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Abstract—A thin-film CMOS MEMS thermal sensor has 

been designed, fabricated and tested with the addition of 

through-membrane isolating holes. These holes have been 

shown to enhance the discrimination towards gases with 

differing thermal conductivity in the presence of flow. Using 

three on-membrane resistors as inputs, linear statistical 

methods alongside Artificial Neural Network pattern 

recognition techniques have been investigated for decoupling 

the two parameters of thermal conductivity and flow rate using 

a single sensor. In addition to this, the addition of the membrane 

holes increases the sensitivity towards flow rate by 10 times and 

the sensitivity towards thermal conductivity by 2 times. This 

sensor design coupled with well-known post-processing 

techniques will enable a new generation of multi-parameter 

sensing solutions. 

Keywords— MEMS; flow sensor; thermal conductivity sensor; 

micro-fabrication; artificial neural networks. 

I. INTRODUCTION 

With the discovery and wide-spread use of 

micromachining techniques, thermal based sensors for the 

measurement of physical phenomena have found themselves 

in high demand across a multitude of industrial applications. 

This is thanks to their ability of implementation in a wide 

range of applications such as flow, thermal conductivity, 

diffusivity, heat capacity and pressure, among others. With 

their commonplace and continued research, these devices are 

becoming smaller, cheaper, more power efficient, more 

sensitive, more accurate and smarter. 

There has been extensive research on the development of 

micromachined flow sensors and a detailed review can be 

found here [1]. In addition to this, micromachined flow 

sensors can be used to detect thermal properties of fluids such 

as thermal conductivity and thermal diffusivity using 

transient excitation such as the 3ω method [2], [3]. 

Simultaneous thermal conductivity and thermal diffusivity 

sensing has also been shown [4].  

Using micromachined thermal sensors for the 

measurement of thermal conductivity has attracted recent 

attention over their more researched counterparts of 

calorimetric or metal oxide gas sensors. This is due to their 

ability to take measurements more quickly and that they do 

not rely on a reaction with a catalyst. There has been work 

looking to exploit the benefits of these sensors for gas 

chromatography  [5], and for gas discrimination through DC 

and transient excitation [6], [7]. Despite these recent 

advancements, there is still little research into solving the 

problem of dual flow and thermal conductivity sensing, due 

to the high interdependence of both parameters on sensor 

response. This has been investigated by combing results from 

several sensors in conjunction with complicated data 

acquisition [8]. [9] used a calorimetric flow sensor to measure 

thermal gas properties in non-stagnant flow. However, this 

method only works in previously calculated regions of flow 

independence.  

The fabricated devices in this report incorporate holes 

through the membrane on either side of the resistor that 

isolate the resistor. This new design provides multiple 

benefits that include: (i) the ability to negate front and back-

side pressure differences, resulting in a large reduction in the 

number of catastrophic membrane breakages during 

fabrication and, especially, packaging, hence increasing 

through yield of the final device, (ii) minimising conductive 

heat losses through the membrane, thus improving the 

electro-thermal efficiency and power consumption of the 

device, (iii) minimising conduction through the membrane 

which also forces more interaction between the measuring 

resistors and the fluid flowing, and (iv) creating an opening 

to the cavity below the membrane, resulting in twice the 

exposure to the gas due exposure and thermal heat losses 

from both sides of the resistor. 

Smart sensors and sensor systems involve so many 

variables that it isn’t practical to seek a hard, analytical model 

explicitly relating all the parameters. Many such methods for 

providing solutions have been proposed, with particular 

interest and success coming from linear statistical methods, 

such as Principal Component Regression (PCR) and Partial 

Least Squares Regression (PLSR). Some examples of such 

techniques in order to discriminate substances from a variety 

of inputs include [10], [11], with an overview of the technique 

and its diversity in applications here [12]. Artificial Neural 

Networks (ANNs) are another desirable tool used for 

powerful pattern recognition and data discrimination. This 

has led to the widespread use of ANNs for solving multi-

variable functions, and more specifically for use with arrays 

of sensors. Some examples include electronic noses [13], 
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[14], where a combination of metal oxide sensors are used in 

conjunction with one another, an optical sensor array for 

identifying multiple analytes [15], the use of impedance 

spectroscopy for the classification of wine [16], decoupling 

carbon monoxide and methane using platinum and tin dioxide 

sensors [17] and more recently, gas discrimination using a 

metal oxide-modified graphene-based sensor array [18]. 

In this work, we report on linear statistical methods Partial 

Least Squares Regression (PLSR) and Principal Component 

Analysis (PCR) as well as an ANN approach for processing 

signals that arise from three resistors located in the membrane 

of a CMOS MEMS thermal flow sensor. The thermal flow 

sensor incorporates isolating holes through the membrane in 

order to enhance the gas discrimination. These post-

processing techniques are used to de-couple the closely 

related parameters of thermal conductivity and flow rate. A 

sensor that can successfully discriminate between these 

parameters will be in high demand throughout industrial 

applications and this paper serves to pave the way for the 

combination of a single-membrane, low-cost, low-power 

sensor and smart post-processing techniques for a new 

generation of multi-parameter sensing solutions. 

 

II. EXPERIMENTAL DETAILS 

A. Sensor Design & Fabrication 
 

The sensors were designed using Cadence Virtuoso (IC 

5.1.4) and commercially fabricated with a 1.0 µm standard 

CMOS process. The backside of the chip was etched using 

Deep Reactive Ion Etching (DRIE) in order to create multiple 

thin-film membranes on one sensor, benefiting from 

enhanced thermal isolation and multiple independent sensors 

on one device.  An example of one of the chips is shown in 

Figure 1 with its cross-section schematically depicted in 

Figure 2. For this work, two membranes on the same chip that 

can be run independently were investigated. Both designs 

include 3 parallel tungsten heating resistors of identical 

dimensions and separation connected to wire bonding pads 

with 20 µm tracks. An extra processing level was 

incorporated in order to add holes through the thin-film 

membrane in one of these designs. These holes are 

incorporated for three reasons: (i) to reduce the chance of 

catastrophic breakage due to pressure difference below and 

above the membrane, (ii) to isolate the heating resistor and 

reduce losses through conduction and (iii) to force more 

interaction with the passing medium, i.e. increased levels of 

convection with the flowing gas. The two designs are called 

‘no holes’ (reference design), and ‘holes’ (heating resistor 

isolation through holes on both sides of central resistor) 

where both designs can be seen in Figure 1. The ‘holes’ 

design contains 4 holes in parallel on both sides of the central 

heater, ensuring full isolation. All membrane holes have the 

same geometry of 10 µm × 200 µm with rounded edges to 

avoid stress concentration factors. Using a Kulicke and Soffa 

wedge bonder, the sensors were bonded onto Dual in Line 

(DIL8) packages, raised and filled to ensure a planar surface 

and integrated into an in-house 3D-printed channel of cross-

sectional area 1.5 mm × 2.5 mm. A detailed review of the 

fabrication technology, sensors and their packaging can be 

found here [19]. 

 

Figure 1. Optical micrograph of one of the sensor chips – die dimensions 

of 2.0 mm × 2.0 mm. 

 

 

Figure 2. A cross-section of the layer technology used in fabrication for 

the design with membrane holes. 

 

Figure 3. A schematic of the experimental setup. 

 

RH 
No Holes 

Design 

Holes 

Design 

RU 

RD 

FLOW 



B. Measuring Setup & Testing Protocol 

Measurements were performed in two separate 

experimental protocols. Firstly, the electro-thermal 

characterisation of the device heaters was performed between 

25 °C and 300 °C using a Cascade probe station and hot chuck 

with Keithley source meters for data acquisition. This 

enabled the collection of important material properties such 

as the Temperature Coefficients of Resistance (TCR) and 

electrothermal efficiency. For more detail on the details of 

electrothermal characterisation please refer to [19]. Using the 

information from this characterisation, the measurements 

with flow and CO2 were carried out using an array of Alicat 

Mass Flow Controllers (MFC), alongside an array of Keithley 

2410 Source Meter Units (SMU) for data acquisition of the 

three resistors. CO2 was chosen due to its high importance 

and demand in consumer products relating to human health, 

such as air quality monitoring. A diagrammatic 

representation of the experimental setup is displayed in 

Figure 3. Each MFC was located after a gas cylinder to 

control the amount of CO2 and air, which was subsequently 

fed into a mixing valve before the flow tunnel or order to vary 

the CO2 concentration. Three packaged devices (three of each 

design) were subsequently exposed to a flow rate from 0 to 

240 SCCM in steps of 40 SCCM in five different 

concentrations of CO2 in air (0%, 5%, 10%, 15%, 20%). Such 

a flow range was chosen to ensure laminar behaviour was 

maintained in the channel. A bias current of 8 mA was 

applied to the central resistor for all experiments. The three 

resistors RH, RU and RD, where subscripts H, U and D 

represent the heater, upstream resistor and the downstream 

resistor, respectively, are measured and the change in voltage 

of each VH, VU and VD are considered as the input variables 

for the post-processing techniques. 

C. Linear Statistical Methods 

Linear statistical methods were employed in order to test 

whether they can establish a predictive model from a set of 

independent variables (resistors) onto another set of 

continuous variables (targets). Partial Least Squares 

Regression (PLSR) and Principal Components Regression 

(PCR) are both methods that are used to model a response 

variable with many input variables, when the input variables 

are highly correlated or collinear. Both techniques construct 

new predictive components which are linear combinations of 

the original input variables, however the formation of these 

components is different and both methods are employed in 

order to see which is the most effective at mapping the 

behavior correctly. The main difference between the two 

techniques is that PCR does not consider the target variable 

to explain observed variability in the inputs, whereas PLSR 

does, thus often leading to an adequate fit in fewer 

components. PLSR assumes that the predictive components 

account for most of the variation measured by the original 

variables X(n,p), that are linked to the response Y(n,1) through 

the linear relationship of Y = α + Xβ + ϴ where the unknown 

regression parameters are α and β and ϴ is the error term. 

PLSR combines the properties of multiple linear regression 

and principal component analysis, producing a technique that 

separates sample noise and makes linear combinations in a 

dependent concentration matrix. It is widely used as the most 

effective linear statistical method for chemometrics and so is 

considered the best technique to use [20].  

D. Network Architecture 

Artificial Neural Networks (ANNs) consist of an 

interconnected web of parallel, adaptive elements, of which 

the architecture is based upon the physical biological system, 

namely on neurons and their interconnections, i.e. synaptic 

links. In our case, ANNs have been employed in order to de-

couple the closely related parameters of flow and thermal 

conductivity. A network of three layers is chosen, due to its 

previous success in multi-parameter gas sensing and that 

adopting this format has enough degrees of freedom to solve 

any problem [21]. This three-layer network was implemented 

in order to model our 3-element system, where the input layer 

contains 3 nodes that correspond to each of the on-membrane 

resistor outputs VH, VU and VD. Each input node is connected 

to 10 nodes in the hidden layer, in which the elements are to 

be experimentally determined during the training phase. The 

outer layer consists of 2 nodes that correlate to the 2 

parameters which we want to identify, namely the flow rate 

(SCCM) and thermal conductivity (% CO2). The network 

consists of 3 input nodes that are fully connected to 10 

neurons in the hidden layer, which are fully connected to the 

two output nodes. A graphical depiction of this network 

architecture can be found in Figure 4. 

It is known that the learning algorithms of the nodes 

determine the performance of any implemented network. 

There are a multitude of different algorithms, and we have 

chosen the widely used back-propagation method. This 

method is chosen because it is fast, simple, flexible and 

requires no previous knowledge about the network, thus only 

needing to tune number of inputs. Above these reasons, it is 

used because it is the standardly used method, improving 

applicability and convenience.  

 
 

 
Figure 4. A diagram of the 3-layer network incorporated for 3 inputs and 

2 outputs fully connected with 10 neurons in the hidden layer. 
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I.  RESULTS & DISCUSSION 

A. Response to Flow & Thermal Conductivity 

The packaged devices were exposed to a flow rate from 0 

to 240 SCCM in steps of 40 SCCM. This flow rate range was 

chosen due to turbulent flow being produced above this value, 

resulting in more heat extracted from the heater yielding an 

unpredictable response. The range is used to evaluate the 

laminar region, which could easily be expanded, for example 

by enlarging the flow tunnel dimensions. Figure 5 shows the 

enhanced gas discrimination shown between air and 20% 

CO2 for the designs with and without holes for all three 

resistors. All values of voltage change were normalised by 

the base resistance by taking the voltage change with respect 

to no flow. It should be noted that the plots also show the 

absolute values of voltage change. Figure 5 (a) shows the 

voltage change of the heater VH, which shows a higher 

sensitivity with flow as well as clear differentiation between 

the line of air and 20% CO2, yielding strong discrimination 

between gases even with the presence of flow. Figure 5 (b) is 

the voltage change in the downstream resistor VD. As the peak 

of the thermal profile is shifted through forced convection, 

the voltage change is initially negative. This effect is 

significantly increased with the addition of membrane holes, 

resulting in the increased calorimetric benefit as well as 

providing more identifiable and detectable features for multi 

parameter data analysis, specifically with regards to flow rate 

as this feature is solely due to fluid flow and not its thermal 

conductivity. Finally, Figure 5 (c) shows the upstream 

resistor VU, providing another parameter with higher 

sensitivity to flow and better gas discrimination.  

Using membrane holes has vastly increased the selectivity 

to thermal conductivity with the presence of flow. Using this 

design and all the improved gas selectivity responses, linear 

statistical methods and ANNs will be used to try and 

successfully identify and discriminate these two parameters. 

B. Data Pre-Processing 

It is important to examine the data that is generated by the 

array of three resistors in order to make the most informed 

choice of pre-processing method. Informed decisions can be 

designed to help analyze the data for our specific problem, 

such as compensating for fluctuations in the vectors. There 

were two pre-processing protocols implemented in this work: 

 

a. The input values VH, VU and VD were auto ranged 

in order to make their range from -1 to +1 by 

using the equation [2(V-VMIN)/(VMAX-VMIN)-1].  

 

b. The output values were normalized to U/UMax 

and %CO2/%CO2, Max. Where U refers to the flow 

rate in Standard Cubic Centimeters per Minute 

(SCCM), UMax is the highest value of flow rate, 

%CO2 is the percentage CO2 in air and %CO2, Max 

is the max percentage of CO2 in air. 

 

 These pre-processing techniques will help the 

performance of the multi-variable analysis. Auto-ranging the 

data means that all three sensors are made to be equal 

magnitude, and therefore have equal influence on the 

network. Auto-ranging the inputs whilst also normalizing the 

targets is performed to help set the weights in the neural 

network that will start in this range, yielding quicker and 

better convergence. 

 

 

 

Figure 5. Three plots showing the discrimination between air and 20% 

CO2 after being normalised by base resistance for the designs with double 
holes and without holes for (a) the central resistor, (b) downstream 

resistor and (c) the upstream resistor. 
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Figure 6. The observed responses of the experiment against the fitted 
responses from PLSR and PCR linear correlation methods for flow rate 

outputs.   

Figure 7.. The observed responses of the experiment against the fitted 
responses from PLSR and PCR linear correlation methods for % CO2 outputs.  

  

Figure 8. The experimental target samples against the output from the trained 
neural network for the sensor design ‘holes’. 

Figure 9. The experimental target samples against the output from the trained 
neural network for the sensor design ‘no holes’. 

Table 1. Table showing the results of testing the trained network 1 for the design with no holes. 

TARGET OUTPUT % FS ERROR 
FLOW % CO2 Flow (SCCM) % CO2 Flow % CO2 

40 10 41.95 9.55 0.81 0.45 

40 20 57.44 19.37 7.27 0.63 

160 0 160.22 1.46 0.1 1.46 

160 10 161.03 10.79 0.43 0.79 

120 15 114.92 10.39 2.12 4.61 

80 5 84.3538 9.33 1.81 4.33 

AVERAGE - - 2.09 2.045 

 

Table 2.  Table showing the results of testing the trained network 1 for the design with holes. 

TARGET OUTPUT % FS ERROR 
FLOW % CO2 Flow (SCCM) % CO2 Flow % CO2 

40 10 39.94 8.66 0.025 1.34 

40 20 39.69 20.03 0.13 0.03 

160 0 158.28 1.75 0.72 1.75 

160 10 159.89 9.15 0.046 0.85 

120 15 119.64 13.65 0.15 1.35 

80 5 79.12 4.37 0.37 0.63 

AVERAGE - - 0.24 0.98 
 



C. Linear Statistical Methods 

 

 Two linear statistical methods were investigated to see 

whether they could adequately map the system in order to 

predict the outputs for flow and CO2.  Initially, 3 PLS 

components were calculated and it is shown that using 2 or 3 

components accounts for 99% of the variance shown in the 

inputs whereas 1 component shows 85% variance 

explanation. Therefore, it is known that there is no benefit of 

using 3 components and 2 components are used for the rest 

of the analysis. Using two components for both PLSR and 

PCR, the data of the actual response is plotted against the data 

of the fitted response for the output of flow rate (Figure 6) 

and % CO2 (Figure 7). Both methods show a close 

relationship between the experimental outputs and those 

estimated by the linear methods for flow rate, meaning a good 

prediction of flow rate can be achieved by implementing 

these methods. The R-Squared value for PLSR is 0.9938 and 

is 0.9934 for PCR, resulting in neither method being superior. 

Interestingly, Figure 7 shows that neither method can 

accurately predict the response of CO2 with R-squared values 

of 0.6436 and 0.6179 for PLSR and PCR, respectively. This 

suggests that the mapping is nonlinear, i.e. the principle of 

linear superposition does not apply, which is likely due to the 

strong effect from flow that is highly different for all three  

resistors. It is for this reason that the following investigation 

of using artificial neural networks is carried out. 

 

D.  Implementation of Artificial Neural Network 

 

 An artificial neural network has been employed to de-

couple the closely related parameters of flow rate and thermal 

conductivity, which could not be achieved through linear 

statistical methods. The splitting of data method known as 

‘Training-and-test’ was used due to its extensive use for 

classification and discrimination problems. This method 

divides the available data into two groups. The first group is  

used to train the data using the back-propagation learning 

algorithm whilst the second group is used to test the trained 

data. In our case, 30 samples of the data were used as the 

training set whilst the remaining 6 were used to test the 

network. The Bayesian Regularization training algorithm was 

used due to its ability at good generalization for small noisy 

datasets, with the training stopping according to the adaptive 

weight minimization. After training the network, the sensor 

with holes showed a quicker convergence using 541 iterations 

as opposed to 1021 for the no holes design. The 6 extra 

samples were run through the trained network as testing data. 

The Mean Squared Error (MSE) is the average squared 

difference between the outputs from the tested data through 

the network and the targets. The device with membrane holes 

showed an average MSE of 7.28E-5, whereas the device 

without membrane holes shows an average MSE of 1.13E-2. 

This shows an increase of over 150 times, providing strong 

evidence that the membrane holes provide a superior 

response for enhanced gas discrimination. In addition to this, 

Figure 8 and Figure 9 show the target of these samples plotted 

against the output of the trained neural net. Regression R 

shows the correlation between these outputs and targets and 

the values are 0.99973 and 0.99195 for the sensor designs 

with holes and no holes, respectively. This once again shows 

the added benefit of have membrane holes. Table 1 & Table 

2 show the results of 6 samples used for testing the trained 

network for the designs with no holes and holes respectively. 

Here the network provided a flow rate and percentage CO2 

for previously unseen CO2 concentration and/or flow rates. A 

Full Scale (FS) percentage error has been calculated via the 

difference between the target and network output as a 

percentage of the full reading range (i.e. 240 SCCM). Firstly, 

it is shown that the neural network successfully de-couples 

the two parameters. In addition to this, the addition of 

isolating holes in the membrane has multiplied the accuracy 

of flow measurement by approximately 10 times and the 

percentage CO2 by over 2 times. 

Although discrimination has been displayed, there are 

many aspects that need to be investigated that can further 

optimize this sensing solution. The network is trained on 

relatively few data samples, using more could increase the 

accuracy and an optimum training set size should be 

investigated, i.e. decreasing the step size for percentage CO2 

or flow rate measurements. In addition to this, optimum 

network architecture needs to be investigated, such as the 

number of hidden layers, neurons in these layers and back-

propagation techniques. Heater temperature measurements 

would be a highly interesting parameter that could be 

incorporated into this post-processing in order to compensate 

for these variables. In future work, the system should be 

designed for real-time updating of the network training. This 

will allow an adaptive network that can be used for many 

different sensors. 

 

II. CONCLUSION 

 

An experimental method for applying artificial neural 

networks and two linear statistical methods in order to 

discriminate between flow rate and thermal conductivity has 

been described. The method uses a single CMOS MEMS 

thermal flow sensor that has three resistors embedded in the 

membrane. In addition to the resistors, there are two designs 

tested where one incorporates holes through the membrane 

that isolate the central resistor, forced enhanced interaction 

with the flowing fluid. It is shown that there is an increase in 

the ability to discriminate between different thermal 

conductivities even with the addition of flow. Using a three-

layer network architecture, it was found that the two closely 

related parameters of thermal conductivity could be de-

coupled. In addition to this, the addition of the membrane 

holes increases the sensitivity towards flow rate by 10 times 

and the sensitivity towards thermal conductivity by 2 times. 

This sensor design coupled with well-known post-processing 

techniques will enable a new generation of multi-parameter 

sensing solutions. 
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