

length was equal to 1400 m. The additional 600 m CW with respect to the existing one were articulated into 

3 additional 200-m cells. Conversely, the length of the disinfection canal was reduced from 1200 to 600 m, 

as the limit for TC imposed by art. 51 of Law 92/2013 is expected to be reached at the end of the CW section. 

The predicted concentrations of the main pollutants at the outlet of the upgraded ICW are reported in Table 

1, in section “upgraded ICW design”. A scheme of the upgraded ICW treatment train is shown in Figure 1c. 

The main dimensions of the different sections of the designed upgraded ICW (length, depth, surface) as well 

as the corresponding HRTs are reported in Table S7 in the Supplemental Data. The amounts of soil to be 

excavated and of cement, sand, metals, limestones and plants needed to upgrade an existing typical DC to 

an ICW are reported in Table S8 in the Supplemental Data. Table S8 includes also the evaluation of the 

amount of plant biomass to be cut and disposed annually, as well as the variation in the amount of sludge to 

be dredged and disposed annually in comparison with the DC. The data reported in Table S8 represent the 

inventory for the LCA and CBA relative to the upgrade of a DC to an ICW. 

Laboratory tests aimed at designing the canalised facultative lagoon 

To start up the aerobic and the anoxic STRs, a bacterial community was sampled from the Edfina 

DCW, enriched according to the procedure described in the Materials and Methods and inoculated in both 

bioreactors. The plant was started-up with the two bioreactors disconnected from each other. Several runs 

were conducted in fed-batch mode to grow the microbial community. The organic mixture reported in Table 

S3 in the Supplemental Data and ammonium sulphate were periodically supplied to replenish the consumed 

COD and NH4-N in the aerobic STR, whereas the same organic mixture and potassium nitrate were 

periodically added in the anaerobic STR. The initial denitrification rate was characterized by a four-fold 

decrease when the COD concentration fell below a threshold value between 200 and 350 mg/L, whereas 

nitrification proceeded rapidly and independently of the COD level (Figure S2 in the Supplemental Data). 



 

The two STRs were then hydraulically connected and a first set of fed-batch tests was run with a 

Vaerobic/Vanaerobic  ratio equal to 0.5 (Vaerobic = 1 L, Vanaerobic = 2 L). This choice was made on the basis of the 

observation that in the actual DC, with a total depth of 1.15 m and a Vaerobic/Vanaerobic ratio in the 6-10 range 

(anoxic layer height of only 10-15 cm), the TN removal, equal to 50%, is not satisfactory. In addition,  

preliminary tests showed that denitrification represented the rate-limiting step of the overall N removal 

process. Therefore, the first set of tests was operated in a condition characterized by a significantly higher 

volume and HRT dedicated to anoxic denitrification. In the actual DC this condition can be obtained by 

significantly increasing the total depth up to about 3 m, so as to configure a 2 m anaerobic layer below a 1 

m aerobic one, thus attaining Vaerobic/Vanaerobic  = 0.5. This condition is therefore characterized by a significant 

excavation cost. In addition, in order to maintain the same wall slope of the existing DCs, this conditions 

requires a considerable increase in canal width, with a consequent significant additional space occupation. 

Several tests were conducted by varying the exchange flow rate f between the two STRs in the 0.13-0.5 L/h 

range. The flow rate exchanged between the 2 STRs corresponds, in the actual CFL, to the mass transfer 

occurring between the upper aerobic layer and the lower anaerobic layer as a result of turbulence. Such mass 

transfer is a crucial aspect of the facultative lagoon technology, as it feeds to the anaerobic layer the nitrate 

produced by the upper aerobic layer; on the other hand, an excessive mass transfer will increase O2 transport 

towards the bottom of the canal, thus reducing the depth of the anaerobic layer. In the actual canal, the entity 

of such mass transfer can be dosed by adding baffles aimed at enhancing turbulence. 

Each test was run in fed-batch mode with addition, only in the aerobic STR, of the organic substrates 

mixture (Table S3) and of ammonium sulphate. As an example, the concentration profiles and the total 

masses of COD, N-NH3, N-NO3 and N obtained in the two STRs with Vaerobic/Vanaerobic  = 0.5 under the best 

performing configuration (f = 0.17 L/h) are shown in the Supplemental Data in Figures S3 and S4, 

respectively, whereas the specific depletion rates are reported in the upper part of  Table S8. In agreement 

with the typical behavior of a municipal wastewater activated sludge process, the COD depletion rate 

resulted significantly higher than the total N rate, indicating that N removal represents the key process in the 

determination of the required retention time. 

A second set of tests was conducted increasing the aerobic bioreactor volume to 2 L and decreasing 

the volume of the anaerobic bioreactor to 1 L, so as to increase the Vaerobic/Vanaerobic ratio from 0.5 to 2. These 

additional tests were aimed at verifying if an acceptable N depletion rate could be attained in a more realistic 

situation characterized by a limited depth of the anaerobic layer and therefore a limited increase of the canal 

depth. Indeed, assuming that the first meter of the canal depth is aerobic (Mancini 2008), the condition 

Vaerobic/Vanaerobic = 2 can be attained with a canal depth equal to about 1.5 m, corresponding to an increase in 

canal depth of just 35 cm, and consequently a limited increase in canal width. The volumetric exchange flow 

rate f was varied in the range 0.13-0.50 L/h. The operating conditions and the main results of these tests are 

shown in the Supplemental Data in Table S9. The total COD and N specific rates were of the same order of 

those of the first set of experiments (Vaerobic/Vanaerobic = 0.5), indicating that a CFL with an anaerobic bottom 

layer equal to half of the upper aerobic layer is capable to lead to acceptable COD and N removal rates. 

To identify an optimal configuration, the total N specific rates were tentatively correlated with the 

residence time in the anaerobic bioreactor, calculated as the ratio between the volume of the anaerobic 

bioreactor and the volumetric exchange flow rate. This key parameter combines both variables that can be 

changed in the two-STR test: volume ratio and exchange flow rate f. The plot of the specific rate of total 

nitrogen depletion versus this key parameter (Vanaerobic/f) is shown in Figure S5. The two sets of data were 

coherent, and the maximum TN rate observed for a 12 h residence time in the anaerobic STR. 

These results show that the two-bioreactor plant used in this work is capable to reproduce the 

interaction between the upper aerobic layer and the lower anaerobic layer of an actual CFL. The experimental 

setup allowed to study qualitatively and quantitatively the effect of the two features that can be varied in the 

actual system: the intensity of turbulence in the canal and the canal depth, that in turn determines the depth 

of the anaerobic underlying layer. In conclusion, the depth of the actual canal can be varied over a wide 

range while maintaining an acceptable COD and nitrogen removal performance, provided that a well-tuned 

mixing between the two layers can be provided. 

Design of the in-stream Canalized Facultative Lagoon 



 

Even if an analysis of the fluid-dynamic behavior of the Edfina drainage canal would be necessary to 

perform a complete model-based optimization of the canalized facultative lagoon design, a preliminary 

design can be derived from the experimental work conducted with the 2-STR system. 

For the purpose of removing suspended solids to an acceptable level, the first section of the CFL was 

dedicated to a sedimentation basin equal to that realized in the first portion of the ICW (length 200 m, depth 

1.5 m, width 2 m).  

The second section of the CFL was dedicated to the actual canalized lagoon, the heart of the CFL 

technology. The first step in the design of the canalized lagoon was to assess the mean residence time 

required for the removal of COD, N and pathogens. To this goal, a simplified first-order kinetic analysis was 

conducted, integrating the experimental data obtained in the 2-STR tests with those provided by the 

monitoring of the former DC (which can be seen as a canalized lagoon with a 1.15 m depth). The analysis 

led to estimate the following values of the first-order constants: kBOD,CFL design = 0.38 d-1, kCOD,CFL design = 0.41 

d-1, kTN,CFL design = 0.072 d-1, kTC,CFL design = kFC,CFL design = 1.38 d-1 (Table 1). The assumptions and the procedure 

that led to estimate these values is described in detail in Table S10 in the Supplemental Data. The values 

measured after the sedimentation pond were used as inlet concentrations. The above-reported first-order 

constants are in good agreement with those reported in the literature for facultative lagoons and ponds, which 

are in the 0.04-0.30 d-1 range for BOD and 0.01-0.04 d-1 range for TN (Long et al. 2017; Saqqar and Pescod 

1996). The residence time HRTi required to attain for each pollutant i the threshold concentrations imposed 

by art. 51 of Law 92/2013, calculated as 𝐻𝑅𝑇𝑖 = 𝑙𝑛(𝑐𝑖,𝐼𝑁 𝑐𝑖,𝑂𝑈𝑇⁄ ) ∙ (1 𝑘𝑖⁄ ), resulted equal to 6.1 d for BOD, 

5.6 d for COD and 13.3 d for TN. In conclusion, a residence time of 13.3 d was assumed for the design of 

the canalized lagoon section. While the HRT recommended for BOD removal (6.1 d) is in good agreement 

with those typically reported in the literature (4-5 d; Long et al. 2017), the rather high HRT selected in this 

work for the CFL is due to the need to achieve a marked TN removal. 

The second step in the sizing of the canalized lagoon was to design the transversal section. The design 

was performed on the basis of the following elements: (i) due to the presence of houses on the sides of the 

existing canal, the maximum acceptable canal width is equal to 3.8 m; (ii) it was decided to maintain the 

same side slope of the existing canal. Thus, the maximum water depth at the center of the canal resulted 

equal to 2.0 m. As the first meter of an open-air canal is generally aerobic (Mancini 2008), a 2.0 m water 

depth roughly corresponds to a Vaerobic/Vanaerobic ratio equal to 1. This value falls within the range that gave 

satisfactory results in terms of COD and TN removal in the laboratory tests (0.5-2). On the basis of the 2-

STR tests, a Vaerobic/Vanaerobic ratio equal to 1 should allow the attainment of an acceptable rate of nitrogen 

removal by nitrification/denitrification with a relatively low level of exchange between the aerobic and 

anaerobic layers, that can reasonably be attained without any addition of baffles in the canalized lagoon. The 

canalized lagoon section was therefore designed as follows: (i) trapezoidal section with the same side slope 

as that of the existing canal; (ii) width at the water table 3.6 m; (iii) maximum water depth 2.0 m; (iv) no 

addition of baffles. The water section resulted equal to 4.5 m2. Due the increase in canal depth up to 2 m, a 

re-enforcement of the side banks with limestones is necessary. With a 4.5 m2 transversal section and a 350 

m3/d flow rate, the canal length corresponding to a 13.3-day HRT resulted equal to 1023 m. 

Considering that the total canal length is fixed and equal to 2200 m, and that the initial 200-m section 

was dedicated to the sedimentation pond, the residual 977 m portion was dedicated to the disinfection 

treatment. On the basis of the disinfection performances observed in the former DC and in the existing ICW, 

a 977 m length of the disinfection canal after the 1023 m canalized lagoon was considered largely sufficient 

to guarantee the threshold concentration of total coliforms imposed by art. 51 of Law 92/2013 (5000 

MPN/100mL). Further details on this evaluation are reported in Table S11 in the Supplemental Data. 

In conclusion, the CFL treatment train was designed in order to meet all the legal limits imposed by 

art. 51 of Law 92/2013, while maintaining the same geometry of the DC, with a limited increase of the 

drainage canal depth to 2 m and a moderate increase in canal width. No baffles were included, as an excessive 

exchange between the upper aerobic and the lower anoxic layer of the CFL should be avoided. The 

disinfection canal was shortened and slightly enlarged in order to maintain the same HRT and water depth, 

and therefore the same efficiency, of the canal located downstream from the existing ICW. The predicted 

concentrations of the main pollutants at the outlet of the upgraded ICW are reported in Table 1, in section 

“CFL design”. A scheme of the designed CFL treatment train is shown in Figure 1d. The main dimensions 

of the different sections of the designed CFL (length, depth, surface) as well as the corresponding HRTs are 

reported in Table S7 in the Supplemental Data. The resulting CFL surface loading rates, reported in Table 



 

1, are in good agreement with the values recommended in the literature relatively to facultative lagoons and 

ponds for both BOD (2-40 g/m2/d, versus 27 g/m2/d in this work) and TN (1.2-16 g/m2/d, versus 3.3 g/m2/d 

in this work) (Long et al. 2017; Karnchanawong and Sanjitt 1995).  

The amounts of soil to be excavated and of cement, sand and limestones needed to upgrade an existing 

typical DC to a CFL are reported in Table S8 in the Supplemental Data. The data reported in Table S8 

represent the inventory for the LCA and CBA relative to the upgrade of a DC to a CFL. The amount of 

sludge to be dredged and disposed annually in the CFL was assumed to be the same as in the  DC. Given the 

very high scale-up factor applied from the laboratory STRs (3 L) to the designed canalized lagoon (4670 

m3), the limited number of experimental points and the fact that kinetic constants obtained in batch tests 

were used to design a canalized lagoon schematically represented as a plug flow reactor, the above-illustrated 

CFL dimensions and the estimated outlet concentrations represent preliminary values, to be used only for an 

approximate comparison between the CFL and the ICW in terms of LCA and CBA. Conversely, an accurate 

design of the CFL should be based on continuous flow tests operated in a pilot-scale canalized lagoon 

characterized by the same geometry of the full-scale one and by a less extreme scale-up factor. 

Life cycle assessment of the upgrade of an existing drainage canal to an ICW or CFL 

The LCA inventory relative to the upgrade of an existing drainage canal to a 350 m3/d ICW or CFL is 

presented in Table S8 in the Supplemental Data. The results of the LCA, performed according to the ILCD 

2011 Midpoint+ V1.10/ EC-JRC Global, equal weighting, are presented in Figure 2. In addition, a Monte 

Carlo uncertainty analysis was conducted for both upgrades for a 95% confidence interval. The upgrade of 

an existing canal to an ICW is characterized by a negative LCA score (-29 ± 4 Pt/m3), indicating that the 

environmental impact of the construction works required to transform an existing canal into an ICW is offset 

by the lower environmental impact of the ICW maintenance and by the higher quality of the treated drainage 

canal water, leading to an overall environmental benefit in comparison with the existing drainage canal. 

Conversely, the upgrade to a CFL is characterized by an extremely small increase in environmental burden 

(8 ± 12 Pt/m3). The minor difference in environmental burden between the two proposed technologies (37 

Pt/m3) is due to infrastructure (the CFL requires a higher amount of excavation and limestones, due to the 

higher water depth) and to the lower nitrogen concentrations attained by the ICW, which in turn determines 

a higher level of avoided eutrophication. However, it should be noticed that the 37 Pt/m3 difference between 

the two LCA scores is equal to 1.5% of the typical environmental burden associated to an average wastewater 

treatment, equal to 2400 Pt/m3 (PRé Consultants 2017; Wernet et al. 2016). On the basis of this observation 

and of the above-reported confidence intervals, the difference between the LCA score of the 2 proposed 

upgrades was considered as negligible. For both technologies, the environmental impact due to operation is 

almost negligible, as neither process requires electricity or chemicals. Two aspects that were not considered 

in this assessment are emissions to air and photosynthesis in the CW plants. The direct emissions to the air 

(CO2, CH4, N2O) were not included as they were supposed to be the same as those of the original drainage 

canal. In the case of the ICW, plant photosynthesis actually determines a reduction of the CO2 emissions, 

therefore the LCA of the upgrade of a  DC to an ICW would result even better than the one presented in 

Figure S5 if photosynthesis was included. The LCA methodology applied in this work is comparable to that 

of similar papers that analyze different types of CWs (Pan et al. 2011; Fuchs et al. 2011; Corbella et al. 2017; 

Garfí et al. 2017; Mander et al. 2008). Nevertheless, this LCA refers to the upgrade from DC to CFL or ICW, 

and not the construction of a CFL or ICW from scratch, making direct results comparisons with literature 

not feasible. 

In conclusion, this analysis indicates that the upgrade of an existing tertiary drainage canal to either of 

the two proposed technologies is an environmentally sound solution, characterized on the one hand by a 

negligible environmental impact in comparison to that of a standard wastewater treatment, and on the other 

hand by a significant improvement in terms of drainage canal water quality (90-99% decrease in BOD, 71-

94% decrease in total N, 2.6-4.3 Log reduction in fecal coliforms).  

Cost-Benefit Analysis of the upgrade of an existing drainage canal to an ICW or CFL 

The benchmark condition selected for the CBA was the use of the low-quality water available at the 

exit of a typical drainage canal to irrigate cotton, a widespread non-food crop in the Nile delta region. In 

addition it was assumed that, thanks to the upgrade of the DC to an ICW or CFL, farmers will use the 

resulting higher-quality water - after dilution 1:1 with fresh Nile water - to irrigate a higher-value food crop 



 

that can be consumed after thermal treatment, namely rice. A difficulty encountered in the CBA of ICW and 

CFL scenarios was the assumption of the cotton market price, as the cotton price in Egypt proved to be quite 

unstable in the recent years. To circumvent this issue, a parametric analysis was made in order to assess how 

the cotton price affects the FRR of the two proposed technologies and for which price the FRR equals the 

assumed WACC, equal to 10%. For rice, an average price of 0.28 $/kg was assumed corresponding to the 

mean market price in Egypt. In addition, in order to assess the effect of possible variations of the rice market 

price on the financial rate of return of the investment, the analysis was repeated with a 25% increase and a 

25% decrease of the rice price. The CBA was repeated for both the ICW and CFL scenarios assuming varying 

cotton market prices starting from a minimum value corresponding to the current production cost (no net 

revenue). As shown in Figure 3, the ICW FRR is significantly higher than that of CFL for any cotton price. 

At the average rice price of 0.28 $/kg, the ICW results to be an attractive investment up to a cotton price of 

0.619 $/kg, whereas the CFL FRR is always lower than the WACC, even at a low cotton market price 

corresponding to the production cost. The sensitivity analysis conducted with a  25% variation of the rice 

price indicated in the first place that, even if the rice price drops by 25%, the ICW still represents an attractive 

investment (FRR > 10%) up to a cotton market price equal to about twice the current cotton production cost. 

This analysis also indicated that, in case of a 25% increase of the rice price, the CFL becomes an attractive 

investment (FRR > 10%) over a wide range of cotton prices (0.1-0.35 $/kg). In conclusion, the ICW scenario 

proved to be an attractive solution over a wide range of cotton and rice market prices, whereas the CFL 

seems to be a financially sustainable in the Delta Nile context only if a moderate increase of the rice price 

occurs.  

In order to gain more insight on the impact of the specific cost items on the total cost, a more detailed 

analysis was performed assuming the current rice price (0.28 $/kg) and a cotton market price equal to 0.358 

$/kg, the mean value between the current production cost (0.097 $/kg) and 0.619 $/kg, i.e. the price that 

generates the last positive business case for the ICW (FRR = WACC = 10%, FNPV = 0). Under this 

assumption, as shown in Table S12 in the Supplemental Data, the total cost of DC upgrade to an ICW over 

a 30-year period resulted equal to 242 k$, of which 12% was given by the CAPEX and 88% by the OPEX. 

In the case of a CFL, the total cost equals 346 k$, of which 46% was represented by the CAPEX and 54% 

by the OPEX. Table S10 shows that the main difference in the economical performances of the ICW and 

CFL lies in the total cost, as the revenues are almost equal. Indeed, the CFL scenario presents an 

approximately 4 times higher CAPEX, due to the substantially higher amount of excavation and limestones 

required. The final result is that the ICW scenario has an FRR equal to 27%, largely higher than the assumed 

WACC, and a positive FNPV equal to 45 k$. Conversely the CFL scenario resulted in an FRR (4.7%) equal 

to about half of the assumed WACC, and a negative FNPV (-64 k$). 

 

CONCLUSIONS 

 Both the ICW and the CFL, if integrated by a sedimentation pond and a disinfection canal, result in 

satisfactory water treatment performances and allow the attainment of the water quality standards imposed 

by art. 51 of Egyptian Law 92/2013 for the reuse of drainage water, within the length of the typical existing 

tertiary DCs. 

 The upgrade of an existing DC to an ICW resulted in an overall decrease of environmental burden, 

whereas the upgrade to a CFL resulted in an extremely low environmental impact, equal to 0.3% of that of 

a traditional activated sludge process. 

 The CBA indicated that the DC upgrade to an ICW is expected to be an attractive investment in Egypt, 

as it leads to an FRR > 10% over a wide range of cotton and rice market prices. Conversely, the upgrade to 

a CFL presents a lower attractiveness due to the high investment cost, which in turn is to be ascribed to the 

higher canal depth required. Nevertheless, at the current market price, the upgrade to a CFL is characterized 

by an FRR in the 5%-9% range over a wide range of cotton market prices, which indicates that this 

technology could represent an attractive investment in other financial contexts. 

 The ICW appears to be a very promising option for the treatment of DCW in the Nile Delta, thanks to 

its capacity to combine high pollutant removal performances with particularly low costs and environmental 

burdens. 
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Figure 1. Schematic representation of the existing drainage canal (a), of the existing ICW (b), of the 

upgraded designed ICW (c) and of the designed CFL (d), with indication of the sampling points. The heights 

of the different sections of each treatment technology are reported in Table S6 in the Supplemental Data.  

Schematic representation of the facultative canalized lagoon layers and of the two-bioreactor laboratory plant 

set up for the simulation of a facultative canalized lagoon (e). 

  



 

 
 

 

Figure 2. Environmental burden (+) and benefits (-) of the different life cycle stages of the upgrade of an 

existing tertiary drainage canal to an CFL or an ICW, according to the ILCD 2011 Midpoint+ method v1.10. 

  



 

 
 

Figure 3. Cost Benefit Analysis of the upgrade of an existing DC to an ICW or CFL: financial rate of return 

(FRR) of the investment against cotton market price. Continuous lines refer to the current rice price in Egypt 

(0.28 $/kg), dashed lines refer to a 25% increase of the rice price whereas dot-dashed lines refer to a 25% 

decrease of the rice price. The CBA was performed under the assumption that the upgrade allows the farmer 

to replace the cultivation of cotton with that of rice, and that therefore the lack of revenues from cotton sale 

represents a cost for the farmer.  



 

Table 1. Experimental performances of the DC and existing ICW, expected performances of the designed ICW and CFL, limits for the re-use of treated wastewater according 

to Egyptian Law 92/2013 and the ISO 16075 standard, surface loading rates and removal rates and first-order constants obtained by regression of the experimental data 

 

 Inlet  SP1a  SP2a  SP3a  SP4a  SP5a  Outlet  

Egyptian 

Law 

92/2013 

art. 51b 

ISO 

16075  

Cat. Ac 

ISO 

16075  

Cat. Bc 

Surface 

loading 

rate 

(g/d/m2)d 

Surface 

removal  

rate 

(g/d/m2)d 

ki
e 

(1/d) 

Distance from inlet (m)  0 200 400 600 800 1000-1600f 2200       

D
C

 

TSS (mg/L) 1450 615 233 205 186 177 156 -- 10 25   0.32 

BOD (mg/L) 475 365 195 152 127 100 92 30 10 20 20 14 0.38 

COD (mg/L) 838 563 263 205 182 157 152 50 -- -- 31 21 0.41 

Total N (mg/L) 51      25 15 -- -- 2.4 0.9 -- 

FC (MPN/100mL) 5.3∙106 4.2∙106 1.4∙106 1.9∙105 1.4∙105 4.0∙104 3.4∙104 -- 100 1000   1.38 

TC (MPN/100mL)        5000 -- --   1.38 

E
x

is
ti

n
g

 I
C

W
 

 

TSS (mg/L) 1279 480 120 93 61 44 32 -- 10 25   0.80 

BOD (mg/L) 529 310 146 107 94 66 47 30 10 20 60 47 0.52 

COD (mg/L) 827 492 217 141 113 89 67 50 -- -- 96 78 0.60 

Total N (mg/L) 51  39   31 6.5 15 -- -- 7.6 1.6 0.58 

FC (MPN/100mL) 5.7∙106 8.3∙105 3.8∙105 9.5∙104 2.8∙104 7100 990 -- 100 1000   1.78 

TC (MPN/100mL)       2600 5000 -- --   1.78 

U
p

g
ra

d
ed

 I
C

W
 

d
es

ig
n

 

TSS (mg/L) 1279 480    13 10 -- 10 25   0.80 

BOD (mg/L) 529 310    30 30 30 10 20 34 31 0.52 

COD (mg/L) 827 492    33 33 50 -- -- 55 51 0.60 

Total N (mg/L) 51 51    2.9 2.9 15 -- -- 4.3 4.0 0.58 

FC (MPN/100mL) 5.7∙106 8.3∙105    280 38 -- 100 1000   1.78 

TC (MPN/100mL) 2.2∙106 2.2∙106    710 100 5000 -- --   1.78 

C
F

L
 d

es
ig

n
 

TSS (mg/L) 1279 480    > 25g > 25g -- 10 25 
  g 

BOD (mg/L) 529 310    2 2 30 10 20 27 26 0.38 

COD (mg/L) 827 492    2 2 50 -- -- 42 42 0.41 

Total N (mg/L) 51 51    15 15 15 -- -- 3.3 2.1 0.072 

FC (MPN/100mL) 5.7∙106 8.3∙105    1.4∙104 1900 -- 100 1000   1.38 

TC (MPN/100mL) 2.2∙106 2.2∙106    3.6∙104 5000 5000 -- --   1.38 
a SP, sampling point along the canal or ICW. b Art. 51 of Law 92/2013: water suitable to irrigate food-crops to be consumed after cooking, after 1:1 dilution with fresh high quality water. c ISO 

16075, Cat. A: water suitable to irrigate food-crops that are consumed raw. Cat. B: water suitable to irrigate food-crops that are consumed after cooking. d The surface load and removal rates 

refer to the surface of actual CW or facultative lagoon, excluding the surface of the sedimentation pond and disinfection canal, in order to allow a consistent comparison with the corresponding 

literature values. e First-order kinetic constants. f In the ICW and CFL, point 5 refers to the outlet of the constructed wetland section or canalized lagoon section. The distance of this point from 

the inlet is equal to 1000 m in the DC and in the existing ICW, 1600 m in the upgraded ICW, 1223 m in the CFL. g It was not possible to make a reliable assessment of the TSS outlet 

concentration in the CFL. On the basis of the TSS removal performances of the  DC, it is reasonable to assume that the TSS outlet concentration will be > 25 mg/L. 


