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ABSTRACT

The aim of this paper is to introduce a new weighted probability distribution to model the

non-monotone failure rate pattern for survival data. The proposed distribution is general-

ized by considering inverted Rayleigh distribution as a baseline distribution called an ex-

tended weighted inverted Rayleigh distribution. Different statistical properties such as mo-

ment, quantile function, moment generating function, entropy measurement, Bonferroni and

Lorenz curve, stochastic ordering and order statistics have been derived. Different estimation

procedures have also been discussed to estimate the unknown parameters of the proposed

probability distribution. The Monte Carlo simulation study has been conducted to compare

the performances of the proposed estimators obtained through various methods of estima-

tion. Finally, two real data sets have been used to show the applicability of the proposed

model in a real-life scenario.

Key words: moments and inverse moments, entropy measurements, order statistics, classi-

cal methods of estimation.

1. Introduction

In reliability analysis, numerous methods are available to generalize new probability

distribution by adding an extra parameter with specific baseline distributions. For example,

the well-known lifetime distributions, namely Weibull and gamma, are generalized by us-

ing power and Laplace transform of exponential random variates. Also, Gupta and Kundu

(1999) introduced exponentiated exponential distribution by adding a shape parameter as a

power of cumulative distribution function (CDF) of an exponential distribution. Nadarajah

et al. (2011) proposed an extension of exponential distribution by a simple modification in

the survival function of the exponential model. In reliability analysis, Rayleigh distribution

(2005) is one of the most popular lifetime distribution and several generalizations based

on Rayleigh distribution are advocated from time to time using the similar approach. The

inverted versions of these models are also frequently used and well justified for the real life

situations. For example, Voda (1972) introduced the inverted version of the Rayleigh model

and discussed its different statistical properties. Ahmad et al. (2014) derived the weighted

version of Rayleigh distribution and debated about the descriptive measure of statistics and
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estimation procedure for the unknown parameters. Exponentiated inverse Rayleigh dis-

tribution (EIRD) is a generalized form of inverse Rayleigh distribution as suggested by

Nadarajah and Kotz (2006), etc., although the weighted version of the inverted Rayleigh

distribution (IRD) has already been developed by Fatima and Ahmad (2017) using weight-

ing function (length-area biased) approach. In this paper, a new weighted version of IRD

has been proposed and studied with IRD as a base line distribution. IRD is the most popular

lifetime distribution and frequently used to model the data with non-monotone failure rate.

Let us assume that the variable Y is distributed as IRD with parameter θ . The probability

density and distribution functions of IRD are given by;

fY (x) =
2θ
x3

e−
θ
x2 , θ > 0, x > 0 (1)

and

FY (x) = e−
θ
x2 (2)

where, θ is scale parameter.

The proposed extended weighted version of IRD has been derived by using the approach

discussed by Azzalini (1985). The method mentioned by Azzalini is not new. It was given

in 1985 and introduced various skew-symmetric distributions namely skew-normal, skew-

chai, skew-Cauchy, skew-t, etc. Recently, Gupta and Kundu (2009) derived a new class

of weighted distribution by introducing shape parameters to exponential distributions using

the same approach. The lifetime distribution generated by this method possesses several

good properties and can be used as a good alternative to other popular distributions such as

gamma, Weibull, Rayleigh or generalized exponential distribution, etc.

The organization of the paper is as follows.The introduction of the considered problem

is given in Section 1. Section 2 discusses the model genesis and its reliability characteristics.

Statistical properties have been discussed in Sections 3, 4 & 5 respectively. Estimation of

the unknown parameters is proposed in Section 6. Monte Carlo simulation study has been

performed in Section 7. Section 8 has described the applicability of the model and study

using two real data sets. Finally, Section 9 concludes the paper.

2. The model

Let X1 and X2 be the two i.i.d. random variables, with probability density function (PDF)

fY (·) and CDF FY (·), then for any α > 0, consider a new random variable X = X1 given that

αX1 > X2. Then, the PDF of the new random variable X is;

fX (x,α) =
1

P[αX1 > X2]
fY (x)FY (αx) ;α > 0 & x > 0 (3)

Now, by using the Equations (1) and (2) in (3), the resulting probability distribution is called

as extended weighted inverted Rayleigh distribution (EWIRD). Hence, the PDF and CDF
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of the new model are given by;

fw(x,α,θ) =
(

1+α2

α2

)(
2θ
x3

)
e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠

;x > 0 & α,θ > 0 (4)

and

Fw(x,α,θ) = e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠

(5)

where, α is the shape parameter of the model.

2.1. Reliability characteristics

• The reliability function R(t) for specified value of t is given by

Rw(t) = 1−Fw(t) = 1− e
−

θ
t2

⎛
⎝1+α2

α2

⎞
⎠

; t > 0 (6)

• The hazard rate, i.e. instantaneous failure rate h(t) is the conditional probability of

failure in time interval (t, t +δ t) given that units has survived at least time t. Mathe-

matically, it is given by the following equation:

h(t) =
fw(t)
Rw(t)

=

(
1+α2

α2

)(
2θ
t3

)
e
−

θ
t2

⎛
⎝1+α2

α2

⎞
⎠

1− e
−

θ
t2

⎛
⎝1+α2

α2

⎞
⎠

(7)

• The reverse hazard function H(t) can be interpreted as the ratio of the probability

density function to the distribution function and is defined as;

H(t) =
fw(t)
Fw(t)

=

(
1+α2

α2

)(
2θ
t3

)
(8)

The different shape of the distribution, i.e. curve of density function and reliability function

are presented in Figure 1. The shape of the hazard is presented in Figure 2. From Figure

2, it is clear that the proposed model is unimodal and exhibits the pattern of non-monotone

failure rate. Usually, the problem of non-monotone failure rate is arising in medical and

engineering sciences. In survival analysis, several times it has been realized that the failure

rate of survival data is reached to a pick in the beginning stage and then declined abruptly

until it stabilized. Such behaviour of the hazard rate is called a non-monotone failure rate,

and the same behaviour of the failure rate is accommodated by the proposed model which,

would be more flexible and used as a alternative survival model.
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Figure 1: Density and reliability curve.
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Figure 2: Hazard rate and reverse hazard rate.
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3. Statistical properties

The different statistical properties of EWIRD are discussed in the following subsections.

3.1. Moments

The rth moment about the origin is defined as;

μ
′
r = E(Xr) =

∫ ∞

x=0
xr fw(x,α,θ)dx

=
∫ ∞

x=0

(
1+α2

α2

)
2θxr−3e

−
θ
x2

⎛
⎝1+α2

α2

⎞
⎠

dx

= Γ
(

1− r
2

)[
θ(1+α2)

α2

] r
2

(9)

The above expression is valid only for r ≤ 1. Therefore, only mean of the distribution will

exist in closed form and obtained by setting r = 1 in the Equation (9).

Mean = E(X) =

√
πθ(1+α2)

α2
(10)

3.2. Inverse moments

The rth inverse moment about origin (M
′
r−1) is evaluated by the following expression:

M
′
r−1 = E

(
1

X

)r

=
∫ ∞

x=0
x−r fw(x,α,θ)dx

=
∫ ∞

x=0

(
1+α2

α2

)
2θx−r−3e

−
θ
x2

⎛
⎝1+α2

α2

⎞
⎠

dx

= Γ
(

1+
r
2

)[
θ(1+α2)

α2

]−r
2

(11)

• The values of different inverse moments are obtained by putting r = 1, · · · ,4 in the

above equation and we get,

E
(

1

X

)
=

1

2

√
πα2

θ(1+α2)

E
(

1

X2

)
=

α2

θ(1+α2)

E
(

1

X3

)
=

3

4

√
πα6

θ 3(1+α2)3
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and

E
(

1

X4

)
=

2α4

θ 2(1+α2)2

respectively.

• Variance of the inverse variable is

Var
(

1

X

)
=

α2(4−π)
4θ(1+α2)

• Coefficient of variation (CV) is evaluated as

CV =

√
Var

(
1
X

)
E
(

1

X

) =

√
4−π

π
≈ 0.5223

3.3. Quantile function

The quantile function for the proposed model is computed by the following expression:

F(Qi) =
i
ζ

(12)

where, i and ζ indicates the position and total partition respectively. After simplification,

the quartile function is

Qi =

√
θ

[lnζ − ln i]

(
1+α2

α2

)
(13)

• Quartile: The first, second and third quartiles are evaluated by taking ζ = 4 & i =
1,2,3 respectively.

• Decile: The deciles are calculated by assuming ζ = 10, then the consecutive deciles

are obtained by taking i = 1,2, · · · ,9.

• Percentile: The percentiles are evaluated by assuming ζ = 100, then the consecutive

deciles are obtained by taking i = 1,2, · · · ,99.

3.4. Median and Mode

The median for the PDF (4) is evaluated by using the following expression:

P[X ≤M] = P[X ≥M] =
1

2
(14)

where, M is the median value. Also, it can be directly extracted from quantile expressions,

e.g. 2nd (in quartile), 5th (in deciles) and 50th (in percentile) quantiles are median. Thus, the
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median is

M =

√
θ(1+α2)

(ln2)α2
(15)

If the proposed probability distribution is moderately skewed then it has been verified that

the difference between mean and mode is almost equal to three times the difference between

the mean and median. Hence, we have

Mode=3 Median-2 Mean

which yield

Mode = 0.06

√
θ(1+α2)

α2
(16)

3.5. Sample generation

The random sample for EWIRD can be generated using an inverse CDF transformation

method as follows.

• Generate random deviates (U) from uniform distribution.

• Equate Fw(X) =U ⇒ X = F−1(U)

• After simplification, we get

X =

√
θ(1+α2)

ln(U−1)α2
(17)

3.6. Moment generating function

The moment generating function (mgf) of a continuous r.v. x is defined by the following

equation:

MX (t) = E(etX ) =
∫

x∈R+
etx fw(x,α,θ)dx (18)

Thus, using PDF (4) we get;

MX (t) =
∫ ∞

x=0
etx

⎡
⎢⎢⎣
(

1+α2

α2

)(
2θ
x3

)
e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎦dx

=
∞

∑
r=0

tr

r!
Γ
(

1− r
2

)
r

√(
θ +θα2

α2

) (19)

Also, the moment can be obtained by using the above expression of m.g.f. Also, the char-

acteristics function is simply obtained by replacing t by it in the above equation.
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4. Entropy measurements

In information theory, entropy measurement plays a vital role in studying the uncertainty

associated with the probability distribution. In this section, we discuss a different measure

of change. For more detail about entropy, measurement see, Reniyi (1961).

4.1. Renyi entropy

Renyi entropy (RE) of a r.v. X is defined as

RE =
1

(1−κ)
ln

[∫ ∞

x=0
f κ
w (x,α,θ)dx

]

=
1

(1−κ)
ln

⎡
⎢⎢⎣
∫ ∞

x=0

⎧⎪⎪⎨
⎪⎪⎩

(
1+α2

α2

)(
2θ
x3

)
e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠
⎫⎪⎪⎬
⎪⎪⎭

κ

dx

⎤
⎥⎥⎦

(20)

Hence, after solving the internal, we get the following

RE =
1

2
ln(θ +θα2)− lnα− ln2− (3κ−1)

2(κ−1)
lnκ +

1

(1−κ)
lnΓ

(
(3κ−1)

2

)
(21)

4.2. β -Entropy

The β -entropy (BE) is obtained as follows:

BE =
1

β −1

[
1−

∫ ∞

x=0
f β
w (x,α,θ)dx

]
(22)

Using PDF (4) and after simplification the expression for β -entropy is given by

BE =
1

β −1
[1−φ(α,θ ,β )] (23)

where, φ(α,θ ,β ) =
(

θ +θα2

α2

) 1−β
2 2β−1

β (3β−1)/2
Γ
(
(3β −1)

2

)

4.3. Generalized entropy

The generalized entropy (GE) is obtained by

GE =
νλ μ−λ −1

λ (λ −1)
;λ �= 0,1 (24)
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where, νλ =
∫ ∞

x=0 xλ fw(x,α,θ )dx. The value of νλ is calculated as;

νλ =
∫ ∞

x=0
xλ

(
1+α2

α2

)(
2θ
x3

)
e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠

dx

=

(
θ(1+α2)

α2

)λ/2

Γ
(

1− λ
2

) (25)

Using the above expression

GE =

(
θ(1+α2)

α2

)λ/2

Γ
(

1− λ
2

)
μ−λ −1

λ (λ −1)
;λ �= 0,1 (26)

4.4. Bonferroni and Lorenz curves

Bonferroni and Lorenz curves have good link-up to each other, and their extensive ap-

plications can be found in economics to study the income and poverty level. In the present

time, these are frequently used in reliability theory also. These were initially proposed and

analysed by Bonferroni (1930) and are defined by

B(c) =
1

cm

∫ a

0
x fw(x,α,θ)dx (27)

L(c) =
1

m

∫ a

0
x fw(x,α,θ)dx (28)

respectively. where a = F−1
w (c) and m = E(x). Hence, using the Equation (4), the above

two equations are reduced as

B(c) =
1

c
√

π
IG

(
1

2
,

θ +θα2

a2α2

)
(29)

L(c) =
1√
π

IG
(

1

2
,

θ +θα2

a2α2

)
(30)

where, IG(a1,b1) stands for incomplete gamma function.

4.5. Stochastic ordering

The concept of stochastic ordering is used to show the ordering mechanism in life-

time distributions. For more detail about stochastic ordering see, Shaked and Shanthikumar

(1988). The random variable X and Y is said to possess the following ordering behaviour:

• stochastic order (X ≤st Y ) if FX (x)≥ FY (x) for all x.

• hazard rate order (X ≤hr Y ) if hX (x)≥ hY (x) for all x.

• mean residual life order (X ≤mrl Y ) if mX (x)≥ mY (x) for all x.
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• likelihood ratio order (X ≤lr Y ) if

(
f X
w (x)

f Y
w (x)

)
decreases in x.

From the above relations, we analyzed that;

(X ≤lr Y )⇒ (X ≤hr Y )⇓ (X ≤st Y )⇒ (X ≤mrl Y )

The proposed distribution is also ordered with respect to the strongest likelihood ratio or-

dering as shown in the following lemma.

Lemma: Let X ∼ fw(α1,θ1) and Y ∼ fw(α2,θ2). If α1 > α2, then (X ≤lr Y ) and hence

(X ≤hr Y ), (X ≤mrl Y ) and (X ≤st Y ).

Proof: According to the definition of likelihood ratio order, first we obtain the ratio

[
f X
w (x)

f Y
w (x)

]
i.e.

ψ =
f X
w (x)

f Y
w (x)

=

(
1+α2

1

α2
1

)(
2θ1

x3

)
e
−

θ1

x2

⎛
⎝1+α2

1

α2
1

⎞
⎠

(
1+α2

2

α2
2

)(
2θ2

x3

)
e
−

θ2

x2

⎛
⎝1+α2

2

α2
2

⎞
⎠

=
θ1α2

2 (1+α2
1 )

θ2α2
1 (1+α2

2 )
e
−

1

x2

⎡
⎣θ1(1+α2

1 )

α2
1

+
θ2(1+α2

2 )

α2
2

⎤
⎦

Therefore,

ψ
′
=

2θ1α2
2 (1+α2

1 )

x3θ2α2
1 (1+α2

2 )

[
θ1(1+α2

1 )

α2
1

+
θ2(1+α2

2 )

α2
2

]
e
−

1

x2

⎡
⎣θ1(1+α2

1 )

α2
1

+
θ2(1+α2

2 )

α2
2

⎤
⎦

(31)

from above equation, we observed that if ψ ′
> 0 ∀ α1,α2, hence (X ≤lr Y ). The remaining

statements can be established in the same way.

5. Order statistics

Let us consider X(1),X(2), · · · ,X(n) are the n ordered random sample from (4) then X(1) <

X(2) < · · · < X(n) denote the corresponding order statistics. X(1), X(n) and X(r) denote the

minimum, maximum and rth order statistics respectively. Then the PDF of rth order statis-

tics, as suggested by (1970), is given by

fr(X(r),α,θ) =
n!

(r)!(n− r)!

[
Fw(x(r))

]r−1 [
1−Fw(x(r))

]n−r fw(x(r),α ,θ) (32)
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Using the expressions (4) and (5) for X(r) in the above equation we get the expression for

rth order statistics, i.e.

fr(X(r),α,θ) =
n!

(r)!(n− r)!

(
1+α2

α2

)(
2θ
x3
(r)

)⎡
⎢⎢⎢⎣e
−

θ
x2
(r)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

r

×

⎡
⎢⎢⎢⎣1− e

−
θ

x2
(r)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n−r (33)

5.1. Distribution of minimum, maximum and median

Let X(1),X(2), · · · ,X(n) be the n independent ordered random sample observed, then the

distribution of minimum X(1), maximum X(n) order statistics are obtained by putting r = 1

& r = n in the Equation (35). Hence, after simplification we get

fmini(X(1),α,θ) = n
[
1−Fw(x(1))

]n−1 fw(x(1),α,θ)

= n
(

1+α2

α2

)(
2θ
x3
(1)

)⎡
⎢⎢⎢⎣e
−

θ
x2
(1)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣1− e

−
θ

x2
(1)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n−1

(34)

fmax(X(n),α,θ) = n
[
Fw(x(n))

]n−1 fw(x(n),α,θ)

= n
(

1+α2

α2

)(
2θ
x3
(n)

)⎡
⎢⎢⎢⎣e
−

θ
x2
(n)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n

(35)
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Now, the density function for sample median for order statistics is given by X(m+1:n). It is

computed by

fm+1(X̃(m+1:n),α,θ) =
(2m+1)!

(m)!(m)!
[Fw(x̃m+1)]

m [1−Fw(x̃m+1)]
m fw(x̃m+1,α,θ)

=
(2m+1)!

(m)!(m)!

(
1+α2

α2

)(
2θ

x̃3
m+1

)⎡
⎢⎢⎣e
−

θ
x̃2

m+1

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎦

m+1

×

⎡
⎢⎢⎣1− e

−
θ

x̃2
m+1

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎦

m

(36)

5.2. Joint distribution of rth and sth order statistics

The joint density function of rth and sth (r < s) order statistics is obtained by considering

the following expression:

fr:s:n(Xr,Xs,α,θ) =

= xi
[
Fw(x(r))

]r−1 [
1−Fw(x(s))

]n−s [Fw(x(s))−Fw(x(r))
]s−r−1 fw(x(r)) fw(x(s))

(37)

Using PDF and CDF of EWIRD, the density function for rth,sth is given by

fr:s:n(Xr,Xs,α,θ) = ξ

⎡
⎢⎢⎢⎣e
−

θ
x2
(r)

⎛
⎝1+α2

α2

⎞
⎠
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e
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⎝1+α2

α2
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In particular, when r = 1 and s= n, we have the joint distribution of minimum and maximum

order statistics and it is written as

f1:n:n(X1,Xn,α,θ) =
n!

(n−2)!

(
1+α2

α2

)2
(

4θ 2

x3
(1)

x3
(n)

)
e
−

θ
x2
(n)

⎛
⎝1+α2

α2

⎞
⎠
⎡
⎢⎢⎢⎣e
−

θ
x2
(1)

⎛
⎝1+α2

α2

⎞
⎠
⎤
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×

⎡
⎢⎢⎢⎣e
−

θ
x2
(n)

⎛
⎝1+α2

α2

⎞
⎠
− e

−
θ

x2
(1)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n−2

(38)

where, ξ =
n!

(r−1)!(s− r−1)!(n− s)!

6. Estimation of the parameters

In this section, we discuss different estimation procedures for estimating the unknown

model parameters of the proposed model. These methods are presented below;

6.1. Maximum Likelihood Estimation

Let X1,X2, · · · ,Xn be the random sample of size n from density function (4). The likeli-

hood function is written as;

L(α,θ) =
n

∏
i=1

fw(xi,α,θ)

=

(
1+α2

α2

)n
(2θ)n

∏n
i=1 x3

i
e
−∑n

i=1

θ
x2

i

⎛
⎝1+α2

α2

⎞
⎠ (39)

Hence, log-likelihood by ignoring the constant is written as;

L1 = lnL(α,θ) = n ln(1+α2)−2n lnα +n lnθ −3
n

∑
i=1

lnxi−
(

θ +θα2

α2

) n

∑
i=1

1

x2
i

(40)

Thus, the MLEs are obtained by maximizing the above equation w.r.t. to the parameters

and as a result we have two likelihood equations which yield the MLEs of the unknown

parameters.
n
θ
− 1+α2

α2

n

∑
i=1

1

x2
i
= 0 (41)
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and
nα

1+α2
− n

α
+

θ
α3

n

∑
i=1

1

x2
i
= 0 (42)

6.1.1 Interval estimate based on MLEs

From above, it is clear that the exact distribution for MLEs is not easy to find. Thus,

we considered the asymptotic distribution of MLE to construct 100(1−α)% approximate

confidence interval. Thus, for this purpose we evaluate the Fisher information matrix and it

is obtained as

I(α̂, θ̂) =
(−lαα − lαθ
−lθα − lθθ

)
α̂,θ̂

(43)

where, lαα =
∂ 2 lnL(α,θ)

∂α2
, lαθ =

∂ 2 lnL(α,θ)
∂α∂θ

, lθα =
∂ 2 lnL(α,θ)

∂θ∂α
, lθθ =

∂ 2 lnL(α,θ)
∂θ 2

The above matrix is inverted and its diagonal elements provide the asymptotic variance

of the estimates for the parameter. Hence, approximate CI is given by

[α̂L, α̂U ] ∈ [α̂∓Zγ/2

√
σ̂2αα ]

and

[θ̂L, θ̂U ] ∈ [θ̂ ∓Zγ/2

√
σ̂2θθ ]

6.2. Maximum Product Spacing method of estimation

In this subsection, we described a very effective and alternative method to MLEs named

maximum product spacing method. It was initially introduced and extensively studied by

Chen and Amin (1979). Coolen and Newby (1990) studied its invariance properties and con-

cluded that it possesses the similar features as MLEs. Recently, the utility of this method

has been nicely explained by Singh et al. (2014). Under this method of estimation tech-

niques the likelihood function is defined on the basis of spacing of two consecutive CDFs

and is given by

L
′
(α,θ) = n+1

√
n+1

∏
i=1

Di (44)

such that ∑n
i=1 Di = 1. Taking log both side, we get;

lnL
′
(α,θ) =

1

n+1

n+1

∑
i=1

lnDi

=
1

n+1

[
lnD1 +

n

∑
i=2

lnDi + lnDn+1

] (45)

where, D1 = F(x1), Di = F(xi)−F(xi−1) and Dn+1 = 1−F(xn)
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The MPS estimates of the parameter α,θ are obtained by maximizing the above equa-

tion w. r. t. the parameters.

6.2.1 Interval estimate based on MPS

Here, we consider the asymptotic confidence intervals based on maximum product spac-

ing estimates. It was mentioned by Cheng and Amin (1979), Ghosh and Jammalamadaka

(2001) that the MPS method also shows asymptotic properties like the Maximum likeli-

hood estimator and is asymptotically equivalent to MLE. Keeping this in mind, we have to

consider the Fisher information matrix and it is obtained as;

I
′
(α̂, θ̂) =

(−Wαα −Wαθ
−Wθα −Wθθ

)
α̂MP,θ̂MP

(46)

where, Wαα =
∂ 2 lnL

′
(α,θ)

∂α2
,Wαθ =

∂ 2 lnL
′
(α,θ)

∂α∂θ
,Wθα =

∂ 2 lnL
′
(α,θ)

∂θ∂α
,Wθθ =

∂ 2 lnL
′
(α,θ)

∂θ 2

Using similar approach as MLE the 100 (1− γ) asymptotic confidence interval is given

by

α̂MP∓Zγ/2

√
(σ2

αα)MP

and

θ̂MP∓Zγ/2

√(
σ2

θθ
)

MP

6.3. Estimators based on percentile

Estimation of the parameters based on percentile is not the new one and frequently used

when the distribution function is in closed form. It was proposed and extensively studied

by Kao (1958, 1959). Recently, this method has gained some popularity in the statistical

literature and used was by Gupta and Kundu (2001), Kundu, and Raqab (2005) based on

different lifetime models. Most of the time estimators obtained by this method have a

nice closed form. The percentile-based estimators are mainly obtained by minimizing the

Euclidean distance between the sample percentile and population percentile points. Hence,

using the expression of CDF, we get

x =

√
θ(1+α2)

ln[F−1(x,α,θ)]α2
(47)

The percentile estimators of α , θ are obtained by minimizing

PE =
n

∑
i=1

[
xi−

√
θ(1+α2)

ln[F−1(x, α̂, θ̂)]α2

]2

(48)
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where, F(x, α̂, θ̂) denotes the estimated value of CDF. It can be assumed as

E[F(xi,α,θ)] =
i

n+1
= pi

6.4. Ordinary and Weighted Least Squares Estimation

The theory of least squares estimation was proposed by Swain et al. (1988) to estimate

the parameters of Beta distribution using the principal of least squares. The LSEs of the

unknown parameters of EWIRD are evaluated by minimizing

LSE =
n

∑
i=1

[
F(xi,α,θ)− i

n+1

]2

(49)

using the Equation (5) in the above equation, we get

LSE =
n

∑
i=1

⎡
⎢⎢⎣e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠
−

(
i

n+1

)⎤
⎥⎥⎦

2

(50)

Hence, the least square estimators of the parameter α and θ are obtained by minimizing the

above equation w.r.t α and θ respectively.

7. Simulation study

In this section, Monte Carlo simulation study has been performed to compare the per-

formance of the obtained estimators in previous subsections. The comparisons of these es-

timators are made in terms of average mean square error (mse) based on 5000 replications.

Since, all estimators are not in closed form, thus non-linear optimization iterative proce-

dure has been used to obtain the estimates of the parameters. In result Tables, (θ̂ml , α̂ml),

(θ̂mp, α̂mp), (θ̂lse, α̂lse), (θ̂pse, α̂pse) denotes the estimators obtained by the method of MLE,

MPSE, LSE and PSE for scale and shape parameters respectively. The simulation study has

been carried out for n = 10,20,30,50,80, & 120 when θ = 2,α = 3. Average estimates

of the parameters and corresponding mse are reported in Table 1. From Table 1, it has been

noticed that the mse of all estimator is decreasing when the sample size is increasing, which

guarantees the consistency of the estimators. Also, among the estimators obtained by differ-

ent method of estimation the following patterns have been noticed in terms of their average

mse.

mse(θ̂lse)< mse(θ̂mp)< mse(θ̂mle)< mse(θ̂pse)

and

mse(α̂ml)< mse(α̂mp)< mse(α̂pse)< mse(α̂lse)

respectively. Thus, for the scale parameter θ , the LSE method performs better as compared

to the other methods of estimation, however in the case of the shape parameter α , MLE
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Table 1: Average estimate and corresponding mse (in each second row) of the estimators

when θ = 2, α = 3.

n θ̂ml θ̂mp θ̂lse θ̂pse α̂ml α̂mp α̂lse α̂pse

10
2.2359 1.8034 1.8182 2.0608 3.2627 2.2831 1.9998 2.4456

0.6672 0.3576 0.3439 0.8425 0.3391 0.5349 1.0549 0.6935

20
2.1047 1.8103 1.8181 2.2620 3.0717 2.3244 2.0647 2.4320

0.2843 0.1999 0.1963 0.8403 0.2866 0.4674 0.9078 0.5880

30
2.0877 1.8238 1.8185 2.0987 3.1902 2.3333 2.0858 2.2867

0.1622 0.1327 0.1274 0.7143 0.2479 0.4513 0.8958 0.5624

50
2.0733 1.8299 1.8348 2.0993 3.3729 2.3333 2.0624 2.3249

0.0923 0.0922 0.0907 0.6439 0.1439 0.4485 0.8860 0.5584

80
2.0856 1.8499 1.7936 2.1270 3.1526 2.3263 2.0719 2.5151

0.0561 0.0596 0.0546 0.5961 0.0389 0.4456 0.8646 0.4825

120
2.0720 1.8495 1.8430 2.2823 3.1546 2.3245 2.0567 2.5827

0.0442 0.0483 0.0421 0.5926 0.0379 0.4358 0.8593 0.4576

method provides a better result.

8. Application to lifetime data

In this section, survival/reliability data applications of the proposed model are provided.

For this purpose, we have considered two data sets and checked the suitability of the pro-

posed model.

Data Set 1: Cancer data
These data represent the survival times (in days) of 45 head and neck cancer patients treated

with combined radiotherapy and chemotherapy. Firstly, the data set is reported by Efron

(1988). To check the suitability of the considered data set for the proposed model differ-

ent model selection tools are used such as AIC, BIC, and log-likelihood criterion. These

statistical tools are defined as follows:

AIC =−2∗ lnL(x, α̂, θ̂)+2∗ k

BIC =−2∗ lnL(x, α̂, θ̂)+ k ∗ ln(n)

where, k is the number of parameters involved in the probability distribution, and n is the

sample size. Smaller values of AIC, BIC and the LogL test statistic are indicators of better

fit of distributions. The proposed model is compared with the most commonly used non-

monotone failure rate models namely inverted exponential distribution (IED), generalized

inverted exponential distribution (GIED) and Inverse Weibull distribution (IWD). Among

these models, it has been observed that the proposed model has the least AIC, BIC and

negative LogL, see Table 4. Hence, the proposed model can be taken as an alternative to

these models when data have the non-monotone failure rate.

Data Set 2: Ball bearing failure data
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Figure 3: Estimated plot for the real data-I
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Figure 4: Estimated plot for the real data-I
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Table 2: Estimates and values of various measures for data set-I

Models Estimate AIC BIC -LogL

IED 59.125 773.37 775.44 385.69

GIED (0.777,49.241) 773.18 777.30 384.59

IWD (28.505,0.786) 767.16 771.28 381.58

EWIRD (6.679,0.053) 691.04 694.65 343.52
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Figure 5: Estimated plot for the real data-II

The considered data set represents the 23 ball bearing failure times (millions of cycles) for

units tested at one level of stress and it was firstly reported and analysed by Lawless (1982).

The summary of the ball bearing data set is

Minimum First Quartile Median Mean Third Quartile Maximum

17.88 47.20 67.80 72.22 95.88 173.40

To check the validity of the proposed model, we used Kolmogrov-Smirnov test. Thus,

the hypothesis is

H0 : Samples are observed from proposed model

H1 : Samples are not observed from proposed model

Hence, test statistic for testing the null hypothesis is

KSCal = Supx
ˆ|Fn(x)− F̂(x)|= 0.098 and KStab = 0.276
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Figure 6: Estimated plot for the real data-II

50 100 150

0.2
0.4

0.6
0.8

1.0

ECDF plot for the real data set

x

EC
DF

Emperical CDF
Theoretical CDF

Figure 7: Empirical CDF plot for the real data



STATISTICS IN TRANSITION new series, June 2020 139

We see that the calculated value of is less than the tabulated value. Hence the null

hypothesis may be accepted at α = 5% level of significance. Also, from the empirical

cumulative distribution function plot (see Figure 7) it is clear that the data set-II provides

excellent fit to the proposed model and hence, one may use EWIRD as an alternative lifetime

model. The estimated plots for the density function, reliability function, hazard function

and reverse hazard rate function are given in Figure 3, 4, 5 and 6 respectively. These plots

indicate that cancer data and ball bearing data both adequately accommodate the new model.

9. Conclusion

In this article, a new version of weighted probability distribution, named EWIRD has

been introduced. Different statistical properties such as moments, inverse moments, mo-

ment generating function, entropy, stochastic ordering and order statistics have been dis-

cussed. Different estimation procedures are also described to estimate the unknown param-

eters, and their performances are compared through Monte Carlo simulations. The applica-

tions of the proposed model are provided based on two real data sets and it has been found

that it can efficiently be used to model the data with a non-monotone failure rate pattern.
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