
Pain control by co-adaptive learning in a1

brain-machine interface.2

Suyi Zhang1,2,6*, Wako Yoshida2, Hiroaki Mano3, Takufumi Yanagisawa4,3

Flavia Mancini1, Kazuhisa Shibata5, Mitsuo Kawato2*, and Ben4

Seymour1,2,3,6*
5

1Computational and Biological Learning Laboratory, Department of Engineering,6

University of Cambridge, UK7

2Brain Information Communication Research Laboratory Group, Advanced8

Telecommunications Research Institute International, Kyoto, Japan9

3Center for Information and Neural Networks, National Institute for Information and10

Communications Technology, Osaka, Japan11

4Endowed Research Department of Clinical Neuroengineering, Global Center for12

Medical Engineering and Informatics, Osaka University, Japan13

5Lab for Human Cognition and Learning, Center for Brain Science, RIKEN, Japan14

6Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.15

Corresponding author:16

Suyi Zhang, Mitsuo Kawato, Ben Seymour17

Email address: suyi.zhang@ndcn.ox.ac.uk, kawato@atr.jp, ben.seymour@ndcn.ox.ac.uk18

Lead contact:19

Suyi Zhang20

Email address: suyi.zhang@ndcn.ox.ac.uk21



SUMMARY22

Innovation in the field of brain-machine interfacing offers a new approach to managing human pain.23

In particular, it should in principle be possible to use brain activity to directly control a therapeutic24

intervention in an interactive, closed-loop manner. But it also raises the question as to whether the brain25

co-adapts to the presence of such brain-machine control systems, for example if someone tries to enhance26

the clarity of brain responses to aid the system. Here we asked whether brain activity can be used to27

support a closed-loop control system aimed at reducing pain, and whether it would induce co-adaptive28

neural and behavioural changes. We used real-time decoded functional MRI responses from the insula29

cortex as input to a machine that tried to learn to deliver less pain. When implemented, subjects engaged30

in various active cognitive strategies orientated towards the control system. We found that pain encoding31

in the insula was paradoxically degraded. From a mechanistic perspective, we predicted that cognitive32

engagement would be accompanied by activation of the endogenous pain modulation system. In keeping33

with this, we found that pain ratings were modulated by attention, and pain encoding was enhanced in34

pregenual anterior cingulate cortex and periaqueductal grey. Further behavioural evidence of endogenous35

modulation was confirmed in a second experiment using an EEG-based closed-loop system. Overall,36

the results show that implementing brain-machine control systems for pain induces a parallel set of37

co-adaptive changes in the brain, and this can interfere with the brain signals and behaviour under control.38
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INTRODUCTION39

The management of human pain is in desperate need of innovation, given the magnitude of the clinical40

and societal problem and the limited success of conventional pharmacological treatments. Advances in41

machine learning analysis of brain responses (‘brain decoding’) offer not just new insights into the neural42

representation of pain information (Kriegeskorte et al., 2006), but they open up the possibility of using this43

information for novel biomedical technologies. In particular, real-time decoding of acute pain responses44

could in principle be used as a proxy biomarker to tune a therapeutic intervention - such as deep brain45

stimulation or spinal neuromodulation. By creating a closed-loop system, this allows the intervention46

to be constantly and automatically tracked and adjusted ‘online’ to avoid over- or under-treatment.47

(Stanslaski et al., 2012; Zhang and Seymour, 2014; Shirvalkar et al., 2018). However, closed-loop control48

is potentially most valuable when the intervention itself has multiple parameters, and whereby the optimal49

configuration and setting of these parameters is not known. The biomarker can then be used to guide50

algorithms to search and optimise them automatically - so-called adaptive control (DiGiovanna et al.,51
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2008). In this way, combining brain decoding with adaptive control algorithms can offer a powerful new52

approach to brain therapeutics.53

Conventional approaches to decoding-based systems assume fixed, stable representations of the54

decoded state in the brain (Marquand et al., 2010; Wager et al., 2013). However, this ignores the55

possibility of adaptive changes in the brain of the user, including cognitive process such as intentionally56

trying to manipulate their brain activity for some purpose (Woo et al., 2017a). This is a general problem57

that affects many applications based on brain decoding, and the potential susceptibility of pain decoding-58

based biomarkers to cognitive modulation is recognized (Woo et al., 2015, 2017b). It leads to the question59

of whether and to what extent a person can actively influence or control the decodability of information in60

their brain (Shibata et al., 2011). For instance, a user may want to enhance the clarity of their brain’s pain61

representation, to make it easier for a putative therapeutic system to decode their pain and appropriately62

intervene on their behalf.63

This is potentially pernicious, because most cognitive strategies to make pain clearer to decode from64

brain activity would involve paying attention to it. But a primary role of attention is to drive learning,65

especially towards information that is currently uncertain (Dayan et al., 2000; Behrens et al., 2007).66

Learning driven by pain uncertainty is thought to engage the endogenous pain modulation system (i.e67

the descending pathways that modulate incoming nociceptive input in the spinal cord), and this acts to68

either facilitate or inhibit pain to maximise information to be learned (Zhang et al., 2018; Seymour, 2019).69

Therefore learning would be expected to alter the brain representation of pain, influencing the accuracy of70

any a priori trained decoding-based biomarker. In other words, the cognitive process of trying to enhance71

a biomarker of pain in the brain might paradoxically disrupt it. This illustrates an important general point72

which arises when implementing adaptive brain-machine interfaces: do they induce parallel co-adaptive73

changes in the brain?74

This study set out three goals. First, we aimed to establish whether, in principle, brain representations75

of pain can be decoded in real-time from brain responses (functional MRI and EEG) and used to instruct76

an adaptive search algorithm linked to a pain relief intervention; this would show in principle that adaptive77

control systems can be applied to pain. Second, we aimed to determine whether the neural representation78

of pain changes when subjects know the system is operational and have the opportunity to mentally79

control their brain activity. Third, we aimed to identify whether the endogenous pain modulation system80

is engaged by attention during the task, thus directly influencing the perception of pain.81

RESULTS82

Creating an adaptive control system using real-time fMRI decoding83

We designed an fMRI-based closed-loop system using phasic, noxious stimuli. We aimed to train an84

adaptive control system to automatically learn how to reduce the intensity of stimulation based purely85

on decoding brain responses to preceding pain stimuli. This is essentially a bioengineering problem that86

needs to solve several core problems: training a voxel-wise pain classifier that can successfully generalise87

over time; re-positioning subjects with voxel-level accuracy in the fMRI scanner over days; implementing88

online classification using real-time fMRI; and using the output of such classification as input into a89

control algorithm to adjust subsequent stimulation.90

To do this, we set up an experiment that took place over two days. The purpose of the first day91

(‘decoder construction’) was to allow us to build a decoder, using offline multivoxel-pattern analysis92

(MVPA), that could subsequently be used for online decoding in the adaptive control system the following93

day. On day 1, healthy subjects (19 total, 2 female) received a sequence of painful stimuli, delivered by94

either a high intensity or low intensity electrical stimulator, via a shared electrode attached to the left hand.95

The number of stimuli was roughly balanced between high and low pain, although not precisely given the96

fact that the order of stimuli on day 1 was actually yoked across subjects to the order delivered on day97

2 (explained below). On day 1, subjects simply performed intermittent pain ratings, but other than that98

there were no task demands. After the task, we used trial-based BOLD responses from bilateral insula99

cortex to train the MVPA decoder to classify the two intensity levels. We chose the insula because it is100

known to have a primary role in pain encoding and so should be sufficient to support an adaptive control101

system (Brodersen et al., 2012; Craig, 2002; Segerdahl et al., 2015; Woo et al., 2017b; Geuter et al., 2017)102

(Figure 1a).103

Returning on day 2 (‘adaptive control’), the subjects experienced pain in a closed-loop adaptive control104

setting, with the basic principle being to use brain activity to control the pain stimulation. Specifically,105
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after the subjects received a pain stimulus, we performed online classification of pain intensity using106

real-time fMRI BOLD signal from the insula, based on the offline decoding analysis from day 1. For each107

stimulus, the algorithm estimates the probability the intensity was high or low. This probability acted108

as the sole input to the control computer. The goal of the control computer was to figure out which of109

the two stimulators delivered the lower intensity pain, and then preferentially trigger this stimulator. The110

online decoder therefore provided the feedback signal to allow it to work this out: in other words, a higher111

decoding accuracy would subsequently lead to lower pain.112

At the beginning of each session, the control computer was naı̈ve to which electrical stimulator113

delivered high or low stimuli, and so would choose either stimulator randomly. Based on a simple114

trial-and-error control algorithm (a reinforcement learning model), it used the decoder output as the115

feedback signal to learn a ‘value’ term for each stimulator; the control computer then used the values116

assigned to each stimulator to determine which stimulator to trigger on the next trial. That is, a stimulator117

will acquire a high value if it is associated with a low classification probability of high pain; and this will118

lead to it being preferentially chosen.119

Therefore, as long as the decoder from day 1 successfully generalises to day 2, then the control120

algorithm should start to learn the values correctly. And by adding some noise to the choice (stimulator121

selection) process, the control algorithm effectively samples each stimulator to build a reliable estimate of122

the value of each (‘exploration’), which then allows it to trigger the low intensity stimulator most of the123

time (‘exploitation’) (Figure 1c).124

We fully explained the closed-loop set-up to the subjects, so that they understood that i) the control125

computer was trying to learn how to reduce their pain based on their brain activity, and ii) the control126

computer would be more able to give low pain if it could reliably ‘read’ their pain signals. This therefore127

generated the incentive for subjects to enhance their brain responses to better communicate their pain128

signals. A post-experimental questionnaire confirmed that subjects both understood this, and most129

subjects actively engaged in various cognitive strategies to support this, such as focusing on the pain (see130

Supplementary Table 1).131

Decoder classification was above chance on day 1132

In terms of the success of the basic set-up, within-subject decoder construction based on the insula ROI133

achieved moderate classification accuracy, with a 10-fold cross-validated test accuracy of 65% (sensitivity134

60%, specificity 67%, accuracy one-sample t-test vs 0.5 across subjects: T(18)=8.967, p<1e-7), shown in135

Table 1.136

Decoder classification generalised to day 2 (adaptive control)137

When this classifier was used on day 2 for adaptive control, real-time decoding accuracy remained above138

chance, indicating successful generalisation of the decoder across days (day 2: accuracy 56%, sensitivity139

51%, specificity 63%, accuracy t-test vs 0.5: T(18)=4.053, p=0.0007). Specifically, the real-time decoder140

classification of high pain (referred to as P(pain), Figure 2a) was significantly greater after delivery of141

a true high pain stimulus, compared to a low pain stimulus (repeated measure ANOVA of session and142

pain level effects, only pain level main effect significant: F(1,18)=17.41, p=0.0006, bootstrapped 95% CI143

P(pain) for high pain=[0.545, 0.660], low pain=[0.410, 0.524]).144

Table 1. Insula decoder testing performance (high pain = positive, low pain = negative for
sensitivity/specificity calculation; CV: 10-fold cross validation; D1: day 1; D2: day 2. All values are
mean (SEM), n=19)

Train & Test D1 (CV) Train D1, Test D2 Train & Test D2 (CV) Train D2, Test D1

Accuracy 0.649 (0.016) 0.563 (0.016) 0.560 (0.010) 0.491 (0.031)
Sensitivity 0.602 (0.026) 0.506 (0.016) 0.498 (0.031) 0.438 (0.026)
Specificity 0.665 (0.025) 0.631 (0.037) 0.590 (0.025) 0.549 (0.031)

# features (voxels) 24.05 (1.05) 28.74 (0.700)

Decoded signals allowed the adaptive control system to preferentially deliver low pain145

Decoder performance was therefore sufficient for the control algorithm to learn differential decision146

values for high and low pain stimulators within a few trials in each new session (Figure 2b, mean±SEM in147
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Figure 1. Experimental paradigm. (a) Schematic illustration of the experimental setting for fMRI group,
in which the insula MVPA pain pattern is used to calculate feedback for an adaptive stimulus-control
algorithm to learn which of two electrical stimulators was less painful to the subject. (b) Illustration of
EEG groups setting, in which experimental group had EEG recordings and the same instructions as fMRI
group (day 2 adaptive control), while the control group received pain without EEG recordings or
instructions (they just listened to audio-book that was not linked to the pain). (c) Trial structure for fMRI
group on both days. fMRI images recorded on day 1 were used to train pain level decoders to be used on
day 2, and real-time decoded information on day 2 were used by the stimulus RL control system to decide
on the pain level to deliver on the next trial. (d) Similar trial structure were used for both EEG groups,
with differences in EEG collection and instructions. (e) Illustration of rated trials and timeline for fMRI
group.
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arbitrary units of value, high pain=-0.264±0.0486, low pain=-0.0608±0.0479, paired t-test: T(18)=-3.651,148

p=0.0018). Given these differential values, the control system was able to deliver significantly fewer high149

compared to low pain stimuli (fMRI day 2 high pain percentage: 43.480±2.353%, one-sample t-test vs150

50%: T(18)=-2.771, p=0.0126). Therefore the control algorithm successfully learned to reduce pain. This151

achieved the first experimental goal, showing that it is possible in principle to design an adaptive control152

system for pain based on brain activity.153

a b

Figure 2. fMRI behavioural results (mean±SEM, n=19 on each day). (a) Decoder predicted
probabilities of having received high pain, P(pain), were able to distinguish high/low pain state
(calculated for day 2 only). (b) Within-session, the control system learned to value low pain states higher
than high pain states (Q(L)>Q(H)) (day 2 only). (H: high pain, L: low pain)

Changes in pain representations during adaptive control154

To identify potential brain-wide changes in pain representations during adaptive control, we used a whole155

brain post-hoc MVPA searchlight analysis. This effectively performs a decoding analysis independently156

on each day within a roaming ROI, and evaluates the contribution each voxel makes to classification157

accuracy within each day. This analysis measures the pain information content in each voxel. For instance,158

although the day 1 decoder performs less well on day 2 versus day 1, this doesn’t in itself mean that the159

insula information content is reduced, because the other factors alone may achieve this, such as slight160

decoder over-fitting and small errors in subject repositioning. However, since the searchlight analysis161

considers classification performance within each day, we can get an independent, brain-wide accuracy162

map for each day. And by comparing day 2 to day 1 (paired t-test, DF=18), we can calculate an accuracy163

map that reflects a change in information content during adaptive control (Kriegeskorte et al., 2006;164

Hebart et al., 2015).165

Decreased pain information in the insula166

We found reduced pain level decoding accuracy localised to a region in the left mid/anterior insula (Figure167

3a, Table 2, [-45, 6, 2], T=-6.04, k=142, effect size Cohen’s d=-1.386, whole brain cluster level p(FWE-168

corr)=0.014). Extracting the exact values from accuracy maps from both days, decoder classification169

performance (%) reduced from 67.844±2.320 on day 1 to 57.546±2.366 on day 2 (171 voxels, paired170

t-test T(18)=-5.335, p=4.525e-5) in the left insula (Figure 3a, see supplementary information for additional171

analyses). This shows that the reduced decoder performance during adaptive control on day 2 must be172

more than what can be explained by generalisation factors, and represents a significant reduction in pain173

information content itself. Outside of our insula ROI, we did not see decreased information content174

anywhere else in the brain at corrected thresholds. Even at a liberal uncorrected threshold, only the left175

middle frontal gyrus displayed a possible reduction (see Table 2).176

Increased pain information in the pgACC177

In contrast, we found that information content was increased in the pregenual anterior cingulate cortex178

(pgACC) (Figure 3b shown at p<0.005 uncorrected, Table 2, [6, 44, 14], T=3.50, k=5, Cohen’s d=0.803,179

small volume correction (SVC) using an 8-mm spherical mask based on our previous investigation (Zhang180
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et al., 2018)). The pgACC was a target region of interest because we have shown that it has a specific181

role in endogenous modulation and cognitive control in adaptive settings (alongside the periaqueductal182

gray (PAG) (Roy et al., 2014)). Extracting the exact values from the accuracy maps from both days, the183

pgACC ROI had significantly increased decoding accuracy across all participants (Supplementary Figure184

2, day 1 accuracy: 55.293±1.604, day 2: 63.009±2.383, paired t-test T(18)=3.676, p=0.0017). No other185

brain regions were identified as showing an increase in decoder accuracy, even at a liberal exploratory186

threshold.187

In summary, we found evidence in support of our second hypothesis that pain representations were188

altered in the brain; crucially, pain encoding in the insula - a primary pain processing region - was189

disrupted, whilst information encoding was enhanced in the pgACC.190

Evidence of endogenous modulation during adaptive control191

Our third main hypothesis was the prediction that subjects’ cognitive engagement with adaptive control192

enhances endogenous modulation of pain. Although the increased pain information in pgACC reported193

above would be consistent with this, further analysis of brain and behavioural responses is needed to194

provide more robust evidence.195

Increased PAG univariate responses196

We first looked at univariate differences in brain activity, to identify any straightforward increase in197

brain responses, especially in the PAG. The PAG is the primary mediator of descending control that198

relays cortical messages to the dorsal horn of the spinal cord, and receives projections from the pgACC199

(Basbaum and Fields, 1984). Whole-brain analysis of fMRI data using a conventional general linear200

model showed evidence of a regional day×pain level interaction in the PAG (Figure 3c shown at p<0.005201

uncorrected). Specifically, within-subject comparison (day 2>day 1) of the contrast (high pain>low pain)202

confirmed increased responses in the PAG (peak coordinates [0, -30, -6], T=3.27, k=3, Cohen’s d=0.750,203

p=0.048 after small volume correction for multiple comparisons), but in no other regions. This provides204

additional neural evidence that the endogenous control system is more active on day 2 during adaptive205

control.206

Uncertainty correlated with subjective pain rating207

In line with the hypothesis that an attentional mechanism underlies engagement of the endogenous control208

system, we looked for evidence that pain ratings were correlated with uncertainty during adaptive control.209

The primary learnable information in the task is the relative frequency of high and low pain, as this210

indicates how well the adaptive control system is working. On a trial-by-trial basis, the uncertainty211

measure quantifies how much new information is available, and directs attentional resources to enhance212

learning accordingly (Dayan et al., 2000). Therefore, any correlation of uncertainty with pain ratings213

would be consistent with attention-related endogenous modulation. Using a standard model of frequency214

learning (Meyniel et al., 2016; Mars et al., 2008), we found that the uncertainty was indeed significantly215

positively correlated with pain ratings on day 2 (adaptive control), but not day 1 (decoder construction)216

(z-transformed correlation coefficients day 2: 0.172±0.039, t-test vs 0: T(18)=4.356, p=3.81e-4, day 1:217

0.0090±0.052, T(18)=0.944, p=0.358, a direct day 2 vs day 1 contrast was not significant).218

Uncertainty correlated with pgACC activity219

We therefore studied the brain imaging data to see whether uncertainty also correlated with brain responses220

- especially in the pgACC, the putative control center for attentional endogenous control (Seymour, 2019).221

We found that uncertainty was indeed positively correlated with BOLD responses in the pgACC (Figure222

4a), in a location that overlapped with the region associated with enhanced decoding accuracy during223

adaptive control (Figure 4b). When comparing to day 1, we found that the peak pgACC response was224

significantly greater on day 2 (SVC corrected p(FWE-corr)=0.021, T=3.70, Z=3.15, peak coordinates225

[13,41,14], Cohen’s d=0.849). That is, uncertainty correlated with both pain ratings and pgACC BOLD226

responses during adaptive control (i.e. day 2).227

In summary, both behavioural and neural evidence indicated engagement of the endogenous modu-228

latory system during adaptive control, suggesting that subjects’ active strategies in engaging with the229

adaptive control system drove an attention-like modulation of pain responses that was evident in pgACC.230
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a

b c

Figure 3. fMRI searchlight analysis results (mean±SEM, fMRI group n=19). (a) Searchlight analysis
showed that information content contributing to decoding accuracy decreased in left insula on day 2
compared to day 1 (shown at p<0.001, k>0 for display purposes, see Table 2 for statistics). (b)
Information content contributing to decoding accuracy increased in pgACC day 2>day 1 (shown at
p<0.005, k>0 for display purposes, see Table 2 for statistics). (c) Univariate whole brain comparison
(2nd level paired t-test, day 2 > day 1) of the high pain > low pain first level contrasts, interaction were
observed in the PAG (peak coordinates [0, -30, -6], T=3.27, k=3) (shown at p<0.005, k>0 for display
purposes, see Table 2 for statistics).

Uncertainty

Searchlight

Intersect of both

Figure 4. Frequency learning model neural correlates. (a) Uncertainty on fMRI day 2 (i.e. entropy of
posterior probability of current stimulus before updating) correlated with pgACC and bilateral insula
(pgACC peak coordinates [13, 41, 14], T=5.91, Cohen’s d=1.36, sagittal and coronal views both at
p<0.001 unc., see Table 2 for multiple correction statistics). (b) Overlay of pgACC activation from both
uncertainty (blue) and searchlight (red) analysis (uncertainty visualised at Z>3.2, searchlight at Z>2.8).
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Experiment 2: Further evidence that adaptive control engages the endogenous modula-231

tion system232

To provide more explicit and robust evidence of the engagement of the endogenous modulation system,233

we performed a second experiment. In this experiment, before and after the adaptive control task, we234

evaluated endogenous control using a paradigm called temporal contrast enhancement. Temporal contrast235

enhancement captures a well known phenomenon in pain ratings, which is that when a tonic pain stimulus236

suddenly increases or decreases, even by a very small amount, there is an exaggerated effect on pain237

ratings, compared to steady-state ratings (‘onset hyperalgesia’ and ‘offset hypoalgesia’ (Yelle et al., 2008;238

Szikszay et al., 2018; Sprenger et al., 2018)). This ‘hypersensitivity to change’ is known to involve239

descending facilitation and suppression via the endogenous control (although there may be additional240

components, such as peripheral factors involved). Furthermore, it may be mechanisitcally related to241

attentional modulation, because it reflects the importance of sudden changes in pain as a driver of attention242

and learning (Seymour, 2019).243

The adaptive control paradigm itself was overall similar to the first experiment, but incorporated244

four key differences. First, we used EEG instead of fMRI for neural recording, since this allows much245

more efficient data collection in terms of time and cost, as well as easier clinical translatability. Second,246

unbeknownst to the subjects, we used random feedback (i.e. sham EEG decoding) so that the engagement247

of endogenous modulation would be due purely to the subjects’ active attempts to engage (e.g. enhance248

communication) with the machine, and not as a result of any neurofeedback conditioning by successful249

relief attainment (see methods and discussion, (Koizumi et al., 2017)). Third, we employed a control250

condition (i.e. a separate group of participants) that did not involve any brain recording or adaptive control,251

to control for potential order confounds in the fMRI experiment. Fourth, the pain stimulus was delivered252

to the lower back because this is the most common site of clinical chronic pain and hence a target for253

future therapeutic closed-loop systems.254

In a similar manner to the first experiment, the experimental participants in the adaptive control255

group were given the instructions that their pain stimulation was determined adaptively by their real-time256

EEG brain responses, and they understood that they could use different cognitive strategies to better257

communicate their pain to the machine. The control task was designed to administer the same number of258

pain stimuli but in a completely different context to the adaptive control task. Instead, control participants259

were asked to passively listen to a podcast (an audio book), and simply needed to rate pain intensity260

intermittently (Figure 1b, d). This provided a neutral cognitive condition that allowed us to control for261

any non-specific changes to pain related to habituation or sensitization in the context of a laboratory262

experiment that engaged a baseline level of attention. Both groups received a high/low pain stimulus at263

around 50% chance level. As in the fMRI experiment, there were no significant differences in the overall264

average pain stimulation ratings between groups (repeated measure ANOVA pain level×group interaction265

p>0.5).266

a b

Figure 5. EEG behavioural results (n=28 each in experimental and control group). Temporal contrast
enhancement task showed pain rating traces when comparing pre/post-adaptive control sessions,
exaggerated pain and pain relief responses were observed in (a) the experimental group only, as compared
to (b) the control group (shaded regions are standard deviation).
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Uncertainty correlated with subjective pain rating267

We applied exactly the same frequency learning model as the fMRI experiment, to look for a correlation268

between pain ratings and uncertainty. Note that despite the fact that feedback was randomised at 50%269

high/low pain, subjects will still learn this value. We found a positive correlation between the uncertainty270

model and pain ratings in the experimental group, similar -although slightly weaker- than the fMRI271

group, and no correlation in the control group (z-transformed correlation coefficients experimental vs 0:272

T(27)=2.115, p=0.0438, control vs 0: T(27)=1.304, p=0.203).273

Adaptive control increased temporal contrast enhancement274

In the pre- and post- experimental temporal contrast enhancement task, subjects experienced a contact275

thermal pain stimulus that rose from a warm baseline to 45◦C for 7 secs (T1), then to 46◦C for 7276

secs (T2), and then back to 45◦C for 7 seconds (T3), and rated pain using a continuous numerical277

rating scale. Figure 5a and b show the normalised modulation of pain rating traces before and after278

the task (pre/post) in the experimental and control groups respectively. Modulation magnitudes were279

significantly positive for the experimental group (0.0531±0.025, T(27)=-3.109, p=0.0044), but not280

control (0.0339±0.026, T(27)=1.446, p=0.160), with a significant group×pain level interaction (repeated281

measure ANOVA F(1,54)=11.443, p=0.0013). Specifically, comparing post>pre magnitude (the absolute282

difference between the maximal pain rating in T2 and the minimum in T3) across groups, an effect size283

of 0.904 was observed (experimental: 0.658±1.120, control: -0.209±0.764, Cohen’s d bootstrapped284

95% CI [0.444,1.392], repeated measure ANOVA task×group interaction F(1,54)=11.538, p=0.0013, see285

Supplementary Figure 5).286

In summary, the data from the EEG experiment showed that adaptive control enhances a behavioural287

measure of endogenous modulation of pain, both during, and after, adaptive control.288

DISCUSSION289

The experiments addressed our three questions. First, we showed that the brain representation of pain can290

be decoded in real-time to build an adaptive control system. Even with only moderate decoding accuracy,291

this system can learn to find an intervention that reduces pain. Second, we showed the neural representation292

of pain changes under such a system, in parallel with the inherent engagement of learning and cognitive293

control. In particular, pain encoding in the insula is selectively disrupted, reducing the efficacy of this294

region to act as a biomarker to support control. Third, we showed this change in representation is295

associated with attention-related endogenous pain modulation, which in itself influences perceived pain.296

This is apparent both during adaptive control as a function of learning, and afterwards in conventional297

tests of endogenous pain modulation (temporal contrast enhancement). Overall, the study shows that298

implementing an adaptive control system for pain is technically feasible, but that it induces a set of299

specific, coadaptive changes in the brain.300

From a clinical perspective, closed-loop systems that use brain-based biomarkers have been advanced301

for deep brain stimulation for Parkinson’s disease and epilepsy, where clear disease-specific biomarkers302

are well established (Swann et al., 2016; Little et al., 2013; Sun and Morrell, 2014). Clinical pain is303

known to display substantial temporal fluctuations and drifts (Foss et al., 2006), and so it should be304

much more efficient to use an ‘automated’ brain-based system to tune a putative intervention, as opposed305

to using continual self-report (the gold-standard for pain measurement). However, rather than using a306

‘hard-wired’ control system in which the appropriate intervention is known and thus fixed in advance, here307

we introduce an adaptive control system that learns from experience. This is potentially powerful because308

for many applications the best intervention (such as the configuration for amplitudes and frequency of a309

multi-electrode deep-brain or spinal stimulator) is not known in advance. Using an adaptive framework310

based on reinforcement learning offers enormous potential advantages, given its ability to learn high-311

dimensional problems, reuse system knowledge for efficiency, and incorporate human prior knowledge312

within the control architecture (Hafner et al., 2020; Yu et al., 2018).313

The development of sophisticated control systems inevitably benefits from more accurate biomarkers.314

Whilst multi-region / brain-wide biomarkers for phasic pain can exceed 90% accuracy (Wager et al.,315

2013), a single region biomarker may be more relevant to clinically applicable brain recording systems316

(such as implantable systems (Hirata et al., 2011)). Utilisable systems would also ideally decode pain317

rating directly - that is, using a multivariate regression over ratings, instead of a high/low classification.318

However, a greater concern is that the potential accuracy of single-region biomarkers for clinical chronic319
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pain, as opposed to experimental phasic pain, remains unclear, and this represents probably the biggest320

hurdle to any clinical realisation of adaptive control systems.321

There are several reasons why the fidelity of biomarker decoding for a brain-machine interface may322

change with time, including various technical or hardware issues. However, the induction of coadaptive323

learning and cognitive changes has received little attention. Any control system that uses brain activity324

in principle generates the incentive for the subject to try and voluntarily modulate their brain activity to325

influence the signals being read and interpreted. Increasing the neural discriminability of pain is different326

from common notions of cognitive pain control, such as overall pain suppression. Indeed it is not clear327

exactly what one should do, in terms of a cognitive strategy, to enhance brain-machine communication in328

this respect. However, based on the post-training survey, most subjects engaged in some form of active329

strategy, and this typically involves an increase in attention to pain, for instance as they think about how330

well the machine is reading their pain.331

This leads to the question of why such attention to pain did not result in an increased discriminability332

of pain intensity in the insula. One possible explanation is that the representation of pain intensity was333

disrupted by the co-representation of uncertainty that arose as a function of learning the distribution of334

pain intensities (i.e. the relative frequency of high and low pain). That is, the insula may be encoding335

more than simply pain intensity (Geuter et al., 2017), and this limits generalisability of a decoder when336

the cognitive context changes in a way that captures the other variables that the insula encodes. The best337

way round this problem in the future would be to intermittently retrain the decoder, ideally in the context338

of an operating adaptive control system.339

The change in pain representation seen in the insula raises the issue of what happens to the subjective340

perception of pain when people engage with a brain-machine interface that implements adaptive control.341

From a psychological perspective, we proposed that cognitive engagement would often involve increased342

attention to pain, as subjects either attempt to manipulate how they perceive pain, or simply monitor343

or evaluate the effectiveness of the system. Since attention itself modulates pain to drive learning, we344

predicted neural and behavioural evidence of activation of the endogenous modulatory system should be345

observable. In the brain, this was manifest in the pgACC by higher discriminability of pain intensity, and346

by the representation of uncertainty during learning. The pgACC is well recognised as a cortical control347

site for descending control on the basis of attention and cognitive controllability (Bantick et al., 2002;348

Valet et al., 2004; Bräscher et al., 2016; Salomons et al., 2007, 2015; Bingel et al., 2006; Eippert et al.,349

2009; Wager et al., 2004). Engagement of endogenous control was also manifest in enhanced responses350

in the PAG, the primary descending control hub mediating projections to the spinal cord. Overall, these351

findings provide good neural evidence for enhanced endogenous modulation of pain during adaptive352

control.353

Behaviourally, involvement of the endogenous control system predict a specific effect on perceived354

pain. During adaptive control, this was manifest in terms of a positive correlation between pain and355

uncertainty. Uncertainty is presumed to increase pain to drive learning (Taylor et al., 2017; Yoshida et al.,356

2013; Zhang et al., 2016), and this was observed in both experiments, in keeping with simple models357

of frequency learning as subjects monitored the balance of high and low pain stimuli delivered by the358

machine. However, the impact of enhancement of endogenous control was also robustly seen in temporal359

contrast enhancement (onset hyperalgesia and offset analgesia) after the adaptive control. This implies a360

persistent and specific adaptive change in the endogenous control system.361

In summary, this study shows that it is possible to design adaptive control systems that use brain362

activity to search for an intervention that reduces pain. However, it also shows that the brain does not sit363

passively when this is implemented. Instead, a set of co-adaptive changes are induced that can both disrupt364

the signals used by the adaptive control system, and modulate the perception of pain itself. This shows365

in principle that the design of any adaptive brain-machine interface needs to consider the co-adaptive366

changes that its implementation may induce.367
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Table 2. Experiment 1 Multiple comparison correction (cluster-forming threshold of p <0.001
uncorrected unless stated otherwise. Small volume correction performed with ROI masks from
Harvard-Oxford, PAG probabilistic atlas, and previous study. *FWE cluster-level p-value. n=19. H: high
pain, L: low pain)

p* k T Z MNI coordinates (mm) Region mask
x y z

Fig 3: Searchlight analysis - decreased information content (D2>D1)

0.048 2 3.94 3.3 -42 3 -2 Insula L

0.061 2 4.41 3.59 -38 15 42 Middle Frontal Gyrus L
0.078 1 4.37 3.56 -38 35 30

Fig 3: Searchlight analysis - increased information content (D2>D1, display at p<0.005)

0.045 5 3.50 3.02 6 44 14 8mm pgACC sphere at [6,40,12] (Zhang et al., 2018)

Fig 3: Whole brain comparison (D2>D1, H>L, display at p<0.005)

0.048 1 3.23 2.83 -3 -30 -6 PAG (Ezra et al., 2015)

Fig 4: Frequency learning model - posterior probability of low pain (D2)

0.007 10 4.44 3.6 0 51 -14 Frontal Medial Cortex

Fig 4: Frequency learning model - entropy (D2)

0.039 5 5.30 4.06 10 41 10 Cingulate Anterior
0.033 6 4.36 3.56 0 3 38

0.002 14 5.91 4.35 13 41 14 8mm pgACC sphere at [6,40,12] (Zhang et al., 2018)

0.002 31 5.24 4.03 -38 -7 2 Insular cortex (bilateral)
0.032 6 4.60 3.69 39 -4 6
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STAR METHODS368

Key Resources Table369

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB (2016a) The MathWorks https://www.mathworks.com/products/matlab.html
SPM12 (6906) Friston (2003) http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
fmriprep (0.4.4) Esteban et al. (2017) https://github.com/poldracklab/fmriprep
Nilearn (0.6.2) Abraham et al. (2014) https://nilearn.github.io/
Sparse Logistic Regression (v1.51) Yamashita et al. (2008) https://bicr.atr.jp/∼oyamashi/SLR WEB.html
the Decoding Toolbox (v3.98) Hebart et al. (2015) https://sites.google.com/site/tdtdecodingtoolbox/
Pingouin (0.3.3) Vallat (2018) https://pingouin-stats.org/
OpenViBe (2.2.0) Renard et al. (2010) http://openvibe.inria.fr/

Resource Availability370

Lead contact371

Further information and requests for resources/code should be directed to the Lead Contact, Suyi Zhang372

(suyi.zhang@ndcn.ox.ac.uk).373

Materials availability374

This study did not generate new unique reagents.375

Data and code availability376

The MATLAB code for data preprocessing, feature extraction, cross validation, and decoder training377

has now been uploaded to accompany the manuscript, which can be found on the GitHub repository378

https://github.com/syzhang/coadapt repo. The readme and comments in the code should explain the379

processing steps in Method Details.380

All neuroimaging data (functional and de-faced anatomical scans) is available in BIDS format at381

OpenNeuro https://openneuro.org/datasets/ds002596.382

Experimental Model and Subject Details383

Participants384

Experiment 1 19 healthy participants enrolled in a two-day neuroimaging experiment (two females,385

age 23.5±4.0 years). All subjects gave informed consent prior to participation, had normal or corrected to386

normal vision, and were free of pain conditions or pain medications. The experiment was approved by387

the Ethics and Safety committee of the Advanced Telecommunications Research Institute (ATR), Japan388

(approval number: 16-182). It should be noted that the relatively small sample size here is consistent with389

previous fMRI-based decoded neurofeedback studies (10-20 participants) (Cortese et al., 2016; Emmert390

et al., 2016; Koizumi et al., 2017; Nicholson et al., 2017; Sherwood et al., 2019; Shibata et al., 2011).391

Experiment 2 28 healthy participants were assigned respectively to the EEG experimental group (14392

female, age 28.8±6.9 years) and the control group (14 female, age 27.1±10.9 years, independent t-test393

between groups T(27)=0.661, p=0.511). All participants gave informed consent prior to the experiment,394

and were free of pain conditions or pain medications. Ethical approval was granted by the Research Ethics395

Committee of the Department of Engineering, University of Cambridge.396

Method Details397

Experiment 1: fMRI-based closed-loop control398

Experimental protocol399

The experiment spanned two days. Each day began with a pain intensity setting procedure outside the400

scanner, followed by the task. Both days involved 6 sessions with repeated high/low painful stimuli inside401

the scanner.402
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Day 1: Decoder construction Individual participant’s functional brain images were recorded during403

fMRI scanning for decoder training. High and low levels of painful electrical stimuli, determined with the404

participant’s pain threshold obtained before task (see ‘Pain calibration procedure’ below), were delivered405

in a sequence of random or pseudo-random trials to elicit two levels of pain. From the participant’s406

perspective, a painful stimulus was delivered at the beginning of each trial when a ‘+’ symbol appeared407

on screen below a white bulls-eye fixation point. The ‘+’ stayed on for 10s, then the ‘=’ symbol replaced408

it for 2s, signalling a brief inter-trial interval (ITI). In 40% trials (12 randomly chosen out of 30 in each409

session), the ‘+’ stayed on screen for 4s and the fixation point turned to an orange square signalling410

upcoming rating, followed by a 0-10 visual analogue scale (VAS) that stayed on for 6s, during which411

participants were asked to rate how painful the stimulus was by pressing two buttons to move the slider412

on screen. The 30-trial session was repeated 6 times with a short break in between (180 trials, 72 ratings413

per subject in total).414

Sixteen out of 19 participants used another participant’s day 2 trial sequences on day 1, to provide a415

yoked control, given the plan to directly compare day 1 and day 2 behavioural and brain responses (the416

initial 3 participants used random sequences). All participants were given the instruction to rest in the417

scanner and do nothing (see ‘Appendix’). Individual-specific, multi-voxel decoder was then trained for418

automatic classification of pain level experienced, using bilateral insula as region of interest (ROI, see419

‘Decoder construction’ below).420

Day 2: Adaptive control On day 2, the level of pain stimuli delivered on each trial (i.e. the high or421

low pain stimulator) was controlled by a computer algorithm, whose sole input was the decoded pain422

probability from the real-time brain response from the previous trial. All subjects were explicitly told that423

the pain level they received was controlled by the computer, and were aware that modulating their brain424

activity could therefore influence the computer. Although it could in principle be directly instruct subjects425

to do enhance MVPA decodability, this creates two difficulties. First, in the absence of any other task, it426

may be less meaningful to subjects than allowing them to understand the concept of a machine being able427

to clearly read their pain signals; and second, to make the task incentive compatible, subjects should be428

free to communicate freely. The instructions are detailed in the Appendix, and were intended to reveal the429

incentive to enhance pain representations in the brain, but without any explicit instruction on whether or430

how to do so.431

Specifically, after delivering the pain stimulus, a decoder estimated the participants’ probability of432

experiencing high pain (P(Pain)) / low pain by multiplying day 1 decoder weights with the real-time433

insula BOLD response from their brain images in that trial (realigned and resliced to the reference image434

from day 1, following Shibata et al. (2011), see ‘Decoder construction’ below). The estimated probability435

was used to provide the feedback signal with the aim that the computer could learn to deliver less pain436

to the subject, based on trial-by-trial updating of the decision (action) values associated with triggering437

each electrical pain stimulator calculated from a basic reinforcement learning algorithm (an ‘action’ that438

elicited a low decoded pain signal in the subject was effectively reinforced, see ‘Adaptive control’ below).439

An above-chance decoder on day 2 would lead to a greater number of low pain stimuli, which could impair440

day 1 decoder classification learning because of an unbalanced high/low stimulus frequency in the yoked441

sequences. However, the actual decoding accuracy and the nature of the reinforcement learning (RL)442

control function only led to a very modest reduction in high pain stimuli, yielding a sufficient balance of443

high/low stimuli for classification.444

The primary reason for using an adaptive decision function in which the control algorithm learns445

decision values slowly over time, as opposed to a fixed decision function in which control feedback is446

fixed based purely on the previous trial, was to maximise the context for communication. That is, the447

goal of the subject is to teach the machine, and the effectiveness of their ability to communicate is then448

embedded in the machine memory for future trials, not just the next trial.449

Day 1 and 2 were structurally the same apart from the adaptive control process and subject instructions,450

which allowed approximately yoked conditions permitting investigation of day 1 vs day 2 changes.451

Across any analysis of effect×day interactions, this sequential comparison necessarily introduces an452

order confound related to possible non-specific effects of novelty and anxiety to the experiment. Most453

of these are mitigated by the computational specificity of the analyses, and the within-day contrasts.454

Notwithstanding this, the effects of interest occur on day 2, when novelty and anxiety effects would be455

reduced.456
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Stimulus delivery457

Painful electrical stimuli were delivered using two constant current stimulators (Digitimer model DS7A,458

Welwyn Garden City, Hertfordshire, UK), at two current levels for high/low pain determined using the459

participant’s own threshold. The levels were fixed across sessions but were allowed to differ on day 2460

based on the new pain calibration. All stimuli were delivered with a trigger pulse as a train of 50×5ms461

square waves, lasting 500ms (DS7 settings: output scale ×1 mA, pulse duration 200µs). There were no462

significant differences across days for high or low pain levels across individuals (high pain T(18)=-1.58,463

p=0.131, low pain T(18)=-1.13, p=0.273). The two stimulators were connected to a switch that allowed464

current delivery through the same, MRI-compatible concentric ring electrode (10mm diameter). The465

electrode was taped to the back of the left hand of the participant, its location marked on day 1 as reference466

for attachment on day 2.467

Pain intensity setting procedure (day 1 and 2)468

On each day, participants completed an intensity setting procedure at the beginning of the experiment. In469

the first session, the staircase method was used to evaluate their highest pain limit. Stimuli current were470

increased at 0.2-0.5mA interval, and participants were asked for verbal feedback of a 0-10 pain rating in471

person after each stimulation. This procedure was rerun a few times using different starting points and472

both stimulators. In the second session, 14 trials of randomised painful stimuli were given within the473

range of lowest perceivable to highest tolerable current level determined in session 1. Subjects rated each474

stimulus 1s after receiving it, on a 0-10 VAS scale on screen using a keyboard (as practice to the rating475

procedure used in the task). To determine the final current level to use, a Weibull and Sigmoid function476

were fitted to session 2’s stimuli and ratings, and current levels for VAS = 1 and 8 were used for low /477

high pain stimulus for the experiment respectively. The same procedure was repeated for day 2, and the478

new fitted current levels were used.479

Behavioural data analysis480

All statistical tests were conducted two-sided, with Pingouin 0.3.3 in Python 3.481

fMRI data acquisition (day 1 and 2)482

Neuroimaging data was acquired with a 3T Siemens Prisma scanner with the standard 64 channel483

phased array head coil. Whole-brain functional images were collected with a single echo EPI sequence484

(repetition time TR=2000ms, echo time TE=26ms, flip angle=80, field of view=240mm), 33 contiguous485

oblique-axial slices (voxel size 3.2×3.2×4mm) parallel to the AC-PC line were acquired. Whole-brain486

high resolution T1-weighted structural images (dimension 208×256×256, voxel size 1×1×1mm) using487

standard MPRAGE sequence were also obtained. The choice of voxel size/number was to balance the488

speed of online decoding and anatomical details, and it was similar to that used in previous real-time489

fMRI decoded neurofeedback studies that used 3-3.5mm3 voxels (Cortese et al., 2016; Koizumi et al.,490

2017; Sherwood et al., 2019). It should be noted that the current resolution cannot support investigation491

of PAG sub-region activation.492

Decoder construction (day 1)493

ROI selection For decoding, we used BOLD responses in bilateral insula cortex, since this is thought to494

incorporate sub-regions that have a primary role in the coding of pain and has been shown to provide good495

intensity decoding accuracy in previous studies (Brodersen et al., 2012; Craig, 2002; Geuter et al., 2017;496

Segerdahl et al., 2015; Woo et al., 2017b). Based on a pilot test we conducted prior to the experiment, it497

also provided the most consistent decoding performance compared to a range of candidate ROIs without498

reslicing empty voxels during ROI normalisation.499

Preprocessing All preprocessing were conducted using SPM12 in MATLAB 2016a. The steps were as500

followed:501

• The first non-dummy (4th) scan of the first session on Day 1 was used as a reference scan.502

• Individual subject’s structural T1 images were coregistered and segmented to MNI space with503

SPM12’s single subject T1 template.504

• The resulting inverse transformation matrix was used to normalise the ROIs in anatomical atlas505

space to individual subject space.506
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• The resulting warped ROI masks were then coregistered to the reference scan.507

• All subsequent scans (both day 1 and 2) in the task were realigned and resliced to the reference508

scan using SPM12’s realign and reslice functions.509

• Temporal signals were extracted from voxels using the processed ROI masks for decoder training510

(see ‘Feature extraction’ below for denoising procedures).511

• Trained decoder weights were extracted along with voxel coordinates, summarised into a txt file to512

be used on day 2’s decoding sessions.513

Feature extraction Time series were extracted from all voxels within the individual’s insula ROI. To514

account for BOLD delay and to minimise motion contamination, the times series from TR 3-5 (4-10s)515

were used from each trial, the first two TRs (0-4s) immediately following pain stimulus were omitted. For516

denoising, the 5 TRs following 3 dummy TRs at the beginning of each session were used as baseline,517

each trial ROI time series were normalised by subtracting session baseline mean and divided by baseline518

standard deviation, then the mean across the TR 3-5 from all trials were extracted for classifier training.519

Decoder training Mean insula voxel activity as feature and high/low pain delivered as label were520

aggregated across all trials within participant for decoder training. Binary classification by Sparse Logistic521

Regression (SLR, version 1.51) with variational parameters approximation was used (Yamashita et al.,522

2008). This results in a sparse matrix of weights for about 5 percent of all voxels within the given ROI. By523

multiplying weights with feature/voxel intensity signals, the decoder produces the probability of observing524

current label given trial features (referred as (P(pain) from here, P(pain)=1 means highly likely to have525

received high pain, P(pain)=0 means unlikely to have received high pain, or highly likely to have received526

low pain). For training, all day 1 trials were used. To estimate decoder accuracy, all trials were partitioned527

into 10 equal sets with 9 sets for training and 1 set for testing (10 fold cross-validation) (Table 1).528

Adaptive control algorithm (day 2)529

To allow automated adaptive control of pain stimulus delivery, we used a simple reinforcement learning
algorithm (Sutton and Barto, 2018) to update the value of high/low pain states trial-by-trial:

Qt+1(a) = Qt(a)+α(−P(pain)−Qt(a)) (1)

where t represents trials, Q is the value of given state, a is the actions available for the algorithm (i.e.
either giving high or low pain, collectively shown as action set A), α is learning rate fixed at 0.5. P(pain)
is the decoder-generated probability of current trial’s stimulus being high pain. It’s scaled between [−1,1]
when used in the updating function. Higher P(pain) would decrease the value of current pain state more
and vice versa, while the value of un-chosen state remained unchanged. The algorithm selects which pain
level to deliver for the next trial using an ε-greedy action selection rule based on current values:

pt+1(a|Qt) =

{
random action a ∈ A, if ξ > ε

argmaxa∈AQt(a), otherwise
(2)

where ε is the explore ratio fixed at 0.4 (i.e. exploring by choosing a random action by either giving530

high or low pain 40% of the time, exploiting the other times), ξ is a uniform random number drawn531

within [0,1] at each trial. The noisy exploration allows a sufficient proportion of the alternative electrical532

stimulator (i.e. pain level) to be delivered, to ensure the next participant who uses current participant’s533

day 2 sequence to have enough trials of both high and low pain for decoder construction. We also set534

values to be 0 for both states at the beginning of each session.535

fMRI data offline analyses536

Preprocessing For offline analysis, functional images were preprocessed using the fmriprep software,537

a pipeline that performs slicetime correction, motion correction, field unwarping, normalisation, field538

bias correction, and brain extraction using a various set of neuroimaging tools available. The confound539

files output by fmriprep include the following signals: mean global, mean white matter tissue class,540

three FSL-DVARS (stdDVARS, non-stdDVARS and voxel-wise stdDVARS), framewise displacement, six541

FSL-tCompCor, six FSL-aCompCor, and six motion parameters (matrix size 24×number of volumes).542

Resulting functional images were smoothed with an 8mm Gaussian kernel in SPM12, except for those in543

used searchlight analysis.544
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fMRI GLM model All event-related fMRI data were analysed with GLM models constructed using545

SPM12, estimated for each participant in the first level. Stick functions at pain stimulation onset546

were convolved with a canonical hemodynamic response function (HRF). We also included rated trials547

(duration=10s, from beginning until ITI) as regressor of no interest, in addition to the 24 columns of548

confound matrix output by fmriprep. Day 1 and 2 data were included in the same GLM as different549

sessions with their own intercepts, but first-level contrasts were estimated separately for days.550

Whole-brain univariate comparison (Figure 3c) 2 regressors: high/low pain onset (duration=0).551

Frequency learning posterior probability and entropy (Figures 4a) Three regressors at pain onset552

(duration=0) with parametric modulators: posterior probability of current stimulus (updated prediction),553

entropy of previous posterior probability of current stimulus (uncertainty of prediction before updating),554

actual identity of stimulus (high pain=1, low pain=-1). All parametric modulators mean centred within555

session, SPM orthogonalisation for these 3 regressors were turned off. Posterior probability and entropy556

uncertainty were not highly correlated (n=19, mean correlation r=0.0663, std=0.119, one sample t-test557

against mean 0: t=2.43, p=0.0258).558

Correction for multiple comparison We use whole brain correction or ROI based correction based559

on a priori hypotheses as appropriate, and the details appear in Table 2. For ROI analyses, we used560

anatomical binary masks generated using the Harvard-Oxford Atlas (Desikan et al., 2006) for clearer561

labelling (freely available with the FSL software, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), and PAG562

probabilistic atlas (Ezra et al., 2015) for small volume correction. We used the frontal medial cortex mask563

as approximation for VMPFC. We also used the pgACC peak identified in our previous study of active564

relief learning (Zhang et al., 2018) for the 8mm spherical ROI mask (sphere peak used: [6,40,12]), given565

there are no specific ROI mask from anatomical atlases for the region. We reported all results with p<0.05566

(FWE cluster-level corrected, using a p<0.001 cluster-forming threshold (Eklund et al., 2016)), with the567

exception of searchlight analysis results (MFG/DLPFC SVC had p=0.06, see Table 2).568

ROI analysis For testing ROI significance in experimental conditions, beta estimates were extracted569

from activation ROIs (see text for mask details). Beta values plotted were the average of all voxels within570

ROI masks, with statistics showing subject-level SEM (Supplementary Figure 2). All t-tests performed571

were two-tailed. Statistical maps overlaid on subject-averaged anatomical scans using Nilearn. For testing572

statistical significance in GLM analyses, we used voxel-wise correction for multiple comparisons within573

the ROIs: the insula (required by the task paradigm itself, and the pgACC and PAG given their proposed574

role in cognitive control (Zhang et al., 2018; Roy et al., 2014)). Different ROIs are being tested separately575

for multiple comparison with relatively lenient correction thresholds, however, these clusters came from576

separate GLM analyses designed to test for different effects of the experiment.577

Decoder comparison Decoders were constructed using day 2 data with the same procedure as day 1578

(Figure 3). This was done to determine whether the decoding performance of insula ROI remained the579

same, or whether any learning-induced changes might have changed the decoder properties. Whole-brain580

searchlight analysis was conducted using the Decoding Toolbox. The toolbox can conduct multivariate581

decoding analyses at combined trial types within fMRI runs, by extracting features from beta images of582

relevant regressors in the first level GLM analysis output by SPM. This could lead to higher classification583

accuracy and lower computation time, comparing to single trial decoding.584

A searchlight analysis was carried out within a 10mm radius sphere for the whole brain, with high/low585

pain categories as unsmoothed beta images from each run for individual participant. TDT toolbox586

produced a decoding accuracy map for each voxel using a leave-one-run-out cross validation scheme,587

which can be interpreted as the local information content of each voxel (Kriegeskorte et al., 2006). The588

day 1 and 2 accuracy maps from each individual were then smoothed with a Gaussian kernel of 4mm, and589

entered into a standard SPM second level paired t-test as in the GLM analysis above. The resulting T map590

indicates the changes in decodable information used for pain level decoding across days.591

Experiment 2: EEG-based closed-loop control592

Experimental group593

Experimental protocol Participants were given the same instructions as on day 2 of the fMRI experi-594

ment, in which they were informed that their real-time EEG brain activity would adaptively influence the595

computer’s decision on the pain level delivered in the next trial (see ‘Day 2: Adaptive control’ above).596
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Without the need for fMRI volume acquisition, variable ITI was used (trial time mean=8.7s, std=0.49s),597

otherwise trial structure remained the same. Each participant completed 8 sessions of 30-trial experiment,598

while also completing the thermal temporal contrast enhancement test before and after these sessions.599

EEG data acquisition EEG data were collected using an 8-channel system (g.Nautilus, g.tec GmbH,600

Austria) with accompanying gel-based electrodes placed on a cap according to the international 10-20601

system (Fz, Cz, Pz, C3, C4, T3, T4, and a surface electrode was placed 10mm below the left eye to602

monitor eye movements), with a sampling rate of 250Hz. The nose was used as reference, and electrode603

impedance were kept under 30kΩ. EEG data were streamed and saved using OpenViBe. Despite the604

set-up, the design of this experiment involved giving random feedback to the subjects, to remove the605

chance that a high number of positive outcomes (i.e. low pain) would have a reinforcing feedback effect.606

In another manuscript we aim to present a full EEG-based adaptive control framework based on decoded607

EEG, but we would note here that it is clear that the decoding accuracy based on EEG is substantially608

lower than fMRI, and so a robust and effective closed-loop system is more difficult to establish.609

Control group610

Experimental protocol Control group participants did not have EEG recordings. They were asked611

to listen to an audio podcast of their choice (from BBC Sounds website, contents include stories and612

discussions) while receiving electrical stimulation and to complete the same pain rating procedures during613

the stimulation sessions as experimental group.614

Temporal contrast enhancement paradigm615

Participants from both experimental and control groups completed a thermal temporal contrast enhance-616

ment paradigm, before and after the main experimental session. Temporal contrast enhancement refers617

to the ‘change hypersensitivity’ typically seen in pain ratings: when a tonic pain stimulus is slightly618

increased or decreased, there is an unexpectedly large (compared to steady temperature state ratings)619

increase or decrease in ratings. This is sometimes called ‘onset hyperalgesia’ and ‘offset analgesia’620

respectively, (Yelle et al., 2008; Sprenger et al., 2018; Yarnitsky and Ochoa, 1990; Fust et al., 2020)), and621

although it may actually been driven by multiple mechanisms, the dominant mechanisms is thought to be622

facilitation and inhibition with the descending endogenous control system. Heat pain stimulation were623

delivered with the contact heat-evoked potential stimulator (CHEPS, Medoc Pathway, Israel) to the skin624

on the participant’s lower back. Participants rated their pain continuously on a 0-10 scale during the 3625

stages of temperature: 45◦C (T1, 7s) - 46◦C (T2, 7s) - 45◦C (T3, 7s) (35◦C baseline, ramp rate 10◦C/s,626

ITI=7s, 5 trials in total) (Derbyshire and Osborn, 2009).627

To quantify endogenous modulation during the task results, we z-score normalised continuous ratings628

within individual (excluding T1 ratings from 0-6s, since they did not contribute to magnitude calculation629

and could add to rating variance), resampled at 1s, and averaged across participants. The endogenous630

modulation magnitude is defined as T 2max−T 3min using individually processed normalised pain ratings,631

before comparing across groups (Szikszay et al., 2018).632

Electrical stimulus delivery633

Identical constant current stimulators were used to deliver painful electrical stimuli to participants, with634

similar pain calibration procedures (see ‘Stimulus delivery’ and ‘Pain calibration procedure’ above).635

A pair of disposable surface electrodes (diameter 20×25mm, electrode distance 1cm) were used to636

deliver stimulation to participant’s lower back on the contralateral side that received thermal stimulation.637

Comparing to the ring electrode, surface electrodes increased the discriminability of pain levels by638

recruiting a larger number of fibres (due to electrode differences the electrical current levels were not639

directly comparable between experiments). There were no significant differences in stimuli levels between640

experimental and control groups (high pain: T(27)=-0.484, p=0.630, low pain: T(27)=-1.65, p=0.104).641

Frequency learning model642

The frequency learning model M assumes a participant estimates the posterior distribution of a given
stimuli θ from a previously observed sequence of two possible stimuli y1:t (i.e. high or low pain) using
Bayesian updating (Mars et al., 2008; Meyniel et al., 2016).

p(θ |y1:t ,M) ∝ p(y1:t |θ ,M)p(θ ,M) (3)
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Given the experimental design, participants are assumed to have uninformative prior over the two stimuli
at the beginning of each session, which can be represented by a Beta distribution with parameters [1,1].
Since the product of two Beta distributions results in a Beta distribution, the posterior distribution depends
only on the frequency of the high and low stimuli Nh, Nl , which has an analytical solution. The posterior
mean of the predicted high pain distribution is:

p(h|Nh,Nl) =
Nh +1

Nh +Nl +2
(4)

and P(l|Nh,Nl) = 1− p(h|Nh,Nl) given the reciprocal relationship between high/low pain stimuli.643

It is possible that the number of trials for frequency memory is limited due to memory constraints.
This can be modelled by introducing a forgetting ‘leaky factor’ ω to exponentially decay the number of
previous observations, where trials closer to the present are weighted higher (Maheu et al., 2019; Meyniel
et al., 2016). The weighted number of observations was calculated as:

Nω
h =

n

∑
t=1

u
−exp(−t

ω
)

n−t (5)

where u1:t is the sequence of trials encoded with 1s and 0s that represent high and low pain respectively.644

Participants were assumed to accumulate stimulus evidence over the entire session (30 trials), where645

we assumed either perfect (no leaky factor) or imperfect memory retention (with leaky factor ω). We646

assumed subjects reset their prior expectation at the beginning of each session because there were natural647

breaks between fMRI sessions with blank screens, during which we asked them for brief verbal feedback648

on their pain levels and performance estimation after each session. Participants in both EEG groups were649

explicitly told that sessions were not related to each other.650

The uncertainty/surprise of current stimulus h/l at trial t can be estimated as the entropy H of the
posterior mean before updating from trial t−1:

H(P(ht)) =−log2(P(ht−1)) (6)

To determine any learning effects on subjective ratings, we followed the method in Woo et al. (2017b)651

to use subjective rating residuals for correlation analysis with learning model predictors. We regressed652

subjective ratings with a matrix of high/low pain stimulus identities (high=1, low=-1), and session numbers653

for each individual to obtain rating residuals. The fluctuation of the resulting residuals can be interpreted654

as modulatory effects on pain beyond the level of nociceptive inputs.655

For model fitting, a grid search was run with different leaky integration ω (1-29, or no leak) to produce
different sets of model predictors (posterior probability and entropy). For each individual, the regression
coefficient β0 and β1 were estimated using linear regression model (Maheu et al., 2019):

yt = β0 +β1 ∗ predictor(ω) (7)

where yt is the rating residuals. The model evidence can be estimated using the Bayesian information
criterion (BIC), calculated as followed:

BIC = n · log σ̂
2 +κ · logn (8)

σ̂
2 = min

1
n

n

∑(yt − ŷt,ω)
2 (9)

where n is the number of observations/trials, κ the number of parameters (no leak: 2 (β0,β1), leak: 3656

(β0,β1,ω)), and σ̂2 is the mean squared error from regression. Using the grid search, the model with657

overall lowest BIC (or fitting error) averaged across participants were considered to be the winning model658

with the best set of parameters (Supplementary Figure 4).659

APPENDIX660

fMRI experiment participant instructions661

Day 1 (Decoder construction) Please rest in the scanner. We are looking at your brain’s response to662

different levels of pain. You don’t have to do anything.663
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Day 2 (Adaptive control) You don’t need to do anything in this task. The computer is trying to work664

out if you feel pain or not, by looking at your brain activity. If it thinks you felt pain, it will try and change665

the pain stimulation to stop you from having pain. If it thinks you did not feel much pain, it will try not to666

change anything. However, it cannot do this very reliably, as reading the brain activity is difficult, so it667

may often make mistakes.668

During your first scan, we gave a random sequence of pain stimuli - some high, and some low. Using669

this data, we have trained a computer program to tell how much pain you were feeling during each shock,670

based on your brain activity. It is good, but not perfect - it gets it right about 80% of the time.671

In today’s scan, the computer program can influence the pain level you get. If it thinks you felt a lot of672

pain, it will influence the pain machine to give you less pain in the future. If it thinks you did not feel673

much pain, it will try to influence the pain machine to continue to give you little pain. In other words, it is674

trying to help you get less pain! This is a difficult job for the computer program, because it is not perfect675

at reading your brain activity as soon as it is active (i.e. within a few seconds).676

It is up to you what you do in the task. You can do nothing, and hope that the system works well, and677

the computer learns to reduce the pain. Or you can try to influence the computer using your thoughts, in678

any way that you like.679

Post-training survey (Day 2)680

• Do you think the machine was successful in reading your pain and trying to reduce it?681

• Did you try to influence the computer by doing or thinking anything?682

• If so, what did you do/think?683

• And if so, do you think you were successfully able to influence it?684

• Any other comments or feedback?685
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Geuter, S., Boll, S., Eippert, F., and Büchel, C. (2017). Functional dissociation of stimulus intensity762

encoding and predictive coding of pain in the insula. eLife, 6:e24770.763

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2020). Dream to Control: Learning Behaviors by Latent764

Imagination. arXiv:1912.01603 [cs].765

21/23



Hebart, M. N., Görgen, K., and Haynes, J.-D. (2015). The Decoding Toolbox (TDT): A versatile software766

package for multivariate analyses of functional imaging data. Frontiers in Neuroinformatics, 8.767

Hirata, M., Matsushita, K., Suzuki, T., Yoshida, T., Sato, F., Morris, S., Yanagisawa, T., Goto, T., Kawato,768

M., and Yoshimine, T. (2011). A fully-implantable wireless system for human brain-machine interfaces769

using brain surface electrodes: W-herbs. IEICE transactions on communications, 94(9):2448–2453.770

Koizumi, A., Amano, K., Cortese, A., Shibata, K., Yoshida, W., Seymour, B., Kawato, M., and Lau, H.771

(2017). Fear reduction without fear through reinforcement of neural activity that bypasses conscious772

exposure. Nature Human Behaviour, 1(1):0006.773

Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006). Information-based functional brain mapping.774

Proceedings of the National Academy of Sciences, 103(10):3863–3868.775

Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., Foltynie, T., Limousin, P., Ashkan,776

K., FitzGerald, J., Green, A. L., Aziz, T. Z., and Brown, P. (2013). Adaptive deep brain stimulation in777

advanced Parkinson disease. Annals of Neurology, 74(3):449–457.778

Maheu, M., Dehaene, S., and Meyniel, F. (2019). Brain signatures of a multiscale process of sequence779

learning in humans. eLife, 8:e41541.780

Marquand, A., Howard, M., Brammer, M., Chu, C., Coen, S., and Mourão-Miranda, J. (2010). Quanti-781

tative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes.782

NeuroImage, 49(3):2178–2189.783

Mars, R. B., Debener, S., Gladwin, T. E., Harrison, L. M., Haggard, P., Rothwell, J. C., and Bestmann,784

S. (2008). Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic785

Changes in the Degree of Surprise. Journal of Neuroscience, 28(47):12539–12545.786

Meyniel, F., Maheu, M., and Dehaene, S. (2016). Human Inferences about Sequences: A Minimal787

Transition Probability Model. PLOS Computational Biology, 12(12):e1005260.788

Nicholson, A. A., Rabellino, D., Densmore, M., Frewen, P. A., Paret, C., Kluetsch, R., Schmahl, C.,789
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