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Abstract

Describing motions in biological tissues: a continuum active

model and improving measurements

Michał Józef Bogdan

Motions in biological tissues strongly influence their properties and are crucial for their
functions. This is true starting from the scale of single molecules, all the way up to the scale
of entire tissues. One of the key properties distinguishing motions in living systems from
those in dead matter is activity: using chemical energy to generate self-propulsion. Effective
theoretical, physics-based models are necessary both to interpret the rich new experimental
observations in the field of biological motions, and to properly account for the inherent errors
of the experimental methods. In this work we study models related to motion both on the
level of tissues and individual molecules.

One of our models is driven by the observation that many growing tissues form multi-
cellular protrusions at their edges. It is not fully understood how these are initiated, therefore
we propose a minimal continuum physical model to suggest a possible mechanism. We
apply our model to a growing circular tumour. We employ our approach to understand how
activity affects the tumour’s dynamics and the tendency to form “fingers” at its boundary.
This approach rests on just four key biophysical parameters and we can estimate them based
on experiments described in the literature. Our modelling of a tumour is experimentally well
justified and analytically solvable in many systems. It is, to the best of our knowledge, the first
analytical description of tumour interface dynamics incorporating the activity of the tumour
bulk. We can explain the propensity of tissues to fingering instabilities, as conditioned by the
magnitude of active traction and the growth kinetics. We are also able to derive predictions
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for the tumour size at the onset of metastasis, and predictions for the number of subsequent
invasive fingers.

Microscopy-based techniques are essential for observing biological motions at all afore-
mentioned length scales. Brownian particle videotracking is one example of such a technique.
In the second part of this thesis, we apply physics-based theory to understand inherent errors
and limitations of this method. Using analytic solutions and simulations, we show the effects
of errors in particle videotracking on recovering energy landscapes from the distributions of
Brownian particles. We point out mechanisms that result in nontrivial systematic biases in
the measurements.
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Preface: motions in biological systems

All living species carry out certain key functions which distinguish them from dead matter1.
These functions depend, among other factors, on motions across multiple length scales. Note
we mention "motions" in plural. This is because there exists a wide range of species, carrying
out multiple functions, each of which in turn utilizes different, numerous motion-based
processes.

Examples start with those most apparent from everyday life, on the length scale of meters.
It is on this length scale that we use motion of muscles to move the rest of our bodies and
find shelter and food, swallow, drink, breathe and reproduce.

Directed motion carried out by muscles is necessary because distances covered by diffusion
scale as a square root of time, while those covered by directed motion scale linearly with
time, making the latter mode much more efficient on longer distances. The larger the length
scales involved, the more complex and fine-tuned the mechanisms to conduct the motions
efficiently: for example, the transport of blood in millimeter-sized organisms, such as insects,
takes place openly across the cavities of the entire body, while larger animals need closed
veins and arteries to efficiently carry it out.

An exhaustive review of motions with biological functions within this thesis would not be
plausible. Ultimately, we formulate and examine several questions in this broad field. They
are grouped into two separate research projects: one in each of the two categories (diffusive
motion and directed motion) described above. One of them (Part II of this thesis) is related to
measuring diffusive motion of individual bio-molecules. In this project we assess analytically
and numerically the consequences of motion blur for the accuracy of using Brownian particle
tracking to measure energetic landscapes. The other project (Part I of this thesis) focuses on
modelling collective motion of cells during tissue growth. We design and explore a minimal
model of fingering at the edges of growing, active carcinomas. We deal separately with each
of the projects, starting with a comprehensive review of the relevant literature to present
context for our work, proceeding to stating our hypothesis and conclusions. We now turn to
the latter topic in detail.

1A website of the US National Cancer Institute, https://training.seer.cancer.gov/anatomy/body/functions.html,
defines these as organization, metabolism, responsiveness, movements, and reproduction, adding that humans
are also characterized by growth, differentiation, respiration, digestion, and excretion



Part I

Fingering instabilities in tissue invasion:
an active fluid model





Chapter 1

Introduction

In this part of the thesis we are motivated by fingering patterns observed at the edges of
growing cancers, which seem to be the first step to fatal cancer invasion of other tissues
(metastasis). Inspired by reports that cancer cells actively exert forces on their surroundings,
we are interested in whether these fingering patterns could result from a physical instability
caused by active self-propulsion of cancer cells. We ultimately design a theoretical model
that analytically tests this hypothesis in a simplified system, discusses its predictions and
opportunities for testing them. However, to understand fully the need for our model, its
experimental motivations, as well as the possibilities and limitations of present experimental
methods to verify its predictions, a broad review of relevant literature is needed. It deals
with all phenomena and concepts which are relevant to our work. It first covers available
knowledge about physical properties of the relevant types of tissues and transformations
they undergo, about collective motion of these tissues in general and circumstances in which
fingering at their edges is observed in particular. It proceeds to biophysics of cancer and
metastasis. It later discusses the role of activity and interfacial instabilities in biological
systems. Ultimately, it describes the "how we know what we know": the experimental
methods providing the data, which helps explain the limits to what we know and what we
need to model.

1.1 Growth processes

Coordinated movements of large groups of cells are common in biological organisms. This
in general takes place wherever there is large-scale tissue growth: during morphogenesis (the
gradual growth of an embryo into a fully developed organism), wound healing and growth
of malignant tumours. We focus on the latter two areas, since this is most relevant to our
research.



14 Introduction

In this context, we need to introduce and briefly discuss epithelial tissue. It is considered
one of the four main types of animal tissue. It covers various interfaces inside the body,
including surfaces of blood vessels, often forming effectively 2 dimensional layers, both in
vivo and in vitro [3]. It is very important for our ultimate goal because it is frequently the
place of formation of primary tumours [4–8]. Tumours originating in epithelial tissues are
called carcinomas and constitute a vast majority of cancers. Mature epithelial tissue is quite
coherent and solid-like, with cells holding tightly to each other [6, 3, 9]. This is a result of
strong cell-cell adhesion, mediated by cell-cell junctions (such as tight junctions- parts of
strongly adhering membrane [8]- and slightly weaker adherens junctions [8]). Cells of this
tissue are typically not very motile, except for special circumstances, which we discuss later.
Young epithelial tissue, on the other hand, tends to be more motile. The inhibition of its
motion, together with increasing density, occurs as maturity is achieved [9]. Together, the
growth in density and reduction in motility is referred to as contact inhibition of motion [10].
Some research on human bronchial epithelial cells, however, suggests it is the maturation of
adhesion proteins and strengthening of cell-cell contacts that is key to the dynamical arrest,
and not the increasing density [9]. The process becomes reversed during wound healing and
cancerogenesis, when epithelial tissue becomes motile again.

1.1.1 Wound healing experiments

The reepithalisation, or restoration of destroyed epithelial tissue, is an element of the
process of wound healing. In vitro experiments, in which epithelial layers on a substrate
invade empty space, have been carried out to simulate wound healing [11, 12].

The invasion is usually studied when the tissues achieve characteristics of maturity. This
includes confluence (lack of free space between cells) [11, 14]. The area available to invade
is subsequently provided by removing a part of the layer or by removing a physical barrier,
which previously inhibited motion in some of the directions. The invasion of the freed space
is carried out by a wide front of the tissue. However, multi-cellular fingers at the boundary of
the layer, which move faster than the bulk of the front, emerge [11, 13, 14]- see Fig. (1.1).

The growth of tissue area and resulting invasion occurs partly by proliferation in the bulk
of the tissue and partly by increase in cell size close to the front [15], visible also in Fig. (1.1).

In most experimental settings, the cells adhere quite strongly to each other, and local
neighbor rearrangements are rare. Many of the local rearrangements that do happen occur as
a result of cell division, which has the potential to cause small vortexes of circulating cells
[15, 16]. However, in general, vorticity is much higher in non-flowing tissues [15].
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Fig. 1.1 Edges
of an epithelia
cell culture
invading empty
space. Velocity
fields shown
on the right.
Pictures taken
22 hours af-
ter removal
of a barrier
(located along
the dashed
line). Scale
bar of 100µm.
Re-printed
from [13]

Experiments were also conducted to explore how epithelial tissues invade channels, adja-
cent to the tissue bulk. Invasion of wide channels, whose width is comparable to distances at
which velocities of cells are correlated, or larger, is carried out in a complex manner, with the
emergence of large-scale swirls [17, 18]. Invasion of narrower channels, on the other hand,
has a simpler picture, with all cells travelling essentially in the direction of front propagation
[18]; the process occurs much faster in narrower, than in wider channels [18].

An interesting experiment studied what happens after 2 growing cell sheets touch, with
the conclusion that a stable front is formed even if the interactions between cells in each of
the layers are weak, and both layers contain tissue of the same type. This led to speculation
that jamming (inhibition of motion due to lack of free space to move in high density) might
be the reason for formation of 2-dim stable fronts between tissues [19].

1.1.2 Motion within epithelial tissue

It is also instructive to examine how epithelial cells move within the tissue itself. As an
epithelial sheet grows to cover empty space, swirls are generated within the tissue, even far
from its edge [17].



16 Introduction

Fig. 1.2 Patterns of collec-
tive motion in epithelial
cell colonies [20]. Larger
patches of tissue do not get
dominated by a single pat-
tern of motion [20], as evi-
denced by a decreasing or-
der parameter when diame-
ter exceeds a certain thresh-
old(d). Scalebars represent
50µm. Graphics from [20].

Very interesting behaviours are observed in cultures of young epithelial cells, grown on
artificial substrates. While cell density in the colony is small (before reaching confluence),
cells move with persistent Brownian motion (as they do individually [21]). As they approach
confluence and achieve it, directions of motion of neighboring cells become correlated
[22] (some authors even describe this phenomenon as a kinetic phase transition between a
disordered and ordered state [22]), and they start to form multi-cellular swirls (see Fig.1.2)
[3]. The size of the swirls increases with growing cell density, while the magnitude of the
velocity decreases at the same time [3]. Interestingly, cell cultures grown on smaller patches
get dominated, over a certain density, by a single swirl, which is circular in a circularly
shaped colony [23, 20].

The size of the colony at which its domination by a single pattern breaks down is close
to the typical swirl size in larger colonies of the same cell type and density [20]. The
increase of swirl size and decrease of cell velocity with growing density culminates in a
dynamical arrest, in which the tissue basically stops flowing [3]. Experimental studies of
this process [3], as well as simulation results, suggest this bears close phenomenological
similarities with the classical glassy transition [3, 9], in which quickly cooling fluids undergo
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dynamical arrest,while maintaining amorphous structure. The analogy with the glassy
transition encapsulates both general and certain detailed hallmarks [3].

1.2 Cancer growth and metastasis

Growth of epithelial tumours

Cancer is responsible for a large percentage of human deaths (estimated at 15.7 % as of
2015 [24]. While the global death rates for many other diseases- infectious, strokes, heart
attacks- have greatly decreased in the previous decades, progress in decreasing the death rate
due to cancer has been much slower. Finding successful treatment strategies is so difficult
partly because cancer is in fact an entire diverse group of over 200 diseases [25]. Its common
feature is a pathological, uncontrollable and rapid growth of a group of cells in the body.

One of the main hallmarks of cancer originating in epithelial tissue is the loss of the
epithelial properties by cells, such as strong adhesion and inhibited mobility and acquirement,
partially or completely, the phenotype of mesenchymal tissue [25]. It is an embryonic,
primitive and functionally unspecified type of tissue, characterized by very loosely interacting
and motile cells. It is quite common in early developmental processes of the body and is
necessary for morphogenesis [26]. This process of phenotypic transformation is often called
the epithelial to mesenchymal transition [27].

Metastasis is the phenomenon of cancer cells leaving the primary tumour and subsequently
establishing secondary tumours in other parts of the body. It causes a vast majority of
cancer-related deaths [28, 25]. Indeed, the potential to metastasize is what differentiates
between deadly cancer, suggestively also referred to as malignant tumour, and equally
suggestively named benign tumour, which cannot metastasize and is therefore most often
harmless. Because of its large complexity and huge variability of employed strategies [29],
despite decades of research, metastasis is still not very well understood [25].

However, new experimental techniques have provided a wealth of experimental results
on this process. This challenges the scientific community with the task of comprehensively
understanding the underlying principles governing metastasis. We discuss what the current
conclusions and speculations based on these results are, with a focus on cancers originating
in epithelial tissue (carcinoma).
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Fig. 1.3 An illustration of types of cancer invasion. Reprinted from [29]

Metastatic invasion can be roughly decomposed into 3 phases: (1) leaving of primary
tumour by cancer cells and their motion through neighboring tissue (2) their entry into the
bloodstream and (3) their extravasation from the bloodstream and formation of secondary
tumors in new organs [25]. Since our work is related to phase (1) of this process, we mainly
discuss experimental findings related to this phase.

The aforementioned, enormous variety of cancer diseases also manifests itself on the stage
of invasion from the primary tumour into surrounding tissue. Employed invasion mechanisms
vary and are partially organ-specific. However, this variety can be largely broken up into a
group of patterns. A classification of cancer invasion was proposed (see Fig. 1.3) [29]. It
features the following types of invasion: (1) single cell invasion, (2) multi-cellular streaming,
(3) collective, cohesive cell migration and (4) expansive growth. In fact, a nearly continuous
spectrum of modes between these types is observed.

(1) Individual cell migration mostly occurs in leukaemias and lymphomas (cancers of
white blood cells and the lymphatic system, respectively). It is much less common than
various types of collective migration [29]. It can be further classified into mesenchymal
invasion and amoeboidal invasion. In the mesenchymal invasion mode cells are very motile
and elongated. They use various strategies to move, frequently remodelling surrounding
extracellular matrix (ECM). They are able to do this by applying proteolysis (the breakdown
of proteins- see Fig. (1.4)) and cell-matrix adhesion [29]. Amoeboid invasion is carried out
by rounded cells with a large ability for manipulating their shape and exerting capillary-like
motion. It is an alternative mechanism of individual migration, less dependent on adhesion
than individual mesenchymal migration [29, 5]. Since our work is not relevant to individual
migration, it was just noted here for completeness and we do not discuss it further.
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Fig. 1.4 Proteolysis of collagen matrix by invading fibrosarcoma (cancer of fibrous connective
tissue) cells. Cells are visible in white (dashed box no. 2). Proteolytic tracks (dashed boxes
no. 1 and 3) are visible in black on the dotted red background, representing the collagen
matrix Scale bar represents 20µm. Reprinted from [30].

(2) Multicellular streaming refers to a subgroup of migratory modes. Their common
feature is the fact that entire groups of cells pursue directed motion, separately generating
force on the surrounding matrix, while direct intercellular adhesions are very weak and
temporary [29]. It can take the form of directed motion of groups of cells without any
direct contact, small clusters moving together, or, most frequently, fingers of adhering cells
moving in environmentally conditioned or self-generated tracks. The boundary between this
type of migration and (3) collective, cohesive cell migration is somewhat fluid; the latter
occurs when invasion is led by clusters of strongly adhering cells. Multicellular streaming
can display various morphologies [29]; these include one- or two- cell wide fingers [29],
knife-like structures, which are led by a leader cell capable of proteolising surrounding ECM
and generating high traction forces on the ECM and subsequently widened by following cells
[29] or wide fronts. The structures described here can be very coherent, such that individual
cells far from the edge may be almost deprived of any contacts with the ECM [29]. The
invasion can be also led by fibroblasts (a type of connective tissue), while cells far from the
edge can participate in the invasion without losing their epithelial traits [29].
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(3) Collective cell motion is widely employed by cancer. It has been long established
that epithelial cells can move collectively, not only in cancer, but also in developmental
processes, and the fact that mesenchymal cells can also perform collective motion with quite
stable junctions between cells has been established quite recently. It can happen especially
in response to confinement and jamming, when the cells’ mutual contacts strenghten [31].
Collective migration is especially common for the extremely common breast and lung
carcinomas [25]. Our work specifically aims at modelling and understanding this type of
invasion.

For completeness, we also mention (4) expansive growth, which is a form of passive
invasion, in which individual cells are deprived of any motility and press on the surrounding
ECM or tissue because of proliferation and growth. This mode seems to be insufficient in
itself to cause malignancy and metastatic invasion.

Determinants of collective metastasis

It seems that the parameters determining the occurring invasion mode include the strength
of cell-cell adhesion and force traction levels; cell-ECM adhesion and forces, environmental
confinement, and others. We are mostly interested in collective invasion, so describe the
properties of the tissue that make it possible.

Biochemical markers related to the choice of invasion mode include, among others:
proteases (enzymes carrying out proteolysis), which form migratory paths by degrading
obstacle tissues [32]; integrin (a transmembrane receptor responsible for cell- ECM adhesion
and force transmission to and from the cell, by connecting to actin filaments of the cell
cytoskeleton); cadherin (a molecule responsible for cell-cell adhesion and force transmission
[32]). The way these biochemical markers affect cancer invasion is usually by programming
biophysical properties, such as adhesion strength (like in the case of aforementioned cadherins
and integrins), motility, and tendency for directed migration [33], so understanding of
biochemical factors in collective cell migration is often complementary to understanding
biophysical factors.

External environmental conditions also play an important role in choosing the invasion
mode. The important environmental parameters include the surrounding ECM dimension,
stiffness (large ECM rigidity reinforces protrusion formation and, consequently, cell mi-
gration [5]) and spatial organization [5, 29] and ECM building material, with some work
showing matrigel much more favourable to collective migration than collagen [34]. The width
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of available tracks and pores in the ECM is also important. Cells switch from individual to
collective migration (with leader cells) due to larger density of collagen and smaller porosity
of the artificial ECM matrix; the changes in ECM stiffness seem less important. Cells seem
to adjust their own properties to enable migration under changing external conditions [5].

In vivo the surroundings the tumour invades tend to be highly heterogenous and complex
[35, 30], with the presence of ECM, collagen bundles, membranes, fat cells, muscle and
nerve fibers and microvessels, among others [35, 30]. Collective cancer invasion in vivo
frequently proceeds in tracks along muscle and nervous fibers [35, 30]; sometimes these
are widened by invading cancer cells, while sometimes the cells adjust their shape [35].
Proteolysis (see Fig. 1.4) and remodelling of ECM by leader cells has also been observed
[30]. The presence of leader cells, distinct phenotypically from the cells following them, is
an aspect of the fact that primary tumours are heterogenous objects in their own, with various
cells carrying out various tasks.

The occurrence of collective migration also strongly depends on properties of the cells
themselves, including strength of cell-cell and cell-ECM adhesions (respectively controlled
by cadherins and integrins) and behaviour of the cytoskeleton (influencing the shapes of the
cell) [5]. It seems that the onset of aggressive invasion is often enabled by the occurrence of
the epithelial to mesenchymal transition in the primary tumour and especially the following
changes of the cells that go with it: decreased adhesiveness between cells and increased
motility [34, 27].

Proteolysis- the partial dissolution and remodelling of ECM and other barriers by cells-
facilitates collective migration [36, 34]. Remodelled layers of ECM are observed in the
neighborhood of travelling cancer cell strands in breast cancer, for example, as well as near
the bulk of the tumour in cultures embedded in matrigel [34]. Mesenchymal cells remodel
the surrounding matrix using proteolysis, and the created microtracks are later available
for collective invasion [34]; follower cells tend to widen the tracks, using proteolysis as
well; migration is possible without it, but more difficult [36]; in vivo microscopic techniques
confirm ECM degradation and accumulation of collagen fibers in areas of invasion [37].
Blocking proteolysis in vitro may result in transition to individual, amoeboid-like invasion
[38]

The role of heterogeneity in the properties of cells within a tumour seems important [25].
Tumour heterogeneity complicates diagnostics [39] and enhances metastasis [40, 41, 34, 42].
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Fig. 1.5 Invasion of fluorescently stained mammary tumour (blue & green) into muscle (red).
Green represents leader cells. Scalebar represents 200µm. Reprinted from [40].

In vitro and in vivo studies show cancer cells of various combinations of mesenchymal or
epithelial phenotype [42] are intermixed with stromal cells [34, 43]. The role of heterogeneity
was confirmed in well-controlled conditions [40, 34], in matrigel and collagen artificial ECM
[40, 34]. It seems that a subgroup of motile, mesenchymal cells has the role of leading
collective invasion [34]. Leader cells (see Fig. 1.5) have a dual role here: (1) they individually
migrate through the ECM, partially dissolving it via proteolysis, leaving behind microtracks
of remodelled ECM, easier to penetrate for collective invasion [34, 42]; (2) They lead a front
of collective invasion of heterogeneous cell groups by maintaining contacts with epithelial
and less motile cells in the bulk of the invading tumour [40, 34, 42]; the invading cell groups
then flood and expand the tracks [34].

1.3 Active motions

Activity, in our usage of the term, is the use of chemical energy by living systems to apply
forces to their surroundings and generate mechanical energy and self-propelled motion, and
active motions are ones generated according to this principle. They are a key ingredient in
biological systems and are used by all living organisms. From nanometer-sized systems,
such as transport of microscopic cargo along microtubules [44], to macroscopic ones, such
as flight of birds and everywhere in between, they play essential roles, being arguably one of
the fundamental physical hallmarks of life. Since we later model the role of activity might
play in fingering seen at the edges of carcinomas, we go over the topic of active motions in
more detail.
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Much research into this type of motions is focused on understanding how large groups of
active particles behave collectively. This raises many important questions on the fundamental
level, since many key results of traditional physics do not apply to assemblies of such particles
[45–47]. Many questions have to also be answered on the practical level: what types of
motion and behaviour do we expect to observe in a specific active biological system? To
name one example, turbulence is the answer in the case of certain bacterial suspensions [48].

Ample experimental evidence shows that cells also move by active self-propulsion [13, 49–
53]. This also applies to the motions in wound healing and cancer we previously discussed.

Cells in two dimensional epithelial colonies move by exerting traction on the substrate.
The traction is largely exerted by lamellipodia- protrusions of the cell which form at the
leading edge and then pull the cell behind [54]. In the past it was supposed that cells at
the edge of the tissue exert most of the traction [55, 52]. We now know this is not true and
traction is exerted across the entire layer of the tissue [52, 53]. The direction of the force
cells exert on the substrate is often coupled with their previous direction of motion, and this
property alone can explain many observed properties of spreading epithelial layers [56]. This
coupling is however, not always the case [57, 58], and the direction of the active force on
the substrate can significantly deviate from the direction of the cell motion [58]. It can be
influenced by deformations of the substrate [59], chemotaxis, kenotaxis [57] (the tendency
of cells to fill empty space) and other phenomena.

1.4 Interfacial instabilities

Interfacial instabilities are a key physical concept, relevant to motions in biology in general
and- if our hypothesis is true- to fingering observed at the edges of carcinomas in particular.
They are related to the dynamics of interfaces between physical phases, such as between a
fluid and a liquid, or between two immiscible fluids. An interfacial instability occurs if the
local distribution of forces at the interface makes fluctuations of the shape of that interface
grow in time, instead of decay.

One of the most well-known and widely studied interfacial instabilities is the so-called
Saffmann-Taylor instability (or the viscous fingering instability), which occurs when a droplet
of a fluid of low viscosity is injected into a highly-viscous fluid, located in a narrow gap
between two plates. An instability is formed at the interface of the injected droplet, which,
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(a) Fingers on the interface between air (in
the middle of the picture) and glycerine. Air
is injected via the tube. Reprinted from [60]

(b) Fingers at the edge of a mouse breast carcinoma
(red and green area), growing in a collagen matrix.
Scale bar represents 20µm. Reprinted from [63].

Fig. 1.6 Examples of fingering phenomena in physics (left) and biology (right)

as a result, does not grow uniformly. Instead, the growth gets concentrated in fingers at the
edge of the droplet [60] (see Fig. (1.6a)).

We now know that certain biological growth processes are governed by physical interfacial
instabilities. For example, formation of loops in a growing gut stems from a mismatch
between the growth rate of the gut tube itself and other tissues it is attached to [61]. It has
also been argued that the emergence of an undulated boundary of solid tumours, such as
glioblastoma (a deadly brain tumour), may result from a mismatch between the growth rate
of an outer, living and proliferating rim, and the lack of growth within the dead core [62].

As mentioned before, multi-cellular modes of cancer metastasis and wound healing in
epithelial tissues involve the formation of fingers at the boundary of the tissue, resembling
slightly the ones seen in a viscous fingering instability (see Fig. (1.6b). We also know that
both of these biological processes are strongly dependent on mechanical properties of the
tumour and its surroundings, in particular on the emergence of activity in the tissue involved.
Therefore, we can plausibly speculate that cancer metastasis and wound healing might be
initiated with an interfacial instability, like the other growth processes we just described, and
that active forces should play an important role in it.
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Investigating such possible instabilities requires constructing biologically and physically
justified, simplified theoretical models of physics of biological systems, which enable captur-
ing key elements of a system’s dynamics. In the next Chapter, we briefly discuss the existing
physical models of tissues, their accomplishments and shortcomings, and introduce our own
model, which we then apply to the problem at hand.

Before we do so, we must however stress that results reported in this chapter so far require
complex experimental methods. Correctly understanding the results these methods produce,
their capabilities and limitations is key to identifying the role modelling efforts can play and
the extent to which the outcomes of modelling can be tested experimentally.

1.5 Experimental methods

Most of the experimental techniques used for studying biological motions are based, one way
or another, on microscopy. Both wound healing and cancer invasion has been experimentally
studied in vitro (meaning in cell colonies in the lab), while the latter phenomenon has been
also studied in vivo (in actual, living organisms). We now take a brief tour over the methods
used, starting with those used for observing cancer metastasis in vivo.

1.5.1 Traditional diagnostic techniques

Many traditional, well-established techniques have been long used to study the structure of
internal human and animal tissue, including sizes and shapes of tumours. These techniques
include magnetic resonance imaging, ultrasound imaging, radio tracing and computer tomog-
raphy. While diagnostically invaluable and irreplaceable so far, these older techniques are
only sufficient for studying very large populations of cells and cannot go below large-scale
tissue level.

1.5.2 In vivo microscopy techniques

Recent advances in techniques of in vivo tissue visualization have provided detailed
pictures of metastasis, such as those of a metastasizing mouse breast cancer in Fig. (1.7).
They are supplemented by in vitro studies of tumors in artificial cell cultures.

In vivo techniques involve microscopy-based studies of tissue in living animals, so arguably
provide the most trustworthy insights. Results, however, are still not as abundant as for
the case of in vitro techniques. We must also remember that the in vivo systems these
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Fig. 1.7 Collective cancer invasion in live mice as observed by intravital, multiphoton
microscopy techniques. Lower row shows a close up on a growing metastasising finger, with
individual cells surrounded by dashed lines. Reprinted from [27].

techniques study are also not wholly natural: the cancer cells are surgically implanted into
living animals, instead of growing there naturally, and have to be previously artificially
cultured first [35, 64–67]. They are also cultured from a relatively small group of cell lines,
whose representativeness for all cancers in nature can be contested. Arguably, this means
that even these in vivo studies in fact model cancer, instead of studying "the real thing"1.
Nevertheless, doubtless they are the closest we have to the "real thing" that can be studied
under a microscope.

Fortunately, in the last years, intravital microscopy (IVM) techniques have enabled the
study of small, dynamical populations of cells, including small primary tumours and sec-
ondary micrometastases (parts of the tumour which have metastized to new organs, in the
embryonic phase) [64–66]. IVM encapsulates a very wide and rapidly growing spectrum of
techniques [69]. Most of them are based on fluorescent microscopy [69].

IVM of tumours located very shallow within the body (primarily skin cancers, such as
melanomas [35]) is achieved using confocal microscopy realized with a microscope placed
outside of the animal’s body [69, 35]. Confocal microscopy is a subcategory of fluorescent
microscopy and uses a pinhole to highly focus excitory light on a small part of the tissue and
a second pinhole to eliminate all out-of-focus light while collecting images. This method
is sometimes aided in live animals by observing a part of their skin using a dorsal skinfold

1as Dr Pierre Recho once pointed out to me. I believe this is a good counterargument to any biologist who
might question the usefulness of physics-based modelling of biological systems
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Fig. 1.8 Dorsal skinfold
chamber attached to a
Syrian golden hamster.
The arrow points to-
wards the imaging win-
dow, where actual mi-
croscopy takes place. In
this case, it is used for vi-
sualising blood microcir-
culation. Scale bar repre-
sents 1.4 mm. Reprinted
from [68].

chamber [35] (see Fig. 1.8)- a large frame, encapsulating a part of the animal’s skin, which is
firmly attached to its body and enables microscopy of the skin and underlying tissues via a
glass window [70]. For example, these methods were used to obtain very detailed pictures of
metastasis of melanoma [35].

To increase the depth of imaging, multiphoton microscopy is used [69]; it is based on using
photons, whose energy is below the tissue’s absorption spectrum (therefore, they can travel to
deeper tissues). They are subsequently absorbed in pairs or larger groups in selected locations,
where photon bundles coincide [35]. So-called second and third harmonic generations are
most frequently used multiphoton microscopy techniques. They are based respectively on
simultaneous absorption of 2 or 3 photons and emission of a single photon with an energy
equal to the sum of energies of absorbed photons [69, 35]. Multiphoton microscopy has
produced, among other results, detailed in vivo images of metastasis from a human breast
cancer [71].

If the tumour is located deeper within the body, the site is sometimes surgically exposed,
while the animal is subjected to anesthesia [72]. However, this method is highly invasive and
can lead to the death of the animal.

A different, revolutionary group of techniques used is based on so-called imaging windows,
especially abdominal imaging windows. They are millimeter-sized fluorescence-based
devices for microscopy [73, 66, 67, 64, 65], which can be surgically implanted deep within
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the body of an animal [66, 67, 64, 65]. They are used to observe metastatic processes in
internal organs, such as mouse spleen, intestine, kidney, liver [64] and connective tissue [37]
and have provided detailed pictures of both initial [37] and later [64] stages of metastatic
invasion. The imaging window can stay tightly fixed and collect images at a selected point in
the animal’s body for several weeks [64].

Another, less often practiced technique for obtaining in vivo images of metastasis, is
freezing a tissue and performing microscopy on multiple cross-sections of the frozen tissue
one-by-one to obtain a 3-dimensional picture [65].

1.5.3 In vitro techniques

In vitro techniques are based on studying cell cultures living in laboratory conditions. The
conditions the cells live in are therefore less natural than in vivo. However, in vitro data
on cancer metastasis and related phenomena is more abundant than in vivo data. In vitro
techniques also enable measurement of properties not measurable in vivo, such as forces
exerted by the cells [52, 53]. For studying metastasis, the most popular choice of cells
to culture includes mouse mammary cells (MMC) [74]. Cultures (typically of 2 dim or 3
dim spheroidal shape [74]) are implanted into and permitted to grow in assays. A substrate
capable of supporting their life has to be provided; for studies of metastasis, it is typically
collagen [74] to mimic the structure and composition of natural ECM [74] (though other
primary assay components, such as matrigel [63], have been used as well).

A great variety of microscopy techniques is used to observe behaviour of laboratory cell
cultures. Classical bright-field microscopy, which obtains contrast in images directly from
differences in light absorption by various elements of the sample, remains a relevant and
efficient tool in the field, for example, being used for visualising channel-guided migration
of epithelial colonies [15]. Phase-contrast microscopy, which creates images by translating
phase shifts of light passing through a specimen into brightness variations, is a frequent
choice [59, 58, 19, 34]. To name one example, it was used to observe migration of canine
kidney cells [59]. Fluorescence imaging techniques are widely used in studying both de-
velopmental and oncological processes in cell cultures [74, 15, 58, 18], for example, to
monitor mouse mammary tumour cells [74]. Fluorescence microscopy also enables particle
image velocimetry (PIV- reconstructing flow profiles by following densely seeded tracer
particles) for quantifying cell motility [59, 18]. A novel technique for tracking metastasizing
tumours, enabling second-to-second tracking and subcellular accuracy, is based on so-called
time-correlated single photon counting (TCSPC) from periodically excited tissue [74]. In this
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technique, one collects photons emitted by a tissue excited fluorescently. The tissue is excited
using infrared photons. Therefore, a virtually simultaneous absorption of 2 photons in a
single quantum event is necessary to enable excitation. The rate of excitation and emission is
therefore sufficiently low to enable single photon counting. This technique was used, among
other phenomena, to study mouse mammary tumour cell cultures [74].

Time-lapse microscopy is a popular technique for producing movies of all types of collec-
tive cell motion[15, 59, 58]. It is based on aquiring photographs of a system in regular time
intervals via brightfield, phase-contrast or fluorescent microscopy, and replaying them at an
accelerated rate to obtain a movie of the process involved. The movie whose single frame is
presented in Fig. (1.6b) was also obtained using this method.

The so-called traction microscopy techniques have been proposed at the turn of this century
to enable measuring forces exerted by cells. They are based on measuring the displacements
of beads embedded in a substrate as it interacts with the cells, and reconstructing math-
ematically traction, based on the displacement field [75, 76]. Originally, they have been
used to measure tractions exerted by individual fibroblasts [75]. They have since undergone
significant refinements to improve accuracy, account for finite substrate thickness and other
difficulties, and to be applicable to moving cell sheets [77, 78, 52]. It cannot be stressed
enough that they constitute a major breakthrough: the experimental methods described
previously (especially PIV) can tell us a lot about kinematics of cell motion; measuring
forces, however, is what enables us to make the jump to try to understand the dynamical laws
that govern it.

1.6 Goals of part I of this thesis

We have thus completed our brief review of selected experimental literature relevant to the
topic of coordinated motions of entire tissues in general, and to fingering patterns observed
at the edges of tissues, especially cancer, in particular.

We can now again outline our goal, which is contributing to understanding the role of
active forces in the formation of fingers at the edges of active, motile and growing cancers,
as seen in Figs. 1.5 and 1.6b. To this end we will design a minimal model of dynamics of the
interface of such a tissue and investigate what is the effect of activity on the stability of the
interface within the model. This part of the thesis is organized as follows.
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Chapter 2 provides an overview of the state of the art of physics-based modelling of
tumours and wound healing assays. We discuss the accomplishments of existing models, but
clarify why none of them was quite suitable to the task at hand, necessitating a construction
of our new model.

The model itself is presented in chapter 3. The assumptions, governing equations, esti-
mations of parameters used and comparison with other models is presented in this chapter.
Additional information and discussion is presented in the Appendices.

Chapter 4 applies our model to a growing, circular, active droplet, representing a tumour.
Within this simplified system we use our model to analytically demonstrate and explain the
role of activity in fingering at the edge of such a droplet. Appendices show applications of
our model to several other simple systems.

In Chapter 5, we conclude this part of the thesis with a discussion summing up our results,
discussing how their relation to actual biological phenomena could be tested, and outlining
directions for future study.



Chapter 2

State of the art

Based on experimental literature reviewed in the previous section, we now have good
motivation to try to understand the mechanical basis of fingering at the edges of tumours.
This understanding in the practical sense must mean reproducing this key phenomenon within
a simplified physical picture, which in turn requires postulating and justifying simplified
effective physical laws which govern the system, and seeing what consequences they imply.

Many computational and analytical models were developed and used to model tissue
dynamics. Only some of them directly study the problems we aim to tackle, but all provide a
context for our model. This chapter gives a quick tour of them, with a special emphasis on
those that account for front instabilities and fingering or activity.

We first review discrete models, which treat each cell explicitly. We then turn to methods
closer to our own approach: continuum theories of tissue dynamics. We put special emphasis
on continuum theories of tissue dynamics which treat tissues as active fluids, since these
theories are closest to our strategy. We conclude with spelling out more detail on the gap that
we intend to close.

2.1 Discrete computational models

The models in this group account for individual cells explicitly. Among them are the
so-called self-propelled particle (SPP) models, vertex models, the Cellular Potts Model
(CPM), and confluent ellipse-based models. Let us examine them one by one.

Self-propelled particle (SPP) models (see Fig. (2.1)) represent each cell as a point or a
sphere (a "particle"). Mutual interactions between cells and other forces are introduced as
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Fig. 2.1 An illustration of a self-propelled particle (SPP) model at two different particle
densities. Particles (circles with gray boundaries with overwritten red arrows, representing
their velocities) are allowed to move freely on the inside of a ring of soft spheres "glued"
together (the circles without arrows). Reprinted from [79].

acting on these points (they can be functions of cell velocity, mutual distance and other
observables) [17, 79, 80]. The dynamical laws in the system are also defined for these points.
The "particles" usually also have a defined finite radius length, which is a basis for defining
repulsion based on excluded volume interactions [79, 17]. Apart from tissues, these models
have also been widely used for modelling various other active and passive systems. This
includes bird flocks (indeed, the entire class of so called Vicsek-like flocking models- in
which agents adjust their speed to that of their neighbors- is of this type [17]), colloids [79],
etc.

Activity in these models is usually accounted for by postulating that particles follow
persistent Brownian motion [80]. The Brownian movements occur along a preferred, grad-
ually changing direction (hence self-propelled particles). The dynamics can be simulated
essentially by Brownian Dynamics [17, 79].

These and similar models (see [81]) have been reported to reproduce patterns of collective
motion encountered in epithelial layers, including fingering [80, 81]. Interestingly, these
phenomena can occur within such models under various principles. Collective motion itself
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has occurred in them as a result of particles adjusting their speed to that of their neighbors
[80] or as a result of coupling of the direction of activity with the direction of velocity [81].
Fingering was reported in [80] in the presence of additional curvature-dependent active forces
at the boundary. Interestingly, these models also feature jamming in high density [79].

The downside of these models is that, since cells are represented in them as point particles,
they cannot implement confluence, an observed feature of many tissues. Implementing
cell-cell contact lines, adhesive interactions and shape fluctuations is impossible for the same
reason, as well as accounting for an energetically preferred perimeter and surface area of the
cell. These shortcomings explain the popularity of confluent models, to be discussed next.

2.1.1 Confluent models

Confluent models are based on partitioning the entire space between cells. This enables
simulating those aforementioned cell properties the SPP models cannot implement. Dynamics
can then be assigned based on an energy function related to cell perimeter, cell surface area
and other properties [82].

The Cellular Potts Model (CPM) is one of the most popular confluent models [82–85]. In
it, the space is discretized into lattice sites much smaller than the cells, and each of the sites
is assigned to one of the cells (see Fig. (2.2)). A total energy function is assigned, depending
on each cell’s area, perimeter, and position of the cell centroid (on which body forces, such
as the active motile force, act). The dynamics is obtained indirectly, instead of being assigned
by explicit equations of motion. This is done by Monte Carlo sampling of the lattice sites
distribution [82]. A lattice site is transferred to another cell if the total energy is minimized
by that move. Notably, activity has been included in this model [82, 83]. It has been used
to simulate spreading of tissue monolayers [83] and cancer metastasis and has captured the
enhancing effect of the tumour’s heterogeneity on metastatic dissemination [82].

Vertex models are based on tessellating the space between polygons [86, 87]. Dynamics
(usually Brownian) is explicitly centered on and defined for the polygon vertexes, and not for
cell centers, like in the SPP models. The forces on the vertices can be defined explicitly. They
can also be obtained by defining an energy function based on vertex locations. The derivatives
of that energy function over possible vertex positions provide forces on the vertices [88], from
which cell motion naturally follows. Arguably, therefore, vertex models have dynamics and
motion defined in a more natural way than the CPM, which requires Monte Carlo sampling
of possible motions to implement dynamics. However, neighbour changes between cells do
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Fig. 2.2 Application of the CPM to simulate cancer cell invasion from a heterogenous tumour
(warm-coloured and black cells) into a neighbouring tissue (blue and green cells). Each
uni-colored domain is a single cell, made of multiple CPM lattice sites. The upper left
quadrant represents the initial configuration, while the remaining quadrants show the result
of 4500 Monte Carlo steps for various values of model parameters. The tumour cells are
self-propelled, exerting an active "motile" force on a substrate with magnitude µb for bulk
tumour cells (warm-colored) and µ f for leader cells. µs is a critical magnitude of the force
necessary for a cell to migrate between non-motile neighbors, while µc is a lower critical
value necessary to induce collective motion in a homogenous population of motile cells.
Reprinted from [82].
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Fig. 2.3 Example of constructing a confluent model: illustration of a Voronoi tesselation
algorithm. A set of points ri (black dots, interpreted as cell centers in the Self-Propelled
Voronoi model [87]) is selected. Each element in space is apportioned to the nearest point in
the set, forming cells (separated by red boundaries). Reprinted from [87].

not occur naturally within vertex models. An explicit, somewhat artificial algorithm needs to
be implemented to enable a switching of neighbors [88].

Hybrid models

Several hybrid models, being a mix between SPP and vertex models, have been developed
to benefit from advantages of both approaches.

One of them, the so-called Self-Propelled Voronoi model defines the cells by the points
constituting their centers, like SPP models, and proscribes dynamics at these points. However,
it implements confluence of cells by attributing each point in space to the nearest cell center.
A partition of space according to this algorithm is called Voronoi tessallation (see Fig. (2.3)).
This in particular sets the area and perimeter of every cell, which later serve to define the
cell’s energy (the cell has a lowest-energy, unstretched state). The energy function then
determines a part of the force on the cell, in addition to persistent Brownian terms [87]. This
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model has its advantages compared to traditional vertex models. For example, it does not
require ad hoc algorithms for neighbour switching. Like all the aforementioned models, the
Self-Propelled Voronoi model can also account for activity. A jamming phase transition in
active matter was observed in this model [87]. Within a certain parameter range the model
displays glass-like behavior [87], which was measured experimentally in collective cell
migration [3].

A hybrid model reported in [88], aims to reproduce natural cell shapes more faithfully
by defining an "abdomen" of the cell as an ellipsoid, but also carrying out a partition of the
remaining space between cells [88]. It has been used to simulate developmental processes,
such as the growth of the forebrain neural plate in zebrafish [88].

2.1.2 Partially continuous models

Some computational models use a hybrid, discrete-continuum approach or take the contin-
uum limit of discrete models. In some of these, cells are not represented explicitly, with their
density (possibly averaged over short time or space scales [10]) treated as a hydrodynamic
variable [10, 89]. One of such models, equivalent to a continuous limit of CPM, has been
used to simulate spongy bone formation [89]. A hybrid discrete-continuum model was used
to simulate the growth of epithelial colonies, implementing explicitly cell division [10].

2.1.3 Conclusion

Simulations based on discrete and semi-discrete models previously described have re-
produced collective motion in tissues. They have also shown which types of interactions
and properties of tissues enable the occurrence of such phenomena. Notably, they have
successfully explored the significance of activity.

They do, however, have their problems. A separate simulation has to be carried out for
each combination of parameters to explore the effect on tissue behaviour. Predicting a priori
the model behaviour for a given parameter set is usually impossible, and only a posteriori
interpretations of obtained results are available. Also, discrete models are defined in terms of
interactions of individual cells and are not always easily related to bulk mechanical properties
of the tissue. For these reasons it is also beneficial to construct a continuum theory whenever
plausible. We next turn to instances when this has been done.
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2.2 Continuum theories of tissue dynamics

Several theoretical frameworks have been recently developed to understand collective
cell motion within a continuum mechanics paradigm. They have several advantages over
computational models: dynamics is given by continuous differential equations, which can be
exactly solved analytically or numerically; by finding these solutions, one can immediately
uncover the system’s behaviour across a large parameter range, without running separate
simulations for each value of each parameter. They provide access to the rich toolbox of
methods of traditional continuum mechanics. They also elucidate a direct link between
dynamics and values of bulk mechanical parameters, such as viscosity, which are not easy to
include or even computationally define in discrete models. While they are often quite crude
approximations, they are very useful for understanding the systems at hand.

Of course, the continuum dynamics theories do have their disadvantages, too. Analytic
solutions are often available only for very simplified dynamical laws and boundary conditions
with many symmetries. The scale at which the continuum approximation becomes roughly
correct is also disputable-one can be confident only for systems very large compared to
the characteristic size of a single cell. However, they are very useful for understanding
the systems at hand. Below we shall discuss some of the developed frameworks, their
accomplishments and relevance to our task at hand.

2.2.1 Total deformation tensor framework

The fundamental dilemma when modelling tissues with continuum mechanics is the fol-
lowing: elastic or viscous? In general, tissues are known to display very complex viscoelastic
behaviour [90], meaning they feature aspects of both viscous and elastic mechanics. Solving
the dynamics of tissue growth, however, would be impractical when accounting for it fully. In
practice, most models start out with the assumption that at least locally and instantaneously,
a given tissue is fundamentally viscous or elastic. We first discuss two frameworks working
under the latter assumption.

Assuming the tissue is fundamentally elastic leads to a serious problem almost instan-
taneously: what is the reference no-strain, no-stress state, a key concept in the theory of
elasticity, if the tissue is growing continuously? One framework to deal with this problem
was developed in [91]. A total deformation of a growing tissue is decomposed into two
parts: one comes from transforming the zero-stress state due to growth, and the other from
accompanying deformations of the tissue, necessary to maintain its material consistency. It
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is this second part that causes internal mechanical stress within the tissue, which in turn
influences growth. This way, a closed system of equations for the tissue’s growth is obtained.
The relationship between internal stresses and deformations has been usually postulated in
the literature as elastic [92, 93].

This framework has been especially useful in studying growth of tissues in the presence
of frustrations. Among other systems, it was used to model growth of thin elastic tissues
[94, 95], concluding, among other things, that anisotropic growth in itself is sufficient to
spontaneously destabilize a spherical shell [95]. Anisotropic growth was also argued, using
this approach, to lead to residual stresses in the growth of cancer, approximated as a spheroid
[93]. The approach is also the basis for Ciarletta’s model, explaining buckling of the edge of
a large and growing brain tumour [62] due to internal frustrations, because of a difference
in the rate of growths of the entire tumour and of a sub-domain of dead cells within it [62].
Growth of a swelling gel clamped on one side to a stiff substrate was also investigated in this
model, with possible applications to biological systems which feature growth in a restricted
geometry. This research found wavy instabilities, controlled by the rate of growth [96].

Recent work has expanded this framework to replace a growth tensor with a generalized
active tensor, which accounts not only for growth-related deformations, but also for defor-
mations caused by active forces generated by cells. Such active forces might include, for
example, active contractility. This extension of the model was used to study the morpho-
genesis of a fruit fly’s wing and to argue that inhomogenous stress might "convey locally
the global information of organ size" (paraphrasing [97]). Another strategy of including
active cell forces in this framework was proposed in [98], where a model of a growing,
solid epithelial tissue was constructed. In this work, the active forces exerted by cells are
not included in the active tensor, but are introduced as non-equilibrium additional terms to
equations of motion. This work predicted fingering at the edge of an epithelial tissue [98].

In general, if the tissue is solid-like, this framework seems quite successful in describing
instabilities, including fingering, resulting from growth and internal frustrations. However,
we later postulate in this thesis a slightly different mechanism behind fingering, which
requires a slightly different approach. Before we move on to it, we review another theoretical
framework for elastic tissues.
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2.2.2 Incremental elasticity model

J. Prost and collaborators have proposed a different formulation of mechanics of locally
solid, growing tissues. It is based on explicitly incorporating forces on existing tissue
resulting from cell apoptosis and division into the total expression for stress [99]. The
reasoning behind the model argues that while cell division and apoptosis are impossible to
reconcile with the existence of a unique no-stress, no-strain state of the body, which defines
traditional elastic materials, the rate of change of strain between subsequent moments in time
is still well defined. The total stress tensor1 σi j can be decomposed into a part related to cell
flow (the rate-of-strain tensor: νi j =

1
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∂iv j +∂ jvi

)
, where vi is the cell velocity) and a part

directly caused by cell division and apoptosis σ s
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is the flow vorticity, and Ci jlm is the tensor of elastic constants. The authors

postulate the form of the cell division and apoptosis contribution to stress σ s
i j [99, 100]. This,

when combined with postulating an inverse relationship between the net rate of cell division
and stress within the tissue, allows for deriving constitutive equations.

The conclusion is that the tissue effectively behaves as a viscoelastic Maxwell material.
It is elastic on short time scales, viscous on long time scales, compared to cell division
and death rates [99, 100]. Intuitively, this can be understood as follows: while the tissue
immediately deforms as a linear solid, on the long run a portion of the tissue under increased
stress responds with an increased cell death rate, so that area retracts like in a liquid.

The authors also coined the term "homeostatic pressure", which is the pressure in which
equal numbers of cells undergo division and apoptosis, so that the tissue remains in a steady
state. If the external pressure on the tissue is different, processes of global growth or death
are predicted [99].

This model has been used to study the growth of tissue spheroids and cancer [100, 101]
and fluctuations on an interface of a tissue in equilibrium [102].

1Note in the following the subscript i represents a component in the xi direction and we use Einstein’s
convention for the summation of indices.
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2.2.3 Modelling active tissues as fluids

The previously described models of tissue dynamics assumed that, in the absence of growth,
tissues behave like an elastic solid [91, 99]. Many theories of tissue continuum mechan-
ics, however, assume viscous constitutive equations. There are, depending on the system,
additional force terms such as: drag against a substrate, active force on a substrate, active
production of momentum due to cell-cell interactions. Many of these models account in one
way or another for activity.

One of such models studied analytically the epithelium as an overdamped Stokes fluid with
cell division and growth in contact with an elastic and viscous stroma [56]. It predicted an
emergence of fingers at the boundary of the epithelium, resulting from the interplay between
spatially non-uniform cell division/death rates and shear [56]. Several other models treat the
tumour as a porous environment. Therefore, the cells in such models are assumed to obey
Darcy’s Law (meaning that velocity is proportional to the pressure gradient) [103–106].

The Toner-Tu is an important model, incorporating activity. It was developed originally
for motion of flocks [107–109] and adapted to deal with active fluids, including bacterial
suspensions [48, 110, 16] and tissues [16, 111]. The dynamical equations of Toner-Tu theory
in most general terms have the following form [108] (note the time-dependent fields: v is
velocity, ρ is density, p is pressure):

ρ(∂tv+λ1(v ·∇)v+λ2(∇ ·v)v+λ3∇(|v|2))
= αT v−βT |v|2v+η1∇

2v+η2∇(∇ ·v)+η3(v ·∇)2v−∇p .
(2.2)

The origin of the terms is as follows: the ones on the left hand side represent the equivalent of
the convective derivative in the Navier-Stokes equation (lack of momentum conservation and
Galilean invariance means these terms can have the general form as presented, as no symmetry
restricts it). The extra terms, absent in the Navier-Stokes system, correspond to possible non-
traditional interactions within the fluid. The first two terms on the right-hand side correspond
to the fact that there exists a preferred non-zero magnitude of velocity |vs| of the system
(|vs| =

√
αT
βT

- note αT and βT have to be positive) and an effective quartic Landau-type

velocity potential, which selects it V (v) =−αT |v|2 +βT |v|4. This was motivated originally
by the fact that birds in flocks seem to have such a preferred velocity magnitude [107]. In
tissues, these terms have a very natural physical interpretation: the αT term corresponds to
the active force exerted by the cells on the substrate and βT corresponds to the drag from the
substrate [111, 16]. δ p is a classical Navier-Stokes pressure term. The four gradient terms
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on the right-hand side correspond to momentum dissipation within the tissue; note the first
of these corresponds to the classical Navier-Stokes viscosity.

In practice, usually when Toner-Tu equations are adapted for specific active systems,
some of the terms are omitted (by setting their respective constants to 0). Only the terms
which are motivated by the physics of the problem are retained. Less frequently, additional
ingredients are added to account for additional, relevant hydrodynamical fields (such as
nematic polarisation) [16, 110].

The model has been used for various active fluids, including, in several examples, in
modelling of cell motion. We are aware of its application to wound healing models by
Zimmermann, Basan, and Levine [111] and by Nesbitt, Pruessner, and Lee [112]. However,
the analyses in the two latter works are limited to a non-dividing, rectangular tissue, either
in a static state, or somehow pushed on one side by a rigid barrier. The first of these papers
argues that fingering is possible in such a system, but the second refutes that claim. Others
use the model to explain formation of small vortices after cell division [16].

The Toner-Tu model implicitly assumes a coupling of the direction of the active force to the
direction of the fluid’s velocity. Other models have abandoned that restriction by treating the
direction of the active force as an independent internal variable (named "polarity"), coupled
to stress, velocity or chemical fields [113, 53, 114]. One of these models has been used to
reproduce the stress profile in an expanding epithelial monolayer [53] and, more recently, to
argue that fingering at the edge of a spreading epithelia might stem from acceleration of that
edge, due to a velocity gradient caused by the active tractions [114].

2.3 Conclusion

As we have seen, an impressive body of work on continuum mechanics of tissues has been
accumulated in the previous years. Some of the models used have investigated interfacial
fingering, some have investigated activity and some have investigated growth. However,
bringing the three phenomena together has proved much more challenging.

Apart from a small handful of works [111, 112, 114], continuum theories have also not
studied analytically the effect of activity in the bulk of the tissue on fingering instabilities
of its edge–only effects of activity at the edge itself have been tackled [115, 116]. This
is because interfacial instabilities are very difficult to study analytically unless both the
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hydrodynamics of the participating fluids and the shape of the boundary itself are very simple.
Previous formulations of activity have often rendered hydrodynamics of the active fluids too
complicated for realistic set-ups of tissue growth.

In the next chapters, we contribute to filling this gap. We construct a continuum mechanical
model of an active and growing tissue, motivated by experimental observations. It proves to
be analytically solvable for a set-up mimicking a growing tumour and enables a successful
analytic investigation of its interfacial instabilities.



Chapter 3

Presentation of a new model

3.1 Proposed governing equations

In this chapter, we present our model of an active and growing tissue, which was first
published in [1]. In the model, the evolution of the pressure p(r, t) and velocity v(r, t) fields
at a position r and time t are governed by the following force balance and mass conservation
equations,

∇p =−βv+α
v
|v|

, (3.1a)

∇ ·v = k , (3.1b)

respectively. Here ∇ is the nabla operator, α and β are positive parameters, specifying the
strength of the interaction between the tissue and a substrate. α describes the magnitude
of the active traction, and β the magnitude of the effective passive friction (the latter being
proportional to the tissue viscosity). In Eq. (3.1b), k is the net rate of growth (we are interested
in regimes in which it is positive), representing a growing tumour mass of an incompressible
tissue, undergoing cell division (or individual cell growth). The α-term in Eq. (3.1a) accounts
for the active force of the tissue against the substrate and is discussed in detail in Sec. 3.2.
The evaluation of the various parameters is examined in Sec. 3.3.

3.2 Justification of governing equations

Eq. (3.1a) assumes an inertialess dynamics for the deformations of a tissue layer. This is
appropriate for our purposes, since a broad scientific consensus considers biological tissues
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a strongly overdamped, inertialess environment. For example, [16] estimates the Reynolds
number in endothelial monolayers as circa 10−9.

Ignoring the α-term, Eq. (3.1a) reduces to Darcy’s law (∇p =−βv), originally used to
describe pressure-driven viscous flows in porous materials and Hele-Shaw apparatus [117]).

Darcy’s law also assumes a viscous dynamics. This point is worthy of some discussion,
since, as discussed previously, both elastic and viscous rheologies have been assumed in
continuum theories of tissue dynamics.

The mechanical properties of live tissues at short time scales, up to the order of minutes,
are generally dominated by an elastic constitutive behaviour. At longer timescales, however,
a viscous description is better suited [53]. The crossover between the two regimes is likely
related to the turnover rates of inter-cellular adherens junctions [118, 88]; the presence of cell
division and apoptosis can also lead to fluid behaviour [99]. Also, when becoming malignant,
epithelial tissues become fluidized by a reduction in the number of adherens junctions, and a
concomitant increase in the magnitude of active traction. This well-known “melting” process
is a feature of the previously described “epithelial to mesenchymal transition” [119, 120, 4].
Since here we model the behaviour of the tissue at timescales on which it experiences
substantial growth (that is, on the order of several hours at least [63]), the viscous constitutive
behaviour implied by Darcy’s law is justified. Many existing continuum models of epithelial
tissues also assume viscous rheology [105, 56, 53, 121].

We also implicitly assume that the effects of friction against a substrate are much stronger
than those of viscous shear within the plane of the layer. This is in general true if the
Darcy law term −βv is much larger than the classical dissipative term of the Navier-Stokes
equations of the form µ∇2v, where µ is the viscosity of the tissue. Via dimensional analysis
of the inequality |βv|>> |µ∇2v|, this is true on lengthscales λ satisfying λ >>

√
µ

β
. We

argue in subsection 3.3 that 1015 −1016 Pasm−2 is a plausible estimation for β . Viscosity
µ of epithelial tissues has been estimated based on measurements involving cell aggregate
compression in [122] as circa 106 Pas and in [123] as circa 4.4 ∗ 105 Pas. A wider range
of estimates for effective viscosity of a spreading monolayer was obtained from fitting a
dynamical model to data in [53] as 105 −107 Pas, depending on the exact cell type. In [88] a
cell-cell sliding viscosity of 105 Pas was assumed as a basis for computational modelling,
based on a review of available literature. It is worth noting that microscopic viscosity within
tumour cells in vivo and in vitro was recently measured as much lower, on the order of
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1Pas [124]; however we presume the former, higher ranges of values are more realistic as
estimates of bulk, whole tissue viscosity, which is presumably largely generated by friction
between cells. Based on these ranges of numbers, we can estimate λ ∼ 10−6 −10−4 m, with
the lower part of the range more typical. Based on comparing this to the typical diameter of a
single epithelial cell being over 10−5 m, we conclude that our assumption is likely plausible
in many circumstances. It is worth noting, however, that, depending on the specific modelling
study, either of the dissipative terms or both have been accounted for [114]. Darcy’s law,
in particular has been already widely employed to model the passive behaviour of tissues
[104–106, 103].

As in classical Hele-Shaw systems for which Darcy’s law has been formulated first [117],
its application is especially well justified in quasi-2D systems, in which the surface area
directly susceptible to external friction is very large compared to the volume of the system.
Our adoption of Darcy’s law goes in par with our adoption of the model to quasi two-
dimensional systems. Using two-dimensional models is experimentally justified by the large
prevalence of in vitro two-dimensional tissue culture monolayers, but also because many in
vivo soft tissues, including epithelium in which carcinomas develop, tend to spontaneously
form quasi-2D monolayers [52, 13, 5]. For these reasons, as well as for easier solution and
interpretation of results, two-dimensional descriptions are usually employed in models of
tissue mechanics [82, 56, 96]. In consistency with this discussion, in subsequent sections we
apply our model to 2D systems.

The second term on the right-hand side of Eq. (3.1a) accounts for cells actively propelling
themselves by exerting traction against the substrate. It is subsequently referred to as the
active term, and α specifies its strength.

We assume here that the direction of the net local active force acting on the tissue layer
from the substrate is aligned with the direction of the local flow velocity. This assumption
was made in previous studies modelling active tissues [81, 83]. It is a consequence of
cells attempting to maintain their direction of motility, as illustrated in Fig. (3.1a), and
also manifested by the persistent Brownian motion of individual cells in vitro [126]. On a
subcellular level, it likely results from the friction destabilising lamellipodia (protrusions at
the leading edge of the cell, used to propel it forward) [127, 128] that are not aligned with
the cell’s velocity [81].
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Fig. 3.1 Assumptions of the active traction model. Panel (a) schematically illustrates how
the active traction of a mesenchymal or epithelial tumour cell acts in the direction of its
migration velocity; filopodia and/or lamellipodia are protruding at the leading edge of the
cell, which translocates in the same direction. Panel (b) compares (in 1D) the effective
“velocity potential” [125], U(v) defined by the volumic traction force being F =−∂vU , of
our model with the Toner-Tu model; both potentials select an intrinsic velocity vs (see text),
but our model introduces a discontinuity at v = 0 which has no effect on our results.

Eq. (3.1a) also assumes that the active traction does not depend on the magnitude of
the velocity. This assumption has been made in several numerical models of motile cells
[81, 17, 87], and enables a distinct analysis of the role played by activity.

3.3 Estimation of parameters

Based on in vivo microscopy observations [63] of the time necessary for doubling a
carcinoma’s size, which is on the order of a few hours, we estimate that the growth rate k is
about 10−4 s−1.

The passive friction β can be estimated based on in vitro force measurements of epithelial
tissues against substrates [129, 52, 53] (admittedly, inference about in vivo systems from
these in vitro experiments is arguable). Following Pompe et al. [129], we assume that
friction with the substrate is primarily the consequence of cell-substrate ligands, numbering
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Parameter Symbol Unit Value
Growth rate k s−1 10−4

Passive friction β Pasm−2 1015 −1016

Active traction α Pam−1 0−1010

Surface tension γ Pam 10−3 −10−2

Table 3.1 Estimates of the physical parameters

200−300 per cell, each of which exerts a force of about 10−12 N. We thus estimate the total
friction force per cellular volume to be about 106 Nm−3 for a 10−5 m cell size. From in vivo
microscopy of micrometastasis growth [63], the typical velocity v of the cells falls within
10−10 −10−9 ms−1. Hence, dividing the volumic friction force by this velocity provides an
estimate β ∼ 1015 −1016 Pasm−2.

There is no lower limit on α , as epithelial cells may not exert any or exert very weak active
force against the substrate. The upper limit can be estimated on the basis of force tracking
microscopy applied to spreading epithelial monolayers in vitro [52, 53]. It is observed
that traction forces are actively exerted through the monolayers and peak at their edges,
giving rise to a gradient of the stress tensor’s diagonal terms, which is up to 107 Pam−1

in the study by Trepat et al. [52], and 108 Pam−1 in the work of Blanch-Mercader et al.
[53]. Balancing α with this typical stress gradient, one can place an upper estimate on α at
∼ 108 Pam−1. Concurring, the traction exerted by single fibroblasts has been reported as up
to 10−7 −10−5 N per cell [130], which would correspond to α ∼ 108 −1010 Pam−1 when
dividing by the cell’s volume.

The effective surface tension of the tissue γ also plays a role in our further considerations,
as we proceed to discussing concrete systems of fluids described by Eq. (3.1a). Its magnitude
depends on the strength of intercellular adhesion and behaviour of cortical actin networks
[131, 132]. The surface tension was evaluated indirectly in Foty et al. [133] by measuring
the energetic penalty of compression of embryonic multicellular spheroids, revealing values
on the order of 3−9mPam. We thus presume that γ ∼ 10−3 −10−2 Pam is a realistic range
for our system.

A summary of the estimates for the physical parameters is presented in Tab. 3.1.

As is shown later on specific examples of systems, one of the important practical ad-
vantages of Eqs. (3.1) is that interfacial fingering in this model can be solved analytically
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in several realistic, finite systems of growing tissues. This is because, under some natural
assumptions, the equations for spatial dependency of pressure perturbations reduce to analyt-
ically solvable second-order differential equations (see Chapter 4 and Appendix B). This is
unlike any other model of an active, viscous, growing tissue we encountered and considered.

The coupling between direction of activity and velocity our model assumes, as mentioned
previously, is consistent with experimental data [81, 134, 135], though not true in all systems
[58].

The classic, previously discussed theory derived by Toner and Tu [107, 108] and often
used to model active fluids [112, 111, 136], uses only slightly different terms for the volu-
metric active and passive force against the substrate FT(v) = αTv−βT|v|2v (with αT and βT

positive parameters). In comparison, our model, Eq. (3.1a), gives this force the expression
F(v) = αv/|v|−βv. The two models are similar, therefore, further discussing their relative
similarities and differences, strengths and weaknesses is necessary.

In both cases, the fluid has a “preferred” spontaneous magnitude of velocity; |vs|= α/β

in our model and |vs,T| = (αT/βT)
1/2 in the Toner-Tu model, which it would select when

moving in unbounded space without being driven by an external pressure gradient or growth.
For magnitudes of velocity lower than |vs|, the fluid would be driven to move faster by the
α-term, while above it, it would be slowed down by the friction (the β -term). This fluid’s
constitutive behaviour may be described in terms of an effective “velocity potential” [125],
shown in Fig. 3.1b. This potential takes the form U(v) = α|v|− β

2 |v|
2 for our model and

UT(v) = αT
2 |v|2 − βT

4 |v|4 for the Toner-Tu model. In both systems, the effective potentials
can be approximated as quadratic wells around the spontaneous velocity, where, up to a
constant, U(v)≈ αT(v−

√
αT
βT
)2 and UT(v)≈ β

2 (v−
α

β
)2 respectively. Although our model

has a discontinuity in the direction of F(v) at v = 0 which does not exist in FT(v), this
singularity does not affect our subsequent results, since we always investigate the linear
stability of a growing, and, consequently, flowing tissue, with |v|> 0. In general, we would
expect many similarities between the behaviour of analogous system set-ups governed by one
and the other model. This is demonstrated in Appendix A, in which fingering at the interface
between an active and a passive fluid in a rectangular channel with constant flow velocity is
investigated in the minimal version of the Toner-Tu model and in our model; the behaviour
of the two fluids is qualitatively similar. Specifically, the dependence of the linear growth
rate σ(q) on the wavevector q of interfacial perturbations of the two fluids is almost identical,
with the perturbations in the Toner-Tu fluid slightly more stable at shortest wavelengths.
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The Toner-Tu model, however, assumes that the friction force grows as |v|3 and that the
active force varies linearly with |v|. While it is a very good effective model for active systems
[125, 81], both assumptions are, strictly speaking, unrealistic when describing biological
tissues. Our model, on the other hand, retains the, physically correct, approximation of
friction linearly growing with |v|. The physical interpretation of β as the friction coefficient
of Darcy’s Law is retained, as well as the interpretation of α as the magnitude of the active
force of the tissue against the substrate (per unit volume). Our approach also enables a
direct comparison with classical results for viscous fingering [60], readily obtained from our
model by taking the limit α → 0. The difference in the scaling between the friction term and
velocity would probably lead to larger differences in predictions between the two models for
system set-ups in which velocity is not uniform through space, like the one formulated in
Sec. 4.1.

Practical advantages of our model in comparison with the Toner-Tu model are important.
To the best of our knowledge, fingering interfacial instabilities in the Toner-Tu model can
only be solved analytically in systems without growth and, therefore, uniform velocity (like
the ones described by [111, 112]). Appendix C shows that it is impossible in systems with
growth. In contrast, our model enables solving interfacial fingering instabilities analytically
in many realistic and physically plausible systems, incorporating growth, as discussed in
chapter 4 and appendix B. We now proceed to discussing one of such systems, motivated by
fingering observed at the edges of growing carcinomas.





Chapter 4

A uniform, circular droplet

4.1 Motivation and system set-up

4.1.1 Governing equations

After presenting and discussing the model’s equations, we are now prepared to apply it a
system representing a growing, active epithelial/mesenchymal tumour. Results and almost
all of the discussions presented in this chapter and some related appendices were separately
published by us in [1]. We choose to model the tumour as an initially circular, 2D droplet of
a growing, active fluid described by Eqs. (3.1), with an unperturbed, time-dependent radius
r0(t) (see Fig. 4.1). The surrounding healthy tissue is modelled as a passive, non-dividing
fluid, whose pressure p′(r, t) and velocity v′(r, t) fields follow:

∇p′ =−β
′v′ , (4.1a)

∇ ·v′ = 0 , (4.1b)

where β ′ is the friction parameter (analogous to β in the active fluid). In writing Eq. (4.1b),
we effectively assume that growth in the passive fluid can be neglected on the timescale of
metastasis initiation.

We assume that the activity α and the growth rate k are constant (independent of r and
t) through the active fluid. Constant magnitude of the active force has been assumed in
models of active matter before [137, 138]. While not correct in all situations [53, 57], it is
a convenient assumption to evaluate the influence of the magnitude of activity in fingering.
Similarly, we assume that β and β ′ are uniform within their respective regions. Extensions
to non-uniform and time-dependent behaviours of these parameters are readily possible, and
we investigate a case of evolving growth rate in Sec. 4.3.1 (see also appendix E.2).
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The choice of this geometrical set-up is also worthy of explanation, since flat interfaces
have also been used in modelling of tissues [139]. We believe, however, that our choice
is relatively well justified experimentally, since virtually circular tumour spheroids have
been produced in in vitro experimental models [63] and also observed in vivo [62]. At
the same time, symmetries of the circular system facilitate analytical modelling. For this
reason, circular tumour interfaces have been frequently assumed in mechanical models of
tumours [62, 100]. Such a shape of interface also has the additional advantage of naturally
introducing a characteristic length corresponding to the system size (via the radius of the
circle), so it enables an analysis of the dependence of fingering behaviour on the system size.
A flat interface introduces no such natural characteristic lengthscale.

Analytically investigating fingering within our model is also possible in several other
biologically and physically relevant set-ups. This includes a circular droplet with the fluid
injected at its middle, as was the case for the traditional set-up of radial viscous fingering
[60] and in a rectangular geometry, with and without growth. Solutions for these systems are
described in Appendices A and B.

We study the present system in polar coordinates r = (ρ,θ) and write vector fields’
components in this system with appropriate subscripts, such as v = (vρ ,vθ ). The perturbed
interface between the active and passive fluids, described by the line r(t,θ), must satisfy two
boundary conditions. First, the continuity of the radial components of velocities is expressed
as:

vρ |ρ=r = v′ρ |ρ=r = ∂tr . (4.2)

Second, the pressure difference across the interface separating the two fluids must equal the
Laplace pressure. In polar coordinates this condition has the form:

p|ρ=r − p′|ρ=r =−γ
r2 +2(∂θ r)2 − r∂ 2

θθ
r

[r2 +(∂θ r)2]3/2 , (4.3)

where γ is the surface tension, and the fraction is the expression of the local interfacial
curvature in polar coordinates [140].

Note that, unlike some previous studies dealing with fingering phenomena in tissues
[116, 80], our boundary condition does not account for a possible bending modulus of the
interface. This is in line with our strategy of modeling the behaviour of the system using
liquid phenomena. In addition, the interface between malignant and neighbouring cells may
not always constitute a single physical membrane on spatial scales larger than a single cell
diameter, so there would be no energetic cost of bending it on such length scales, while we
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r = (ρ, θ)

Active fluid
(p,v), α, β, k

Passive fluid
(p′,v′), β′

θ

ρ

r0

Fig. 4.1 Model system of a tumour growing in an external tissue: a 2D circular droplet with
radius r0 and made of an active fluid described by Eqs. (3.1), is expanding in a passive fluid
modelled by Eqs. (4.1). The interface undergoes periodic perturbations whose linear stability
is investigated in Sec. (4.2).

expect the surface tension would always be present, due to differential adhesion between
malignant and healthy cell types [141].

4.1.2 Dimensionless system of variables

Unless explicitly stated otherwise, we study this system using the dimensionless variables
defined as follows. Distances are rescaled by the characteristic length ℓ=

( 2γ

βk

)1/3, which
can be interpreted as a capillary length at which growth balances interfacial tension (on
the order of 10µm, based on the estimates of Tab. 3.1). Times are rescaled by k−1, and we
further define φ = β ′/β the relative viscosity of the displaced tissue compared to the active
growing droplet. We introduce a reference activity α∗ = βℓk ∼ 107 Pam−1 to make the active
traction α dimensionless, α/α∗ → α . Pressures and velocities are made dimensionless by
p∗ ≡ βℓ2k ∼ 102 Pa and v∗ ≡ ℓk ∼ 10−9 ms−1, respectively. We use the same letters for the
dimensionless versions of the variables as for their dimensional counterparts.

Governing Eqs. (3.1), (4.1) in this system of variables have the form:
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∇p =−v+α
v
|v|

, (4.4a)

∇ ·v = 1 , (4.4b)

for the active fluid and:

∇p′ =−φv′ , (4.5a)

∇ ·v′ = 0 , (4.5b)

for the passive fluid.
The velocity interfacial boundary condition as given by Eq. (4.2) has the same form in

this system of variables, but the pressure boundary condition as given by Eq. (4.2) is now
written as:

p|ρ=r − p′|ρ=r =−1
2

r2 +2(∂θ r)2 − r∂ 2
θθ

r
[r2 +(∂θ r)2]3/2 , (4.6)

that is, effectively the dimensionless surface tension γ = 1
2 in this system of variables.

4.1.3 Unperturbed solution

The droplet of the active fluid grows due to a positive k, as required by Eq. (3.1b), and the
passive fluid is displaced by it. As long as the interface between the two tissues remains cir-
cular (with the unperturbed radius r0), hydrodynamic fields in both regions remain symmetric
under rotations. The solutions to them are given by:

v0 =

(
ρ

2
,0
)
, p0 = α(ρ − r0)−

1
4
(ρ2 − r2

0)+ p|ρ=r0 , (4.7a)

v′0 =
(

r2
0

2ρ
,0
)
, p′0 =−

φr2
0

2
ln
(

ρ

r0

)
− 1

2r0
+ p|ρ=r0 , (4.7b)

as obtained by solving Eqs. (4.4-4.6) and Eq. (4.2).

4.2 Linear stability analysis

We investigate under which conditions the active, circular droplet of radius r0 would start
to form finger-like protrusions at its edge, while undergoing uniform growth. To do this,
we perform a linear stability analysis around the symmetric solution given by Eqs. (4.7), by



4.2 Linear stability analysis 55

1 2 3 4 5 6 7 8 9 10
n

-1

0

1

2
σ n

(r
0

=
5
)

α=0

φ=0.5

φ=1

φ=2
α=2

Fig. 4.2 Growth rate σn(r0 = 5) of periodic interfacial perturbations as a function of the
number of fingers n, for a droplet of size r0 = 5, made of a passive (α = 0; dashed lines) or
an active (α = 2; solid lines) fluid, with varying φ .

investigating infinitesimal interfacial perturbations of the form r = r0 +δ r, with

δ r ∝ fn(t)einθ (4.8)

for an integer n corresponding to the mode of the periodic perturbations, and where fn(t)
is a function describing its time evolution (with limt→0 fn(t) = 1 for all n). An analogous
ansatz of periodicity in θ is made for the perturbations of hydrodynamic fields in both fluids,
(δ p,δ p′,δv,δv′) ∝ fn(t)einθ , around the solution given by Eqs. (4.7). Note that our stability
analysis concerns small perturbations around solutions that are themselves time-dependent.
Applying the evolution equations as in Eqs. (4.4- 4.5), and the boundary conditions as given
by Eqs. (4.2, 4.6) to these perturbed fields provides an expression for the n-mode’s rate of
growth defined by

σn(r0) = lim
t→0

∂t fn(t)
fn(t)

. (4.9)

Positive values of σn(r0) correspond to unstable, growing modes n, which may become the
basis for the formation of fingers.
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The strategy of our demonstration mirrors that given by Paterson [60]. We substitute the
linearized perturbations to the hydrodynamic fields in both fluids, (δ p,δ p′,δv,δv′), into
Eqs. (4.4- 4.6) and Eq. (4.2) and obtain, to linear order:

∂ρδ p =−δvρ , (4.10a)

vρ∂θ δ p = αρδvθ −ρvρδvθ , (4.10b)

∂ρ(ρδvρ) =−∂θ δvθ , (4.10c)

in the active fluid, and

∂ρδ p′ =−φδv′ρ , (4.11a)

∂θ δ p =−ρφδv′θ , (4.11b)

∂ρ(ρδv′ρ) =−∂θ δv′θ , (4.11c)

in the passive fluid. Here vρ , v′ρ are the radial components of v0, v′0 respectively.
Introducing the ansatz of periodicity in θ , that is (δ p,δ p′,δv,δv′) ∝ einθ , in Eqs. (4.10-

4.11) allows us to calculate the partial derivatives with respect to θ . Combining the resulting
equations, and using the expression of v0 of Eq. (4.7a), leads to second-order differential
equations for the pressure perturbations in both fluids:

n2
δ p = (ρ −2α)∂ρ(ρ∂ρδ p) , (4.12a)

n2
δ p′ = ρ∂ρ(ρ∂ρδ p′) . (4.12b)

The fact that these differential equations have analytic solutions is key to the solvability of
our model. The equivalents of Eqs. (4.10, 4.12) for a wider group of circular and rectangular
systems are presented in Appendix C (Eqs. (C.1-C.3)). We now assume α < r0/2 (see
Sec. 4.2.3). Eqs. (4.12) are both solved by linear combinations of 2 functions. One function
in each of these combinations has incorrect asymptotic behaviour (diverging, instead of
decaying away from the interface) and is removed. The retained functions serve to formulate
the allowed forms of pressure perturbations:

δ p = q(t)
[ n

∑
j=0

(−1) j

n+ j

(
n+ j

j

)(
n
j

)(
2α

ρ

)− j]
einθ , (4.13a)

δ p′ = q′(t)
(

ρ

r0

)−n

einθ , (4.13b)

with
(n

j

)
the binomial coefficient “n choose j”.
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The functions q(t) and q′(t) are then obtained by finding δvρ (using Eq. (4.13a) in
Eq. (4.10a)) and δv′ρ (using Eq. (4.13b) in Eq. (4.11a)), and substituting the resulting
expressions into the kinematic boundary conditions, Eq. (4.2). Note that all intermediate
steps are presented explicitly in an analogous derivation for a rectangular system in Appendix
A. One gets:

δ p =
r0

n

[
∂tδ r− δ r

2

][
1+

2α

r0
−Λn

(
2α

ρ

)
− (n−1)

2α

ρ

]
, (4.14a)

δ p′ =
φr0

n

[
∂tδ r+

δ r
2

](
ρ

r0

)−n

, (4.14b)

where Λn is the function defined by Eq. (4.16), and where the θ -dependency einθ has been
incorporated into δ r. Using both expressions in the pressure boundary condition, Eq. (4.3)
linearised to first order in δ r, and substituting δ r ∝ fn(t)einθ leads to an expression for
∂t fn/ fn. Upon using the definition of σn(r0), Eq. (4.9), we finally obtain the following
expression for σn(r0):

σn(r0) =
1
2

(φ −1)(n−1)−n(n2 −1)/r3
0 +Λn

(2α

r0

)
φ +1+Λn

(2α

r0

)
−n2α

r0

, (4.15)

where Λn(x) is the function

Λn(x) = nx−1+n
∑

n
j=0

(−1) j

n+ j

(n+ j
j

)(n
j

)
x− j

∑
n
j=0 j (−1) j

n+ j

(n+ j
j

)(n
j

)
x− j

. (4.16)

Eq. (4.15) holds provided α < r0/2 (see Sec. 4.2.3 for a discussion). The first term in the
numerator of Eq. (4.15) represents the effects of the viscosity mismatch, the second term
embodies the effects of surface tension, while the final term shows the effects of activity.

4.2.1 Comparison to classical viscous fingering

Since Λn(0) = 0 for all n, we obtain the following expression of σn(r0) in the passive limit
α → 0:

σn(r0)|α=0 =
1
2

[
n(φ −1)

φ +1
−1− n(n2 −1)

r3
0(φ +1)

]
+

1
φ +1

. (4.17)

The first term (square brackets) of Eq. (4.17) is equivalent to the landmark result obtained
by Paterson [60] for viscous fingering in a radial geometry (Eq. (10) in Ref. 60), upon
imposing the injection rate Q in Paterson’s formula equal to the total amount of the droplet’s
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growth per unit time in our setting (that is, Q = πr2
0 in dimensionless variables). The last

term 1/(φ +1), however, distinguishes our result from Paterson’s, and stems directly from
the fact that, here, the invading fluid also grows within the fingers at the boundary.

The fact that, apart from this term, the dispersion relations for the two passive set-ups
converge is worthy of a brief aside discussion, to which this paragraph is devoted, as it
provides some insights into how the fingering instability depends on growth, flow profiles
and activity. It implies that, for fingering in a passive fluid, it does not matter if the growth
is concentrated in the middle due to an injection, or distributed within the bulk of the fluid.
The reasons for this are as follows. The dispersion relation Eq. (4.15) is obtained from the
interfacial pressure boundary condition in the presence of a perturbation of the boundary,
taken to linear order. When α = 0, the zero-order pressure close to the interface as given by
Eq. (4.7a) and the pressure perturbation as derived from Eqs. (4.10) and given by Eq. (4.14a)
is "blind" to the flow profile in the bulk of the droplet. This changes, however, in the presence
of activity, as in this case Eq. (4.10b), co-determining the pressure perturbations, is dependent
on the velocity profile in the bulk of the fluid. Therefore, in the presence of activity, the
growth distribution within the growing droplet would matter for interfacial fingering.

4.2.2 Enhancement of fingering instabilities by activity

Figure 4.2 shows σn(r0) vs. n for various values of φ and α , and for an unperturbed droplet
radius r0 = 5. Only integer values of n (circles in Fig. 4.2) have a physical interpretation.
The first mode n = 1 corresponds to a translation of the droplet, and since Λ1(x) = 0 for all x,
σ1(r0) = 0 for all values of r0, α and φ . Higher modes n ≥ 2 correspond to the formation of
n fingers on the interface of the active droplet and, if unstable (that is, if σn(r0)> 0), could
potentially initiate the multicellular protrusions observed in tumours (see Figs. (1.5, 1.6b) or
the original article [63]).

In passive fluids, φ > 1 (that is, the invaded fluid being more viscous than the invading
one) is a necessary condition for fingering to be initiated, since this type of instability can
only grow when the pressure gradient near the interface is lower in the invading, than in the
displaced fluid [142]. However, we observe that σn(r0) increases with α , so that modes that
are stable when α = 0 may become unstable in the presence of activity α > 0 (compare the
dashed and solid blue curves, obtained with φ = 0.5, in Fig. 4.2). Therefore, activity can
trigger fingering in systems that are stable otherwise, as well as enhance and/or change the
dominant modes in droplets that are already unstable.

Activity lowers the pressure gradient of the invading fluid near the interface, hence
promoting instabilities. Using the expression of p0 and p′0 given in Eqs. (4.7), we find that
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the condition for fingering, |∇p|ρ=r0 < |∇p′|ρ=r0 , is equivalent to φ + 2α

r0
> 1 when the effects

of surface tension are negligible.

4.2.3 High-activity regime

As already mentioned, the dimensional |vs|= α/β ∼ 10−9 ms−1 is a characteristic velocity
at which the active fluid would move in an unbounded space, under uniform pressure and
without growth. If |vs| exceeds the growth-generated velocity of the interface, the active
fluid’s motion is frustrated and further instabilities occur across its entire area. We call this
regime, for which dimensionless α > r0/2, “high activity”. Appendix D formally shows that
when dimensional |v| < α/β ∼ 10−9 ms−1, the bulk of the fluid is itself unstable. In this
case, the derivation of Eq. (4.15), which assumes that perturbations are only arising at the
interface and decaying away from it, is not valid. This regime is potentially relevant to the
behaviour of real epithelial tissues, in which fingering at the boundaries is accompanied by
swirls forming across the entire area of the tissue [143].

Hence, Eq. (4.15) is only valid for the “low activity” regime (α < r0/2). Yet, even in
this regime, the active droplet may feature a region of instabilities near its centre ρ < 2α ,
where the velocity magnitude |v0| (given by Eq. (4.7a)) is less than |vs|. In particular, this
situation would have also occurred in the system considered in Fig. 4.2. In practice, a separate
simulation-based study would be most appropriate to obtain the velocity field throughout the
whole active region, and to understand the behaviour of the active fluid in the high activity
regime. In further sections of this thesis, we only examine the system’s behaviour in the low
activity regime.

4.3 Critical radius for the onset of fingering

For small enough radii, surface tension stabilizes the active droplet, but its strength
decreases as that droplet grows. Therefore, there exists a critical radius for the onset of
fingering, below which the active droplet grows circular and unperturbed. Since n = 2 is
always the first mode to become unstable, rc(α,φ) is defined by the conditions σ2(r0 = rc) =

0 and ∂r0σ2(r0)|r0=rc > 0 provides an estimate of that critical radius. Using Eq. (4.15) with
Λ2(x) = x(3x− 4)/(2x− 3), these conditions are equivalent to finding a polynomial root
(first condition) within a subdomain (second condition), and have a unique positive solution.

We plot rc(α,φ) vs. α in Fig. 4.3, which shows that increasing activity decreases the
minimum radius for fingering. When φ < 1 (purple curve in Fig. 4.3), there exists a minimum
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Fig. 4.3 Minimum radius rc(α,φ) for the initiation of fingering. The gray area on the graph
signifies the high-activity regime, in which the linear stability analysis does not apply (see
Sec. 4.2.3). The squares indicate the values of α used in Fig. 4.4 for each viscosity ratio φ .
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value of α , below which fingering cannot occur, because the higher viscosity of the invading
droplet has a stabilising effect. When φ = 1 (green curve in Fig. 4.3), a moderate increase of
α may decrease rc multiple times. The impact of α in fingering is, however, reduced when
φ > 1 (the red curve in Fig. 4.3), since in that case the interface would be unstable even
without activity.

The range of dimensionless rc presented in Fig. 4.3 would correspond to a radius of
10− 100µm; however, it can be much higher for lower values of α . This range of rc is
nevertheless in qualitative agreement with the tumour size at which the onset of fingering
occurred in experimentally studied carcinomas [63].

4.3.1 Dominant mode

We now address the question of how many fingers are visible in practice, or, technically
speaking, the question of which perturbation mode dominates during growth. Viscous
fingering studies suggest the dominant mode is the one satisfying the so-called maximum-
amplitude criterion [144]. The criterion is satisfied by the mode nd experiencing the largest
total aggregated growth in amplitude ζn over the entire history of the system [144]. Following
Ref. 144, we obtain ζn by integrating the rate of the perturbation’s growth, as predicted by
our linear stability analysis, over that history:

ζn(r0) = exp
[∫ r0

Rn

σn(r)
dt
dr

dr
]
, (4.18)

where Rn is the radius at which mode n is first destabilised (i.e., the minimum radius at which
σn(Rn) becomes positive). The dominant mode nd is then obtained for each r0 from the
conditions,

∂nζn(r0)|n=nd = 0 , (4.19a)

∂
2
nnζn(r0)|n=nd < 0 , (4.19b)

used to locate the maximum aggregated growth.
As we shall see, the selection of the dominant mode depends on the particular kinetics

of the droplet’s growth. The kinetics of tumour growth is known to vary between tumours
and their stages of development. Some experimental studies have shown that an initially
exponential growth [145] (corresponding to a constant k) subsequently slows down with time
(implying a decrease in average k) as the tumour enlarges and its resource supply becomes
a limiting factor [146–148]. Other kinetics have been measured for various tumours and
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Fig. 4.4 Numerical estimation of the dominant mode nd(r0) observed in an active droplet of
radius r0, undergoing exponential growth, for various values of α and φ .

phases of growth, including sigmoidal regimes in which the growth stalls [146–148]. A
kinetics where the tumour’s radius grows linearly with time also naturally emerges when the
tumour proliferates only within an outer rim [148]. Such growth can also effectively occur as
a temporary feature in a sigmoidal kinetics.

We thus proceed to discuss in detail the selection of dominant modes in two kinetic models
of droplet growth: an exponentially growing droplet, where k is uniform and independent of
time and r0(t) = riek(t−ti)/2 (from Eq. (3.1b) at the interface, and with dimensional variables;
ri being the initial radius at time ti); and a droplet with a radius growing linearly with time,
r0(t) = ri + vi(t − ti), with vi the constant and uniform velocity of the unperturbed interface.
In the latter case, the growth rate k appearing in Eq. (3.1b) evolves with time.

Exponential growth

The integral given in Eq. (4.18) cannot be expressed analytically for all values of φ and α ,
and we plot in Fig. 4.4 the relationship nd(r0) obtained from numerical evaluation. When
φ > 1, and for low radii close to the onset of fingering, we observe that the activity has
only a moderate influence on the selection of the dominant mode. For later growth, when
r0 becomes large, the viscosity mismatch is the governing cause of fingering and activity
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plays no role in the selection of the dominant mode. We numerically observe the power-law
variations nd ∝ r3/2

0 , independent of α . When φ = 1, higher activities promote the selection
of higher modes. We obtain numerically, and for large r0, the scaling nd ∝ r1/2

0 , where the
1/2 power law is independent of α . When φ < 1, certain low-n modes become destabilised,
provided sufficient α . However, these perturbations restabilise and decay as r0 increases
further, because the stabilisation from viscosity mismatch dominates as the radius of the
droplet grows: active terms of Eq. (4.15) vanish r0 → ∞, while terms involving φ remain
constant in this limit.

We recover analytically the observed scalings for large nd and r0, and for φ ≥ 1. We derive
in the appendix E.1 the following results when r0 → ∞: nd ≈ (φ − 1)1/2 × r3/2

0 for φ > 1
and nd ≈

[
(α/2)2 +(α/2)1/2]1/2 × r1/2

0 for φ = 1, which we give below in dimensional
variables to highlight the influence of the various physical parameters:

nd ≈c1/2
[

k(β ′−β )

2γ

]1/2

× r3/2
0 for β

′ > β , (4.20a)

nd ≈
[

2γ

βk

(
α

4γ

)2

+

(
α

4γ

)1/2]1/2

× r1/2
0 for β

′ = β , (4.20b)

when r0 ≫
( 2γ

βk

)1/3, and with c ≈ 0.06 defined as the smaller of the two solutions to 3c =
3+ lnc.

Linear growth

We also investigate pattern selection for a droplet with a radius growing linearly with time.
The derivation of σn(r0) proceeds along identical lines, although in this case, the integral
in Eq. (4.18) can be expressed analytically. Details of this calculation are given in the
appendix E.2, and in this case we find that nd ≈ c(α +φ −1)1/2 × r0 is valid for all values
of the physical parameters in the low activity regime when r0 → ∞, and where c ≈ 0.06 is
the constant defined previously. We thus write, in dimensional form,

nd ≈ c
[

α + vi(β
′−β )

γ

]1/2

× r0 , (4.21)

when r0 ≫
(

γ

βvi

)1/2 (note that the dimensionless variables are defined differently in the linear
growth, as explained in appendix E.2). The difference in the nd vs. r0 power-law dependency
between Eqs. (4.20) and (4.21) highlights the role of the growth kinetics in the fingering
pattern, and is discussed with more details in the following.
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Comparison and discussion

We now examine the evolution of the droplet’s shape in the two growth kinetics studied above.
An initially circular droplet is allowed to evolve, with the n-mode perturbation starting when
the radius r0 reaches Rn, and with an initial amplitude of 0.2 (corresponding to ∼ 2µm).
The perturbation is subsequently allowed to grow according to Eq. (4.18), such that ζn(r0)

represents the weight of the n-mode at the unperturbed droplet radius r0. We further assigned
a random phase difference between each n-mode perturbation.

We present in Fig. 4.51 examples of droplet patterns obtained with this procedure, where
fingering is driven by either viscosity mismatch (left) or by activity (right), in both the
exponential (top) and linear (bottom) growth regimes. In the linear growth, activity-driven
fingers emerge more distinctively than in the passive droplet; the opposite is observed in
the exponential growth. These results, as well as the analytical scalings presented above,
demonstrate that the role of activity in fingering depends on the kinetics of the droplet’s
growth, and is indeed enhanced in the slower, linear growth kinetics. This assessment could
potentially provide a basis for the mechanism behind the onset of metastasis, when the bulk
growth of the primary tumour slows down or saturates.

The results presented in Figs. 4.4 and 4.5 relate direct observables of the tumour’s
geometry, and such measurements should indeed be envisaged by experimentalists. Note,
however, from Fig. 4.5 that the number of fingers (∼ 10) visible at r0 ∼ 100µm when φ = 1
is in agreement with the experimental observations shown in [63].

1This figure is a replacement for Figure 6 of our publication [1] on which this thesis is based. The
replacement was carried out due to a numerical error discovered in data used to generate the original figure. The
current figure demonstrates the same effect and conclusions and interpretations drawn from it do not change
qualitatively.
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Fig. 4.5 Evolution of a droplet, undergoing exponential (upper row) or linear (lower row)
growth, made of a passive (left column) or active (right column) fluid. For comparison,
the patterns are shown at the indicated values of the unperturbed radii r0 (see the scale of
shades), even though these are reached at different times in each growth regime. We used the
initial amplitude 0.2 for all modes and, to facilitate the morphological comparison, equate
the characteristic lengths introduced for each growth kinetics (see ℓ defined in Sec. 4.1 for
the exponential growth, and in appendix E.2 for the linear growth):
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(

γ
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Chapter 5

Conclusions

5.1 Our model so far

The study described in this part of the thesis was originally motivated by observable
patterns of fingering in spreading epithelial tumours [63], though we also foresee applica-
tions beyond the original motivation. We investigated via modelling the hypothesis that
self-propelling forces of the bulk tumour itself can lead to those patterns via a mechanism
resembling classical viscous fingering instability. We constructed an active fluid model of a
growing and self-propelled tissue that isolates the role of four mechanical parameters (sum-
marised in Tab. 3.1) on its dynamics. The theory is motivated by experimental observations
but it is also analytically solvable. We used it to describe the evolution of an embedded 2D
circular droplet that could model a carcinoma in an epithelial layer.

Within our model, we have demonstrated how activity increases the propensity for fingering
and how this effect is especially important when viscosities of invading and invaded fluid are
similar. We also showed how it leads to a reduction in the critical radius, at which fingering of
the droplet may begin. We were able to highlight the basic mechanical conditioning required
to form interfacial instabilities, which could initiate the tumour protrusions observed at the
onset of metastasis. We notably argue that the decrease of the pressure gradient within the
droplet by active forces, correlated in direction with the velocity, could be the mechanism
which leads to the formation of fingers. We find that the droplet’s active traction and growth
kinetics are central to shape the instabilities’ pattern and further evolution.

All of the results reported were derived analytically, demonstrating strong practical advan-
tages of the simplicity of our model. Our work shows the continued potential of minimal
physical models to bring about deep insight and understanding of biological systems.
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Our model, after further experimental validation and development, could help predict the
minimum tumour size for metastasis, as well as the number of subsequent invasive fingers
emerging from the initial mass.

Admittedly, at present our work remains speculative. Therefore, in the next section we
list potential experimental validations of the approach. Subsequently, in the final section of
this chapter, we describe recommended directions for further research into the model itself,
which may result in additional criteria for experimental validation being formulated.

5.2 Further validation of the model

If our work is indeed a realistic description of growth of malignant tissues and the effect we
demonstrated within our model is the basis for fingering observed in some tumours and other
tissues, the following predictions, experimentally falsifiable at least in principle, would be
implied:

1. In circular tumours, the radius necessary for the initiation of fingering should monoton-
ically increase with increasing surface tension, while the number of observed fingers
at any higher radius should decrease; this would in general correspond to invasiveness
of the tumour decreasing with increasing surface tension. In consistency with predic-
tions of our model, this effect was already experimentally demonstrated in vitro for
brain tumour spheroids embedded in matrigel. The efficiency of a therapeutic agent
dexamethasone was shown to be based on increasing cohesivity and surface tension of
the tumour [149]. Negative correlation between surface tension and invasive potential
in vitro was also demonstrated for lung and prostate cancers and fibrosarcoma [150].
Qualitatively, therefore, this prediction of our model is relatively well established.
If more precise, quantitative measurements of this relationship become feasible, our
model predicts that fingering starts at a (dimensional) radius rc ∝ γ

1
2 , where γ is the

surface tension in the case of linear growth and at a radius rc ∝ γ
1
3 in the case of

exponential growth. These predictions follow directly from solving for dimensionless
rc the conditions σn(r0 = rc) = 0 in Eq. (4.15) and Eq. (E.2) for exponential and
linear growth respectively, and then using scalings of the characteristic length scales in
both systems, as specified in Sec. (4.1.2) and Sec. (E.2) respectively, to recover the
relationship between dimensional rc and γ for each system.

2. Increased viscosity of the surrounding tissue and lowered viscosity of the tumour
should promote fingering directly via the mechanism of the classical viscous fingering



5.2 Further validation of the model 69

instability. Magnetic resonance elastography has been recently used to measure directly
the dynamic modulus, and (indirectly and assuming the Kevin-Voigt viscoelastic model
for the tissue) also the relative viscosities of brain cancer and surrounding healthy
tissue [151]. Invasive glioblastomas were shown to have much lower viscosity than the
surrounding tissue, as opposed to benign (non-invasive) meningiomas, qualitatively
confirming our predictions. Measuring viscosity within live cells has become pos-
sible in recent years both in vivo and in vitro by using so-called "molecular rotors"-
molecules, whose fluorescence lifetimes depend on local viscosity within the system.
Labeling cancerous tissue using such molecules has recently provided quantitative
information on microscopic viscosities within individual cells [152, 124]. If these
techniques are developed to the point of being able to provide precise information on
bulk viscosity of the tumour and its surroundings, our quantitative predictions for the
linear rates of growth σ(r0) and the critical radius of growth rc can be tested further, at
least for passive systems.

3. We predict an enhancement of fingering by active forces. Specifically, we predict
that the self-propelling force as in Eq. (3.1a) leads to fingering even in the case
when viscosities of the tumour and surrounding tissue are similar and this occurs
sooner when that force is larger. Measuring the relative viscosities of the tumour and
surrounding tissue should be possible using methods referred to in the previous point,
as described in [151] and perhaps also using the ones described in [152, 124]. This
should enable in the foreseeable future identifying those cases, in which fingering
occurs despite a viscosity ratio close to 1, for which our predictions on the role of
activity could be better tested. This would likely be a qualitative study; we are not
aware of experiments enabling direct quantitative measurements of active traction
against the substrate (the α-term in Eq. (3.1a)) of an entire tumour in in vivo settings.
Qualitatively, however, identifying which of two samples undergoing comparison has
higher active forces should be possible; the magnitude of activity in tumours can
be inferred using various tools, such as by measuring stochastic fluctuations of the
cytoplasm with force spectrum microscopy [153] or by traction force microscopy of in
vitro cancer cell lines taken from a given tumour [154]. In qualitative consistency with
our predictions, both techniques indeed show that higher active stresses generated by
breast, prostate and lung carcinoma cells correlate with higher metastatic potential of
the tumour they were taken from [154, 153].

4. We predict that, for fingering to occur, the gradient of the pressure perpendicular to the
interface of the tumour has to be lower within the tumour, than within the surrounding
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tissue. Within our model’s predictions, this is true regardless if the fingering is caused
by activity or by the viscosity ratio. Any fingering occurring when this condition is
violated must stem from different causes than we propose. In principle, measuring
when this condition is satisfied should be possible, since reliable experimental tools for
measuring pressures within tissues exist and have been applied for tumours [155, 156].
This test could verify if and when fingering occurs precisely via the mechanisms we
propose, or if it results from other causes, even when superficial similarities are present.

We believe further predictions can be formulated upon further development of our model.
In the next subsection, we describe which aspects of the model should be better understood
for this purpose.

5.3 Directions for further modelling research

The relative analytical simplicity of our model allows the investigation of more complex
settings, such as heterogeneous droplets in which active forces and/or growth are not uniform.
In particular, solving analytically experimentally motivated systems in which activity and/or
tissue growth are concentrated within an outer rim of the droplet should be possible. Perhaps
this could contribute to understanding the ways in which tumour heterogeneity enhances
metastasis (as reviewed in Chapter 1). It is also plausible to analytically compute what
happens when these parameters are evolving over time (as was done for the case of time-
dependent growth rate, leading to constant growth of the droplet radius, in Subsection 4.3.1).
In particular, the patterns of fingering in other growth kinetics commonly encountered in
tumours, such as sigmoidal, could be studied, leading to quantitative predictions on the
relationship between growth kinetics of the bulk of the tumour and prominence of active and
viscous fingering.

The constitutive equations of our model can also be implemented in fluid dynamics
simulations. We envisage such studies for systems with high traction forces, where active
motions are faster than the growth velocity, and which may indeed be relevant in aggressive
forms of cancer and in epithelial spreading. Apart from the biological applications, such
studies would also represent, in our opinion, considerable value for fundamental physics
of instabilities. What behaviour of a fluid should we expect if it has a non-zero preferred
velocity when flowing within an area restricted by boundaries? What happens when these
boundaries themselves can deform due to forces acting from the fluid? And what happens
when, in addition, there is a second fluid on the other side of that boundary, which also
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influences its stability or lack of thereof? We believe the active fluid investigated in this
thesis constitutes a good model system to address these questions.





Part II

Errors in energy landscapes measured
with particle tracking





Chapter 6

Introduction

6.1 Particle videotracking

Microscopy is used to observe motions in tissues, complex materials and nanofluidic
devices, on the scale of individual micro- and nano-particles. Sophisticated techniques to
extract useful results from microscopy on this lengthscale are required. One of the most
important is particle videotracking. The technique serves multiple purposes. It has been used
for decades to study biological and soft matter, and has indeed provided valuable information
on the microscale dynamics and structure of these systems [157–159]. With this technique,
one can for instance probe live-cell microenvironments [160, 161], study the dynamics
of individual proteins in natural settings [162, 163], image the viral invasion of host cells
[164, 165], etc. Extracting mechanical properties of individual biological molecules has
also been shown to be possible by measuring the thermal fluctuations of cytoskeletal and
membrane filaments [166–169], and of DNA [170, 171].

Apart from purely biological applications, particle tracking has also been used extensively
in synthetic soft matter physics. Hence, central applications of this technique have been
to determine the microrheology, diffusion rates or mechanical properties of complex fluids
[172–175]. It has also been employed to measure colloidal interactions of electrostatic
[176, 177] or entropic [178, 179] origins, and, more recently, to observe particle trapping in
microchannels [180–183].

On these length- and timescales, simple inspection of the images is almost never sufficient
to extract meaningful results, and statistical analysis of Brownian particle trajectories is
usually a prerequisite to extracting observables that can be physically interpreted. The mean-
squared displacement (MSD) is often calculated, as a measure of the time- or population-
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averaged dynamics of the tracked particles. For example, the MSD enables distinguishing
between diffusive, driven, sub-diffusive, hopping or trapped motions [173].

Reconstructing the underlying energy landscape guiding the particles’ dynamics is an-
other insightful analysis of Brownian trajectories, which has been exploited in many of the
aforementioned applications [184, 185, 176–183]. This landscape is an immensely important
observable, governing the behaviour of many of these systems, and recovering it correctly
is necessary to understand them. Hoze et al. [184] and Masson et al. [185] infer it around
neuronal cell membranes from statistics of trajectories of fluorescently labelled proteins. In
this case, it determines protein binding to cell membranes, governing both healthy biological
functions, such as neurotransmission [185] and elements of disease progression, such as
viral invasion of cells [184]. Others [176, 177, 179, 186] infer the interaction potential
between colloidal particles held in optical traps to understand electrostatic [176] and entropic
[177, 179, 186] forces in various colloidal suspensions, their phase behaviour and stabiliza-
tion, as well as their adherence to and deviance from existing theories [177, 179]. Yet others
have been attempting to assess it precisely in microfluidic devices, in which it is a tool for
trapping particles [180–183]. If the landscape in a given device is known precisely, it can be
used to infer charges and sizes of particles with previously unknown properties, by placing
them within the system and observing their motion [180]. This could perhaps even lead to
new methods for detecting individual molecular reactions [180].

All of the aforementioned important applications require efficiency and precision of the
first experimental step: recovering the energetic landscape from Brownian particle statistics.
However, as we shall see, this part of the process is prone to potentially consequential errors,
which may subsequently propagate to all conclusions stemming from the research.

6.2 Errors in particle tracking

Video particle tracking suffers from various sources of errors. In particular, artifacts
intrinsic to the imaging detectors can contaminate the trajectory measurements, well beyond
the statistical uncertainties arising from finite sampling. Several studies have compared
the resilience of tracking methods to these errors [187, 158], and new Bayesian techniques
notably tend to improve the robustness of the extracted trajectories [188, 158]. Nevertheless,
positioning and trajectory linking are irremediably suffering from errors, which have been
recognized to propagate to the measured physical observables [172, 189–196, 181, 197–201].
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Most detection errors may be classified into two categories: “static” and “dynamic” [202].
The “static error” typically comes from video signal noise (camera-specific noise, background
autofluorescence, etc) and would even affect the localization of an immobile particle [202,
203]. The “dynamic error” is the result of motion blur, due to finite camera exposure time,
and occurs when measuring the positions of a moving particle. The propagation of these
errors to MSD calculations has been characterized in detail [190, 190, 196]. However, no
such systematic description has previously existed for their effects on mapping energetic
landscapes. Yet, the need for such studies has been emphasized by the recent experimental
work of [181], which notably shows that trapping potentials, extracted from video particle
tracking via the Boltzmann distribution, are strongly influenced by the camera exposure time
[180].

In this part of the thesis, we show that these errors result in systematic and non-trivial
biases in the measured energy landscapes. We derive analytically a relationship between the
true and the measured potential that elucidates, among other aberrations, the presence of
false double-well minima in the apparent potentials reported in recent studies. We further
assess several canonical trapping and pair-interaction potentials, by using our analytically
derived results and Brownian dynamics simulations. In particular, we show that the apparent
spring stiffness of harmonic potentials (such as in optical traps) is increased by dynamic
errors, but decreased by static errors.

Our model of static and dynamic errors allows for the development of efficient corrections
schemes, which would allow experimentalists to revise their existing data. We also present a
provisional method for reconstructing true potentials from the measured ones. Implications
of our work are relevant for a wide class of trapping and interparticle potentials.

This part of the thesis is organized as follows. Chapter 7 describes the model quantifying
how localization errors affect the measured potentials, and details the algorithm to verify
these predictions. Chapter 8 presents the simulation data to confirm the validity of our
formula for specific and pertinent potentials, and further explains a possible strategy to
correct experimental results for static and dynamic errors, illustrating them with a step-by-
step application of our work to reconstruct a true potential from data polluted by static and
dynamic errors. Chapter 9 summarizes our findings and discusses directions for further
research.





Chapter 7

Methods

7.1 Static and dynamic errors

In many of the aforementioned experimental studies using particle tracking to calculate
the energetic landscape, the statistics of the Brownian particles’ positions is measured at
equilibrium and assumed to obey the Boltzmann distribution [177, 204, 181, 197], and this is
the technique our work focuses on. Note that this analysis requires only localizing particles
in each frame of the video, while calculating the MSD involves the additional, and often
non-trivial, step of linking the particles’ successive positions into trajectories [203].

The relationship between the potential V probed by the trapped particles and the probability
density function (pdf) of their positions r=(x1,x2,x3) is given by fr(r)∝ e−βV (r), where β =

(kBT )−1 (kB: Boltzmann constant; T : temperature). In our notation, fr(r) is the joint pdf of
r evaluated at r = (x1,x2,x3), the space coordinates. In principle, the Boltzmann distribution
allows experimentalists to recover the energetic landscape by measuring the equilibrium
distributions of positions of the trapped Brownian particles using video microscopy. In
practice, however, cameras measure a moving average of positions over a shutter time σ , to
which a zero-mean random vector ξ resulting from instrumental noise is added [166, 205,
190, 191]:

r(t) =
1
σ

∫ t

t−σ

r(s)ds+ξ (7.1)

at time t, with ξ independent of r. The time average in Eq. (7.1) results in motion blur or
“dynamic errors”, while the added noise produces the “static errors” that would occur even
when locating an immobile particle [190]. The validity of the various assumptions (properties
of ξ , statistics of illumination and detection) leading to Eq. (7.1) has been discussed elsewhere
[190, 206].
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Most relevant to quantify the static error is the noise covariance matrix, E = ⟨ξ ξ
⊺⟩, where

ξ
⊺ is the transpose of ξ , and ⟨···⟩ is the average. The noise covariance matrix can often

be written as E = ε2I (with I the identity matrix) in 2D particle tracking where the static
errors are isotropic in the observation plane [190]. In that case, ε is the spatial resolution of
the tracking method, and together with the detector exposure time σ , they quantify the two
common sources of errors in particle tracking.

We denote the observed pdf of the measured positions given by Eq. (7.1) as fr. Applying
fr(r) ∝ e−βV (r) to this “apparent” pdf does not measure the correct potential V in which the
particles move, but an apparent potential V via:

βV (r) =− ln fr(r)+ constant , (7.2)

with an added, arbitrarily chosen constant that, unless stated otherwise, is ignored in the
remaining.

We illustrate in Fig. (7.1) the effects of errors ε and σ on a representative 1D potential:
the exact potential is shown in black, and the measured potentials affected by motion blur
or static positional uncertainty are given by the colored squares, which are obtained by
Brownian Dynamics simulations (our algorithm is explained in subsection 7.3; for illustrative
purposes, the errors used here are larger than in the actual experiments, where ε ≈ 4nm
and σ ≈ 1ms). While static errors tend to apparently widen the potential (blue squares in
Fig. (7.1)), dynamic errors produce the opposite (red squares). These antagonistic effects
were already revealed when studying the propagation of the tracking errors to the MSD [190].
Near the potential’s minimum, static errors tend to slightly narrow it, while motion blur gives
rise to secondary minima, similar to those observed in [181], whose experimental results
are shown with the orange disk symbols in Fig. (7.1). The resemblance of these artifacts
indicates that motion blur is likely their cause in the measurements. The latter are obtained
from 3D tracking experiments, while the simulations are performed in 1D, and the observed
discrepancy in amplitude between the red and orange curves may indeed come from this
dimensional mismatch (see subsection 8.2).

7.2 Apparent potential

The apparent pdf fr of measured positions can be analytically related to its true counterpart
fr under two main assumptions. First, we assume that the tracked particle undergoes



7.2 Apparent potential 81

-400 -200 0 200 400
 

-5

-4

-3

-2

-1

0

 
▫▫▫ σ=0 , ε=0

▫▫▫ σ=0.5 ms, ε=0

▫▫▫ σ=0 , ε=50 nm

••• Krishnan et al. [22]

x (nm)

β
V
,
β

V

Fig. 7.1 Effect of static and dynamic errors on a 1D potential mapping. The trapping
energetic landscape, βVES(x) = 2.5[tanh(3x/a−4)− tanh(3x/a+4)], with a = 160nm, is
shown with the solid line and is chosen to resemble the slice of the 3D electrostatic potential
in a microfluidic trap, as measured in [181] using a 100nm particle with diffusion coefficient
D = 1.8µm2s−1 (fill circles are data reproduced from Fig. 3 of their paper). The open
squares are results of our simulations (see Section 7.3). The effect of errors shown in their 3D
experimental measurements is more pronounced than in our 1D simulations, as the dimension
may indeed change the magnitude of the resulting artifacts (see Section 8.2).
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overdamped Langevin dynamics. Second, the trapping potential in which the particle moves
is considered smooth enough to be approximated, within the typical width of static and
dynamics positioning errors, by its second order Taylor expansion. The approximation of an
overdamped (i.e., inertialess) dynamics is valid for most video-tracked particles (micron sized
colloids, or smaller globular objects like proteins). The condition of potential’s smoothness
imposes upper bounds for both σ and ε , as we shall see below. Under these assumptions, we
can obtain an analytical relationship between fr and fr, the derivation of which is detailed in
Appendix F for an arbitrary number of dimensions. The resulting expression for the apparent
potential V in multiple dimensions (the particular 1D case is given later in this section), as
obtained from fr using Eq. (7.2), is

V =V −
lndet(UE,σ )

2β
+

v⊺Λ
−1(UE,σ − I

)
v

2βD
. (7.3)

Here det(···) designates the determinant of a matrix, D is the diffusion coefficient (assumed
to be constant) of the particle, and we have introduced the convective velocity and the local
relaxation matrix,

v =−βD∇V , (7.4a)

Λ = βD∇∇
⊺V , (7.4b)

respectively (with ∇ the nabla vector and ∇∇⊺ the symmetric Hessian matrix operator; Λ

has the dimension of an inverse time). We have also defined the following error propagation
matrix:

UE,σ =
[
2(σΛ)−2(

σΛ− I + e−σΛ
)
+ΛE/D

]−1
. (7.5)

Note from this expression that U0,0 = I, indeed leading to V =V in Eq. (7.3) when both E
and σ vanish in the absence of tracking errors.

Eq. (7.3) is valid for both shutter times σ and static errors small enough so that, within the
localization errors they induce via Eq. (7.1), third and higher order variations in V (r) may be
neglected. We write these conditions, conservatively, as

Dσ ||β ∇V ||+
√

Dσ ≪ ||β ∇
3V ||−1/3 , (7.6a)

||E||1/2 ≪ ||β ∇
3V ||−1/3 . (7.6b)
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Here the elements (∇3V )i jk =
∂ 3V

∂xi∂x j∂xk
, and || ··· || designates the maximum norm, that is,

for a position-dependent matrix A(r) with elements Ai j...(r),

||A(r)||= max
i j...;r∈Ω

|Ai j...(r)| (7.7)

is the maximum absolute value of any elements of the matrix over the observable space
domain Ω. The left-hand side of the inequality (7.6a) represents the typical displacement of
the particle during the time σ , which can be caused by the drift imposed by the trap (first
term) and diffusion (second term). Hence, the conditions (7.6) express the requirement for
the potential to be “resolvable” to its second order within the localization errors corrupting
the particle tracking. We verify in appendix G that these nontrivial conditions indeed provide
correct limiting values for σ and ε below which Eq. (7.3) is valid.

Another requirement for Eq. (7.3) to be applicable is UE,σ ⩾ 0 (positive definite), which
ensures that the logarithmic term is well defined. The error matrix E is positive-definite, and
we indeed verify that the same holds for the σ -term in Eq. (7.5). However, Λ does not have
this property around local maxima or saddle points. In these cases, and under the additional
condition of a static error larger than a typical Brownian displacement during the time σ (i.e.,
ε >

√
Dσ ), we find that UE,σ may not be positive definite at these particular points (see an

example in 8.1, Fig. (7.2h), in the next section).

In 1D, we rename x1 = x and Eq. (7.3) is written:

V =V −
lnuε,σ

2β
+

v2(uε,σ −1
)

2λβD
, (7.8)

with the convective velocity and the local relaxation rate, Eqs. (7.4), defined in 1D using the
first and second derivatives of V (x):

v =−βDV ′ , (7.9a)

λ = βDV ′′ , (7.9b)

respectively. The error propagator, Eq. (7.5), now reads

uε,σ = [2(σλ −1+ e−σλ )/(σλ )2 +λε
2/D]−1 . (7.10)
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Finally, in the 1D case, the conditions of validity become

Dσ ||βV ′||+
√

Dσ ≪ ||βV ′′′||−1/3 , (7.11a)

ε ≪ ||βV ′′′||−1/3 , (7.11b)

with || f (x)||= maxx∈Ω | f (x)|, and are supplemented by the requirement that uε,σ > 0.
One can linearize Eq. (7.3) under the more constraining conditions ||σΛ||, ||ΛE/D|| ≪ 1,

to obtain:
V =V +

tr(σΛSE,σ )

2β
−

σv⊺SE,σ v
2βD

, (7.12)

with SE,σ = E/(Dσ)− I/3 and tr(···) designating the trace. In particular, Eq. (7.12) shows
the opposite effects of static and dynamic errors on the apparent potentials, and that these
errors can negate each other when ε2 = Dσ/3, as also observed for the MSD of a diffusing
particle [190].

Typical values of the errors are around ε ∼ 10nm and exposure times σ in the range of
0.1−1000ms for modern CMOS and CCD cameras; the characteristic width a of measurable
potentials range from 100nm to several microns; usual diffusion coefficients of trackable
microspheres in a liquid at room temperature are in the range of 0.1−1µm2 s−1 [180, 181,
178, 177, 207]. Hence, in many instances ε ≲

√
Dσ ≲ 0.1a, and Eq. (7.3) should indeed be

effective for most experimental settings.

7.3 Simulations

In the following, we verify the validity of Eq. (7.3) by comparing it with Brownian
Dynamics (BD) simulations for several examples of potentials. An explicit first-order time-
stepping algorithm is used to advance the position r(t) of a particle at time t: r(t +δ t) =
r(t)+ ṙ(t)δ t, where δ t is the time step and ṙ(t) satisfies the following equation [208]:

ṙ(t) =−βD∇V
(
r(t)
)
+
√

2D/δ t w(t) , (7.13)

which assumes the drag on the particle to be Stokesian and neglects any other hydrodynamic
interactions. Here, w(t) is a stationary Gaussian process that satisfies ⟨w(t)⟩ = 0 and
⟨w(t)w⊺(t ′)⟩= I if |t − t ′| ≤ δ t, 0 otherwise.

Each trajectory is 109 time steps long, and is then transformed by calculating the average
positions over non-overlapping sets of n time steps, r(t) = 1

n+1 ∑
n
k=0 r(t − kδ t) +ξ , where
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Fig. 7.2 Comparison of Eq. (7.8) (coloured lines on the plots) with BD simulations (symbols)
for various σ and ε , and under different 1D trapping potentials (black lines): V (x) = x2

(panels a and b), V (x) = x4 (panels c and d), V (x) = (−x+ x4)/2 (panels e and f) and
V (x) =−x2 +2x4 (panels g and h). The top panels (a, c, e and g) investigate the motion blur
with no static errors. The bottom panels (b, d, f and h) concern static errors under a fixed
shutter time σ = 0.1. The conditions in Eq. (7.11) require σ ≪ 0.05 and ε ≪ 0.3 for panels
c and d, σ ≪ 0.07 and ε ≪ 0.4 for panels e and f, σ ≪ 0.03 and ε ≪ 0.3 for panels g and h.

σ = nδ t defines the shutter time, and where the added static error ξ is a random, normally
distributed vector with ⟨ξ ξ

⊺⟩= ε2I.

In the remaining, we work with dimensionless quantities, where the unit distance a is
the characteristic width of the potential trap (meaning V (|r| = a)−V (0) = β−1), the unit
energy is β−1, and the unit time a2/D. The dimensionless spatial resolution and shutter time
are therefore expressed ε/a and Dσ/a2, respectively. For example, with the values used in
Fig. (7.1), one finds ε/a = 0.3 (ε = 50nm and a = 160nm) and Dσ/a2 = 0.3 (σ = 4ms and
D = 1.8µm2s−1), as reported by the dashed lines in Fig. (8.3d) for the same simulation data.
In these units, δ t is chosen to be 5× 10−3 or less, and n to be 100 or greater. We further
verify, for each simulation, that decreasing δ t and/or increasing n (while keeping the value σ

of interest conserved) does not significantly affect the results shown.

A histogram of the positions with a bin size ≤ 0.05 is then calculated, and we verified that
the observed pdf is independent of the bin size when it is chosen in this range. The apparent
potential is then extracted from the pdf via Eq. (7.2). For all examples investigated next, we
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also perform BD simulations without dynamic and static errors and verify that the correct
potential is returned by our algorithm (see Fig. (8.1a) and the black symbols in Figs. (7.1),
(7.2), and (8.2)).



Chapter 8

Results and Discussion

8.1 1D potentials

We now use Eq. (7.8) to predict the shape of the apparent potential for a few 1D examples
presented in Fig. (7.2), and compare the results with the BD simulations described in the
previous section. In this figure, the lines are obtained from Eq. (7.8), while the symbols are
obtained from the simulations.

The first potential we consider is V (x) = x2 (Figs. (7.2a) and (7.2b)), for which Eq. (7.8)
is exact and indeed matches the simulations for any values of ε and σ . This canonical
harmonic potential, indicating a linear elastic interaction, is ubiquitous in soft biological
systems [209] and in the optical tweezer technique commonly used to probe them [210, 211].
For a general harmonic trap with constant k, V (x) = kx2/2, the apparent potential can be
calculated, using Eq. (7.8), as V (x) = kx2/2 with k = k/uε,σ and for the relaxation rate
λ = βDk. Consequently, the apparent MSD of a particle trapped in such potential reaches,
at long time, a plateau 2/(βk) = 2gσ/(βk)+2ε2 with gσ = 2(σλ −1+ e−σλ )/(σλ )2, as
already shown in [190, 190]. Our formula in that case also justifies the corrective approach
employed in [180] to evaluate the stiffness of their trapping potentials via the dependency of
the MSD plateau with the camera exposure time.

The second potential we examine is V (x) = x4, shown in Figs. (7.2c) and (7.2d), and which
has been investigated as a possible confinement landscape for membrane proteins [168]. This
trapping potential also resembles the interaction restricting the motion of a particle attached
to a substrate by a polymer tether [212, 213]. The tethered particle motion (TPM) technique
has been used in recent years to probe the mechanical properties and interaction of various
biological macromolecules [214]. Unlike the previous case of a harmonic potential, Eq. (7.8)
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is an approximation that fails for large values of σ or ε , when the conditions expressed by
Eqs. (7.11) are not satisfied. Accordingly, we observe discrepancies between the predicted
apparent potential and the simulations (see the green and yellow curves in panels c and
d, respectively). However, our formula correctly returns the existence of two symmetric
minima in the apparent potential, as observed in the simulation results (and similar to the
data presented in Fig. (7.1)), and is accurate for lower (and typically, more experimentally
realistic) values of σ and ε . We also note that near the potential’s minimum, the dynamic
errors tend to apparently widen the trap, with the static errors producing the reverse. This
behavior is indeed the converse of what is seen on the higher parts of the trapping branches
of the potential (about β−1 above its minimum; see Fig. (7.1)).

We also investigate an asymmetric potential, V (x) = (−x+x4)/2 in Figs. (7.2e) and (7.2f),
for which Eq. (7.8) also returns an effective approximation of the simulation results when σ

and ε verify the conditions Eqs. (7.11). We study, in Figs. (7.2g) and (7.2h), the potential
V (x) =−x2 +2x4, which is a double-well trap similar to ones observed in several biological
systems [214, 215]. It is symmetric and displays a local maximum at x = 0 which can be
apparently hidden by the static errors (see the purple data, correctly predicted by our formula,
in Fig. (7.2h)). Also in Fig. (7.2h), we show an instance where higher values of ε lead to
uε,σ < 0 and Eq. (7.8) is undefined around the local maximum of V (x) (yellow curves), as
explained in Section 7.2.

We note that overall, Eq. (7.8) is returning an effective approximation of the apparent
potential V unless the static and dynamic errors originate from particularly large values of ε

and
√

Dσ , respectively, that is, greater than ∼ a/3.

8.2 2D potentials

We further extend our analysis to 2D potentials and confirm the applicability of Eq. (7.3)
in that case. Such potential maps obtained in 2D (or 3D) can be used to characterize, for
example, the pore geometries in protein gels [216] or receptors’ trapping in cell membranes
[207, 217–219]. In Fig. (8.1), we rename (x1,x2) = (x,y) and study the potential V (r) =
(x2 + y2)3/2 +3(3x2y− y3)/4 (that is, V (r) = r3(1+ 3

4 sin3θ
)

in polar coordinates), which
traps the particle in a 3-branches star.

We show that BD simulations (symbols) are indeed effectively described by Eq. (7.3)
(lines), even for values of σ and ε close to the limits set by Eqs. (7.6). We further observe
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that the effects of the dynamic errors share features of the 1D case. Hence, it also produces
apparent local minima (see red contours in Figs. (8.1b) and (8.1c)), but the magnitude of these
2D dents in the potential map tends to be larger than in their 1D counterparts under similar σ

(compare Fig. (8.1b) with the red curve in Fig. (7.2c)). This amplification of motion blur
artifacts at higher dimension, which we have not assessed in details here, may indeed explain
the difference between the experiments and simulations presented in Fig. (7.1). Motion blur
also modifies the overall shape by sharpening and extending the corners while narrowing the
side edges (compare Figs. (8.1a), (8.1b) and (8.1c) with increasing σ and no static errors).
This observation, in particular, does not qualitatively align with the results reported in [192]
for particles trapped in a square well (region of free diffusion bounded by impenetrable walls;
our model, derived for smooth potentials, cannot be applied for this situation), in which case
the apparent potential is harmonic-like. These dissimilarities indeed highlight the non-trivial
effects of motion blur.

The static errors have the opposite effect in the observed range of potential near its
minimum, where the corners appear flushed (compare Figs. (8.1b) and (8.1d)) and the trap
narrower. At higher values of the potential, this effect reverses and the potential indeed
appears to be widened by the static errors (while, overall, narrowed by the dynamic errors).

Interaction potential

Eq. (7.3) is written for a Brownian particle diffusing in a trapping potential V . However,
it is also correct for a system of 2 Brownian particles with trajectories r1(t) and r2(t) in a
mutual interaction potential V (|r1 − r2|). One only needs to replace in Eq. (7.3) the diffusion
constant D with the sum of the diffusion constants of the two particles D1 +D2, and noise
covariance matrix with the sum of the individual noises E1 +E2. If the particles are identical
and tracked in 1D or 2D, the substitutions are D → 2D and ε2 → 2ε2.

This reasoning is valid because Eq. (7.1) can also be written identically for the two-particle
system, with r = r1 − r2 now representing the separation between the interacting particles,
and with the added individual noise vectors ξ 1 and ξ 2 assumed to be mutually independent.
The system’s dynamics are now also governed by Eq. (7.13) for the particle separation r(t),
with D replaced by D1 +D2, as obtained by subtracting each Brownian dynamics equation
describing r1(t) and r2(t). From there, the derivation of Eq. (7.3), as described in appendix F,
proceeds in an identical manner.



90 Results and Discussion

  
 

 

-0.2
 0.0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2

0.5

  
 

 

  
 

 

  
 

 

x

xx

x

y
yy

y

V(x, y) = (x2
+ y2)3/2

+ 3(3x2y − y3)/4

σ= 0
ε = 0

σ= 0.1
ε = 0

σ= 0.25
ε = 0

σ= 0.1
ε = 0.3

a b

c d

Fig. 8.1 Comparison of Eq. (7.3) with BD simulations for various σ and ε , in the 2D trapping
potential V (x,y) = (x2 + y2)3/2 +3(3x2y− y3)/4. The symbols are contours extracted from
the simulations, while the lines are their counterparts obtained using Eq. (7.3). Panels a-c are
for increasing dynamic errors but no static errors, while panel d includes both effects. The
cross indicates the point (0,0) and the outermost contour is at V = 1.1 in all 4 panels. The
conditions of Eqs. (7.6) require σ ≪ 0.1 and ε ≪ 0.5 over the observed domain.
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d(d+20) −
1
3 ln d(d+20)

(d+10)2 (panel b). In both panels, the symbols are BD results, and

the lines are calculated using Eq. (7.8) with the substitutions D → 2D and ε2 → 2ε2. The
conditions in Eqs. (7.11) require σ ≪0.01 and ε ≪0.2 for panel b.

We numerically verify Eq. (7.8) for two interaction potentials between identical particles in
1D motion, and the results are presented in Fig. (8.2). The first potential models two particles
connected by a linear spring with rest length 10, V (d) = (d −10)2 where d is the distance
between the particles’ surface. For this harmonic potential, Eq. (7.8) is exact (see Fig. (8.2a))
for all values of σ and ε . We perform this simulation to verify that the substitutions D → 2D
and ε2 → 2ε2 are indeed correct.

A relevant interaction in colloidal science is modeled by the Derjaguin-Landau-Verwey-
Overbeekthe (DLVO) theory. For a typical system of trackable particles, the potential may
be written as [176]:

VDLVO(d) =Ay
ρe−d/λ

d +2ρ
− Ac

6

[
2ρ2

(d +2ρ)2

+
2ρ2

d(d +4ρ)
+ ln

d(d +4ρ)

(d +2ρ)2

]
,

(8.1)

where ρ is the particles’ radius, d +2ρ is the distance separating the two particles’ centers,
λ is the Debye length, Ay is a constant of the screened Coulomb repulsion and Ac is
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the Hamaker constant. For a realistic example, with ρ = 500nm latex particles, having
10−4 Cm−2 charge density, and immersed in a 1:1 electrolyte with 10−3 M ionic strength,
then λ = 10nm, Ay = 50β−1 and Ac = 2β−1 [176, 220]. To perform simulations of two
Brownian particles interacting with this potential, we set the unit of length to a= 10λ (see the
resulting dimensionless expression of VDLVO(d) in the caption of Fig. (8.2)). The particles are
further trapped by a parabolic branch for d ≥ 5a, which mimics the effect of the line-scanned
optical tweezer used to perform experimental measurements of this kind [178].

The results of our simulations for the DLVO potential are shown in Fig. (8.2b), and
Eq. (7.8) is in reasonable agreement with these data. The effect of dynamic errors is to
apparently deepen the interaction potential, shorten its range and steepen its variations around
the minimum (see yellow curves in Fig. (8.2b)). Such qualitative differences between true
and observed potentials would also occur with interactions of similar profiles in the attractive
range (e.g. depletion interaction). These discrepancies indeed resemble previously reported
mismatches between the experiments and theory [179, 221], which may be also the result of
dynamic errors in the measurements.

8.3 Recovering the true potential from the apparent poten-
tial

We have shown, analytically and numerically, how motion blur and static errors distort the
true potential. However, while predicting the shape of the apparent potential V from the true
potential V is possible exactly using Eq. (7.3), in practice in any experimental system we
would be interested in inverting this relationship and inferring V from V , since only the latter
is directly experimentally accessible. Unfortunately, this step is less trivial and the optimal
strategy remains an open question. We now go over some of the provisional procedures we
develop.

Eq. (7.3) is a second-order differential equation that could be solved numerically for V
after measuring V . However, solving it even in principle requires at least some background
knowledge of V . This is because this type of second-order differential equation can only be
solved if two boundary conditions on V are specified. One of them can be determined by
arbitrarily setting the value of V at a particular location, which is always consistent with the
underlying physics. However, the second boundary condition does carry physical information
and has to be provided by some background information on the potential in question or
assumed. Even then, however, solving numerically non-linear second-order differential
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equations is not trivial. We could not implement a systematic and general solution using
common solver packages.

Instead, we have developed two provisional procedures, which allow for obtaining an
estimation of the true potential from the apparent potential, which we will go through and
illustrate with examples. First, however, we will briefly discuss an algorithm which allows
for preliminary assessing if positioning errors are significant in the first place.

8.3.1 Assessing if positioning errors are significant

The measured potential must be first approximated to a functional, mathematical form,
for example fitted to a power series, using any build-in package for polynomial fitting in
the data analysis software. To assess if motion blur and positioning uncertainty can be
neglected, one can apply the transformation V

(7.3)−−→ V described by Eq. (7.3) to the fitted
apparent potential, that is calculating the “transformed apparent” potential V via V

(7.3)−−→V .
If differences between V and V are within experimental error bars, no correction needs to be
applied. This reasoning is justified by the fact that the transformation described in Eq. (7.3)
affects the function it is applied to by a comparable magnitude when applied for the second
time, compared to when it is applied for the first time, as we have numerically verified.
Hence, if the differences between V and V are negligible, so are the changes between V and
V and positioning errors are inconsequential for the system studied. In the opposite case, in
which the difference between V and V exceeds experimental error bars, one must correct
for motion blur and position uncertainty. We now discuss in turn two potential strategies of
doing so.

8.3.2 Correcting for positioning errors

Strategy 1: Polynomial fitting of potentials

If applying Eq. (7.3) to the apparent potential recovered from data shows changes exceeding
experimental error bars, one can estimate the true potential by applying a polynomial
coefficient fitting of Eq. (7.3). For example, if in 1D ||σλ || < 1 and ε2 < Dσ , one can
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Fig. 8.3 Corrections of the errors using polynomial fitting. In all panels, the solid lines show
the original potentials, while the dashed lines are polynomial fits of the apparent potentials as
measured from simulation data affected by the indicated dynamic and static errors. For each
set of errors, the symbols show the corrected potentials using polynomial coefficient fitting
following Eqs. (8.2) and (8.3). Panel a uses data for V (x) = x4 (see Figs. (7.2c) and (7.2d)),
panel b is for V (x) = (−x+x4)/2 (see Figs. (7.2e) and (7.2f)), panel c for V (x) =−x2 +2x4

(from Figs. (7.2g) and (7.2h)), and panel d for V (x) = VES(x) as defined in the caption of
Fig. (7.1) with a = 1.
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efficiently approximate Eq. (7.8) by:

βV = βV + sε,σ
σλ −σv2/D

2

+(1−6s2
ε,σ )

σ2λ 2

24
− (1−12s2

ε,σ )
σ2λv2/D

24

+(1+10sε,σ −60s3
ε,σ )

σ3λ 2v2/D
120

+ c ,

(8.2)

with sε,σ = ε2

(Dσ)−
1
3 , as obtained by a second order expansion of lnuε,σ and (uε,σ −1)/(σλ )

in σλ (one order beyond Eq. (7.12)). In the above equation, c is the constant found in
Eq. (7.2). We next write βV (x) = ∑

p
k=0 ck(x/a)k and βV (x) = ∑

p
k=0 ck(x/a)k as two polyno-

mial expansions of degree p, and where {ck}k=0...p are the fitting parameters for the measured
potential. Upon substituting these expressions into Eq. (8.2), and comparing the polynomial
coefficients, we obtain a system of equations:

f0(c,c0,c1,c2) = c0

f1(c1,c2,c3) = c1

. . .

fp−3(c1, . . . ,cp−1) = cp−3

fp−2(c1, . . . ,cp) = cp−2

fp−1(c1, . . . ,cp) = cp−1

fp(c1, . . . ,cp) = cp

(8.3)

where the functions { fk}k=0...p can be obtained using a symbolic mathematical software.
These are p+ 1 equations for the p+ 2 unknowns c,c0,c1, . . . ,cp, the missing equation
being the one that sets c0, which can be assigned arbitrarily by choosing, for example,
V (0) =V (0) (that is, c0 = c0). This system is therefore well-posed, at the cost of artificially
truncating the polynomial expansion for both V (x) and V (x) to the same degree and it can
be numerically solved to obtain the coefficients {ck}k=0...p of the original potential from the
fitting parameters {ck}k=0...p and the known values of σ , ε and D.

We distribute through GitHub (https://github.com/savin-lab/potential-correction) an imple-
mentation of this method, which we apply in Fig. (8.3) to several of the canonical potentials
investigated in this paper. We observe that we can indeed recover the appropriate profiles,
notably eliminating the apparent double potential wells (see Fig. (8.3a) for σ = 0.1 and ε = 0,
and Fig. (8.3d) for σ = 0.3 and ε = 0), and, on the contrary, restoring lacking features of the
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true potential that are flushed by the static errors (see Fig. (8.3c) for σ = 0.1 and ε = 0.3).
The residual discrepancies observed in Figs. (8.3c) and (8.3d) may result from using the
approximation given by Eq. (8.2), and/or the inaccuracy of the polynomial fits.

However, the polynomial fits, obtained for power series with degree p between 6 and
12, are chosen so as to obtain the best match with the original potential. It is worth noting
that, for a given potential, as the degree of the polynomial fitting is increased, the obtained
fitted function typically stabilizes around the optimal value, before deteriorating again and
producing visibly unreliable results. However, a prior knowledge of the probed potential is
normally not available and we do not yet know in general how to recognize which degree of
polynomial fit p is most accurate for a given system.

In practice, we anticipate that the best choice of p reflects a compromise between fitting
the experimental data as accurately as possible, without capturing features originating from
statistical uncertainty over small length scales. A natural criterion for choosing the fitting
length scale, and hence p, could be based on the terms of Eq. (7.11) that sets the validity of
Eq. (7.8) and that is verified in appendix G. but needs future work to become a complete and
reliable algorithm.

We believe this strategy has a great potential and is the one more systematic and universal
of the two we propose, but requires further validation and exploration to offer a systematic
and robust numerical method to recover V from V . We therefore proceed to discussing an
alternative provisional procedure, fit for this purpose.

Strategy 2: Assessment based on the difference between V and V

As argued in Sec. 8.3.1, one can define a “transformed apparent” potential V via applying
Eq. (7.3) to the measured apparent potential V . For moderate positioning errors one expects
the difference between V and V to be close to the difference between V and V , since the
transformation described in Eq. (7.3) affects the function it is applied to by a comparable
magnitude when applied for the second time, compared to when it is applied for the first time.
Therefore, we postulate that V ≈ 2V −V . In the subsequent section, we show an example of
applying this technique to a simulated energy landscape, motivated by experimental data.
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8.4 A manual on correcting experimental data for position-
ing errors

Currently, in our opinion, the recommended strategy for correcting for motion blur and
static errors affecting a measured, apparent potential V is the following, two step algorithm:

1. Verify if V −V exceeds experimental error bars (note the "transformed apparent"
potential V is the function obtained from applying the transformation defined by Eq.
(7.3) to V . If it does not, V ≈V and no further adjustments need to be made.

2. If V −V does exceed experimental error bars, V is best approximated by V ≈ 2V −V

The procedure is carried out and illustrated in Fig. (8.4) on data from a Brownian
Dynamics simulation of a fragment of a cosinusoidal energy landscape, inspired1 by ones
observed in nanofluidic channels [222]. Note the figure presents only a small fragment of
a wide energy well restricted on both sides by an energy barrier, guaranteeing the particle
does not escape the well and that its position statistic indeed does satisfy a proper Boltzmann
distribution. The simulation is carried out in a dimensionless system of units, as defined
in Chapter 7. The figure demonstrates that, however provisional our current method of
recovering the energy landscape may be, it’s application improves the accuracy of the results,
removing most of the bias due to motion blur and static errors.

1Oral communication with Dr Yizhou Tan.
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Fig. 8.4 Example of reconstructing an energy landscape. (a) The true energy landscape is
given by V (x) =−1.5cos

(4
3πx
)

(black, solid curve), but a Brownian Dynamics simulation
of a measurement based on video tracking a particle with positioning errors σ = 0.033 and
ε = 0.005 produces distorted data on the apparent potential V (red markers). (b) Applying
the transformation given by Eq. (7.3) to a Taylor series fit of V (red curve) produces a
"transformed apparent potential" V . Since V −V is substantial, correcting for positioning
errors in desirable. (c) The correcting procedure exploits the approximation V ≈ 2V −V ,
producing a reconstruction of the true potential V (grey curve). (d) The reconstruction proves
a much better estimate of the real energy landscape than the uncorrected apparent potential.



Chapter 9

Conclusions

In this part of the thesis, we explained how motion blur and position uncertainty can affect
measuring energetic landscapes using particle tracking. We have determined the effects of
dynamic (resulting from motion blur) and static (resulting from instrumental noise) errors on
recovering energy landscapes from measured Brownian particle position distributions. We
have shown that these two phenomena are the source of nontrivial, systematic biases in the
measurements, potentially leading researchers to read out and interpret an incorrect apparent
potential. In particular, we have described the phenomenology of these effects in more detail
on some canonical trapping potentials: harmonic, double well, asymmetric, in 1D and 2D,
as well as interaction potentials. For the harmonic case, the contaminated potential is also
harmonic with an apparent stiffness constant that can be exactly calculated.

Using our results it is possible to predict if static and dynamic errors significantly distort
measurements in a given system. Equation (7.3) for predicting the apparent potential is
accurate in many setups, and can be easily implemented directly for a wide class of systems
to determine if motion blur and position uncertainty pose a significant threat to the accuracy
of results. Inverting Eq. (7.3) to obtain the true potential from the apparent potential poses
a challenge for numerical mathematics. We also propose in this work practical strategies
to perform this task. Although further work is needed, one of them seems to promise a
stable and reliable reconstruction method. We need now to assess its performances under
real-world, experimental conditions.

We conjecture that the effects of these measurement errors may have been overlooked in
some existing experimental works [179, 221]. Hence, we recommend that the effects of these
errors should be assumed one of the possible explanations for unexpected results obtained
when using particle tracking methods. Including explicit information about the used shutter
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times, tracking parameters and noise characterization [202], should now become a standard
practice in reporting research involving Brownian particle video tracking.

Further research needs to be carried out in this direction. Our study should be followed by a
detailed review of existing experimental results. As already mentioned, it is also necessary to
continue developing algorithms to invert Eq. (7.3) for calculating the true potential from the
apparent potential, V →V . Furthermore, this type of error propagation analysis should also
be made for other observables that are extracted from Brownian particle tracking data (e.g.,
pair or van Hove correlation functions [223], two-point microrheology [224], etc.). These
problems should be pursued in a future study conducted in collaboration with experimental
groups experienced in particle videotracking.

Our derivation of Eq. (7.3) in appendix F relies on the assumption that the spatial shape of
the studied energetic landscape can be approximated as a parabola on the lengthscale of a
typical particle displacement within a single shutter time. Improving this approximation to
treat the landscape’s shape more accurately might also be worthwhile. Also, our work so
far only applies to particles undergoing classical Brownian motion and drift. Extending it
to particles undergoing other types of random motion, such as hopping diffusion would be
necessary to understand the effects of motion blur and position uncertainty on measuring
such systems.



Appendix A

Comparing fingering in a rectangular
channel in our model and the Toner-Tu
model

In this Appendix, we discuss fingering on the boundary of an active fluid described by
Eqs. (3.1) in a simpler set-up than that explored in Chapter 4. As seen in Fig. (A.1), 2 fluids,
separated by an interface, move in a 2D rectangular channel. The invading fluid is injected far
away from the interface. It displaces a second fluid residing in the other part of the channel.
Like in Chapter 4, the displaced fluid is passive, while the invading fluid is active. There is
no cell division in this set up (k = 0); the flow is entirely due to injection of the active fluid
on one end of the channel.

The set-up we study here is the one used by Saffmann and Taylor in their landmark paper,
which initiated the theory behind viscous fingering [117]. Therefore, we are able to assess
the effects of activity on viscous fingering in this traditional set-up by comparing our result
with theirs.

We then investigate fingering in the same geometry, but when the active fluid is described
by the Toner-Tu model, instead of Eqs. (3.1). This Appendix then compares the effects
of activity on fingering when using our model and the Toner-Tu model and finds strong
qualitative similarity. This is the only set-up in which such a comparison is possible, since
the Toner-Tu model is not analytically solvable in other systems explored in this thesis.
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Fig. A.1 System described in this Appendix: a 2D rectangular channel with an active fluid
described by Eqs. (A.1) or (A.21), is displacing a passive fluid modelled by Eqs. (A.2) or
(A.22) respectively. The interface undergoes periodic perturbations whose linear stability is
investigated in this Appendix.

A.1 Our model

This system is the simplest conceivable realisation of our model described in Chapter 3,
and is also the most convenient in terms of illustrating the various aspects of the model’s
behaviour, so we go over the derivation in considerable detail.

We define the dimensionless variables as follows. Distances are re-scaled by a characteris-
tic length ℓ =

√
γ

βvi
, where vi is the magnitude of the velocity of the moving unperturbed

interface. Times are rescaled by the reference time tr = ℓ
vi

. Therefore the velocity of that
interface is 1 in this dimensionless system of variables. The viscosity ratio of the active and
displaced fluid is φ = β ′/β , as previously. Activity is made dimensionless using a reference
activity, defined as α∗ = βvi, while pressure using a reference pressure p∗ = βℓvi. As in
Chapter 4, the dimensionless versions of the variables are described using the same letters as
their dimensional counterparts.

The equations of motion in this system of variables in the active fluid have the form:

∇p =−v+α
v
|v|

, (A.1a)

∇ ·v = 0 , (A.1b)
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and in the passive fluid have the form:

∇p′ =−φv′ , (A.2a)

∇ ·v′ = 0 , (A.2b)

The boundary conditions at the interface h(x, t) are:

vy|y=h = v′y|y=h = ∂th , (A.3a)

p|y=h +∂
2
xxh = p′|y=h . (A.3b)

Note the variable of surface tension γ effectively dissapears from the equations, due to
our choice of dimensionlesss variables.

Technically, the system also has other boundary conditions: the mass continuity boundary
condition on the sides of the channel requires vx = 0, which would in principle restrict the
allowed periodic perturbation wavelengths to a set of discrete values. However, we further
presume, like in the original Saffman-Taylor set-up [117], that the channel is very wide
compared to the wavelength and size of the interfacial perturbations. In practice, therefore,
these boundary conditions are inconsequential as we study the dynamics of the system.

Defining as i the y- coordinate of the unperturbed interface at a given time, the unperturbed
hydrodynamic fields in the (x,y) coordinate system are:

v0 = (0,1) , p0 = (α −1)(y− i)+ p0|y=i , (A.4a)

v′0 = (0,1) , p′0 =−φ(y− i)+ p0|y=i . (A.4b)

Analogously to the case of a circular droplet, we investigate infinitesimal interfacial
perturbations of the form h = h0 +δh, with

δh ∝ fq(t)eiqx , (A.5)

where q is the wavelength of the periodic perturbation, and where fq(t) describes its time
evolution (with limt→0 fq(t) = 1 for all q). Analogously, periodicity in q is assumed for
perturbations of hydrodynamic fields: (δ p,δ p′,δv,δv′) ∝ fq(t)eiqx, around the solution
given by Eqs. (A.4). The q-mode’s linear rate of growth is defined by

σq(h0) = lim
t→0

∂t fq(t)
fq(t)

. (A.6)
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Perturbations in Euclidean coordinates in the active fluid satisfy the following equations
to linear order (see Eq. (C.1) in Appendix C for a general form of these perturbations and a
discussion of its implications):

∂yδ p =−δvy , (A.7a)

∂xδ p = (α −1)δvx , (A.7b)

∂xvx =−∂yδvy , (A.7c)

and in the passive fluid have the form:

∂yδ p′ =−φδv′y , (A.8a)

∂xδ p′ =−φδv′x , (A.8b)

∂xv′x =−∂yδv′y . (A.8c)

Together with the ansatz of periodicity in x, this leads to analytically solvable, second-order
differential equations for pressure in both fluids:

q2

1−α
δ p = ∂

2
yyδ p , (A.9a)

q2
δ p′ = ∂

2
yyδ p′ . (A.9b)

Like in the case of a growing circular droplet, pressure perturbation Eqs. (A.9a) are solved
by linear combinations of 2 functions. Once again, only one of these functions in each case
has a correct asymptotic behaviour (that is, it decays away from the interface, and does not
diverge) and is retained. These retained functions are:

δ p = cexp
(

qy√
1−α

)
exp(iqx) , (A.10a)

δ p′ = c′ exp(−qy)exp(iqx) , (A.10b)

implying (using Eq.(A.7a)) velocity perturbations of the form:

δvy =−c
q√

1−α
exp
(

qy√
1−α

)
exp(iqx) , (A.11a)

δv′y = c′
q
φ

exp(−qy)exp(iqx) . (A.11b)
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We use the velocity interfacial boundary conditions Eq. (A.3a):

− c
q√

1−α
exp(iqx) = c′

q
φ

exp(iqx) = ∂tδh . (A.12)

c and c′ can now be presented explicitly:

c =−∂tδh
√

1−α

qexp(iqx)
, (A.13a)

c′ =
φ∂tδh

qexp(iqx)
, (A.13b)

and substituted to obtain a specific form of the pressure perturbation equations Eq. (A.10a):

δ p =−∂tδh
√

1−α

q
exp
(

qy√
1−α

)
, (A.14a)

δ p′ =
φ∂tδh

q
exp(−qy) . (A.14b)

We now write the pressure interfacial boundary condition given by Eq. (A.3b):

p0|y=h +δ p|y=h +
d2h
dy2 |y=h = p′0|y=h +δ p′|y=h (A.15)

as (by substituting specific forms for p0, p′0, δ p, δ p′ to linear order in δh):

(α −1)δh− ∂tδh
√

1−α

q
−q2

δh =−φδh+
φ∂tδh

q
. (A.16)

Using the definition of σq from Eq. (A.6), we get:

σq =
α −1+φ −q2

φ +
√

1−α
q . (A.17)

In dimensional variables, this gives:

σq =
α − (β −β ′)vi − γq2

β ′+
√

β (β − α

vi
)

q . (A.18)

In the limit of a passive invading fluid α → 0, this reduces to the landmark result obtained by
Saffman and Taylor [117]:

σq =
−(β −β ′)vi − γq2

β ′+β
q . (A.19)
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Fig. A.2 Growth rate σ(q) of sinusoidal interfacial perturbations as a function of the
wavenumber q, for a flat interface between an invading and displaced fluid in the sys-
tem described in Sec. A.1 and Fig. (A.1). The invading fluid is passive (α = 0; dashed lines)
or active (α = 0.75; solid lines), with varying φ . The active and passive fluids are described
by Eqs. (A.1) and (A.2) respectively.

Fig. (A.2) presents σ(q) vs. q for varying φ and α . σ(q)> 0 corresponds to unstable
perturbations. Like in the case of a growing, circular droplet described in chapter 4, activity
increases the tendency to form fingers for all values of σ . Unlike in the circular case, however,
there is no characteristic size in the system which would influence the stability of the interface
as the front progresses, unlike in the case of a circular droplet (see chapter 4 and Eq. (4.15)
in particular).

A.2 Toner-Tu model

We now analyse the stability of the system presented in Fig. (A.2) when the invading fluid
is described by the Toner-Tu model, instead of our fluid. First, let us remind the general
form of the force balance equation according to Toner-Tu theory [108], already presented in
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Chapter 2 (see Eq. (2.2) of that chapter for explanations of each of the terms):

ρ(∂tv+λ1(v ·∇)v+λ2(∇ ·v)v+λ3∇(|v|2)) =
= αT v−βT |v|2v+η1∇

2v+η2∇(∇ ·v)+η3(v ·∇)2v−∇p ,
(A.20)

where v is velocity, ρ is density, p is pressure.

There have been two studies investigating the stability of a free boundary of a Toner-Tu
fluid flowing with no bulk pressure gradient [111, 112]. However, as far as we know, no
study was performed so far which analyses viscous-like fingering between a Toner-Tu fluid
and a passive fluid, flowing under an imposed pressure gradient. We perform this task here.

We neglect most of the terms of this equation. This is in analogy with the strategy of
Saffman and Taylor in their landmark paper [117], and also of newer studies of viscous
fingering, none of which implement full Navier-Stokes equations for the participating fluids
[225, 60]. In all of these studies, the interfacial stability is studied while neglecting inertial
terms and viscosity. Only Darcy Law terms (∇p =−βv) are left in these studies, and they
are sufficient to reproduce viscous fingering patterns. Their simplicity allows for an analytic
solution to the problem.

In line with this approach, we leave out all terms with spatial derivatives of v on both the
LHS and RHS of Eq. (A.20) and are left with:

∇p = αT v−βT |v|2v , (A.21a)

∇ ·v = 0 , (A.21b)

where we have supplemented Eq. (A.20) by the incompressibility condition. We now proceed
to investigate the linear stability of an interface between such an active fluid and a passive
fluid in the set-up described by Fig. (A.1). For consistency, we represent the friction term in
the passive fluid as −β ′

T |v′|2v′ (if we chose to represent it as in the Darcy Law as −β ′v′, it
would imply a difference in functional form of friction between the active and passive fluid).
Equations of motion for the passive fluid are therefore:

∇p′ =−β
′
T |v′|2v′ , (A.22a)

∇ ·v′ = 0 . (A.22b)
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We solve the problem in a yet new system of dimensionless variables, in which they are
re-scaled by a characteristic length ℓ=

√
γ

βT v3
i
, with vi the velocity of the interface. Times

are again rescaled by the reference time tr = ℓ
vi

, again implying the velocity of the moving
interface equal to 1 in this system of variables. The viscosity ratio of the active and displaced
fluid φT = β ′

T/βT is used again. Activity is made dimensionless using a reference activity,
defined as α∗

T = βT v2
i and pressure using a reference pressure p∗ = lβT v3

i . We ultimately
obtain the current form of dimensionless equations of motion:

∇p = αT v−|v|2v , (A.23a)

∇ ·v = 0 , (A.23b)

for the active fluid and:

∇p′ =−φT |v′|2v′ , (A.24a)

∇ ·v′ = 0 , (A.24b)

for the passive fluid.
The unperturbed solution to the hydrodynamic fields is identical as for our model in this

set-up (Eqs. (A.4)):

v0 = (0,1) , p0 = (αT −1)y+ p0|y=0 , (A.25a)

v′0 = (0,1) , p′0 =−φT y+ p0|y=0 . (A.25b)

Perturbations in Euclidean coordinates in the active fluid now satisfy the following equations
to linear order (see Eq. (C.4) in Appendix C for a general form of these perturbations and a
discussion of its implications):

∂yδ p = (αT −3)δvy , (A.26a)

∂xδ p = (αT −1)δvx , (A.26b)

∂xδvx =−∂yδvy , (A.26c)

and in the passive fluid have the form:

∂yδ p′ =−3φT δv′y , (A.27a)

∂xδ p′ =−φT δv′x , (A.27b)

∂xδv′x =−∂yδv′y . (A.27c)
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The ansatz of periodicity in x as given by Eq. (A.5) leads to:

q2 αT −3
αT −1

δ p = ∂
2
yyδ p , (A.28a)

q2
δ p′ = 3∂

2
yyδ p′ , (A.28b)

and the functions with the correct asymptotic behaviour which solve these equations are
respectively:

δ p = cT exp

(√
3−αT

1−αT
qy

)
exp(iqx) , (A.29a)

δ p′ = c′ exp
(
−
√

3qy
)

exp(iqx) , (A.29b)

which, using Eqs. (A.26a) and (A.27a), leads to velocity perturbations of the form:

δvy =−cT
q√

(3−αT )(1−αT )
exp

(√
3−αT

1−αT
qy

)
exp(iqx) , (A.30a)

δv′y = c′T
q√
3φT

exp
(
−
√

3qy
)

exp(iqx) . (A.30b)

We use the velocity interfacial boundary condition as in Eq. (A.3a) to linear order in δh:

− cT
q√

(3−αT )(1−αT )
exp(iqx) = c′T

q√
3φT

exp(iqx) = ∂tδh . (A.31)

Therefore cT and c′T are:

cT =−
∂tδh

√
(3−αT )(1−αT )

qexp(iqx)
, (A.32a)

c′T =

√
3φT ∂tδh

qexp(iqx)
, (A.32b)

and we obtain an exact form of pressure perturbation equations Eq. (A.33a):

δ p =−
∂tδh

√
(3−αT )(1−αT )

q
exp

(√
3−αT

1−αT
qy

)
, (A.33a)

δ p′ =

√
3φT ∂tδh

q
exp
(
−
√

3qy
)
. (A.33b)
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The pressure interfacial boundary condition given by Eq. (A.3b) is again split into
zero-order components and perturbations:

p0|y=h +δ p|y=h +
d2h
dy2 |y=h = p′0|y=h +δ p′|y=h , (A.34)

to obtain the following up to linear order in δh:

(αT −1)δh−
∂tδh

√
(3−αT )(1−αT )

q
−q2

δh =−φT δh+

√
3φT ∂tδh

q
. (A.35)

We obtain σ(q) defined as in Eq. (A.6):

σT (q) =
αT −1+φT −q2

√
3φT +

√
(3−αT )(1−αT )

q . (A.36)

The growth rates σ(q), σT (q) are very similar in both models. A quick inspection of
Eqs. (A.17, A.36) shows that if α = 0, αT = 0 and φ = φT ,

√
3σT (q) = σ(q). Positive levels

of α , αT modify this relationship, but Fig. (A.3) shows the modification is very slight even
for relatively high α , αT . For example, in Fig. (A.3) both activities are equal to 0.75 of the
threshold for crossover into the high activity regime (defined and discussed in subsection
4.2.3), which is 1 in these systems of variables, and the relationship still approximately holds.
The scaling factor of

√
3 results from the friction growing faster with velocity in the Toner-Tu

fluid, which slows down the growth of perturbations.

Apart from the re-scaling of the growth rate by a factor
√

3, effects of activity on the
emergence of interfacial instabilities are virtually identical in both examined fluids. In the rest
of this PhD thesis, we focus on our own model because of advantages described in section
3.1. However, this appendix demonstrates that if the active tissue were to be described by
the simplified Toner-Tu model (Eqs. A.21) in any of the systems studied in Chapter 4 or
Appendix B, similar behaviour as reported in this thesis would be expected.
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Fig. A.3 Comparison of linear growth rates σ(q), σT (q) as a function of the wavenumber q,
as given by Eqs. (A.17, A.36) in a rectangular geometry in the set-up described in appendix
A, obtained by solving our model and the simplified Toner-Tu model (Eqs. A.21). Results
describe an active (α = 0.75; solid lines) fluid, with varying φ . Note σT (q) on the y−axis is
re-scaled by a factor of

√
3.





Appendix B

Fingering in alternative set-ups

This appendix describes linear stability to interfacial perturbations of two physically or
biologically justified 2-fluid systems, in which one of the fluids is active (as described by
our model in Eqs. (3.1)) and the other is passive (as described by Eqs (4.1)). The fact that
Eqs. (3.1)) can be exactly solved analytically for a large group of systems constitutes an
important strength of our model of an active fluid. Appendix C reflects on why this is the
case.

B.1 A rectangular stripe with growth

In this section, we deal with interfacial fingering in the set-up described in Fig. (B.1). As
in section A.1, there is a droplet of a growing, active fluid governed by Eqs. (3.1), displacing
a passive fluid, governed by Eqs. (4.1). However, this time, the droplet of the invading fluid
is rectangular. It is constrained by non-moving, rigid barriers on three sides. The fourth side
forms an interface with the passive fluid, whose linear stability we have investigated.

The interfacial boundary conditions used are as in section A.1. As also in section A.1,
the channel is assumed as wide enough so that boundary conditions on the side walls can
be effectively ignored. Similarly, the rear wall of the tissue is assumed sufficiently far from
the interface compared to the wavelength of perturbations that it can be neglected in their
dynamics (this approximation facilitates comparison with the landmark results on rectangular
viscous fingering by Saffman and Taylor [117], as they assume an infinitely long channel in
which the instability takes place).

We use the same system of variables as for the circular droplet in section 4. Instead of the
radius r0, as for the circular droplet, the result now depends on the unperturbed depth of the
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x

y

Active fluid

d0

Passive fluid

Fig. B.1 System described in this section: a 2D rectangular stripe of an active fluid, con-
strained by barriers on three sides, is described by Eqs. (3.1). It is growing and displacing a
passive fluid modelled by Eqs. (4.1). The interface undergoes periodic perturbations whose
linear stability analysis results are presented in the te.

rectangular stripe d0 (see Fig. (B.1)). The linear growth rate is derived as in sections A.1 and
4.2 and equals:

σq(d0) =
[(φ −1)d0 +α]q− q3

2 +ϒ

φ +ϒ
, (B.1)

where

1/ϒ = 1−qα
U
[
1− qα

2 ,1,2q(α −d0)
]

U
[
−qα

2 ,0,2q(α −d0)
] ,

and U [a,b,z] is the Tricomi confluent hypergeometric function. Note ϒα→0 = 1. Therefore,
in the passive limit α = 0, σq (d0) becomes:

σq (d0) =
(φ −1)d0q− q3

2
φ +1

+
1

φ +1
. (B.2)

Here the first term is equivalent to Saffman and Taylor’s landmark result [117] (when noting
the velocity of the interface vi = kd0), while the second term 1/(φ + 1), as in the case of
a circular droplet, is responsible for the growth of the tissue within the fingers themselves.
Since ϒ has an inverse relationship with α , σq (d0) again monotonically grows and stability
of the system decreases with increasing α and other parameters fixed.
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B.2 A circular droplet with injection in the middle

In this section we provide results of linear stability analysis for an interface between a circular,
active droplet surrounded by a passive fluid, as in chapter 4 and Fig. (4.1), but with the
crucial difference that the active fluid is now injected in the middle of the droplet. There
is no growth through the rest of the active fluid, unlike in chapter 4. The injection rate in
the middle of the droplet (defined in terms of area covered per time) has magnitude m. This
system is included here, as it is a direct implementation of activity in Paterson’s original
radial viscous fingering experiment set-up [60].

The dimensionless system of variables are build this time around the injection rate m.
The characteristic length is ℓ = 2πγ

βm , the characteristic time is τ = ρ2π

m , the reference

activity is α∗ = βρ

τ
. The meaning of φ = β ′

β
and r0 is retained from chapter 4. The dispersion

relation is now:

σn(r0) =

[
φ−1
2r2

0
+ 1−n2

2r3
0

]
n+ α

r0
n

φ +Λ2,n(2αr0)
− 1

2r2
0
, (B.3)

where

Λ2,n(x) =
∑

∞
j=0

(n+ j−1
n−1 )

2

(2n+ j
2n )

x j

∑
∞
j=0

(n+ j
n )

2

(2n+ j+1
2n+1 )

x j
. (B.4)

In the passive limit α = 0, Λ2,n(x) = 1 and upon re-substitution of dimensional variables,
one directly reproduces Paterson’s landmark result (Eq. (10) of reference [60], mind the
different notation and system of variables in his paper):

σn(r0) =
m(β ′−β )

2πr2
0(β

′+β )
n− γn(n2 −1)

r3
0(β

′+β )
− m

2πr2
0
, (B.5)

since Λ2,n(x) monotonically decreases with increasing α , σn(r0) again increases with α and
other variables fixed.





Appendix C

Analytical solvability of fingering in our
and the Toner-Tu model

This appendix briefly discusses the basic reason for the fact that our model is analytically
solvable in many biologically and physically relevant set-ups (see chapter 4 and appendix B).
It then explains why replacing our expression for the force on the fluid from the substrate
α

v
|v| −βv with the similar Toner-Tu expression αT v−βT |v|2v would make these systems

analytically unsolvable in most cases. Note that qualitatively the predictions of both models
are very similar in the systems in which they can be both solved analytically (as appendix A
demonstrates).

The evolutions of the pressure p(r, t) and velocity v(r, t) fields in our model are governed
by Eq. (3.1). When k is constant through space, linear perturbations (δ p,δv) around any
unperturbed solution v0, p0, apart from the cases when |v0| = 0 and |v0| = α

β
, satisfy the

following equations:

∇δ p =−βδv+α
δv⊥
v0

, (C.1a)

∇ ·δv = 0 , (C.1b)

where δv⊥ is the component of δv locally perpendicular to v0. More specific forms of these
equations (in dimensionless systems of variables) are provided in chapter 4 and appendix A
for specific systems (Eqs. (4.10) and (A.7)). Writing these equations in terms of components
and using ansatz of periodicity (see Eq. (4.8) for a circular system, and Eq. (A.5) for a
rectangular one) one obtains second-order differential equations for δ p.



118 Analytical solvability of fingering in our and the Toner-Tu model

These equations in general take the following form for rectangular systems (note we
choose the system of variables so that the unperturbed fluid flows locally along the y direction
with magnitude of velocity |v0|):

q2
δ p =

(
1− α

β |v0|

)
∂

2
yyδ p , (C.2)

and for circular systems (in which unperturbed flow is purely radial):

n2
δ p =

(
1− α

β |v0|

)
ρ∂ρ(ρ∂ρδ p) . (C.3)

Only if they are analytically solvable, can the linear stability analysis itself be conducted
analytically, along the lines of reasoning presented in section 4.2.

Fortunately, these equations indeed are solvable analytically for several realistic cases.
This includes the case of uniform growth across a circular droplet or rectangular stripe (see
chapter 4 and appendix B respectively) since then |v0| ∝ ρ,y respectively. A circular system
in which the active fluid is injected into the middle of the droplet (Appendix B) is also
solvable, since in this case |v0| ∝

1
ρ

, as well as any system in which |v0|= constant.

If we use the Toner-Tu expression for the force from the substrate, instead of Eq. (C.1),
we obtain the following equations for perturbations to linear order:

∇δ p = αT δv−βT
(
|v0|2δv+2|δv||||v|v

)
, (C.4a)

∇ ·δv = 0 , (C.4b)

where δv|| is the component of δv parallel to the unperturbed flow. In general, under the
periodicity ansatz (A.5), this leads to the following second-order equation for pressure in a
rectangular system:

∂
2
yyδ p =

∂y
(
αT −3βT |v0|2

)
αT −βT |v0|2

∂yδ p+q2 αT −3βT |v0|2

αT −βT |v0|2
δ p , (C.5a)

and to an even more complicated equation for a circular system.

To the best of our knowledge, these equations are not solvable analytically for any of the
set-ups which we deal with analytically in our own model, except if v0 is constant through the
space (appendix A). Therefore, linear stability analysis of the interface, which relies on first
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determining the functional forms of δ p and δ p′, cannot be conducted analytically. Therefore,
our model has an important practical advantage over applying the Toner-Tu expression for
substrate-active fluid interaction.





Appendix D

Linear stability analysis in unbounded
space

Linear stability analysis of the active fluid’s interface, as outlined in chapter 4, assumes
the fluid on its own has a stable division-induced flow profile, as described by Eqs. (4.7a).
If that profile itself is unstable, the procedure of the linear stability analysis of interfacial
fingering along the lines described in section 4.2 cannot be carried out. In this appendix, we
formally show that the uniform flow of an active fluid cannot be stable when its magnitude
of velocity is lower than |v|= α

β
.

For this purpose, we analytically investigate the flow of the active fluid in infinite space, at
a given constant velocity v0 = (0,v0) (and therefore zero cell division rate k) to see under
what conditions this flow is stable. Our derivation follows here a procedure described for a
Toner-Tu-like fluid in [48] and proceeds along the following steps:

1. We search for steady-state, uniform velocity solutions of the following EOMs:

τ

(
dv
dt

+v ·∇v
)
=−βv+α

v
|v|

−∇p , (D.1a)

∇ ·v = 0 . (D.1b)

Note the RHS of Eq. (D.1a) consists of all forces acting on the active fluid as in
Eq. (3.1a), while the LHS consists of effective inertial terms, allowing the system
to move away from a given solution. τ , related to the effective decay time, has the
dimension of density. In general, in active fluids, since Galilean invariance is not
present, the v ·∇v term can have a prefactor ̸= 1, as in [48, 112]. However, this would
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correspond to additional, active hydrodynamic interactions between the fluid particles
as present in puller- or pusher-type swimmers [48]. We do not intend to investigate
such interactions here and limit ourselves to active interactions between the fluid and
the substrate, captured on the RHS. In any case, manipulating this prefactor would not
qualitatively change the results of the present analysis, as we separately verified.

The uniform, steady-state velocity solution to Eqs. (D.1) is the following system:

p0 = pi +(α −βv0)y , (D.2a)

v0 = (0,v0) , (D.2b)

where pi is the pressure at y = 0. Note that the y axis being along the direction of v0

is a choice made for convenience, which does not imply a loss of generality of the
reasoning. Similarly, defining v0 > 0 upholds this generality, as we can always set the
numbers of the y axis growing along the uniform flow.

2. We substitute perturbations of p and v around the steady-state solution given by
Eq. (D.2) and find Equations of Motion (EOMs) of the perturbations δ p, δv to linear
order (the result below is correct for v0 ̸= 0):

τ

[
dδv
dt

+(δv ·∇)v0 +(v0 ·∇)δv
]
=

α

v0
δvx −βδv−∇δ p , (D.3a)

∇δv = 0 , (D.3b)

where δvx is the projection of the velocity perturbation on the direction perpendicular
to the unperturbed velocity of the fluid v0.

3. We introduce the following ansatz for the form of pressure and velocity perturbations:
(δ p,δv)∝ eσt+iq·x, and we need to determine when σ > 0, implying a linearly unstable
system.

4. We write EOMs for the perturbations in Fourier space to linear order:
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τ (σδv+ iv0qyδv) =
(

α

v0
−β

)
δv− α

v0
δvy − iδ pq , (D.4a)

q ·δv = 0 , (D.4b)

where δvy is the projection of the velocity perturbation on the direction parallel to the
unperturbed velocity of the fluid v0, and qy is the component of the wavevector in that
direction.

5. We manipulate Eq. (D.4a) to obtain a linear matrix equation for σ of the form σδv =

Aδv+b. Note that, since the space of perturbations has 2 independent dimensions, σ

is a 2 by 2 matrix; its eigenvalues provide the actual growth rates:

σδv =−iv0qyδv+
1
τ

(
α

v0
−β

)
δv− α

v0τ
δvy − i

δ p
τ

q . (D.5)

6. We define Py as the projector on the normalised vector tangent to the y axis:

Py =

(
0 0
0 1

)
.

We also define M = c1I+ c2Py, where c1 = iv0qy − 1
τ

(
α

v0
−β

)
, c2 =

α

v0τ
. This allows

for a more concise presentation of Eq. (D.5):

σδv =−Mδv− iδ p
τ

q (D.6)

7. We present δ p in terms of δv by multiplying Eq. (D.6) by −q and using Eq. (D.4b).
This leads to:

0 = q ·Mδv+
i|q|2

τ
δ p . (D.7)

8. We substitute δ p from Eq. (D.7) to Eq. (D.6) to obtain:

σδv =−Mδv+
q · (Mδv)

|q|2
q . (D.8)

9. We note the projector on an orthogonal vector to q is defined by:
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P⊥qv ≡ v− q ·v
|q|2

q . (D.9)

and use it to write:

σv =−P⊥qMv. (D.10)

10. We find the eigenvalues of −P⊥kM and, therefore, the growth rates of perturbation
eigenvectors σ :

σ(q) ∈

{
0,−c2

q2
y

|q|2
− c1

}
=

{
0,− α

v0τ

q2
y

|q|2
− iqyv0 +

1
τ

(
α

v0
−β

)}
. (D.11)

In conclusion, the system can have two types of perturbations: (1) exponentially growing
or decaying perturbations and (2) so-called massless Goldstone perturbations, corresponding
to σ(k) = 0.

Goldstone modes result from the angular degeneracy of the lowest energy state and are
simply a manifestation of the fact that changing the direction of the velocity of the entire
system can in principle occur at no energetic expense. This is said1 to facilitate the formation
of local vortices and swirls in the flowing fluid (it must be noted that such vortices, triggered
by cell division, are observed in flowing and still epithelial layers [15, 16], as well as in
bacterial suspensions and other flocks). To our knowledge, there are no quantitative studies
on this effect.

Crucially, the real part of the second eigenvalue of σ is:

Re [σ2(k)] =− α

v0τ

q2
y

|q|2
− 1

τ

(
β − α

v0

)
. (D.12)

We note that it is negative, implying a stable flow, if α ≤ βv0. On the contrary, it is positive
if α > βv0. This implies the main conclusion of this appendix: a stable, uniform flow in the
high-activity regime is impossible.

As a sidenote, it might be worth noting that, theoretically, Eq. (D.12) implies all wave-
lengths (even infinitesimally short) in the x direction are unstable in the high-activity regime.

1Based on an exchange of e-mails with prof. Jorn Dunkel, MIT
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This is not physical and stems from the fact that viscosity is neglected in our model. The
presence of even very small viscosity stabilizes very short wavelengths.





Appendix E

Scaling laws for the dominant modes

E.1 Exponential growth

We obtain the scaling of Eq. (4.20a) for the viscosity-controlled fingering, φ > 1, by only
considering the passive case (α = 0). The result is valid even when α > 0, since effects
of the viscosity mismatch dominate effects of activity when r0 → ∞, as also indicated by
the numerical results shown in Fig. 4.4. We then use the expression σn(r0)|α=0 given by
Eq. (4.17) into Eq. (4.18), in which we substitute dt = 2dr/r for exponential growth. We
calculate

ζn(r0)|α=0 =
[
An exp(A−1

n −1)
]Bn ,

with An =
φ−1

n(n+1)r
3
0 and Bn =

(n−1)(φ−1)
3(φ+1) , by using the expression of Rn obtained from solving

σn(Rn)|α=0 = 0. The dominant mode nd is calculated for each r0 from the conditions of
Eqs. (4.19). Taking the limit r0 → ∞, and reintroducing dimensional variables, lead to
Eq. (4.20a).

When φ = 1, the selection of the dominant mode depends on the activity α . We first
Taylor expand Λn(x) to first order in x,

Λn(x)≈
2n(n−1)

2n−1
x . (E.1)

This term grows linearly with n for n → ∞, while higher order coefficients in x plateau in this
limit. Therefore, this expression of Λn is efficient even for x ∼ 1, and we use it to approximate

Rn ≈
[(n+1)(2n−1)

4α

]1/2
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and

σn(r0)≈
n(n−1)

4r3
0

[α(n2 +n−4r3
0)

(2n−1)r0
−n−1

]
.

Upon substituting these approximations into Eq. (4.18), the dominant mode conditions
Eqs. (4.19) lead to Eq. (4.20b) for r0 → ∞.

E.2 Linear growth

In this kinetics, the growth rate k is not a constant, as opposed to the velocity vi of the
unperturbed interface, which is now the adequate growth parameter. We thus use a different
set of dimensionless variables, based on vi. The characteristic length is now ℓ =

(
γ

βvi

)1/2,
and times are rescaled by ℓ/vi, activities by α∗ = βvi, pressures by p∗ ≡ βℓvi and velocities
by vi. The derivation presented in section 4.2 proceeds similarly, and we find that the rate of
perturbation’s growth σn(r0) in this system of variables is:

σn(r0) =
1
r0

(φ −1)(n−1)−n(n2 −1)/r2
0 +Λn

(
α
)

φ +1+Λn
(
α
)
−nα

. (E.2)

The integral of Eq. (4.18), with the change of variables now written dt = dr, may then be
calculated analytically and we obtain:

ζn(r0) =
[
An exp(A−1

n −1)
]Bn, (E.3)

with
An =

(φ −1)(n−1)+Λn(α)

n(n2 −1)
r2

0

and
Bn =

1
2
(φ −1)(n−1)+Λn(α)

φ +1+Λn(α)−nα
.

Upon using the approximation of Λn(x) given by Eq. (E.1), the conditions Eqs. (4.19) now
imply Eq. (4.21) in the limit r0 → ∞.



Appendix F

Derivation of Eq. (7.3)

For a single particle in an external potential, we start by writing the moving average of
particle positions in Eq. (7.1), which represents data collected during a single shutter time,
as the limit of a discrete series of n+1 successive positions taken by the particle every σ/n
time units, added to a noise term:

r(t) = lim
n→∞

1
n+1

n

∑
k=0

rk(t) +ξ . (F.1)

Here rk(t) = r(t −σ + kσ/n), so that r0(t) = r(t −σ) and rn(t) = r(t). The particle is
assumed to obey the inertialess (i.e., overdamped) limit of Langevin equation in an external
potential. Consecutive positions in the series forming r(t) are almost surely located infinitesi-
mally close to each other when n is large. Therefore, the motion between them can be treated
via the Brownian dynamics,

rk = rk−1 − (σ/n)βD∇V
(
rk−1

)
+
√

2Dσ/nw , (F.2)

where w is a vector realization of a delta-correlated, stationary Gaussian process with zero-
mean. Hence, fw(w) =N (w;0, I) and the auto-correlation ⟨w(t)w⊺(t ′)⟩= I if |t−t ′| ≤ σ/n,
0 otherwise. We here employ the usual notation for the d-dimensional normal distribution
with mean vector µ and covariance matrix Σ,

N (r ; µ,Σ) =
e−(r−µ)⊺Σ

−1(r−µ)/2

(2π)d/2det(Σ)1/2 .
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Each position rk is now assumed to be in the vicinity of r0 so that we may linearize the force
βD∇V (r′) =−v0 +Λ0(r′− r0), where we have used the notations:

v0 ≡ v|r=r0,

Λ0 ≡ Λ|r=r0,

for v and Λ as defined by Eqs. (7.4) in subsection 7.2. The subscript “0” indicates that these
are evaluated at r0. The conditions for this second order expansion of V to be valid are given
by Eqs. (7.6).

The conditional pdf fr|r′(r|r′) = fr,r′(r,r′)/ fr′(r′) is written in terms of the joint pdf fr,r′

and the marginal fr′ . From Eq. (F.2) it follows that

frk|rk−1
(r|r′) = N

(
r ;Anr′+bn,2Dσ I/n

)
,

with An = I −σΛ0/n and bn = σ(v0 +Λ0r0)/n. Recursively using

frk|rk−2
(r|r′) =

∫∫∫
frk|rk−1

(r|ρ) frk−1|rk−2
(ρ|r′)d3

ρ,

and exploiting properties of Gaussian integrals, we get, for any k > j ≥ 0:

frk|r j(r|r
′) = N

(
r ;Ak− j

n r′+
k− j−1

∑
i=0

Ai
nbn,2D

σ

n

k− j−1

∑
i=0

A2i
n

)
.

This equation allows us to calculate frk|r0 and frk,r j|r0 = frk|r j fr j|r0 for any k > j ≥ 1. All
are normal distributions, and so will be fr|r0 . Further using the matrix’s geometric series

∑
k−1
j=0 A j

n = (I −An)
−1(I −Ak

n), the matrix exponential limit, limn→∞(I −A/n)n = e−A, and
accounting for static errors by adding E = ⟨ξ ξ

⊺⟩ to the covariance matrix of the measured
position, we finally obtain

fr|r0(r|r0) = N

(
r ;r0 +

σ

2
Gσ v0,DσHσ +E

)
,

where Gσ = G(σΛ0) and Hσ = H(σΛ0) with:

G(X) = 2X−2(X − I + e−X) ,
H(X) = 2X−2 −X−3(3I − e−X)(I − e−X) .
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where

Gρ =

[
ρ +

σ

2
Gσ

(
v−Λρ

)]
.

The above Gaussian integral (with a linear term) can be calculated. After noting the relation
[I −XG(X)/2]2 = G(X)−XH(X), we finally obtain:

fr =
f0e−βV

det
(
Gσ + ΛE

D

)1/2 exp
{
−

v⊺Λ
−1[(Gσ + ΛE

D

)−1 − I
]

v
2D

}
,

from which Eq. (7.3) can be readily deduced, upon defining UE,σ = (Gσ +ΛE/D)−1.
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Fig. F.1 Assessing the conditions Eqs. (7.6) by quantitatively comparing Eq. (7.8) to BD
simulations for the trapping potential V (x) = x2+[cos(2πkx)−1]/8, with k = 1 . . .7. Panels
a and b show the simulated apparent potentials (symbols) and our approximated expression
(lines) for increasing values of σ and with ε = 0 (k = 2 in panel a, k = 6 in b). The
discrepancy is quantified by min χ2

red, defined in Eq. (G.2), whose variations with σ and k
are shown in panel c (values of k displayed on each corresponding line). Panel d shows the
range σmax (below which Eq. (7.8) is effective) as a function of k, as defined by the threshold
min χ2

red = 10 (symbols), and as obtained by Eq. (7.11a) (black line, see text). Panels e and f
give the same quantities as panel c and d, respectively, to compare the range of static error
εmax evaluated from min χ2

red = 10 and (7.11b), for the displayed values of σ < σmax.



Appendix G

Conditions of validity

We here assess the ranges of σ and ε for which Eq. (7.3) can be used. The examples
investigated in the main text suggest that the conditions of validity Eqs. (7.6) provide
appropriate estimates for the maximum values σmax and εmax below which Eq. (7.3) can
indeed be used. To assess these limiting values in a systematic manner, we simulated a
Brownian particle trapped in the potential V (x) = x2 + [cos(2πkx)− 1]/8, for k = 1 . . .7,
with increasing values of σ and of ε . Increasing k for this potential increases the level of
details that needs to be resolved by the particle tracking methods (compare Fig. 4.5a, where
k = 2, with Fig. 4.5b where k = 6). For this potential, we test our predictions for σmax and
εmax obtained by equating both sides in each Eq. (7.11a) and Eq. (7.11b),

(2+πk/4)σmax +σ
1/2

max = (πk)−1 , (G.1a)

εmax = (πk)−1 , (G.1b)

respectively. The amplitude 1/8 of the oscillations around the term x2 in the potential is such
that no term may be neglected in Eqs. (G.1).

The simulation results (symbols in Fig. 4.5a and 4.5b) are then compared to the apparent
potential V predicted by Eq. (7.8) (lines in Fig. 4.5a and 4.5b). Specifically, the discrepancy
between the simulations and Eq. (7.8) is quantified by the reduced chi-squared χ2

red, defined
as

χ
2
red =

1
N

N

∑
j=1

∆V 2
j

varV j
. (G.2)

Here, {∆V j} j=1...N are the differences between the simulations and Eq. (7.8) at the N locations
output by the simulations, and {varV j} j=1...N are the variances of the simulated data at these
locations. The arbitrary constant in Eq. (7.2) is chosen beforehand to minimize χ2

red, so that
we choose min χ2

red as our measure of deviation of Eq. (7.8) from the simulations.
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As σ increases, the approximation fails above a value σmax that is determined by
min χ2

red = 10, as indicated in Fig. 4.5c [226]. The results for σmax are compared favor-
ably to the solution of Eq. (G.1a), shown by the black line in Fig. 4.5c for various values of k.
The same procedure is applied to evaluate a maximum static error εmax for each k = 1 . . .7
(Fig. 4.5e), and compare it with the result of Eq. (G.1b) shown by the black line (Fig. 4.5f).
We further verified that the latter results do not depend on σ < σmax.

We have thus confirmed that Eqs. (7.6) provide effective estimates for the range of validity
of Eq. (7.3).
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