
STATISTICS IN TRANSITION new series, June 2020 
Vol. 21, No. 2, pp. 173–187, DOI 10.21307/stattrans-2020-019 
Submitted – 04.03.2019; accepted for publishing – 31.01.2020 

Application of iterated filtering to stochastic volatility models 
based on non-Gaussian Ornstein-Uhlenbeck process 

Piotr Szczepocki 1 

ABSTRACT 

Barndorff-Nielsen and Shephard (2001) proposed a class of stochastic volatility models 
in which the volatility follows the Ornstein–Uhlenbeck process driven by a positive Levy 
process without the Gaussian component. The parameter estimation of these models is 
challenging because the likelihood function is not available in a closed-form expression. 
A large number of estimation techniques have been proposed, mainly based on Bayesian 
inference. The main aim of the paper is to present an application of iterated filtering for 
parameter estimation of such models. Iterated filtering is a method for maximum likelihood 
inference based on a series of filtering operations, which provide a sequence of parameter 
estimates that converges to the maximum likelihood estimate. An application to S&P500 
index data shows the model perform well and diagnostic plots for iterated filtering  ensure 
convergence iterated filtering to maximum likelihood estimates.  Empirical application is 
accompanied by a simulation study  that   confirms the validity of the approach in the case 
of Barndorff-Nielsen and Shephard’s stochastic volatility models. 
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1. Introduction 

Barndorff-Nielsen and Shephard (2001) proposed a continuous-time stochastic 
volatility model (BN-S model), in which the logarithm of the asset price ty  is  
assumed to be the solution of the following stochastic differential equation: 

tdBtdtttdy                             (1) 

where ttB  is the Brownian motion, R is the drift parameter, R is the 

risk premium. Latent instantaneous volatility process tt  is determined by the 
stochastic differential equation 

tdzdtttd                                   (2) 
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where R and ttz  is pure jump Lévy process with stationary, independent 

and positive increments, and z . The process ttz  is called Background 

Driving Lévy Process (BDPL) of the process tt . Figure 1 presents examples of 

the pair of the processes ttz  and tt . There are several important 
features of such a stochastic volatility process defined by (2), some of which will be 
outlined in Section 2 on the basis of a series of Barndorff-Nielsen and Shephard papers 
(Barndorff-Nielsen and Shephard, 2001, 2002, 2003).  

A great number of estimation techniques have been proposed to estimate  
BN-S model. In their introductory paper (Barndorff-Nielsen and Shephard, 2001), 
Barndorff-Nielsen and Shephard employed a nonlinear least squares estimation and 
suggested other possible methods: Bayesian inference, quasi-likelihood inference by 
means of Kalman filter (for more details of Kalman filter implemented for BN-S model, 
see Szczepocki (2018)), estimation equations (Sørensen, 2000) and indirect estimation 
(Gourieroux, Monfort and Renault, 1993). In the following years much work on 
estimation was devoted to the Bayesian Markov Chain Monte Carlo (MCMC) 
approach: Roberts et al. (2004), Griffin and Steel (2006, 2010), Gander and Stephens 
(2007a,b), Frühwirth-Schnatter and Sögner (2009). Hubalek and Posedel (2006, 2011) 
proposed an estimator based on martingale estimating functions. Taufer, Leonenko 
and Bee (2011) introduced a characteristic function-based estimation method. 
Raknerud and Skare (2011) implemented an indirect inference method  based on 
approximate Gaussian state space representation. Andrieu et al. (2010) proposed to use 
Particle Markov Chain Monte Carlo (PMCMC) estimation method, which combines 
particle filter with Bayesian inference. Chopin et al. (2013) proposed SMC2 algorithm, 
which substantially extends PMCMC. James et al. (2018) also used PMCMC for OU-
Gamma Time Change version of BN-S model.  

In this paper we propose estimation based on iterated filtering. It is relatively a new 
class of methods for maximum likelihood inference introduced by Ionides et al. (2006) 
and substantially modified by Ionides et al. (2015). It is based on a series of filtering 
operations which provide a sequence of parameter estimates that converges to the 
maximum likelihood estimate. In the discussion on (Andrieu et al., 2010) Anindya 
Bhadra (one of co-authors of Ionides et al., 2011) showed some results from applying 
the iterated filtering to a single example of BN-S model. However, he applied the initial 
version of iterated filtering (IF1) from Ionides et al. (2006). In this paper we employed 
the second generation version of iterated filtering (IF2) from Ionides et al. (2015). 

The paper is organized as follows. Section 2 presents background material on 
Barndorff-Nielsen and Shephard stochastic volatility model. Section 3 presents  iterated 
filtering. Section 4 contains simulation results on estimation and Section 5 applications 
to real data. Section 6 gives concluding remarks. 
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Figure 1.   Two simulations of  instantaneous volatility process with Gamma marginal  (a) and (b), 

and corresponding Background Driving Lévy Process (c) and (d)  
Source: Own work using R software. 

2.  Barndorff-Nielsen and Shephard stochastic volatility model 

BN-S model has several important features which makes it very important for 
financial modelling. Firstly, instantaneous volatility tt  moves up by jumps 

according to ttz  and tails off exponentially at the rate . Thus, memory of the 
volatility process depends strictly on the rate . High values of  result in high jumps, 
which are quickly discounted. On the contrary, a small value leads to a small jump but 
the process tails off slowly. Figure 1 shows the impact of on the volatility process.  

Secondly, the time index of the process ttz  in (2) is chosen deliberately so 

that marginal distribution of t  does not depend on . Barndorff-Nielsen and 
Shephard (2001) proved that for any one-dimensional self-decomposable distribution 
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D  there is a stationary Ornstein-Uhlenbeck process tt  and Lévy process 

ttz  satisfying equation (2),  for which marginal distribution of t  is D . 
The class of self-decomposable distribution includes many distributions important in 
financial econometrics: gamma, normal-inverse Gaussian, inverse Gaussian, tempered 
stable, variance gamma, symmetric gamma, the Euler’s gamma, Mexiner. (Schoutens, 
2003) is a comprehensive reference text on financial application of self-decomposable 
distributions. 

Thirdly, although instantaneous volatility tt  has discontinuous paths (due 
to jumps),  integrated volatility  

t

duut                                                 (3) 

has continuous paths. Consequently, the resulting process of the logarithm of the asset 
price ty also has continuous paths. One advantage of stochastic volatility of Ornstein-
Uhlenbeck type is that many important process characteristics are analytically tractable.  
For example, integrated volatility has a simple structure  

ttzt                                (4) 

Finally, the implication of the formula (1) is that log-returns observed at time 
n=1,..., T (we assume that time differences  nnn tt are fixed and equal Δ) take 
the form: 

nynytdyy
n

n
n                                  (5) 

and have conditional Normal distribution  

nnn Ny                                              (6) 

where nnn . This discretely observed volatility n  
(n=1,..., T) was called actual volatility by Barndorff-Nielsen and Shephard (2001). 
Marginal distribution of yn is a location scale mixture of normals. Thus, returns may 
capture empirical facts such as skewness and thick tails. Moreover, when  
marginal distribution of yn tends to normal distribution. Hence, non-normality of 
returns vanishes under temporal aggregation, which is another empirical fact observed 
in financial data.  

BN-S model has attracted much interest and research in mathematical finance and 
financial econometrics. Nicolato and Venardos (2003) studied equivalent martingale 
measures and provided closed-form prices for European call options for BN-S model. 
The minimal entropy martingale measure and numerical option pricing for BN-S 
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model are investigated in (Benth and  Karlsen, 2005) and (Benth and Meyer-Brandis, 
2005).  Hubalek and Sgarra (2009) provided option pricing by Esscher transform. Benth 
et al. (2003) considered Merton’s portfolio optimization problem in a Black and Scholes 
market with stochastic volatility of BN-S type. Benth et al. (2007) provided explicit 
evaluation of the variance swaps. Hubalek and  Sgarra (2011) developed a semiexplicit 
valuation formula for geometric Asian options.  

3.  Iterated filtering 

3.1. General remarks 

Iterated filtering (Ionides et al. 2006, 2015) are methods for maximum likelihood 
inference for state space models (SSMs). These models are also known as partially 
observed Markov Processes (POMP) or hidden Markov models (HMMs). SSMs consist 
of a pair of processes: nn YX . The former is a Markov process (state process) which 
is not observed directly but may be estimated through the latter (observation processes).  
The observations of nY  are assumed to be conditionally independent given the nX  (for 
details, see Durbin And Koopman, 2012). SSMs are very flexible and have been widely 
applied in economics, medicine, biology, mechanical system monitoring, patter 
recognition (see Chapter 1 in Cappé et al., 2008 for examples). However, estimation for 
SSMs is very challenging because likelihood functions are analytically intractable in 
general.  

Iterated filtering is one of the few if not the only available likelihood-based (based 
on the likelihood function for the full data), simulation-based (dynamics of the model 
is captured only via a simulator), frequentist (based on frequency interpretation of 
probability) methods for SSMs. Iterated filtering has been successfully applied to 
perform parameter estimation in SSMs, mostly in the context of biological applications 
(King et al., 2008, He et al., 2009, Bhadra et al., 2011) but also in economic modelling 
(Bretó, 2014). 

The key idea behind iterated filtering is to replace the model we are interested in, 
which have constant parameters, with a similar model but with parameters that take a 
random walk in time. This extra variability smooths the likelihood surface and 
counteracts particle depletion. Over multiple repetitions of the filtering procedure 
(made by means of a particle filter), the variance of this random walk goes to zero and 
the augmented model approaches the original one. As an output of iterated filtering, 
the algorithm provides a sequence of updated parameter estimates that converge to the 
maximum likelihood estimate. Iterated filtering algorithms use basic sequential Monte 
Carlo techniques (also known as bootstrap particle filter, Gordon et al., 1993). Thus, 
they have the property that they do not need to evaluate the transition density of the 
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latent Markov process. Algorithms with this property have been called plug-and-play 
(Ionides et al., 2006) or simulation-based. It is vitally important in the case of BN-S 
model, for which the transition density takes no explicit form. The plug-and-play 
methodology is relatively recent and have been developing rapidly because of its less 
restrictive requirements. Examples of plug-and-play methodologies that follow the 
Bayesian paradigm are Approximate Bayesian Computation (Toni et al., 2009) and 
Particle Markov Chain Monte Carlo (Andrieu et al., 2010).  

There are two generations of iterated filtering which are typically abbreviated by 
IF1 and IF2. The first was introduced by Ionides et al. (2006) and theoretically justified 
by Ionides et al. (2011). Later, Lindström et al. (2012) improved numerical performance 
of IF1 and Doucet et al. (2013) expanded it to include smoothing algorithm. The second 
generation was initiated by Ionides et al. (2015) and later supported by theoretical study 
of Nguyen (2016). Although both generations of iterated filtering recursively perform 
filtering through the augmented model, the theoretical justifications of these algorithms 
are essentially different. IF1 approximates the Fisher score function, whereas IF2 
combines the idea of data cloning (Lele et al., 2007), with convergence of an iterated 
Bayes map (Nguyen, 2016). Ionides et al. (2015) showed that IF2 outperforms IF1 
in empirical examples. 

Convergence of iterated filtering IF2 to the maximum likelihood estimate has been 
shown under some regularity conditions (see Ionides et al., 2015 and Nguyen, 2016,  for 
details). The conditions are rather technical so, in practical applications, convergence 
of algorithm should be assessed via diagnostic plots (Bretó, 2014). 

In this paper, we use implementation of iterated filtering provided by the software 
package POMP (King et al., 2010) written for the R statistical computing environment 
(R Development Core Team, 2010).  

3.2. Implementation of the BN-S model 

Barndorff-Nielsen and Shephard (2001) presented their model in state space model 
representation with yn as an observation process and actual volatility as a state process. 
Conditional distribution of observation process given the state process nny   is given 
by the formula (6). The transition density is not available in explicit form. Griffin and 
Steel (2007) showed that the actual volatility can be written as 

nennn                        (7) 

where 



STATISTICS IN TRANSITION new series, June 2020 179

tdz

tdzee t

n                                                (8) 

is a vector of random jumps,  which is a pair of stochastic integrals with respect to the 
BDLP ttz . The instantaneous volatility process from equation (7) may be 
discretized by recursion   

nenn .                                 (9) 

In this paper, we use the series representation from Barndorff-Nielsen and 
Shephard (2001) given by 
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                                    (10) 

 
where for each j (j=1,2,…) ai,j are the arrival times of a Poisson process of intensity 1, 
and ri,j  U(0, 1), independent of the ai,j. W-1 denotes the inverse of the tail mass 
function  

x

dyywxW                                               (11) 

where yw  is a density the Lévy measure of the Lévy-Khintchine representation for 
z(1) (see chapter 8 in Schoutens (2001) for detailed information of simulation 
techniques for Lévy processes). The only special case where the sums in (10) have only 
a finite number of non-zero terms is the gamma marginal distribution of instantaneous 
volatility. In other cases sums need to be truncated. In the case of the gamma 
distribution for instantaneous volatility process: gammat (ν > 0 is the 
scale parameter and α is the precision parameter) the inverse of the tail mass function 
W-1 takes the form (Barndorff-Nielsen and Shephard, 2001):  

ji

ji

a
a

W                                (12) 

which is zero for jia  
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There is no agreement in the literature on how to choose a marginal distribution. 
In the rest of the paper we follow Roberts et al. (2004), Griffin and Steel (2006), 
Frühwirth-Schnatter and Sögner (2009), Raknerud and Skare (2011), Chopin et al. 
(2013) and use the gamma marginal distribution.  

4. Simulation study 

Since convergence of iterated filtering IF2 to the maximum likelihood estimates in 
the case of BN-S model is difficult to prove analytically, we checked the performance of 
the method in a simulation study. We considered 4 scenarios with different 
combinations of parameters. Values of the parameter were taken from Barndorff-
Nielsen and Shephard (2002) and Creal (2008). We simulated 500 realizations of each 
scenario of length T=1000 observations. We run iterated filtering algorithm using 
J=100 and J=200 iteration with M=5000 particles. Table 1 presents mean errors (MEs) 
and mean standard errors (MSEs) obtained in the study. For the purpose of 
comparison, Table 1 reports also MEs and MSEs for the quasi-likelihood inference 
based on the Kalman filter. Thus, we set and assessed precision only for 
volatility parameters:  λ – the persistence parameter, ξ – the expected value of marginal 
distribution ( tE ) and the standard deviation of marginal 

distribution ( tVar ). 

Table 1.  MEs and MSEs of the estimators 

Parameters 
KF IF2 (J=100) IF2 (J=200) 

ME MSE ME MSE ME MSE 

 0.066 0.261 0.021 0.163 0.013 0.121 
 0.061 0.166 0.042 0.159 -0.032 0.143 

 0.093 0.13 -0.046 0.186 -0.011 0.012 

 0.056 0.219 0.015 0.126 0.011 0.109 
 -0.011 0.142 0.045 0.166 0.039 0.132 

 0.072 0.146 0.051 0.232 -0.086 0.123 

 0.011 0.119 -0.005 0.086 0.019 0.021 

 0.063 0.242 -0.021 0.166 -0.012 0.159 

 0.091 0.246 0.051 0.131 0.013 0.011 

 0.013 0.145 0.009 0.026 0.019 0.021 
 -0.051 0.171 -0.032 0.146 -0.022 0.169 

 0.093 0.381 0.046 0.322 0.023 0.186 

Source: Own work. 



STATISTICS IN TRANSITION new series, June 2020 181

The results indicate that the proposed iterated filtering IF2 algorithm is quite 
reliable. For a smaller number of iterations J=100, the estimators seem to be biased but 
they become more precise as J increases. Both versions of IF2 outperform quasi-
likelihood inference. 

5. Empirical example 

We estimate models by using Standard & Poor’s 500 index (S&P500) daily data for 
the period 9.10.2012-30.09.2016. S&P500 index is one of the most important American 
stock market index. It is based on the market capitalizations of 500 large companies 
listed on the NYSE or NASDAQ. Data consist of 1001 closing values and 1000 log-
returns.  Table 2 and Figure 2 present data.  

 

 
Figure 2. S&P500 daily index (a) and log-returns (b) 
Source: Own work using R software. 

Table 2. Descriptive statistics of S&P500 daily log-returns 

Mean Standard 
deviation Skewness Kurtosis 

Quantiles 

25% 50% 75% 

0.0004 0.0083 -0.3830 5.0486 -0.0036 0.0005 0.0050 

Source: Own work. 

We run the iterated filtering algorithm with J=200 iteration. Each of iteration uses 
the bootstrap particle filter with M=5000 particles.  Results of estimation are presented 
in Table 3. The drift parameter μ is close to zero. As may be expected from financial 
theory, the risk-premium coefficient β is positive. The estimated average actual 
volatility ξ and standard deviation ω correspond to gamma distribution with the scale 
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parameter ν=1.571 and the precision parameter α=14.124. Figure 3  presents diagnostic 
plots for iterated filtering. These plots suggest that the likelihood has in fact been 
maximized by iterated filtering in our analysis of log-returns of S&P500 index. 

Table 3. Estimation results for the log-returns of the S&P500 index 

Parameter      
Estimates -0.001 0.051 0.026 0.111 0.089 

Source: Own work. 

 

 
Figure 3.  Diagnostic plots for iterated filtering: sliced likelihoods for the inquired parameters. For 

each plot the likelihood surface is explored along one of the parameters, keeping the other 
parameters fixed at the point which iterated filtering algorithm converges to. Points show 
the likelihood estimate obtained with 2,000 particles and the curves result from smoothing 
the likelihood evaluations with local quadratic regression. The vertical lines show iterated 
filtering estimates. 

Source: Own work using R software. 
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6. Conclusions 

In this article, we presented estimation of a class of stochastic volatility models 
where the volatility follows an Ornstein–Uhlenbeck process driven by a positive Lévy 
process via iterated filtration. This class of models, introduced by Barndorff-Nielsen 
and Shephard (2001), and therefore typically abbreviated to BN-S, has several 
important features, which aroused great interest in financial modelling for this class of 
stochastic volatility models.  

From a theoretical point of view, the estimation method proposed in this article is 
convenient because it only requires to simulate the state process and to evaluate 
conditional density of the observation process given the simulated values of the state 
process. This feature, also known as plug-and-play property, is crucial for BN-S models, 
for which transition density is not available as a closed-form expression. Iterated 
filtration provides likelihood-based inference based on frequentist probability, which 
may be seen as competitive to plug-and-play methods that are based on Bayesian 
paradigm such as Particle Markov Chain Monte Carlo or Approximate Bayesian 
Computation. In this article, we exploited the second generation of iterated filtration 
IF2 introduced by Ionides et al. (2015), which outperforms the first generation IF1 in 
the rates of convergence to maximum likelihood estimates. 

The results of the simulation study confirmed the validity of the approach in the 
case of BN-S model. In an application of the proposed method to S&P500 daily data, 
we presented, apart from estimates of parameters, also diagnostic plots for iterated 
filtering to ensure convergence to maximum likelihood estimates. 
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