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Abstract. In this paper we tackle the problem of correspondence and
rotor estimation between models composed of geometric primitives of
different types. We frame this problem as searching for the rotor that
takes a query model to a reference model. The situations that we con-
sider are those in which our query model: contains additional primitives
not present in the reference; is missing primitives that are present in
the reference. We will also look at cases in which there are a large
number of primitives per model. These are all common issues facing
any SLAM-type (simultaneous localisation and mapping) systems. To
overcome these problems we introduce an inter-object rotor magnitude-
based matching function and a subsampled iterative rotor estimation and
matching algorithm. We title the finished algorithm: Rotor Estimation
From Object Resampling and Matching—REFORM. REFORM builds
on ideas from the RANSAC (RAndom SAmple Consensus) [7] and ICP
(Iterative Closest Point) [3,11] algorithms and extends these to multi-
vector correspondence. It is easily parallelisable and designed for good
convergence performance with models of real objects.

1. Introduction

A fundamental problem in computer vision is the correspondence problem.
How do we match features from one image to another? This correspondence
problem also appears when dealing with 3D data; given a reference model of
an object and a query model of the same object how do we match objects,
identify discrepancies and extract the transformation between the models?
Our reference might be, for example, a CAD model, and our query model
might represent the output of fitting primitives to LIDAR data or structure-
from-motion point clouds. Many authors have tackled the problem of rotor
estimation between groups of pre-matched geometric objects [5,6,12,13] and
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FIGURE 1. Black: 22 lines extracted from a CAD model of
a table. Red: a transformation of the original model

others have applied conformal geometric algebra to 3D registration of point
and sphere clouds [2,9]. In this paper we tackle the problem of registration
and rotor estimation for primitives of any grade.

The objects we work with here will be CGA objects unless explicitly
stated otherwise. We will use the standard extension of the 3D geometric
algebra, where our 5D CGA space is made up of the standard spatial ba-
sis vectors {e;} i = 1,2,3, plus two additional basis vectors, e and & with
signatures, e? = 1, &2 = —1. Two null vectors can therefore be defined as:
Neo = €+ € and ng = $¢. The mapping of a 3D vector x to its conformal
representation X is given by X = F(z) = 1(22no + 22 — 2ng).

5 -

2. Proximity-Based Matching

Our first attempt at matching models made from a collection of geometric
objects comes simply from considering their locality in space. For cases in
which our query model is a small displacement (where displacement here will
refer to rotation and translation) from the reference model, we would expect
that simply assigning each object in the query model to its closest object in
the reference model would give us a good number of correct matches.

Several authors have proposed cost functions between objects [12,13],
and while many of these are extremely effective for extracting motors between
circles and other round elements, they tend to fail to extract the transforma-
tion between parallel lines and planes. To counteract this problem we choose
the cost function described in [6] (the properties of this cost function are
further explored in [6]).
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FI1cURE 2. Using a direct proximity match between objects
in the example scene, the green lines are correctly matched,
the black lines are incorrectly matched. In this case the
method produces 11 out of 22 correct matches

Consider first two arbitrary objects in 3D space represented as O; and
O; in our conformal model. As in [10] we will extract the rotor R;; that takes
one object O; to another O;. Note that the objects will have an orientation
(sign), and the rotor extraction will be orientation dependent. Once we have
our rotor R between our conformal objects, the next step is to use this rotor
to define a cost C' as a function of this rotor:

CR)=(R-1)(R—=1))o+((R-e)(R-€) )o (1)
where (X), indicates the r-grade part of X. Equipped with this idea of close-
ness of objects, for a given i, a query object O; is assigned to each of the
reference objects O; (i.e. this is done for all j), assuming the model and query
sets are spatially close. For each object pair we form the rotor, R;; that takes
the query object to the reference object. The minimum cost assignment is
then taken as the correct match, M;, for that query object

M; = arg min [C(R;;]
J
Repeating this for all 7, we define the total cost of this specific matching by
summing the costs of each object-to-object match

Ctotal = Z C(Rle)

The lower this cost, the better the models are matched. Figure 1 shows an
example scene constructed of two line-based models extracted from a CAD
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drawing, one model is in black and the other in red, the vertices of the models
are also shown but are not used for matching. Figure 2 shows the result of
performing proximity matching on the models, the lines in green are correctly
matched and those in black are incorrectly matched. In this scene 11 of 22
lines are correctly matched by proximity matching.

3. Finding the Rotor Between Two Sets of Matched Objects

Given a set of matches for all object-pairs (under the assumption that the
matching is correct) we need a method for finding the rotor between the two
sets of objects. One technique for doing this is to optimise over our possible
rotors, via minimisation of a cost function. Typically in CGA we parameterise
and optimise over rotors in bivector space. Using the above cost metric it is
shown in [6] that given correct matching we are able to perform non-linear
convex optimisation and produce the correct rotation and displacement rotor.
The downside of estimated gradient non-linear convex optimisation methods
is that they typically require many cost function evaluations to reach the
minimum, and when we have large numbers of objects in each model the
optimisation can be very slow.

Here we propose an alternative Algorithm 1, based on directly using the
rotors that we calculate between matched objects as part of the proximity
matching procedure:

Algorithm 1: Direct rotor estimation algorithm

Result: R,

R, =1 // The running estimate of the rotor;

for j < 0 to max iterations do
Rs =1 // Keep track of the rotor as we iterate over all the
objects;
for m < 0 to N matches do
Un = ReQmRe // Transform query object @, by the
current rotor Rg;
R, = rotor between objects(U,,,0,,) // R from transformed
object U, to matched ref object O,,;
R, = /R, /] Take the square root of the match rotor;
R. = R.R. // Update the running estimate to use R;
R = R.R;s // Update the rotor for this iteration;

end

if R, =1 then

return R, // Terminate when the full loop over the objects
comes back on itself;

end

end

This algorithm does not require the computing of an explicit cost func-
tion, it is heuristic driven and has not been proven to converge. In practice
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FI1GURE 3. The blue model is the estimated transformation
from the set of red lines to the set of black lines (see Fig. 1)
given the starting proximity match using the non linear op-
timisation method. Given an initial proximity matching (see
Fig. 2), the rotor found by non-linear optimisation still puts
the models in close proximity even if the initial matching is
not perfect

however we have found it to perform well. In the case of a fully correct match-
ing, the rotor that is found, for both the non-linear optimisation algorithm
and this direct algorithm, is indeed the rotor that takes our query model to
our reference model. In the case of a partially incorrect initial matching, the
rotor that is produced typically takes the query model closer to the reference
model but does not produce the true rotor as shown in Figs. 3 and 4.

4. Iterative Matching and Rotor Estimation

Armed with rotor estimation techniques for correctly matched reference and
query models we will move to more difficult situations. Consider the general
case where the query and reference models are not in close proximity. In this
situation we first make an initial guess at the object matches and estimate the
rotor between the query and reference models using the methods described
in the previous section. If our initial matching was not completely correct we
will not estimate the correct rotor between the objects, the resultant rotor
will have some error but will likely be relatively close to the true rotor. If
we transform our query model by the estimated rotor we can use proximity
matching between the transformed query model and the reference to get a
better set of object matches. The process is then repeated so that the number
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FIGURE 4. As in Figure 3, the blue model is the estimated
transformation from the red to the black given the starting
proximity match, in this case using the direct rotor esti-
mation algorithm. The direct rotor estimation algorithm in
practice produces rotors of similar quality to the non-linear
optimiser

of incorrect matches decreases with each iteration and the process converges.
The iterative algorithm is summarised in the following:

1.

Each object in the query model is given a match in the reference model
(there are a number of ways of making this initial guess)

Calculate the rotor between the models assuming the current matches
are correct, this can be done by running an optimisation algorithm to
completion or by using the direct method mentioned in the previous
section.

. Transform the query model by applying the rotor calculated in the pre-

vious step

. Each object in the transformed query model is compared to each object

in the reference model, the match with the minimum cost according to
our chosen cost function is accepted

If there is no change in the matches terminate the algorithm otherwise
go back to step (2)

This algorithm correctly handles partially incorrect initial matching be-

tween models, and iterates towards the answer in relatively few steps. It is
also deterministic, each step is a function only of the current state and it has
fixed termination criteria that clearly indicate when it has completed. In its
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FIGURE 5. As our model contains a lot of symmetry the
iterative algorithm is prone to getting stuck in local minima.
As in Fig. 1 the black model is our reference and the blue is
our estimate, the red lines are not shown for clarity. Here the
blue model is at the final output of the iterative matching
algorithm. 17 of 22 matches are correct but the algorithm is
stuck in a local minima

current state this algorithm is an extension of the well known iterative clos-
est point (ICP) algorithm [3,11] routinely used for point cloud registration.
As with the ICP algorithm, a significant problem arises when we consider
cases in which large fractions of the initial matches are incorrect, resulting
in convergence to an incorrect set of correspondences. With our geometric
algorithm we additionally see local minima arise when models contain many
parallel lines or planes and computationally we run into trouble when models
contain a very large number of geometric objects. In these cases the algorithm
may fail to converge to the true rotor and instead become stuck in a local
minimum even though some matches are correct. Real manufactured objects
or buildings typically contain many parallel faces and lines and as such we
need a way to overcome these limitations. Figure 5 shows an example of the
previously studied scene stuck in a local minima, in this case there are 17 of
22 lines correctly matched but the algorithm will not progress further.

5. Incorporating Sampling

To counteract the local minima issue, we modify our procedure to incorporate
sampling in a RANSAC-like [7] algorithm. This particular approach is chosen
as it is readily adapted to parallel processing and is well suited to handling
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large numbers of incorrect matches. After each matching stage in the previous
algorithm we randomly and uniformly sample m lots of £ matches. Each of
these m match sets then propagates through the rotor estimation algorithm
and each produces a candidate rotor for the model matching and a cost
associated with that rotor for these k£ matches. The rotor produced by the
sample with the minimum cost is then chosen and used to transform the
entire query model. This repeats for a fixed number of iterations or until
some cost threshold is reached.
The full REFORM algorithm is now summarised as follows:
1. Each object in the query model is given a match in the reference model
(there are a number of ways of making this initial guess)
2. Given our matches, randomly select multiple sample subsets
3. For a given sampled subset calculate the rotor that leads to minimum
total cost between the subset objects as in Eq. (1)
4. Accept the rotor from the sample that gives the minimum total cost
between the subset objects
5. Update our query model position by applying the estimated rotor
6. Each object in the query model is compared to each object in the ref-
erence model, the match with the minimum cost is accepted
7. Check termination criteria, go back to step 2.

The disadvantage of moving to a sampling-based model is that we no
longer have fixed termination criteria—just because the matches have not
changed over multiple sampling and optimisation steps, does not mean they
will not change as a result of the next one. On the other hand, the rotor
estimation and cost calculation for each sample is independent of every other
sample allowing for easy parallelisation. The subsampling also allows the algo-
rithm to jump out of local minima by sampling correct matches whose effect
would normally be swamped by the mass of incorrect matches. A CUDA
implementation of the algorithm has been written, leveraging the massive
parallelisation capability afforded by modern graphics cards and is incorpo-
rated in the clifford python package [1].

6. Matching Scenes of Mixed Geometric Primitives

3D models of objects are typically constructed from collections of geomet-
ric objects, planes, lines and points. While traditional matching techniques
typically use points from meshes [8] or points derived from the intersection
of planes/lines [4], REFORM allows us to incorporate multiple types of 3D
object together into the same matching and rotation/translation estimation
framework, Fig. 6 shows an example of two matching synthetic models com-
posed of both lines and planes, in this example REFORM handles both types
of object transparently.
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FIGURE 6. Sets of synthetic random lines and planes in red
along with their transformation in black to be matched. RE-
FORM handles both in the same framework and correctly
extracts the rotor between them

7. Conclusions

In this paper we have presented an algorithm for registering models com-
posed of geometric primitives. This algorithm extends the range of traditional
matching and registration algorithms from point cloud only techniques to in-
corporate higher grade geometric objects. The solution is available in the
clifford [1] python package with both CPU and GPU implementations.
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