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1 Introduction

The empirical probability density function (EPDF) or more commonly referred to as histogram, is
one of the simplest tools available to estimate the density of any given data set, yet remains one of
the most reliable instruments for statisticians. In virtually any field of statistics the EPDF is used
to verify a new representation of a density via random sampling, or to get a first attempt at the
true distribution of the data at hand.

A number of different approximations for the empirical density function have existed for years
(Bentley,1980), along with efficient implementations. For example, Duong (2017) provided a kernel
density estimator for higher dimensional data with the ks package.

Despite the widespread use of approximations, implementations were available for limited di-
mensions only (Warnes et al., 2016; Eklund, 2017; Sievert, 2018). However, many problems are
not limited in dimensionality, and require a flexible approach which can be used regardless of the
number of variables. Therefore, we have developed an R package (R Development Core Team,
2017) which offers a density function for data sets of arbitrary dimension. The package is named
MEPDF (Wiegand and Nadarajah, 2017).

In Section 2, we elaborate on the algorithm for computing the EPDF. Thereafter, we provide an
overview of the functionality of the package and provide a number of examples for different possible
configurations. In Section 4, we compare our method with previously existing ones, in terms of
runtimes and accuracy, and discuss benefits and disadvantages of the methods. Section 5 discusses
three dimensional examples. We close this note with conclusions on what we have accomplished.

2 Method

Let us assume we have a data set of dimension n and sample size N . The first step is to determine
what the domain of the density function will look like. This means we assume an n dimensional
hyperrectangle defined by a minimum and a maximum corner point:

R =
{
x ∈ R

∣∣xmin
i ≤ xi ≤ xmax

i , ∀i = 1, . . . , n
}
.
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This domain is then subdivided into cells of dimensions g = (g1, . . . , gn) ∈ R+, so that we have
a number of

(
xmax
i − xmin

i

)
/gi cells making up side i of the domain. Each of these cells can be

once again defined by an upper and lower end point, pmin
j and pmax

j for all j = 1, . . . , g1g2 · · · gn.

For any x ∈ Rn, we define pmin(x) and pmax(x) to be the corners of the smallest cell containing x.
We can then define the cell counts as follows:

c(x) = #
{
y
∣∣pmin

j (x)i ≤ yi ≤ pmax
j (x)i,∀i = 1, . . . , n

}
.

With this number we can scale for the sample size and cell dimension, and are left with the
density estimator:

f̂(x) =
c(x)

n

{
n∏

i=1

[
pmax(x)i − pmin(x)i

]} .

Since the method is rather simplistic (essentially the multivariate generalisation of the well-
known histogram), and heavily dependent on the distribution of the sample at hand, there may be
grid entries for which there is no value observed (for example, no sample happens to fall within
the respective grid), thus returning an estimate of P(x) = 0. To offer a smoothing option to the
users of this package, we introduce a technique borrowing heavily from kernel density estimators,
yet modify the principle to suit our estimation approach. Essentially, we pick any given non-zero
grid value, and distribute the value across adjacent cells. If d ∈ N is the dimension of the data set,
p the initial estimate and #r ∈ N the number of “spheres” around the central grid cell, then we
can express the neighbouring values as follows:

pr =

p
#r

(2r + 1)d − (2r − 1)d
.

This means we divide the initial value evenly across each additional layer, and then across each cell
within each layer around a central grid cell. This is then repeated for all non-zero grid cells, and
the results are saved in a new grid of equal size. The function can be called via pseudokernel,
which has the same input parameters as the standard grid method, with the optional parameter
rings, indicating the amount of layers around each cell. This approach is akin to the averaged
shifted histograms (ASH) introduced by Scott (1992) of which implementations are available for up
to two dimensions (Scott, 2015). Once again we offer a multivariate version of a similar approach,
to make the method more accessible to problems of arbitrary dimensions.

3 Implementation

As with the univariate case, the multivariate EPDF rests on the organization of the data domain
into sections and counting the contained data sample fraction. In higher dimensions these sections
become cells of the respective dimension as described in Section 2. Each function therefore begins
with setting up a grid, based on user specifications.

R> data <- mvrnorm(100000, mu = c(0, 0), Sigma = diag(2))

R> density <- epdf(data = data,

+ min.corner = c(-4, -4),

2



+ max.corner = c(4, 4),

+ main.gridsize = c(0.05, 0.05))

R> data2 <- exp(data)

R> density2 <- epdf(data = data2,

+ min.corner = c(0, 0),

+ max.corner = c(0.25, 0.25),

+ main.gridsize = c(0.025, 0.025))

In the code above, we describe the general usage of a single grid EPDF. The examples given
use bivariate, normally distributed and log-normally distributed data.

X−Value

−4

−2

0

2

4

Y−
Va

lu
e

−4

−2

0

2

4

E
P

D
F−Value

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

X−V
alu

e

0.00

0.05

0.10

0.15

0.20

0.25

Y−Value

0.00

0.05

0.10

0.15

0.20

0.25

E
P

D
F

−Value

5

10

15

20

5

10

15

20

Figure 1: Single grid EPDFs: normal distribution (left) and log-normal distribution (right).

The code produces the EPDF density with a cropped domain between the points (−4,−4) and
(4, 4) as well as (0, 0) and (0.25, 0.25). The cells are defined via the argument main.gridsize, giving
the cell dimension, which are set to be squares with side lengths 0.05 and 0.025. The visualisation
of the output in a three dimensional surface is shown in Figure 1.

For arbitrary data samples, not all regions of the plot require the same level of cell resolution.
We have therefore added an option to superimpose regions of greater or lesser accuracy on top of
one another. The EPDF function can therefore be called with an additional argument rescubes.
This is a list of lower and upper corners of the additional grid as well as the respective grid sizes.
Even though we have used cells of same side length in this example, rectangular cells are possible
by specifying different side lengths.

In the code below, we describe how to call a grid with multiple resolutions on top of one another.
The data set is once again a multivariate normally distributed one.

R> a <- list(mn = c(-1, -1),

+ mx = c(1, 1),

+ grid.size = c(0.05, 0.05))

R> b <- list(mn = c(-2, -2),
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+ mx = c(2, 2),

+ grid.size = c(0.1, 0.1))

R> cubes <- list(a, b)

R> pdf <- epdf(data = data,

+ max.corner = c(4, 4),

+ min.corner = c(-4, -4),

+ main.gridsize = c(0.2, 0.2),

+ rescubes = cubes)

While the main grid has the coarse resolution of 1 × 1, we add two more grids on top of the
existing one, see Figure 2. The first grid stretches from (−2,−2) to (2, 2) with resolution 0.1× 0.1
and the second from (−1,−1) to (1, 1) with resolution 0.05× 0.05.
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Figure 2: Normal distribution with two additional grids.

Notice that hyper rectangles, if added later to the argument, stand higher in the evaluation
hierarchy. Thus if two additional grids overlap, the one to further down in the rescubes argument
will be evaluated.

4 Comparison to other approximations

Lee and Joe (2017) introduced efficient sorting algorithms for bivariate and trivariate data samples,
to compute the cumulative distribution function (CDF) at each sample point. We implemented the
bivariate version of the modified sorting algorithm, and have tested the runtime and accuracy. We
adapted the grid approach in Section 2 to compute the CDF, to retrieve comparable results (van
der Vaart, 1998; Coles, 2001; Madsen et al., 2006).

We generated random samples of a bivariate standard normal distribution for a number of
different grid sizes (with 20 repetitions for each sample size, and grid size). To compare the results
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we have computed the approximated CDF at the sample point, both via the quicksort algorithm
and the grid method. The deviation is computed via the mean absolute error, as well as the error
average error measured at every grid node (MGE):

MAE =
1

nm

n∑
i=1

m∑
j=1

∣∣∣f (x(i,j))− f̂ (x(i,j))∣∣∣ ,
MGE =

1

N

N∑
i=1

∣∣∣f (xi)− f̂ (xi)
∣∣∣ .

The points xi for i + 1, . . . , N correspond to the sample points, whereas x(i,j) denote the
grid points between [−2.5,−2.5] and [2.5, 2.5] equidistantly distributed for i = 1, . . . , n and m =
1, . . . ,m. Due to the square area of interest and the grid shape in this case n = m holds. Table 1
provides a collection of the outcomes. While we did anticipate the grid algorithm to be inherently
more dependent on the grid size, and potentially slower than the more refined and optimized quick-
sort algorithm, we call to mind one of the main benefits of the grid. The set up of the grid and
computation of each value takes up more time than just sorting the data frame, but the evaluation
for a single point is almost instant once the matrix of values has been set up. To make the package
more user-friendly we have added Scott’s optimal bandwidth approximation (Scott, 1992) as the
default grid size rule:

h∗k = 2 · 31/(2+dπd/(4+2d)σ̂kn
−1/(2+d). (1)

For data of dimension d and sample size n as well as the empirical variance of the kth variable σ̂k
2,

the optimal grid size along the kth dimension can be described as in (1).
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Sample size Grid size Setup time Ev. time MAE MGE
G
ri
d

m
e
th

o
d

100 0.2 0.0000 0.0000 0.05494155 0.01363199
0.1 0.0000 0.0000 0.02559191 0.01062833
0.05 0.0000 0.0000 0.01630517 0.00814666
0.01 0.0700 0.0100 0.03091841 0.01841441

1000 0.2 0.0400 0.0300 0.02400647 0.00923922
0.1 0.0300 0.0300 0.02103825 0.00587147
0.05 0.0400 0.0300 0.01104718 0.00489833
0.01 0.01021250 0.00250230

10000 0.2 0.3300 0.3000 0.02837931 0.01012616
0.1 0.4120 0.3460 0.01358187 0.00587147
0.05 0.3710 0.3060 0.00677197 0.00312645
0.01 0.5340 0.6080 0.00245682 0.00119964

100000 0.2 3.4210 2.9190 0.02872715 0.00974854
0.1 3.4110 3.1930 0.01381017 0.00511228
0.05 3.5360 3.1770 0.00868906 0.00312839
0.01 4.5940 3.6480 0.00146289 0.00093547

Computation time

Q
S

m
e
th

o
d 100 - 0.0197 0.04008379 -

1000 - 0.0686 0.01158748 -
10000 - 1.1554 0.00606940 -
100000 - 43.3694 0.00488396 -

Table 1: Runtime and error measure comparison for different methods and sample sizes.

Contrary to our anticipation, the grid method we have proposed performs mostly on par with,
or better than the quicksort estimation. This is heavily dependent on the chosen gridsize, as large
cells might squander the amount information provided by the sample, yet small cells might distort
the true function we are estimating. Thus the results for the grid method are better than the
quicksort algorithms performance, yet only when choosing the adequate cell size for the sample size
at hand. The difference in computation time between the quicksort algorithm and the grid method
seems to be marginal for most of the smaller sample sizes, as both computational efforts seem to
increase linearly. However, for the highest sample size of n = 100000 the grid method performs
very clearly faster, leading us to believe that the computational effort for the quicksort method
exceeds linearity.

Another observation is that the mean grid error is considerably lower than the mean error at
the sample points. We attribute this to the fact that the normal distribution does not change much
outside the 3σ area around the mean value. Therefore, the CDF values will not change much from
0 or 1, depending on which corner of the observed area we are on.

More importantly, the grid gives opportunity to evaluate the CDF for arbitrary values, whereas
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sorting algorithms by nature can only make a statement on values at the individual sample points.
The grid can therefore to some degree be used to interpolate between values, or to extrapolate
beyond the samples, depending on the choice of grid sizes.

As the grid has to be set up only once, and the evaluation at arbitrary points is sufficiently fast,
we believe this algorithm still has its place as benchmark or initial estimator when analyzing the
distribution of data samples.

Lastly, we highlight the differences between the standard grid method, and the pseudo-kernel
estimator we provide in this package. Due to the smoothing properties of this approach, the function
can be particularly helpful for small sample sizes, which would otherwise give an incomplete picture
of the underlying distribution.
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Figure 3: A two dimensional comparison between the standard, and pseudo-kernel options.

To visualise the differences between the grid method with and without the additional distri-
bution of the cell values, we have provided a standard example with the two dimensional normal
distribution of the comparatively low sample size n = 100. In Figure 3, we see a two dimensional
colour plot of the results for both estimators side-by-side, as well as a three dimensional version
of the same results in Figure 4. The functions are a simple result of calling the pseudokernel

package.

R> data <- mvrnorm(n = 100, mean = rep(0,2), sigma = diag(2))

R> est <- pseudokernel(data = data, mn = c(-6,-6),mx = c(6,6),

+ grid.sizes = c(0.5,0.5), rings = 1)

R> image2D(est$grid1)

R> image2D(est$grid2)
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Figure 4: A three dimensional comparison between the standard, and pseudo-kernel options.

As we can clearly see, the addition of layers around the non-zero cells provides a closer ap-
proximation to the true distribution. Especially around the outer edges, we get a smooth gradient
instead of the previous abrupt decline to zero values in the standard grid. Furthermore, we can
detect zero-value grid points in the two dimensional plots, where the sample at hand did not hap-
pen to have any observations. This quite obviously stands in contrast to the real distribution, thus
mandating a corrective measure. With a single additional distribution layer, these gaps can be
corrected as we see in the second picture of Figure 3.

5 Three dimensional examples

To highlight the versatility of the proposed estimation, we introduce some example applications
of three dimensions in this section. In Figure 5, we can see the empirical density for a three
dimensional normal distribution on the left hand side, with a cube size of 0.2. Additionally, we like
to emphasize the practical applications of the estimation technique. Therefore we have tested the
empirical density on a real life data set. In the MASS library, we find the gilgais data set, listing
parameters of soil properties in New South Wales, Australia.
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Figure 5: Crosssection of the three dimensional empirical PDF for a sampled three dimensional
normal sample and data from the gilgais stock data set.

In Figure 5 on the right hand side, we have chosen the pH level of the soil in depths of 0-10cm,
30-40cm and 80-90cm. The data provides three dimensions for the empirical density example.

Lastly, for the three dimensional examples, we wish to give the reader an impression of the
computational effort and performance behaviour of the grid method in higher dimensions. We have
therefore repeated the experiment for both CDF and PDF of the three dimensional multivariate
distribution in Table 2, and have recorded the mean absolute error of the estimation, along with the
time required for the setup of the grid, and the evaluation for all the sample values. We see much
of the same behaviour in terms of grid size and sample size, where we see the performance changing
across grid sizes, if the mesh is chosen to fine. However, we can clearly see that the computation
time remains not impacted by the grid size, as well as linear in relation to the input sample size.

9



Sample size Grid size Setup time Ev. time MAE (PDF) MAE (CDF)

1000 1 0.017 0.010 0.006853 0.142104
0.5 0.019 0.010 0.011401 0.059951
0.2 0.021 0.011 0.034676 0.032020
0.1 0.020 0.009 0.038892 0.008663

10000 1 0.222 0.101 0.006039 0.134859
0.5 0.185 0.095 0.004254 0.057359
0.2 0.175 0.106 0.012245 0.020445
0.1 0.182 0.089 0.032079 0.008012

100000 1 1.969 1.104 0.006011 0.130826
0.5 1.718 0.955 0.003181 0.060196
0.2 2.301 0.926 0.004022 0.021299
0.1 1.901 0.932 0.010923 0.009881

1000000 1 19.640 10.801 0.005981 0.131438
0.5 20.532 10.252 0.003036 0.059838
0.2 19.604 10.469 0.001708 0.022123
0.1 19.111 10.487 0.003593 0.010352

Table 2: Error values and computation times for the grid method in three dimensions.

6 Conclusions

With the MEPDF (Wiegand and Nadarajah, 2017) package, which can be found on the CRAN
repository, we have provided an implementation for empirical density functions of arbitrary dimen-
sion. This gives a standardized tool with all necessary functions to work with higher dimensional
data sets.

In Section 4, we have compared the grid algorithm to recent optimized sorting algorithms in
terms of runtimes and accuracy. The results and wide range of applications for the grid algorithm
have led us to believe that this very simple algorithm remains relevant, providing a fast and simple
estimate with the right implementation.

While the quicksort algorithm serves as an example of a more sophisticated algorithm, it is by
no means as versatile. Due to the nature of the quicksort algorithm, it can only give evaluations of
the empirical CDF at the sample sizes, not allowing for results between the samples. Additionally,
the algorithm needs readjusting, or even a completely new conceptualisation for higher dimensions.
The grid approach on the other hand can easily be transferred to arbitrary dimensions, or be
modified to compute CDFs instead of probabilities.

The grid method can be very easily parallelised as every cell is independent (in fact we will add
the option to the package as a built-in feature), whereas the quick sort algorithm is intrinsically
sequential (every new sorting decision is dependent on the previous one) and cannot be parallelised.
This offers a decisive advantage to the grid method on a technical level.
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