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ABSTRACT  
Purpose: Acute respiratory distress syndrome (ARDS) is a serious respiratory condition with high             

mortality and associated morbidity. The objective of this study is to develop and evaluate a novel                

application of gradient boosted tree models trained on patient health record data for the early prediction of                 

ARDS.  

Materials and Methods: 9919 patient encounters were retrospectively analyzed from the Medical            

Information Mart for Intensive Care III (MIMIC-III) data base. XGBoost gradient boosted tree models for               

early ARDS prediction were created using routinely collected clinical variables and numerical            

representations of radiology reports as inputs. XGBoost models were iteratively trained and validated             

using 10-fold cross validation.  

Results: On a hold-out test set, algorithm classifiers attained area under the receiver operating              

characteristic curve (AUROC) values of 0.905 when tested for the detection of ARDS at onset and 0.827,                 

0.810, and 0.790 for the prediction of ARDS at12-, 24-, and 48-hour windows prior to onset, respectively.                 

Conclusion: Supervised machine learning predictions may help predict patients with ARDS up to 48              

hours prior to onset.  
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INTRODUCTION 

Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterized by hypoxemia in the              

presence of non-cardiogenic pulmonary edema, and is associated with severe inflammation.1 ARDS is             

estimated to affect at least 190,000 patients per year in the United States2 and has been cited as one of the                     

leading causes of admission to the intensive care unit (ICU)3,4, with mortality rates ranging between               

30%-55%.5 The wide variation in reported incidence6 and mortality rates2,7-14 may relate to difficulties in               

the recognition and diagnosis of ARDS. Despite high mortality rates and high rates of ICU utilization                

associated with ARDS, it is still critically misdiagnosed and underdiagnosed in intensive care units on a                

global scale.1,5,15 

 

Difficulty in accurately diagnosing ARDS may be explained by a number of factors. These include               

differences in risk factors and etiologies, the availability of diagnostic tools, the quality and interpretation               

of chest radiographs, and general clinician ability to recognize ARDS.7,16 The inability of healthcare              

providers to process the volume of clinical data generated while caring for critically ill patients has been                 

cited as another potential reason for poor ARDS recognition.17,18 The most recent Berlin definition19 of               

ARDS was developed in 2012 in response to issues regarding the reliability and validity of the 1994                 

American-European Consensus Conference (AECC) definition.20 Although the Berlin definition has          

addressed many of the limitations of the AECC definition,19-21 identifying ARDS in diverse clinical              

settings remains dependent on some subjectivity of the diagnosing clinician.22 Clinicians’ ability to             

separate ARDS from other heterogeneous causes of respiratory failure is limited,21,23,24 and it can often be                

difficult to diagnose ARDS in patients who have underlying medical problems with similar symptoms.25  

 

Because ARDS treatment options have limited efficacy, there is an interest in identifying patients most at                

risk of developing ARDS for early prevention strategies, such as antiplatelet therapy.7,26-28 Early             

identification of such patients could also improve treatment options by enabling early clinical trial              

enrollment.29,30 The opportunity for preventing ARDS onset is constrained to a narrow window, with onset               

a median 2 days after hospital admission.7,28,31,40 Despite advances in our understanding of ARDS              

pathogenesis, no biomarker has been shown to reliably predict ARDS.32-34,41,42 Therefore, developing            

clinical decision support (CDS) methods to assist clinicians in the accurate and early prediction of ARDS                

is a valuable approach to improve patient monitoring, diagnosis, treatment, and outcomes.  
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CDS technologies have the ability to differentiate between groups of patients with similar conditions, and               

are useful in informing treatment decisions and improving patient outcomes.33,35 They have recently been              

proposed as a method to improve early ARDS detection.17,36,37 Through informed data analysis, CDS              

models can analyze relevant patient data from large electronic health record (EHR) databases and identify               

cohorts of patients with similar disease progression. We hypothesize that supervised machine learning can              

be used to improve ARDS detection and early ARDS prediction prior to onset. Here, we describe the                 

development and analysis of a novel application of supervised machine learning model CDS for the               

detection and early prediction of ARDS. The benefit of such an approach is that when the model is                  

implemented in clinical settings, healthcare providers can potentially identify patients at risk of             

developing ARDS before they deteriorate, thus facilitating effective resource allocation and identifying            

those patients most likely to benefit from increased monitoring and care. 

 

MATERIALS AND METHODS 

Data selection 

Data were obtained from the Medical Information Mart for Intensive Care III (MIMIC-III) database,              

which consists of the inpatient ICU encounters at Beth Israel Deaconess Medical Center between 2001               

and 2012.38 The MIMIC-III publication states that, “the project was approved by the Institutional Review               

Boards of Beth Israel Deaconess Medical Center (Boston, MA) and the Massachusetts Institute of              

Technology (Cambridge, MA). Requirement for individual patient consent was waived because the            

project did not impact clinical care and all protected health information was deidentified.”38 To ensure               

consistent encoding of data, only data collected with the MetaVision clinical information system were              

used. All patient data collected using MetaVision was from patients admitted during or after 2008. 

 

We applied additional inclusion criteria (Figure 1) to focus the scope of our study. Only patients with age                  

data available and at least 18 years of age were included. Patient stays that did not have at least one                    

observation of each required measurement type (see below) were excluded. Finally, we included only              

patient stays that had durations within a specified window. The upper limit on length of stay was set at                   

1000 hours (approximately 41.7 days), in order to account for outliers and transcription errors. The lower                

limit was dependent on lookahead, and the final study population sizes are listed in Table 1. For example,                  

to predict for up to 48 hours before onset of ARDS using a five-hour window, 53 hours of patient data are                     

required for inclusion.  
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We note that, in order to simulate the use case as a screening tool for the general population, the patient                    

population under consideration was not restricted to mechanically ventilated patients, unlike other ARDS             

studies such as Taoum et al.39 and Neto et al.40 We have also analyzed separately a subpopulation in                  

which patients are required to have experienced at least one hour of mechanical ventilation to be included                 

in the study population (Supplemental Table 1). 

 
Table 1. Number of encounters included in analysis. 
 

Requirement  

 

 

 

 

All MIMIC-III encounters 53432 

Age exists, age at least 18 53332 

Metavision 23593 

At least 1 observation of each required measurement 22752 

Offset (hours) 0 12 24 48 

Qualifying stay duration (duration ≥ offset + 5 hours) 21728 20388 15527 9251 

 
Data extraction 

Beginning at the first recorded measurement, raw measurements entered into the EHR for each patient               

stay were binned into one-hour intervals and averaged or summed within bins to produce a single,                

summarizing value per interval. Antibiotics, urine output, dobutamine, dopamine, epinephrine,          

norepinephrine, and phenylephrine measurements were summed, and all other clinical measurements           

listed in Supplemental Table 2 were averaged. Encoding the data in this way transformed the               

measurements into discrete time series with consistent time steps, which were more readily handled by               

the algorithm. Not all raw measurements were available at all hours, so missing values were filled using                 

last-one carry forward imputation. This is a natural imputation method for clinical measurements;             

observations of a raw measurement are expected to be dependent on the previous observations.41,42  

 

For each patient stay, we took the vector of measurements using a five hour window. Where appropriate,                 

we also concatenated the differences in measurement values between time steps. In this way, at prediction                

time, a supervised machine learning technique such as gradient boosted tree ensembles is able to access                

trend information and covariance structure with respect to time windows. This procedure of transforming              

time series problems into supervised learning problems has been used in our previous work.43 
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Models were developed using quantitative clinical features taken from the patient EHR, but patients were               

only required to have age, heart rate, respiratory rate, temperature, diastolic and systolic blood pressure,               

and SpO2 available. Other quantitative clinical features were included if available, and replaced with              

“missing” values where not available. Quantitative clinical features included for analysis in patient             

subpopulations with no required mechanical ventilation, and with at least one hour of mechanical              

ventilation, are listed in Supplemental Table 2. The organ dysfunction feature listed in Supplemental              

Table 2 is defined to be the number of the following criteria which are met at a given time: systolic blood                     

pressure < 90 mmHg; lactate > 2.0 mmol/L; platelet count < 100000 µL; and international normalized                

ratio > 1.5. The machine learning algorithm which we applied in this study is capable of learning from the                   

distribution of missing values and can still gain information from relatively sparse features. We included               

only those patient stays which contained at least one measurement of each of the required features.  

 

We extracted radiology reports and preprocessed them for use in our algorithm. Radiology reports are not                

expected to be present for every patient stay; moreover, it is valuable information if a patient stay does not                   

have any radiology reports generated. Radiology reports contain complex information concerning           

clinician insight and the health of a patient. If the reports were present, our experimental design was able                  

to access that complex information for machine learning, and if the reports were not present, the MLA                 

was able to learn information about the lack thereof. Using the Doc2Vec text encoding scheme,44               

radiology reports were converted into numerical feature vectors. The Doc2Vec encoding network uses the              

relationships between words and their neighbors, as well as the relationship between paragraphs within a               

text, to generate a numerical embedding. These embeddings are crucial features in our experimental              

design for similar reasons; they allow the machine learning algorithm to access text representations of the                

clinical reality. These numerical embeddings are able to retain much of the relational structure of the text                 

as a feature vector, without necessarily having to retain information about the literal text. The Doc2Vec                

encoding network, as implemented in the Python package gensim,45 was trained on tokenized training              

texts, preprocessed to remove numbers and non-alphanumeric characters. This corpus of training texts             

was composed of 117,902 radiology reports, drawn from our training data. Once all training texts were                

observed and network weights updated, training procedures were frozen, and we then used the              

fully-trained Doc2Vec encoding network to infer the feature vectors for all of the radiology reports,               

similarly tokenized and preprocessed. These feature vectors were concatenated onto the existing            

quantitative clinical variables for patient stays where radiology reports were available. For patient stays              

where radiology reports were not available, vectors of the same size, containing missing values, were               

concatenated to the existing variables. 
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Gold standard and definition of onset time 

In order to generate gold standard labels for ARDS, we followed the Berlin definition19 as operationalized                

in Neto et al.40 By examining the patient data for the co-occurrence of positive end expiratory pressure                 

(PEEP) above or equal to 5 cmH2O and PaO2/FiO2 ratio (P/F ratio) below or equal to 300 mmHg, we                   

encoded positive class labels as 1 and negative class labels as 0. The mention of bilateral opacities or                  

infiltrates in the patient’s radiology report was also required for a positive class label. In order to ensure                  

the acute nature of ARDS onset, we did not consider as ARDS positive any encounter involving a                 

tracheostomy procedure within the first 72 hours of their ICU admission. The onset time for ARDS was                 

set as the time of first co-occurrence for the PEEP and P/F ratio criteria, and prediction time was set to                    

some number of hours prior to this onset. Thus a model described as a 24-hour model is a model for                    

predicting ARDS 24 hours prior to onset by this co-occurrence definition.  

 

We note that this gold standard does not determine the extent to which respiratory failure can be attributed                  

to cardiac failure or fluid overload, which is a departure from the Berlin definition; we elaborate this                 

limitation in the Discussion. We also emphasize that the measurements used to determine this gold               

standard were not used in development or training of the machine learning algorithm used in this study. In                  

pilot experiments, we were able to verify the implementation of ARDS used in this study reproduced                

ARDS incidence rates observed in Neto et al.40 

 

Experimental methods 

For the purposes of evaluation, we reserved 10% of the patient stays within the MIMIC-III dataset,                

chosen at random, as a hold-out dataset and used only the remaining 90% to train, validate, and iterate our                   

predictive models. This hold-out data represented unseen new data and could be used to gauge               

performance of machine learning algorithms in the setting of novel data prediction. Although we were               

primarily interested in prediction at 24-hours prior to onset, we also trained models for detection of ARDS                 

at onset and prediction of ARDS at 12-hours and 48-hours prior to onset. 

 

All predictive models described in this paper were instances of the XGBoost gradient boosted tree               

model,46 implemented using the Python package. XGBoost is a state-of-the-art tree ensemble method that              

builds progressively on the loss generated by weak decision tree base learners. XGBoost is capable of                

learning quickly and effectively from large amounts of data, and is flexible to the point that it is able to                    
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learn even from missing data. By making use of this capability, we were able to construct predictive                 

models that do not require radiographs or radiology reports to make meaningful predictions. It is               

important to note that decision tree models, including tree ensembles, do not make distributional              

assumptions, and so are well-suited for settings where specifying a generative distribution is difficult. 

 

Three of the available hyperparameters for XGBoost were selected using exhaustive grid search five-fold              

cross validation, performed exclusively on the training data. Five folds for hyperparameter tuning is the               

default for hyperparameter grid search due to considerations of computational constraints, as implemented             

in Scikit-learn.47 The hyperparameters tuned were number of base learners, the learning rate, and the               

maximum depth of a base learner. The hyperparameters were tuned across ranges of values centered               

around 1000, 0.1, and 5 for number of base learners, learning rate, and maximum depth, respectively. The                 

values selected as the centers were determined by iteratively narrowing the grid search range. These three                

hyperparameters affected the values the internal model parameters took over the course of training, and               

thus also significantly contributed to the final model parameters.  

 

The XGBoost predictive models were all iteratively trained and tested using ten-fold cross validation with               

early stopping mechanisms in order to prevent overfitting. In this validation paradigm, the data were               

partitioned into ten random segments, or folds. Training occurred on nine of the folds, and the remaining                 

fold was used to monitor performance for overfitting. Each of the ten models trained were then tested on                  

the hold-out test set partitioned prior to hyperparameter tuning, and the final metrics reported were               

averages for the metrics across the ten models. Metrics reported include area under the receiving operator                

curve (AUROC), standard deviation for the area metrics, sensitivity, specificity, accuracy, recall,            

diagnostic odds ratio (DOR), and positive and negative likelihood ratios (LR+ and LR-, respectively).              

Once all models were trained, we evaluated the performance of the models in predicting the ARDS labels                 

of the hold-out set, and the same performance metrics were reported. 

 
In addition to this main set of experiments validating the effectiveness of our algorithm as a screening tool                  

developed and tested on the general patient population, we conducted an additional analysis in which we                

developed and evaluated the same algorithm using only mechanically ventilated patients. All procedures,             

from partitioning into training and hold-out test sets to hyperparameter tuning and training, were              

performed identically in this additional experiment.  
 

8 
 



 

 

 

RESULTS 

Among stays meeting the inclusion criteria of Table 1 and with qualifying duration for the 0-, 12-, 24-,                  

and 48-hour offsets, respectively 296 (1.362%), 179 (0.877%), 107 (0.689%), and 25 (0.270%) of stays               

were labeled as ARDS positive according to the gold standard. Analogously, for the stays meeting the                

inclusion criteria of Supplemental Table 1 and with qualifying duration for the 0-, 12-, 24-, and 48-hour                 

offsets, respectively 288 (3.199%), 174 (1.998%), 104 (1.366%), and 25 (0.455%) of stays were labeled               

as ARDS positive. Demographic data of all patient encounters from the MIMIC-III dataset are presented               

in Table 2, including the distribution of admissions to various wards in the ICU and the distribution of                  

physiologic derangement, represented by MEWS scores, at admission. 

 

Using the training data, we performed five-fold cross validation on every combination of hyperparameter              

values in our pre-specified hyperparameter ranges. In total there were 72 different hyperparameter             

combinations, and with five-fold cross validation, a total of 360 models were fit on the training data. The                  

evaluation metric used to determine the best performing hyperparameter combination was AUROC. The             

hyperparameters selected to train the final models were: 1000 base learners, a learning rate of 0.03, and a                  

base learner maximum depth of six partition levels.  

  

ARDS onset detection and prediction performance is summarized by the Receiver Operating            

Characteristic (ROC) curves in Figure 2. ROC curves show sensitivity (the fraction of ARDS positive               

cases that received an ARDS positive label) as a function of 1−specificity (the fraction of ARDS negative                 

cases that received an ARDS positive label). Operating points of approximately 0.80 sensitivity were              

selected for each model to facilitate comparisons of performance. Each ROC curve represents the average               

performance under 10-fold cross validation. The classifier demonstrated an AUROC of 0.905, 0.827,             

0.810, and 0.790 for early ARDS detection and prediction on the test set at 0, 12, 24, and 48 hours prior to                      

onset, respectively (Figure 2). AUROC curves demonstrated high sensitivity and specificity of algorithm             

predictions for ARDS onset up to 48 hours in advance on  the test set. 

 
Table 2. Demographics of subjects included in analyses. Percentage values may not add to 100 due to                 
rounding. Demographics calculated for patients with stay durations of at least 48 hours. 

 Characteristic Value (%) 
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Gender Female 4432 (44.7) 

 Male 5487 (55.3) 

Age (years) 18-29 356 (3.6) 

 30-39 394 (4.0) 

 40-49 902 (9.1) 

 50-59 1691 (17.1) 

 60-69 2335 (23.6) 

 70+ 4241 (42.8) 

ICU Ward 
Admission ICU  3937 (39.7) 

 SICU 1939 (19.5) 

 CSRU 1515 (15.3) 

 CCU 1303 (13.1) 

 TSICU 1225 (12.4) 

MEWS Severity 
at Admission 0 4099 (41.3) 

 1 1093 (11.0) 

 2 1301 (13.1) 

 3 1193 (12.0) 

 4 996 (10.0) 

 5 641 (6.5) 

 6 340 (3.4) 

 7 165 (1.7) 

 8 54 (0.5) 

 9 22 (0.2) 

 10 11 (0.1) 

 11 2 (0.0) 

 12 2 (0.0) 

Median 
length-of-stay 
(IQR) days 4 (2, 7)  
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Multiple performance metrics are shown in Table 3, including AUROC,, sensitivity and specificity,             

representing a variety of clinically relevant assessments for the general patient population. All metrics              

were calculated with common operating points near sensitivity = 0.80 in order to allow for direct                

comparisons. Testing performance metrics for the patient population with at least one hour of mechanical               

ventilation are reported in Supplemental Table 3, and the AUROC curves associated with the              

performance are shown in Supplemental Figure 1. In this mechanically ventilated population, our             

classifier demonstrated AUROC performance of 0.843, 0.858, 0.810, and 0.790 for early ARDS detection              

and prediction on the test set at 0-, 12-, 24-, and 48- hours prior to onset, respectively.  

 

Table 3. Model performance metrics on the training and testing (hold-out) sets at 0-, 12-, 24-, and                 
48-hour prediction windows. AUROC: area under the receiving operator curve; DOR: diagnostic odds             
ratio; LR+ and LR-: positive and negative likelihood ratios, respectively. Values presented are means and               
standard deviations for the metrics across 10 folds. 
 

 Onset 12-hour 24-hour 48-hour 

AUROC  
0.905  

(0.009) 
0.827  

(0.015) 
0.810  

(0.035) 
0.790  

(0.079) 

Sensitivity 
0.806  

(0.000) 
0.789  

(0.000) 
0.818  

(0.000) 
0.667 

(0.000) 

Specificity 
0.823  

(0.014) 
0.828  

(0.052) 
0.683  

(0.073) 
0.852  

(0.063) 

F1 
0.109  

(0.006) 
0.079  

(0.015) 
0.020  

(0.018) 
0.015  

(0.004) 

DOR 
19.477  
(1.829) 

19.704  
 (5.953) 

10.452  
 (3.664) 

13.175 
 (4.485) 

LR+ 
4.576  

(0.354) 
4.938  

(1.253) 
2.719  

(0.666) 
5.058  

(1.495) 

LR- 
0.235  

(0.004) 
0.255  

(0.017) 
0.269  

(0.028) 
0.393  

(0.032) 

Accuracy 
0.825  

(0.010) 
0.839  

(0.045) 
0.817  

(0.160) 
0.851  

(0.061) 

Recall 
0.774  

(0.000) 
0.732  

(0.017) 
0.427  

(0.369) 
0.333  

(0.000) 
 

As shown in Supplemental Table 4, antibiotics administration appears to yield a significant amount of               

information about the classifier across all prediction times in the general patient population. However,              

there are few other observable trends in feature importances that are consistent. It should be noted that the                  
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stochastic nature of the XGBoost algorithm, which extends to the subset of columns which it considers in                 

individual trees in its ensemble, limits the interpretability of feature importances.  

 

DISCUSSION 

We have described a method for the early prediction of ARDS using supervised machine learning models.                

Model classifiers attained AUROC values of 0.827, 0.810, and 0.790 for the prediction of ARDS at 12-,                 

24, and 48- hours prior to onset, respectively (Figure 2). In addition to high AUROC values, model                 

classifiers demonstrated high performance for the detection and prediction of ARDS in regards to              

sensitivity, specificity, F1, DOR, L+, L-, accuracy, and recall (Table 3). We developed these models               

using quantitative clinical features extracted from the patient EHR data, as well as numerical              

representations of radiology reports. Our approach circumvents the issues associated with keyword-based            

text analysis by using higher-level representations of the text in radiology reports. These numerical              

representations are used as features in our model, alongside the patient quantitative, structured data. The               

use of this structured data to complement radiographic reports mitigates delays in obtaining chest              

radiograph information. In these ways, the method we describe diversifies and improves upon existing              

approaches for the prediction of ARDS.  

 

Inability to anticipate which patients are likely to develop ARDS is a major obstacle to early intervention                 

and to prevention studies.48 Epidemiologic data suggest that the syndrome is rarely present at the time of                 

hospital admission or initial emergency department (ED) evaluation, but develops over a period of hours               

to days in subsets of at-risk patients.49-53 Therefore, evaluating model performance at >24 hours preceding               

onset is valuable because it facilitates identification of patients who would benefit from targeted ARDS               

interventions. Alerting systems for the long horizon prediction of ARDS have been validated in similar               

studies of mechanically ventilated patients and those with moderate hypoxia.54,55 

 
While rule-based systems have been used to screen patients for ARDS by analyzing patient EHR               

data,48,56-59 non rules-based CDS systems are capable of efficiently incorporating complex patient data sets              

and are therefore less reliant on clinician subjectivity. Several studies have focused on the development of                

non rules-based ARDS detection systems17,54,60-64 and represent a promising means for addressing the             

issues clinicians face when identifying pre-existing ARDS. However, our study was designed to address              

the need for CDS systems that can predict ARDS onset sufficiently in advance to provide clinicians with                 

time to undertake preventative measures. A previous study by Taoum et al. described a novel approach                

for early prediction of ARDS using continuous physiological signals of heart rate, respiratory rate,              
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peripheral arterial oxygen saturation and mean airway blood pressure.39 Results indicated that ARDS can              

be detected in the early phases of occurrence with a sensitivity of 65% and a specificity of 100%, on                   

average 39 hours prior to onset.39 However, this study was undertaken on a small dataset, which limits                 

generalizability andr elies on minute-by-minute samples from physiological monitors to detect ARDS,            

which introduces a potential barrier to hospital integration and which ignores the benefits of unstructured               

clinical notation data.39 In contrast, our method uses relatively sparsely sampled structured data, such as               

vital signs and lab tests, in addition to unstructured notation data. The method of Zaglam et al. requires                  

chest radiographs to be obtained before it may assess the presence or absence of ARDS, which may                 

hinder the early diagnosis or prediction of ARDS, and does not use text data.60 While the rules-based                 

method of Herasevich et al. uses unstructured radiographic report data, it does so by searching reports for                 

a list of keywords, which is vulnerable to misdiagnosis arising from the presence of keywords mentioned                

in ruling out diagnosis, and which potentially neglects more complicated textual indications of ARDS.56              

In contrast, our use of Doc2Vec enables the extraction of rich, contextual information from unstructured               

texts, including information concerning chest radiographs highly relevant to ARDS. Our approach does so              

without explicitly requiring radiographs to generate a prediction score, which allows the tool to be used as                 

a screening tool for the general population.  

 

Our supervised machine learning models demonstrate high diagnostic metrics for ARDS recognition and             

prediction in general patient populations (Table 3). The testing curves of Figure 2 demonstrate the               

model’s strength in diagnosis at the time of ARDS onset, with an AUROC value 0.905 for the general                  

patient population. These metrics outperform those reported in other studies.62 While the quality of              

diagnostic metrics decay as they are made increasingly early prior to ARDS onset, the 12-hour prediction                

of ARDS offers operating points with high sensitivity and specificity. Table 3 illustrates a clinically               

relevant operating point with sensitivity of 0.806 and specificity of 0.823. Early prediction of ARDS onset                

offers opportunities for increased patient monitoring, possible prevention,26-28 and the development of            

novel preventative measures.  

 

In the mechanically ventilated subpopulation, our supervised machine learning models demonstrated a            

similarly high level of diagnostic performance for ARDS recognition and prediction (Supplemental            

Table 3). Models in both the mechanically ventilated subpopulation and the general population achieved              

high sensitivity and specificity for 12-hour prediction of ARDS, with an operating point with sensitivity               

of 0.778 and specificity of 0.810 in the mechanically ventilated subpopulation. At the time of ARDS                

onset, an AUROC of 0.843 was observed in this subpopulation, compared to AUROC of 0.905 in the                 
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general population. The performance 12 hours prior to onset was higher in the mechanically ventilated               

subpopulation, with an AUROC of 0.858 compared to AUROC of 0.827. Overall we observed similar               

performance in both patient populations.  

 

We emphasize several limitations of our study. First, the results of our study may not generalize to                 

analogous experiments conducted with a definition of ARDS other than the Berlin definition, or different               

implementations thereof. Indeed, we use the implementation of the Berlin definition used by Neto et al. 40,                 

which does not assess the extent to which respiratory failure can be attributed to cardiac failure or fluid                  

overload. Strictly speaking, this is a departure from the Berlin definition but, by our assessment, it would                 

be difficult to unambiguously implement this criterion using available data and without introducing bias,              

for the following reasons. Determining if respiratory failure can be fully attributed to hydrostatic lung               

edema, in the absence of a risk factor, requires an objective assessment. However, it is not always clear                  

which assessment to undertake, which complicates the incorporation of such assessments into a gold              

standard 65. Moreover, it has been reported that 30% of ARDS cases include a component of hydrostatic                 

lung edema 65, so erroneous adjudication of these cases could substantially under-label encounters as              

ARDS positive or otherwise introduce significant bias into ARDS labeling. Second, this study was a               

retrospective analysis, which may not translate to prospective improvements in clinical settings. In             

particular, the retrospective performance metrics we report cannot capture the complex interaction of             

clinicians with the information such a tool would provide, or the limitations of ARDS prevention and                

treatment options. Finally, this study concerned a single-center study of ICU data and therefore the results                

may not translate to other clinical settings or wards, especially wards of less intensive care. In future work                  

we hope to develop and evaluate this tool in a variety of live clinical settings. 

 

CONCLUSION 
This analysis demonstrates the use of a gradient boosted tree model for the early prediction and                

identification of ARDS using retrospective patient data. The algorithm developed in this study may assist               

both in recruitment for ARDS clinical trials and the improved prediction and early recognition of ARDS. 
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FIGURE CAPTIONS 

 
Figure 1. Inclusion criteria for patient encounters in the MIMIC-III dataset. The final inclusion criteria is                
dependent on prediction lookahead; the value presented here reflects the 48-hour prediction, which filters              
most stringently. 
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Figure 2. Area Under Receiver Operating Characteristic (AUROC) curves and values for ARDS onset              
detection and prediction at 12, 24, and 48 hours prior to onset. AUROC performance of XGBoost models                 
on a separate hold-out test set for early ARDS prediction, up to 48 hours prior to onset. Curves are                   
averaged across 10 folds.  
 
 
 
SUPPLEMENTAL MATERIALS 
 
Supplemental Table 1. Inclusion table of patient subpopulation for analysis with at least one hour of                
mechanical ventilation. 
 

Requirement  

 

 

 

 

All MIMIC-III encounters 53432 

Age exists, age at least 18 53332 

Metavision 23593 

At least 1 observation of each required measurement 22752 

Mechanical ventilation 9133 

Offset (hours) 0 12 24 48 

Qualifying stay duration (duration ≥ offset + 5 hours) 9001 8706 7609 5483 
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Supplemental Table 2. Clinical features included for analysis in patient subpopulations with no required              
mechanical ventilation, and with at least one hour of mechanical ventilation. GCS = Glasgow Coma               
Scale; HR = Heart Rate; INR = International Normalised Ratio; MAP = Mean Arterial Pressure; PP =                 
Pulse Pressure; SpO2 = Peripheral Capillary Oxygen Saturation; WBC = White Blood Cell Count 
 

Clinical Features 

Age 

Antibiotics 

Bilirubin 

Blood Culture 

Creatinine 

Diastolic BP 

Fluid Bolus 

GCS 

HR 

INR 

Lactate 

MAP 

Organ Dysfunction 

PP 

Platelets 

Resp. Rate 

SpO2 

Systolic BP 

Temp. 

Urine Output 

WBC 

pH 
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Supplemental Table 3. Model performance metrics at 0-, 12-, 24-, and 48-hour detection and prediction               
windows, on the patient subpopulation test set with at least one hour of mechanical ventilation. AUROC:                
area under the receiving operator curve; DOR: diagnostic odds ratio; LR+ and LR-: positive and negative                
likelihood ratios, respectively. Values presented are means and standard deviations for the metrics across              
10 folds. 
 
 Onset 12 24 48 

AUROC 
0.843  

(0.015) 
0.858  

(0.022) 
0.810  

(0.044) 
0.796  

(0.112) 

Sensitivity 
0.800  

(0.000) 
0.778  

(0.000) 
0.818  

(0.000) 
0.667  

(0.000) 

Specificity 
0.733  

(0.040) 
0.810  

(0.072) 
0.671  

(0.115) 
0.910  

(0.127) 

F1 
0.159  

(0.019) 
0.142  

(0.040) 
0.066  

(0.029) 
0.094  

(0.098) 

DOR 
11.274 
(2.169) 

17.107 
(6.838) 

11.382 
(7.924) 

89.235 
(117.989) 

LR+ 
3.055  

(0.434) 
4.579  

(1.520) 
2.888  

(1.441) 
30.412 

(39.330) 

LR- 
0.274  

(0.016) 
0.276  

(0.027) 
0.279  

(0.049) 
0.375  

(0.073) 

Accuracy 
0.734  

(0.039) 
0.808  

(0.070) 
0.671  

(0.113) 
0.913  

(0.129) 

Recall 
0.767  

(0.000) 
0.722  

(0.000) 
0.727  

(0.000) 
0.300  

(0.105) 
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Supplemental Table 4. Feature importances. Most important features across prediction times on the             
patient subpopulation test set with no required mechanical ventilation, determined by the relative average              
information gain across all trees in the ensemble and scaled according to lookahead time. GCS = Glasgow                 
Coma Scale; HR = Heart Rate; INR = International Normalised Ratio; MAP = Mean Arterial Pressure; PP                 
= Pulse Pressure; SpO2 = Peripheral Capillary Oxygen Saturation; WBC = White Blood Cell Count 
 
 Onset 12 24 48 

Age 0.004115 0 0 0.053510 

Antibiotics 0.261102 1 1 0.743631 

Bilirubin 0.001402 0.008645 0 0.583681 

Blood cultures 0 0 0 0 

Creatinine 0.056243 0.00803 0 0.079805 

Diastolic BP 0.04635 0.015093 0.022645 0.155653 

Fluid Bolus 0.030919 0.009978 0.042103 0.103617 

GCS 1 0.355869 0 0.418873 

HR 0.018309 0.028341 0.117448 0.552735 

INR 0.001856 0 0 0.316773 

Lactate 0.045153 0.012959 0 0.417665 

MAP 0.10657 0.022658 0 0.101288 

Organ 
Dysfunction 0.001482 0.002276 0 0.603887 

PP 0.024534 0.018626 0.068241 0.245032 

Platelets 0.003704 0.004354 0.019733 0.327886 

Resp. Rate 0.051007 0.056339 0.020247 0.413433 

SpO2 0.053115 0.065467 0 1 

Systolic BP 0.022387 0.039432 0.017186 0.162508 

Temp. 0.005873 0.014421 0.02879 0.143157 

WBC 0.016341 0.010967 0 0.221133 

Urine output 0 0 0 0.003511 

pH 0.10487 0.011362 0.040173 0.232714 
Due to the data extraction process, features are represented in the MLA by multiple columns in the data                  
matrices, each of which are treated as individual latent features. The importance scores presented here are                
the average importance across those latent features, scaled within lookahead times to give a relative               
average importance score. 
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Supplemental Figure 1. Area Under Receiver Operating Characteristic (AUROC) curves and values for             
ARDS onset detection and prediction at 12, 24, and 48 hours prior to onset, on the patient subpopulation                  
test set with at least one hour of mechanical ventilation. Curves are averaged across 10 folds. 
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