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I. FLOW RATE FOR PHORETIC PUMPS WITH P = 3 PATCHES

The general expression for the pumping rate was obtained in Eq. (8) of the main text:

Q/L =

∞∑
n=1

h tanh(2πnh)

π2n2

∑
p<q

αpq sin(πnlp) sin(πnlq) sin

πn
lp +

q−1∑
j=p+1

lj + lq

 . (1)

For P = 3, this becomes

Q/L =

∞∑
n=1

h tanh(2πnh)

π2n2

∑
p<q

{
α12 sin(πnl1) sin(πnl2) sin (πn [l1 + l2]) + α23 sin(πnl2) sin(πnl3) sin (πn [l2 + l3])

+ α13 sin(πnl1) sin(πnl3) sin (πn [l1 + 2l2 + l3])
}
. (2)

Using l1 + l2 + l3 = 1, we can write

sin(πn(l1 + l2)) = (−1)n+1 sin(πnl3) (3)

sin(πn(l2 + l3)) = (−1)n+1 sin(πnl1) (4)

sin(πn(l1 + 2l2 + l3)) = (−1)n sin(πnl2), (5)

so that finally, with α31 = −α13,

Q/L = (α12 + α23 + α31)

∞∑
n=1

(−1)n+1h tanh(2πnh)

π2n2
sin(πnl1) sin(πnl2) sin(πnl3). (6)

II. FLOW RATE FOR PHORETIC PUMPS WITH P = 4 PATCHES

Equation (1) can be rewritten now for P = 4 with l1 + l2 + l3 + l4 = 1 as

Q/L =

∞∑
n=1

(−1)n+1h tanh(2πnh)

π2n2

[
α12 sin(πnl1) sin(πnl2) sin(πn[l3 + l4]) + α23 sin(πnl2) sin(πnl3) sin(πn[l1 + l4])

+ α34 sin(πnl3) sin(πnl4) sin(πn[l1 + l2]) + α41 sin(πnl4) sin(πnl1) sin(πn[l2 + l3])

+ α13 sin(πnl1) sin(πnl3) sin(πn[l4 − l2]) + α24 sin(πnl2) sin(πnl4) sin(πn[l1 − l3])
]
,

(7)

or equivalently

Q/L =

∞∑
n=1

(−1)n+1h tanh(2πnh)

π2n2

4∑
j=1

Fj cos(πnlj)
∏
k 6=j

sin(πnlk). (8)
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Here, F1 = α23 + α34 + α42, is the characteristic pumping rate of the 3-pump obtained with l1 = 0 and the other Fj

are obtained by circular permutation. One note immediately that

F1 + F3 = α12 + α23 + α34 + α41 = F2 + F4, (9)

so that the four quantities Fi are not independent and, as expected, the pumping rate depends only on three inde-
pendent chemical parameters.

III. OPTIMAL PHORETIC PUMPS FOR P = 4

For a given set of chemical properties (i.e. set values of Fj), the pumping rate is the superposition of four different
contributions associated with each Fj . In Eq. (8), the contribution proportional to Fj can be interpreted as a
modulation of the pumping rate of the 3-patch pump obtained for lj = 0, resulting from the introduction of a fourth
patch. As a result, this contribution is maximum in magnitude for lj = 0 and lk 6=j = 1/3 (the center one of the faces
of the tetrahedron in Figure 4 of the main text), decreases monotonously away from this maximum and vanishes on
all three other faces (where one of the other lk vanishes).

For given Fj , two cases can therefore be identified for the geometric variations of Q with (lj)j : the optimal pumping

rate |Q| is reached either within I4 =
{

0 ≤ li ≤ 1,
∑4

i=1 li = 1
}

or on its boundaries. In the latter case, the optimal

pump is degenerated and includes only three different patches: in that case, the optimal is necessary reached for three
patches of equal lengths. In the former case, the optimal pump consists of four distinct patches.

In order to distinguish between these two situations, a necessary condition for the 3-patch pump with l1 = 0
and lj 6=1 = 1/3 to be a local optimal requires the pumping rate Qm of that configuration and the derivative of Q
with respect to l1 to have opposite signs (increasing l1 then reduces |Q|). The latter quantity, noted here δQ/δl1,
corresponds to the gradient of Q with respect to (li)1≤i≤4 projected onto the constraint

∑
li = 1.

These two quantities are obtained (for l1 = 0 and l2 = l3 = l4 = 1/3) as

Qm = LF1K1(h),

(
δQ

δl1

)
= LF3K̃1(h) (10)

with

K1(h) =

∞∑
n=1

h(−1)n+1 tanh(2πnh)

π2n2
sin3

(πn
3

)
, (11)

K̃1(h) =

∞∑
n=1

h tanh(2πnh)

πn
sin2

(πn
3

)
. (12)

The functions K1(h) and K̃1(h) in Eqs. (11)–(12) being strictly positive for all h, the 3-patch pump with l1 = 0 is
therefore a local optimum if and only if F1F3 < 0 (it should be noted that the 3-patch pump with l3 = 0 is then also
a local optimum). As a result, a classification of the optimal 4-patch pump is obtained for given chemical properties
(i.e. given Fi):

1. If F1F3 < 0 (resp. F2F4 < 0), the optimal pump has only three patches, with l1 = 0 or l3 = 0 (resp. l2 = 0 or
l4 = 0).

2. If F1F3 > 0 and F2F4 > 0, then the optimal 4-patch pump is not degenerated and features four patches of
non-zero lengths. One could further show using a similar method that the pump with four patches of equal
lengths is only optimal when the four constants Fj are all equal.

This distinction exemplifies again the loss of universality of the optimal phoretic pump when P > 3.
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