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ABSTRACT 

Removal of dissolved organic matter (DOM) is a major problem in drinking water treatment, as its 

presence affects color, taste, and odour and during disinfection, carcinogenic by-products can be created. 

To provide the best DOM removal, detailed characterisation is required and the combination of three-

dimensional fluorescence excitation-emission matrix spectroscopy and parallel factor modelling has 

become a popular approach. However, some components in the system may affect the characterization. 

We tested the influence of popular coagulants, polymeric ferric sulfate and cationic polyacrylamide on 

the three-dimensional fluorescence excitation-emission wavelength spectra of DOM during coagulation 

treatment. The parallel factor model revealed 3 fluorophore components (C1, C2, and C3). The organic 

polymer (cationic polyacrylamide) has a negative influence on monitoring, significantly reducing the 

uncorrected matrix correlation between fluorescence and DOM for the three components from 0.970, 

0.976 and 0.906 to 0.941, 0.944 and 0.617, respectively, and also the linear correlation coefficients for 

the C1 and C2 from 0.92 and 0.84 to 0.83 and 0.79, respectively. The C3 component, a protein-like 

material, was the most affected. The results demonstrate the need to consider residual polymer as a 

potential interference when using fluorescence to assess the degree of success of DOM removal by 

coagulation.  

KEYWORDS: Coagulation; dissolved organic matter; three-dimensional fluorescence; cationic 

polyacrylamide  

 

 

 

 



 

1 INTRODUTION 

The treatment of organic matter in aqueous systems has been an important research topic in applied 

environmental science (Jain et al. 2018, Nidheesh 2018, Wei Wang 2018, Xiaocun Zhuo 2019). 

Coagulation is an important operational unit in the water treatment process and is a preferred method for 

the removal of dissolved organic matter (DOM) in the production of drinking water (Dennett et al. 1996, 

Eric Lichtfouse 2019, Hua et al. 2016, Matilainen et al. 2010, Zhu et al. 2016). In particular, its 

application as a pre-treatment step to protect membrane based treatment systems where the presence of 

DOM results in membrane fouling (Bu et al. 2019, Tang et al. 2010). The evaluation of its effectiveness 

is usually carried out by measuring dissolved organic carbon (DOC) and ultraviolet absorption value at 

254 nm (UV254, cm-1). Whilst this provides an assessment of DOM concentration, knowledge of other 

characteristics is needed for effective treatment (Hua et al. 2017, Hua et al. 2018, Sanchez et al. 2014). 

More recently, three-dimensional fluorescence excitation emission matrix spectroscopy has been 

developed for the evaluation of engineering systems for water treatment (Carstea et al. 2016, Zhu et al. 

2017). It is a powerful tool, which is able to capture the specific components of DOM through a simple 

operational process. As a promising technology for characterization and tracking of DOM, it has also 

been coupled with parallel factor modelling in assessing coagulation systems (Yang et al. 2015b, Zhu et 

al. 2017). 

 

In water treatment, large amounts of inorganic metal salt coagulants are used, for example poly aluminum 

chloride and poly ferric sulfate. Two types of coagulation are typically used: inorganic, un-hybridized 

coagulation using an inorganic coagulant alone, and inorganic-organic hybrid coagulation with mixed 

organic and inorganic coagulants (Lee et al. 2012, Zhu et al. 2011). For hybrid coagulation, cationic 



polyacrylamide (C3H5NO) is a common substance, which has a strong fluorescence signal (Zhu et al. 

2017). The cationic polyacrylamide is a linear high molecular weight polymer, with a number of 

functional groups and has the potential to form hydrogen bonds with various substances. Its use reduces 

the coagulant dose particularly when dealing with a high turbidity in water treatment systems. Most of 

the cationic polyacrylamide added is removed by sedimentation along with the treatment floc, but there 

is potential for residual polyacrylamide to remain in the treated water. The cationic polyacrylamide is not 

toxic in water but its monomer acrylamide is known to be harmful to humans (Zhu et al. 2013). Low 

concentration cationic polyacrylamide and acrylamide are difficult to measure, and until now, the 

presence of cationic polyacrylamide in treated water is not clear. In coagulation treatment systems, the 

analysis of the variation of DOM characteristics has been approached using excitation emission matrix 

spectroscopy and parallel factor models (Jaffé et al. 2014, Yang et al. 2015a).  

 

In the study reported here, an assessment of the three dimensional fluorescence of DOM was undertaken 

by coupling excitation-emission matrix spectroscopy with a parallel factor model. The influence of the 

cationic polyacrylamide on the coagulation of DOM was investigated by measuring similarities between 

components, and correlation coefficient (r) with DOC. A comparison undertaken between raw water, and 

samples treated by hybrid and un-hybridized coagulation. The un-hybridized coagulation used a 

polymeric ferric sulfate coagulant, while the hybrid coagulation used two coagulants polymeric ferric 

sulfate and cationic polyacrylamide. 

 

2 MATERIALS AND METHODS 

2.1 Materials 

The polymeric ferric sulfate was prepared in our laboratory using analytical grade materials: ferrous 



sulfate heptahydrate (Sinopharm Chemical Reagent Beijing Co., Ltd., China), sodium acetate 

(Sinopharm Chemical Reagent Beijing Co., Ltd., China), zinc sulfate (Tianjin Damao Chemical Reagent 

Co., China), hydrochloric acid (Zhuzhou XingKong Huabo Co., Ltd., China), sodium chlorate (Tianjin 

Kemiou Chemical Reagent Co., China), sodium carbonate (Tianjin Institute of Chemical Reagents, 

China), concentrated sulfuric acid (Zhuzhou XingKong Huabo Co., Ltd., China). Commercial cationic 

polyacrylamide (Zouping Mingxing 119 Chemical Co. Ltd., Binzhou, China) was used in this study 

without further purification. All aqueous solutions and standard solutions used in this study were 

prepared with deionized water. The glassware and other labware were acid-washed, rinsed thoroughly 

with water, and dried prior to use. 

 

2.2 Jar test 

A water sample was collected from an artificial lake (Yuehu lake) located on the campus of Hunan 

University of Science and Technology, China. A coagulation-flocculation experiment carried out using a 

program-controlled jar test apparatus (ZR4-6, ZhongRun Water Industry Technology Development Co. 

Ltd., Shenzhen, China) at room temperature. Each experimental run used 1 L water samples transferred 

into a beaker. After adding individual coagulants or double coagulants the sample was rapidly mixed at 

a set agitation speed (rpm) for 2 min, followed by a slow mixing phase at 70 rpm for 15 min, and then a 

30 min settling time. The supernatant sample was extracted from the beaker 2 cm below the water surface 

to measure water quality parameters. 

 

2.3 Excitation-emission matrix spectroscopy collection 

The excitation-emission spectra of 0.45 µm pore size membrane filtered water samples were tested using 

an FL-4600 fluorescence spectrophotometer (Hitachi High Technologies, Tokyo, Japan). The filtrates 



were collected for DOC measurement using an Elementar Vario MICRO Cube (Elementar 

Analysensysteme GmbH, Germany). The excitation wavelengths and emission wavelengths were fixed 

from 200 nm to 400 nm in 2 nm steps, and from 200 to 500 nm in 3 nm steps, respectively. The 

fluorescence intensity of an ultra-pure water as a blank sample was subtracted. The Rayleigh and Raman 

scatter were removed following the reported procedure as found in (Bahram et al. 2006). The corrected 

excitation-emission spectroscopy data was fractioned into different components using the parallel factor 

model (Moradi et al. 2018). The split-half analysis was used to identify the best number of the factors. 

The maximum fluorescence intensity (Fmax) of each derived component was used to evaluate quantitative 

and qualitative differences between samples. The parallel factor model analysis was performed on 

MATLAB using the N-way toolbox (Andersson and Bro 2000). 

 

2.4 Uncorrected matrix correlation 

Quantitative similarities between DOM fluorescence fractions of raw water and treated samples were 

evaluated using a validation of uncorrected matrix correlation (UMC). The correlation evaluates the 

degree of similarity between two-component fluorescent mixtures through the sum of the eigenvalues of 

the m x n matrices using the following equation (Burdick and Tu 1989, Sanchez 2013): 

𝑈𝑀𝐶(𝐴,𝐵)=𝑇𝑟𝑎𝑐𝑒(𝐴𝑇𝐵)/‖𝐴‖𝐹‖𝐵‖𝐹 

where A and B are the matrices under comparison. ‖𝐴‖ is [𝑡𝑟𝑎𝑐(𝐴𝑇𝐴)]1/2, and ‖B‖ is [𝑡𝑟𝑎𝑐𝑒(B𝑇B)]1/2. 

 

3 RESULTS AND DISCUSSION 

3.1 Fluorescence spectra of cationic polyacrylamide and polymeric ferric sulfate 

Scanning data of the excitation-emission matrix spectra of cationic polyacrylamide and polymeric ferric 

sulfate is shown in Fig. 1. As illustrated in Fig. 1a, the results showed that the cationic polyacrylamide 



showed two characteristic peaks, positioned in excitation/emission wavelength about 230 nm/340 nm 

and 280 nm/340 nm, respectively. These peaks belong to protein-like materials resulting from nitrogen-

containing groups (Zhu et al. 2017). As shown in Fig. 1b, the polymeric ferric sulfate did not display any 

characteristic peak in the range of emission wavelength from 300 nm to 400 nm. Therefore, the 

fluorescence of the organic cationic polyacrylamide coagulant is significantly different from the poly 

ferric sulfate. 

 

Fig. 1 Three dimension fluorescence excitation-emission matrix spectra of (a) cationic polyacrylamide 

at 0.06 g/L and (b) polymeric ferric sulfate at 3.3 g/L. This highlights the fluorescence signal background 

for the organic coagulant.  

 

3.2 Spectroscopic comparison 

We randomly selected sample spectra of raw water, un-hybridized coagulation and hybrid coagulation 

(Fig. 2). The dissolved organic carbon (DOC) concentration in raw water was 15 mg/L and pH was 



around 7. We found that the spectrum of raw water was similar to that from inorganic coagulation, but 

the sample changed greatly after hybrid coagulation (see Fig. 2a). These results showed that the presence 

of cationic polyacrylamide could lead to a significant change in the spectroscopic properties of the sample. 

We quantitatively studied the similarity of the matrix data using UMC. The UMC value ranged between 

0 and 1 and was used to measure the degree of spectral overlapping between two components (Burdick 

and Tu 1989). The 0 and 1 values for matrices indicate null and complete spectral overlapping, 

respectively. The results showed that the value for UMC between the raw sample and the hybrid sample 

is 0.850 while that between raw sample and un-hybridized sample is 0.957. The hybrid coagulation 

generated a more significant difference in excitation-emission matrix spectra from that of raw sample 

and un-hybridized sample. At the excitation wavelength of 230 nm, new peaks were also formed in the 

hybrid samples (see Fig. 2b). We measured the spectroscopy of cationic polyacrylamide at emission 

wavelength of 401 nm, and found that there are three significant peaks around 205, 230 nm and 280 nm 

(see Fig, 2c), corresponding approximately to ultraviolet adsorption peaks of some monomers in 

polyacrylamide (Sun et al. 2014). Also we measured the samples after coagulation which showed that 

except for the sample from hybrid coagulation, the other samples no significant peaks was observed 

around 205 nm, 230 nm and 280 nm, suggesting that the residual cationic polyacrylamide remained in 

water (see Fig, 2c). 



 

Fig. 2 (a) Excitation-emission spectra of raw water, un-hybridized coagulation sample and hybrid 

coagulation sample, (b) emission wavelength variation at excitation wavelength of 230 nm, (c) 

fluorescence spectroscopy of cationic polyacrylamide at excitation wavelength of 401 nm, and (d) 

fluorescence spectroscopy of coagulation samples at emission wavelength (nm) of 401 nm. The results 

showed that the cationic polyacrylamide remains in the treated water thus masking the fluorescence of 

DOM. 

 

3.3 Comparison of parallel factor model components 

Parallel factor model assessment of DOM in natural and engineered systems has been a high priority and 

an assessment method has been evaluated (Sanchez et al. 2014). The excitation-emission spectroscopy 

can identify its components and monitor changes. However, the feasibility of a parallel factor model 



assessment of DOM for hybrid inorganic-organic coagulation systems has yet to be addressed. Therefore, 

we used parallel factor model to investigate the characteristics of DOM components in coagulation. In 

our work, we made a comparison between parallel factor model components in raw water and treated 

water. Three independent parallel factor model components (denoted as C1, C2 and C3) were identified: 

for the raw water sample (R-C1, R-C2, and R-C3); in hybrid coagulation system (H-C1, H-C2, and H-

C3); in un-hybridized coagulation systems (UH-C1, UH-C2, and UH-C3). The C1 component shows two 

excitation maxima at 232 and 288 nm with a single emission maximum at 392 nm, which has been 

identified as a humic-like fluorophore (Ishii and Boyer 2012). For C2, an excitation maximum at a 

wavelength below 266 nm and a secondary excitation peak at 342 nm with a maximum emission at 452 

nm, which has been classified as a humic-like fluorophore (Ishii and Boyer 2012). The C1 is (marine) 

and terrestrial humic material resulting from possible microbial reprocessing, while C2 is a terrestrially-

derived component (Piotr Kowalczuk 2009). The C3 had two main excitation maxima at 226 nm and 276 

nm, with an emission peak at 332 nm. They all resemble protein-like structures similar to tryptophan 

(Piotr Kowalczuk 2009). Extracted fluorescence components showed similar fluorescence characteristics 

as seen from reoccurring parallel factor model components (see Figs. 3a–i) and their spectral loadings 

(see Figs. 3j and r). Fig. 3j to r show the excitation (denoted as Ex.) and emission (denoted as Em.) 

loadings for each component, obtained from parallel factor model on random halves of the data array. 



 

Fig. 3 Signatures of three parallel factor model components (a-c; j-l) identified in raw water, in hybrid 

coagulation (d-f; m-o) and in un-hybridized coagulation (g-i; p-r). Contour plots show spectral shapes of 

excitation and emission of derived components (a-i). Excitation and emission loadings (j-r) on the left 

are denoted as Ex., and on right side, they are denoted as Em. Samples were collected from raw water, 



hybrid coagulation and un-hybridized coagulation, and input into the parallel factor model. It showed 

that three components were identified in both of raw water and treated water.  

3.4 Quantitative similarity analysis 

The UMC values of R-C1 and H-C1, R-C2 and H-C2, as well as R-C3 and H-C3, were 0.941, 944 and 

0.617, respectively. C1, and C2 had a relatively complete spectral overlapping but C3 had a significant 

deviation and H-C3 and R-C3 were not comparable. New spectral loadings between 200 nm and 226 nm 

in treated samples were found, which belong to protein-like materials. However, we found that in un-

hybridized coagulation, the deviation of spectral overlap between R-C3 and UH-C3 was low, and the 

spectral loadings also disappeared. The measured results showed that the UMC values of UH-C1 and R-

C1, UH-C2 and R-C2, as well as UH-C3 and R-C3 were 0.970, 0.976 and 0.906, respectively. Except for 

the groups (UH-C2 and R-C2, UH-C1 and R-C1), the UH-C3 and R-C3 were also comparable. The UMC 

values were higher than those in hybrid coagulation. This showed that the components in un-hybridized 

coagulation were comparable with the components found in raw water. In the un-hybridized coagulation 

system, assessment of the protein-like material was not possible. These changes in peak regions were 

consistent with characteristic peaks for the cationic polyacrylamide, suggesting residual components post 

treatment.  

 

3.5 Correlation analysis  

Good relationship between DOM components of parallel factor model and water quality parameters such 

as DOC, during coagulation treatment, has been widely recognized (Aftab and Hur 2017, Sanchez et al. 

2013, Zhu et al. 2014). The correlation of components with DOC was evaluated using correlation 

coefficient, r. As shown in Fig. 4, the maximum fluorescence intensity (Fmax) the removal (%) of 

components (C1 and C2) and removal of DOC (%) correlate well (r = 0.92 and r = 0.83) with C1 in un-



hybridized coagulation and hybrid coagulation, respectively; hence, r = 0.84 and r = 0.79 for C2 in un-

hybridized coagulation and hybrid coagulation, respectively. However, un-hybridized coagulation had a 

better effect than hybrid coagulation. It implied that the reliability of parallel factor model assessment in 

DOM removal for hybrid coagulation was reduced. 

 

Fig. 4 The correlation results of Fmax removal (%) of (a) C1and (b) C2 with DOC removal (%). The 

correlation results showed that the r values were 0.92 and 0.83 in un-hybridized and hybrid coagulation 

for C1, respectively, and 0.84 and 0.79 in un-hybridized and hybrid coagulation for C2, respectively, 

showing that the presence of cationic polyacrylamide decreased the linear correlation between water 

quality with fluorescence components.  

 

4. CONCLUSIONS 

We have studied the influence of the cationic polyacrylamide on three-dimensional fluorescence analysis 

of DOM during coagulation treatment processes. The results showed that the presence of the cationic 

polyacrylamide in residual processes results in adverse effect in the analysis of the results from hybrid 

coagulation and from un-hybridized. Three components (C1, C2 and C3) in hybrid coagulation samples 



were compared with that from raw water, which showed lower UMC values but the C3 component could 

not be correlated. In addition, lower correlation coefficients were found between them and DOC, due to 

the presence of cationic polyacrylamide. This raises the issue that fluorescence excitation-emission 

matrix spectroscopy is unreliable when investigating DOM component variations without considering 

the effect from cationic polyacrylamide in hybrid coagulation treatment. 
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