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New linear model for optimal cluster size in cluster sampling 

Alok Kumar Shukla1, Subhash Kumar Yadav2  

ABSTRACT  

In this paper, a nonlinear model is proposed for improving the relationship between the size 
of a cluster and the variance within the cluster. This model describes the most appropriate 
functional relation between the within-cluster variance and the cluster size. Through this 
model, we can obtain the optimum size of a cluster and an estimate of the variance between 
clusters. The proposed model leads to further improvement in the estimation of the 
optimum size of a cluster, and the formula for the determination of optimum cluster size 
leads to explicit solution of models. 

Key words: Non-linear models, optimum cluster size, four-parameter model, variance 
function. 

1. Introduction 

Regression analysis is widely used for better explanation and future prediction of 
any phenomenon which is assumed to develop in some patterns whether in economics 
or any other field. In cluster sampling, it is of interest to find the most suitable 
functional relationship between variance within the cluster ( wS ) and the cluster size  
( M ) for prediction [Singh and Chaudhary (2009)]. Smith (1938), Jessen (1942), 
Hansen and Hurwitz (1942), Mahalanobis (1940, 1942), Misra et al. (2010), Tiwari and 
Misra (2011), Shukla et al. (2013), Shukla and Yadav (2016), Lawson and Skinner (2017) 
etc., have discussed the problem of determining the optimum cluster size in two 
important contexts of variance function and cost function respectively. Scarneciu et al. 
(2017) compared various nonlinear models in determining pulmonary pressure 
in hyperthyroidism. Kaplan and Gurcan (2018) compared different growth curves 
using non-linear regression function in Japanese quail. Riazoshams et al. (2019) 
described in detail the robust nonlinear regression models with applications using R 
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software. All the functional relations given by the above authors are of similar 
functional form describing the relationship between the size of the cluster and variance 
within the cluster. It is well established in cluster sampling that sampling variance 
increases as the cluster size increases and it decreases with the number of clusters. The 
cost also decreases as cluster size decreases and increases as the number of clusters 
increases. Thus, it becomes important to seek a balancing point through the optimum 
size of the cluster and the number of clusters in the sample by minimizing the variance 
for a given/fixed cost or vice-versa. 
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Now, it is of crucial importance to know the behaviour of yV with the cluster 
size M . This involves knowing the relationship between bS  and M . Through analysis 

of variance (ANOVA) technique, bS can be found if we know 
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The variance wS within all M  elements of the same cluster for all N  
clusters, 

where S and wS are respectively given by 

N

i

M

j
ij YY

NM
S and 

N

i

M

j
iijw YY

MN
S . 

 



STATISTICS IN TRANSITION new series, June 2020 191

Thus, the total variance S of all population units can be written in the form of bS
and wS as 

NMSMNSNMS wb       (2) 
If N  is large, we express the above equation (2) as  

MSMSS wb        (3) 

Hence,  

MSMSS wb .       (4) 

Thus, bS  also depends on wS . 
We are considering the problem of determining the best relationship between 

variance function and the size of the cluster. 
Jessen (1942) suggested the following relationship for wS and M  by a non-linear 

form of model as 

MSw , M                     (5) 

where and are the parameters of the above non linear model.  

Misra et al. (2010) established the relationship between wS  and M  through an 
asymptotic regression model given as  

M
wS , M           (6) 

where , and are the parameters of the asymptotic regression model. 

Tiwari and Misra (2011) suggested a three-parameter linear regression model for 
the relationship between wS  and M  as 

MMSw , M         (7) 

where , and are the parameters to be estimated for the above linear regression 
model. 

2.  Suggested model 

In the present paper, we have proposed the following four-parameter model for the 
most appropriate relationship between wS  and M as 

MMMSw , M           (8) 
Expression (8) is a linear model in which its parameters are appearing linearly and 

there is no problem in assuming an additive error term in model (8). 
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The above model can be postulated as a statistical model as 

iw eMMMS , M , ni                     (9) 

where the random variable sei  are assumed to be independently and identically 

normally distributed with mean zero and fixed variance  and , , and are 
the parameters of the model (9). 

2.1. Fitting of models  

Draper and Smith (1998) have classified the above models in two groups; one as 
intrinsically linear and another as intrinsically non-linear models. The model (5) is an 
intrinsically linear model as it can be transformed into a linear model. Model (6) is 
purely nonlinear model as it cannot be transformed by means of any transformation 
into a linear model. The OLS method is not directly applied for estimating the 
parameters of model (6). The parameters of model (6) are estimated through the iterative 
procedure as Levenberg-Marquardt’s method. Model (7) and the proposed model (8) are 
linear in parameters so their parameters are estimated by the method of least squares.  

2.2. Goodness of fit of different models 

Coefficient of Determination - R  
The assessment of the regression model is to observe how much of the total sum of 

squares (TSS) has fallen into the sum of squares due to the regression (SSR).  

TSS
SSRR  

Adjusted Coefficient of Determination - AdjR  

Montgomery et al. (2012) have described AdjR  considering good for model 
comparison when the number of parameters is not equal in two models. 

R
pn

nRAdj  

Residual Mean Square- s  
The residual mean square is defined as 

pn
SSEs  

where n  is the number of observations and p  is the number of the model parameters 

used and SSE is the sum of squares due to errors. A small value of s reflects the 
appropriateness of the fitted model. 
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Mean Absolute Error (M.A.E) 
The Mean Absolute Error is defined as 

n

errors
EAM

n

i  

where n  is the number of observations. A smaller EAM  is preferred in fitting of 
various models. 
 
Akaike Information Criterion (A.I.C.)  

Gujarati and Sangeetha (2007) have given a lot of importance to Akaike 
Information Criterion (A.I.C.), defined as,  

n
RSS

n
pExpCIA  

where n  is the number of observations and  p  is the number of parameters. RSS  is 
residual or error sum of square. 

2.3. Examination of Residuals  

Analysis of the residuals (errors) is strongly recommended to decide about the 
suitability of a model by Draper and Smith (1998). Three important assumptions of the 
model are:  

(i) Errors are not auto correlated.  
(ii) Errors are independent.  
(iii)Errors are normally distributed.  

The assumptions can be verified by examining the residuals.  
Test for auto correlation of errors (Durbin-Watson Test) 

We test H : Errors are not auto correlated (if DW test values > Ud ) 

Against H : Errors are auto correlated (if DW test values < Ld ) 
where  Ld  and Ud  are given in Draper and Smith (1998). DW Test values greater 

than 1.72 times Ud  confirm that there is no problem of auto-correlation. 

Test for independence of errors (Run Test) 
We test H : Errors are independent. 

Against H : Errors are not independent. 

Test for normality (Shapiro-Wilk Test, n ) 
We test H : Errors are normally distributed. 

Against H : Errors are not normally distributed. 
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2.4. Determination of Variance Function 

If the total population is considered as a single cluster containing NM elements, the 

wS  will be equal to the total variance S . Thus, for the proposed model, we have 

NMNMNMS                 (10) 

The between-cluster variance for the proposed model is obtained by putting (8) and 
(10) in (4) as,  

NMMM
M

MNMNMNMSb
 

                   (11) 

where , , and  are the estimated values of the parameters of the suggested 
model. 

The variance of the sample mean of the characteristic under study through the 
suggested model in cluster sampling can be obtained as 

                                                  
bS

n
fyV                                                       (12) 

3.  Empirical study 

The appropriateness and model adequacy of various models have been examined 
by using two natural data sets from Sukhatme et al. (1984) and Govindarajulu (1999) 
respectively. The wS  have been calculated for different sizes of the clusters in (acre)2, 
with the study variable as the area under wheat crop. We have computed the estimated 
values of parameters, goodness of fit and residuals analysis for the models (5)-(8) given 
in Table-1(a) and Table-1(b). The Estimated values of wS  and bS  are given in Table-
1(c) and Table-1(d). These values are given in Table-2(c) and Table-2(d) for the models 
(5)-(8) respectively. The above values have been obtained using SPSS 17.0 Statistical 
software.  

Table-1(a). Parameter estimates for various models 

Model     

Model (5) 78.886   0.0473 - - 

Model (6) 108.171   31.530 - 0.948 

Model (7) 93.813   0.012 - -32.888 

Model (8) 88.1502   0.4272 -0.0003 -21.8678 
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Table-1(b). Goodness of fit of models and Residuals Analysis 

 Model (5) Model (6) Model (7) Model (8) 

R  0.941 0.983 0.984 0.999 

AdjR  0.921 0.966 0.978 0.998 

s  10.479 4.410 2.756 0.0248 

M.A.E.  2.078 1.208 0.9 0.055 
A.I.C.  13.6643 5.8573 3.6594 0.0245 
DW#  1.3457 2.2104 2.3238 3.4161 
R* 0.001 

(1.000) 
0.109 

(0.913) 
0.001 

(1.000) 
1.200 

(0.230) 
W^ 0.9917 

(0.9784) 
0.8994 

(0.4037) 
0.9713 

(0.8749) 
0.9952  

(0.9926) 

# is Durbin and Watson Test values, * is Run test values, ^ is Shapiro-Wilk test values, the p-values 
are given in parentheses. 
 

Table-1(c). Estimated wS  for various models 

M  

Observed 
value of 

wS  

Estimated 
value 

of wS for 
model (5) 

Estimated 
value 

of wS for 
model (6) 

Estimated 
value 

of wS for 
model (7) 

Estimated 
value 

of wS for 
model (8) 

2  78.10  81.53 79.84 77.39 78.0695 
4  84.28  84.25 82.71 85.64 84.3868 
8  88.92  87.05 87.60 89.80 88.8127 
16  93.50  89.95 94.75 91.96 93.5308 
NM

=1176 
108.33  110.22 108.17 108.34 

108.33 
 

Table-1(d). Estimated bS  from equation (4) for various models 

M  

Observed 
value of 

bS  
from 

equation (4) 

Estimated 
value 

of bS for 
model (5) 

Estimated 
value 

of bS for 
model (6) 

Estimated 
value 

of bS for 
model (7) 

Estimated 
value 

of bS for 
model (8) 

2  69.28  69.45 68.25 69.64 69.2952 
4  45.12  47.03 46.13 44.11 45.0399 
8  30.52  34.05 31.53 29.76 30.6188 
16  20.69  25.89 19.34 22.12 20.6448 
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Table-2(a). Parameter estimates for various models 

Model     

Model (5) 0.072   0.182 - - 
Model (6) 0.372   -0.566 - 0.966 
Model (7) 0.3163   0.0000061 - -4.311 
Model (8) -0.3039   0.0132 -0.000001 2.3414 

 
 

Table-2(b). Goodness of fit of models and Residuals Analysis 

 Model (5) Model (6) Model (7) Model (8) 

R  0.768 0.982 0.959 0.996 

AdjR  0.710 0.971 0.932 0.991 

s  0.0039 0.0004 0.0009 0.0001 

M.A.E.  0.0433 0.0116 0.0183 0.0045 
A.I.C.  0.0051 0.0004 0.0013 0.00006 
DW#  0.9083 1.8057 1.6865 3.5122 
R* -1.369 

(0.171) 
0.001 

(1.000) 
0.001 

(1.000) 
1.369  

(0.171) 
W^ 0.9648 

(0.8577) 
0.9577 

(0.8127) 
0.9447 

(0.7175) 
0.9759 

(0.9217) 

# is Durbin and Watson Test values, * is Run test values, ^ is Shapiro-Wilk test values, the p-values 
are given in parentheses. 
 
 

Table-2(c). Estimated wS  for various models 

M  

Observed 
value of 

wS  

Estimated 
value 

of wS for 

model (5) 

Estimated 
value 

of wS for 

model (6) 

Estimated 
value 

of wS for 

model (7) 

Estimated 
value 

of wS for 

model (8) 
15  0.05  0.1176 0.0361 0.0289 0.0501 
20  0.08  0.1239 0.0898 0.1008 0.0770 
25  0.11  0.1290 0.1349 0.1440 0.1193 
30  0.18  0.1334 0.1728 0.1727 0.1694 
35  0.22  0.1372 0.2046 0.1933 0.2239 

NM =8820 0.37  0.3747 0.3717 0.3727 0.3699 
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Table-2(d). Estimated bS  from equation (4) for various models 

M  

Observed value 

of bS from 
equation (4) 

Estimated 
value 

of bS for 

model (5) 

Estimated 
value 

of bS for 

model (6) 

Estimated 
value 

of bS for 

model (7) 

Estimated 
value 

of bS for 

model (8) 

15  0.320  0.265 0.338 0.346 0.3231 

20  0.294  0.257 0.286 0.277 0.2967 

25  0.264  0.251 0.242 0.234 0.2553 

30  0.196  0.246 0.205 0.206 0.2061 

35  0.156  0.241 0.173 0.185 0.1523 

4.  Results and discussion 

From Table-1(b) and Table-2(b), it is easily evident that the value of R  for the 
competing models ranges from [0.941 0.984] and [0.768 0.982] respectively for Data 
Set-1 and Data Set-2, while that for the suggested model is 0.999 and 0.996 respectively. 
The value of AdjR  for the competing models lies between [0.921 0.978] and [0.710 
0.971] respectively while that for the suggested model between 0.998 and 0.991 
respectively. The values of the s for the competing models range from [2.756 10.479] 
and [0.0039 0.0004] while for the proposed model are 0.0248 and 0.0001 for Data Set-1 
and Data Set-2 respectively. The values of M.A.E. are between [0.9 2.208] and [0.0183 
0.0433] for the models in comparison while for the suggested models they are 0.055 and 
0.0045 for Data Set-1 and Data Set-2 respectively. The values of A.I.C. lie between 
[3.6594 13.6643] and [0.0004 0.0051] for the competing models while these of proposed 
models are 0.0245 and 0.00006 for Data Set-1 and Data Set-2 respectively. Other 
measures are also better for the suggested model as compared to competing models.  

Figure-1 and Figure-2 show the graph of R and AdjR  and s , M.A.E. and A.I.C. 
for the suggested and the competing models respectively for Data Set-1 while Figure-3 
and Figure-4 for Data Set-2.   
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Figure-1. R and AdjR  for data set-1 for 
various models 

Figure-2. s , MAE and AIC for data 
set-1 for various models 

 
 
 

Figure-3. R and AdjR  for data set-2 
for various models 

Figure-4. s , MAE and AIC for data 
set-2 for various models 

 

5.  Conclusion 

In the present manuscript, we have proposed a four-parameter linear regression 
model for enhanced estimation of the variance function for clustered data. The 
parameters of the proposed model have been estimated through a well-known method 
of least squares. The proposed model and many other linear and nonlinear models have 
been fitted for the real data sets. The suggested model is compared with the competing 
linear and non-linear models. It has been shown that the proposed model fits well 
in comparison with other models for variance function in cluster sampling as it has 
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lesser mean residual error and other good measures of adequacy. Thus, it 
is recommended to use the proposed model for improved estimation of variance 
function, the relation between within-cluster variance and cluster size, between cluster 
variance and the cluster size in cluster sampling.  
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