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Abstract. The design of artificial microswimmers has generated significant research interest in recent years,
for promise in applications such as nanomotors and targeted drug-delivery. However, many current designs
suffer from a common problem, namely the swimmers remain in the fluid indefinitely, posing risks of
clogging and damage. Inspired by recently proposed experimental designs, we investigate mathematically
the dynamics of degradable active particles. We develop and compare two distinct chemical models for the
decay of a swimmer, taking into account the material composition and nature of the chemical or enzymatic
reaction at its surface. These include a model for dissolution without a reaction, as well as models for
a reacting swimmer studied in the limit of large and small Damköhler number. A new dimensionless
parameter emerges that allows the classification of colloids into ballistic and diffusive type. Using this
parameter, we perform an asymptotic analysis to derive expressions for colloid lifetimes and their total
mean squared displacement from release and validate these by numerical Monte Carlo simulations of the
associated Langevin dynamics. Supported by general scaling relationships, our theoretical results provide
new insight into the experimental applicability of a wide range of designs for degradable active colloids.

1 Introduction

In recent years, scientists from a wide variety of differ-
ent fields have given considerable attention to the sub-
ject of synthetic microswimmers. This focus in research
is no coincidence, as such colloids show great promise
in biomedical and engineering applications [1–3]. The de-
sign of autonomous swimmers in particular has received
significant theoretical and experimental attention [4,5].
In an effort to exploit the peculiarities of the associ-
ated low-Reynolds number hydrodynamics [6], many dif-
ferent propulsion mechanisms have been invented. These
include self-phoretic propulsion, such as chemophoresis [7–
10] and electrophoresis [11–13], as well as ultrasound
propulsion [14–16], bubble propulsion [17,18] and mag-
netic propulsion [19,20].

Despite this remarkable progress, common experimen-
tal designs still need to be improved in order to be suitable
for sensitive applications, such as non-invasive medicine.
Next to potential toxicity of swimmer components or
their fuel [21], the question of waste disposal remains
largely open. This can be a serious problem, since arti-
ficial micron-sized particles in the blood stream have the
potential to cause clogging [22–24] and may thus pose a
significant health risk [25,24]. It is therefore essential to
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develop designs for microswimmers that degrade after ful-
filling their purpose.

Very recently, novel experimental designs have begun
to address these issues. Examples of such colloids in-
clude non-toxic magnesium-based bubble propelled swim-
mers [26] suitable for aqueous environments, as well as
other kinds of inorganic compositions driven by reactions
in either acidic or alkaline environments [27]. More designs
have been proposed using organic compounds that may be
3D-printed [28] or that self-assemble into nanomotors [29].

These experimental advances raise new theoretical
questions. While the dynamics of classical non-dissolving
colloids have been studied extensively, the time-evolution
of colloid size modifies its stochastic behaviour, and new
quantities characterising its physics emerge. The purpose
of this paper is therefore to provide theoretical answers to
two fundamental questions. First, we examine which mate-
rial and environmental parameters determine the lifetime
of a dissolving spherical microswimmer. Second, we study
the influence of dissolution on the stochastic behaviour of
both passive and self-propelled colloids. Here, a new di-
mensionless quantity arises which splits microswimmers
into two categories: those that are subject to sufficient
amounts of thermal noise during their lifetime to evolve
diffusively, and those that exhibit near-ballistic trajecto-
ries that may be exploited for delivery applications. We
show that both scenarios may enter for realistic values of
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the material and environmental parameters. The knowl-
edge of these and their scaling relations is thus essential
for the application-specific engineering of degradable mi-
croswimmer designs.

The structure of this paper is as follows. We begin
by presenting two theoretical models for the dissolution
process in sect. 2, one suitable for designs in which the
dissolution process is not driven by a reaction with a fuel
in the solvent (such as dissolution by hydrogen bonding),
and one for swimmers whose matrix is decomposed by
means of a reaction (chemical or enzymatic). For further
analysis the latter case is considered in the two limits of
slow and fast reaction, the former corresponding to a fixed
material flux boundary condition. In all these models we
find expressions for the time dependence of the swimmer
size, as well as their total lifetime in terms of the essential
physical parameters. We present the necessary modifica-
tion to classical Brownian motion in sect. 3, and derive
expressions for the passive mean squared displacement of
not self-propelling colloids. Based on this, we next derive
corresponding expressions for active motion in sect. 4 and
validate our results numerically. Finally, we discuss the
implications of our research on future studies in sect. 5.

2 Dissolution models

Inspired by recent experimental realisations, we propose
two models for the dissolution of a spherical colloid based
on different possibilities for the boundary conditions at
its surface. Specifically, we distinguish between the case in
which dissolution occurs through binding colloid material
to fluid molecules (for example, the case of ionic dissolu-
tion in water), which we call non-reacting, and the case
of dissolution through a chemical or enzymatic reaction
that consumes a fuel. In the latter scenario we distinguish
further between the limits of slow and fast reaction, and
discuss their physical implications.

As a preamble, we note that, unlike geophysical melt-
ing processes [30], enthalpy plays no role in the dissolu-
tion processes considered in our paper. This means the
Stefan boundary condition does not apply and the dy-
namics we derive are different from, e.g., the dissolution
of ice crystals in water. While the general dynamics of
diffusive dissolution have been considered in the geophys-
ical literature [31], there has to the best of our knowledge
been no study that derived the asymptotic solutions we
compute below. This is likely due to the dominance of
convection driven processes on relevant geophysical scales
that require different modelling [32].

2.1 Non-reacting swimmer

In our first model, we assume that the colloidal particle is
composed of a material that dissolves in the surrounding
fluid through bonding of solute colloid material to fluid
molecules, as illustrated schematically in fig. 1. We con-
sider this an appropriate model for non-reacting dissolu-
tion processes, such as dissolution of many organic com-
pounds as well as ionic salts in water. In order to keep the

Fig. 1. Schematic presentation of non-reacting dissolution dy-
namics. The matrix of the swimmer consists of a substance
that dissolves by bonding to the fluid (thus acting as a sol-
vent). Near the boundary, solute is present at a saturation
concentration c0 and subject to advective-diffusive transport
in the bulk. Dissolution emerges through maintaining a nor-
mal concentration gradient at the swimmer surface.

mathematics simple we make the simplifying assumption
that only one species of solute is dissolved into the bulk.
This allows us to define the (mass) concentration, c(r, t),
of solute defined as the mass of solute dissolved in a unit
volume of solvent, with c = c∞ ≥ 0 far away from the
colloid. Note that this differs from the definition of molar
concentration common in chemistry by a factor equal to
the molar mass of the solute. We make this choice in order
to avoid clutter that would arise from the application of
mass conservation below.

In this model and the following we assume the absence
of any background flow that would disturb the distribu-
tion of solute or reactant in the bulk fluid. This assump-
tion is of course violated for self-propelled particles mov-
ing relative to a background fluid. However, we can use
a scaling argument to show that this does not affect our
leading-order results. Since typical propulsion velocities
U are expected to be on the order of a few microns per
second, initial colloid radii R0 on the scale of microns [4]
and for many ions in water at room temperature the so-
lute diffusivity is approximately Ds ∼ 10−9 m2/s [33], the
Péclet number quantifying the relative importance of ad-
vection to diffusion for the solute is Pesol = R0U/Ds ∼
10−4–10−3. This indicates that the advection of solute
can be safely neglected. This remains true even when the
Péclet number associated with the motion of the colloid,
Pecol = R0U/D is large, since the particle is several orders
of magnitude larger than a solvent molecule and there-
fore has a much smaller diffusivity. The same result ap-
plies to phoretic slip flows, which are typically of the same
strength as the propulsion velocity. In the context of dis-
solution dynamics, the flows arising from propulsion can
therefore be neglected in the transport processes of solute
and reactant.

We further assume that the swimmer has a homoge-
neous mass density, ρs, and the fluid solvent a constant
density, ρl. In general the density of the solvent depends
weakly on the amount of solute dissolved [33]. However,
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we will soon develop an asymptotic analysis based on the
assumption that the solubility is weak and therefore can
neglect this effect. Finally, we assume also that the swim-
mer remains spherical at all times, and that the dissolution
dynamics is independent of any self-propulsion mechanism
or background flow. Both these assumptions will be jus-
tified a posteriori in sect. 2.1.3. A brief discussion of the
case of a partially dissolving swimmer is included in our
“Discussion” sect. 5.

2.1.1 Mathematical model

We consider a spherically symmetric colloid or radius R(t)
with initial condition R(0) = R0 > 0. Near the bound-
ary, there is chemical equilibrium between the solute at-
tached to the swimmer surface and present in the fluid. In
this case the dissolution process is driven by the removal
(through diffusion) of solute from a boundary layer into
the bulk and subsequent replenishment from the swim-
mer surface (fig. 1). We model this effect by imposing the
boundary condition

c(R(t), t) = c0 > c∞, t ≥ 0, (1)

where c0 is the saturation concentration of solute in the
solvent. This condition assumes that the boundary layer is
negligibly thin and that the surface reaches chemical equi-
librium instantaneously, which may be justified by noting
that time scales of interest will be much larger than the
molecular collision time, τMC ≈ 10−13 s [33]. The other
condition we impose is the requirement that the solute is
initially distributed homogeneously in the bulk, i.e.

c(r, 0) = c∞, r > R0. (2)

Conservation of solute at the boundary gives

4πR2ρs
dR

dt
= −(solute flux into the fluid)

= −
(
−Ds4πR2 ∂c

∂r

∣∣∣∣
r=R

)
, (3)

and therefore
dR

dt
=

Ds

ρs

∂c

∂r

∣∣∣∣
r=R

, (4)

where Ds is the diffusivity of solute in the solvent.
Furthermore, in the case of unequal densities we also

get a non-zero fluid flux at the boundary since by mass
conservation there is equality

−Ṙρs = (−Ṙ + u · r̂)ρl (5)

and thus
u · r̂ = Ṙ

ρl − ρs

ρl
, (6)

where r̂ denotes a unit vector in the outward radial direc-
tion.

For a self-propelled microscopic colloid in water the
Reynolds number, defined as the ratio of colloid radius

times velocity divided by kinematic viscosity, is typically
on the order of 10−7 � 1. Therefore the fluid dynamics
obey the incompressible Stokes equations,

μ∇2u = ∇p, ∇ · u = 0, (7)

where μ is the dynamic viscosity and p is the pressure
field. Solving these with the boundary condition given in
eq. (6) at r = R leads to the flow of a point source

u = Ṙ
ρl − ρs

ρl

R2

r2
r̂ . (8)

The transport equation for c(r, t) is the standard
advection-diffusion equation

∂c

∂t
+ ∇ · (cu) = Ds∇2c. (9)

Using the result of eq. (8) together with incompressibility
and assuming radial symmetry of the solute concentration,
this becomes

∂c

∂t
+

ρl − ρs

ρl

Ds

ρs

R2

r2

∂c

∂r

∣∣∣∣
r=R

∂c

∂r
= Ds

(
∂2c

∂r2
+

2
r

∂c

∂r

)
.

(10)
Next we non-dimensionalise this transport equation using
the scalings

c∗=
c − c∞
c0 − c∞

, R∗=
R

R0
, r∗=

r

R0
, t∗=

Dst

R2
0

.

(11)
Substituting in eq. (10) and dropping stars in what follows
for notational convenience, we obtain the colloid dynamics
as solution to

dR

dt
= α1

∂c

∂r

∣∣∣∣
r=R

(12)

with c the solution to

∂c

∂t
+

R2

r2
(α1 − β1)

∂c

∂r

∣∣∣∣
r=R

∂c

∂r
=

(
∂2c

∂r2
+

2
r

∂c

∂r

)
, (13)

with dimensionless boundary conditions

c(R(t), t) = 1, t ≥ 0, and c(r, 0) = 0, r > 1, (14)

where we have defined the two dimensionless parameters

α1 =
c0 − c∞

ρs
, β1 =

c0 − c∞
ρl

. (15)

We note that despite a negligibly small solute Péclet num-
ber, it was necessary to include an advective term due to
volume conservation, whose relative strength is given by
(α1 − β1). It is therefore independent of the Péclet num-
ber and its irrelevance at leading order will be only a con-
sequence of the weak solubility assumption. Only when
there is no density mismatch between colloid and fluid is
this term identically zero. Furthermore, the swimmer ra-
dius remains constant when the solvent is saturated with
solute, as may be expected intuitively.
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2.1.2 Asymptotic solution

In order to make analytical progress, we make the assump-
tions that

α1, β1 � 1, (16)
which corresponds to a low-solubility limit for the colloid
material. We can then develop an asymptotic expansion to
solve for c and R. Here we will only calculate the leading-
order solution, but our setup allows for calculations to
arbitrarily high orders. We proceed by a rescaling of our
spatial coordinate as

x =
r

R
, y(x, t) = xc(x, t), (17)

so that our system becomes

R2 ∂y

∂t
+RṘy+(α1−β1)

(
1
x2

∂y

∂x
− y

x3

)(
∂y

∂x

∣∣∣∣
x=1

−1
)

=

∂2y

∂x2
(18)

and

R2 = 1 + 2α1

(∫ t

0

∂y

∂x

∣∣∣∣
x=1

dt′ − t

)
(19)

with boundary conditions

y(1, t) = 1, y(x, 0) = 0. (20)

The solution may be written as

y(x, t;α1, β1) = y0(x, t)+α1yα(x, t)+β1yβ(x, t)+o(α1, β1).
(21)

The problem for y0 reduces to the one-dimensional heat
equation with Dirichlet boundary conditions and its solu-
tion is well known to be

y0(x, t) = erfc
(

x − 1
2
√

t

)
, (22)

whence to leading order

R2 = 1 − 2α1

(
t + 2

√
t

π

)
, (23)

or, after reinserting dimensions, we obtain our desired re-
sult

R(t) = R0

√
1 − 2α1

(
t

ts
+

2√
π

√
t

ts

)
. (24)

where ts = R2
0/Ds is the diffusive time scale for the solute.

An illustration of this decay, along with a comparison to
the reacting model is presented in fig. 3. Denoting by Td

the finite time at which the particle disappears, and taking
into account the order of terms we neglect, we can deduce
that

Td =
ts

2α1

(
1 −

√
8
π

√
α1 + O(α1, β1)

)
. (25)

Therefore at leading order, the lifetime of the colloid scales
inversely proportional with the solubility and diffusivity of
its material, but quadratically with the initial colloid ra-
dius R0. However, the correction from the next-to-leading
order term remains significant for α1 � 10−3 due to its
slow square-root–like decay.

2.1.3 Physical interpretation

The aim of this section is to provide some physical in-
terpretation for eq. (24). For many ions in water at
room temperature, the diffusivity is approximately Ds ∼
10−9 m2/s [33]. In the case of an initially micron-sized col-
loid this gives

ts ∼ 10−3 s. (26)

The other (previously unknown) time scale in the problem
is the swimmer lifetime Td. There is a separation of scales
that is to leading order inversely proportional to α1. In
the specific example of CaCO3 with α1 ≈ 10−6 [33], we
obtain

Td ∼ 103 s ∼ 10min, (27)

which is a conceivably desirable lifetime for a microswim-
mer.

The separation of scales has further consequences for
the decay rate. For t � ts we have R2 ∼ 1 − 4

√
tα2

1/tsπ,
while for t � ts we obtain the behaviour R2 ∼ 1−2α1t/ts.
Therefore the particle size satisfies R ∼

√
1 − 2α1t/ts ex-

cept for a short, transient period on the order of ts. This
feature may be explained physically. Initially, the disconti-
nuity in concentration at r = R causes a large concentra-
tion gradient and fast dissolution but on the (fast) scale
of solute diffusion the system relaxes to equilibrium in a
boundary layer of thickness ∼

√
Dsts, which is on the or-

der of the colloid size, R0. From this point onwards the
colloid is surrounded by a cloud of solute in equilibrium
and the process becomes quasi-static. At leading order, the
dissolution dynamics therefore reduces to steady diffusion.
This gives simultaneously justification to our assumption
of sphericity, since the diffusive boundary layer smooths
out any surface inhomogeneities.

As an aside, we note while the dissolution process of
microbubbles is driven by capillary pressures [34], the R ∼√

1 − t behaviour also emerges in the absence of surface
tension, essentially also due to the dominance of diffusive
effects.

Finally, we point out that α1 and β1 depend only on
the material chosen for the swimmer (and its abundance
in the bulk fluid). Unsurprisingly, only materials that are
considered insoluble on the macroscale yield appreciable
microswimmer life times. Hence, together with fine tun-
ing of the initial radius R0, full control of the dissolution
dynamics can be achieved through the microswimmer de-
sign.

2.2 Dissolution through reaction

Artificial microswimmers are rarely composed solely of
chemically inert materials. Indeed, autophoretic swimmers
often consume a fuel in the solvent, like in the widely stud-
ied case of catalytic platinum swimmers splitting hydro-
gen peroxide (H2O2) into water and oxygen [5]. A sketch
of the process is illustrated in fig. 2 in the specific case of
zinc dissolving in acid as realised experimentally by Chen
et al. [27]. An analogous picture may be imagined for the
case of biodegradation by enzymes.
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Fig. 2. Schematic presentation of the molecular dynamics near
the boundary of a reacting colloid. In this example, motivated
by experiments in ref. [27], zinc is dissolved in acid forming
zinc-ions and molecular hydrogen according to Zn + 2H+ →
H2 + Zn2+. If Da = 0, i.e. infinitely much H+ is present to
sustain the reaction, the dissolution rate is constant. If Da > 0,
the reaction rate will depend on the amount of fuel present, but
not on the amount of product.

A degradable autophoretic colloid might therefore con-
sist of a reactant that will then dissolve into the fluid. To
this end, let us consider a fixed reaction-rate boundary
condition. It will be important to distinguish between the
concentration of fuel cf (r, t) and the concentration of the
swimmer substrate cs(r, t). For example, in the case of
zinc, the fuel concentration might be provided by H+-ions
in acid, which relates their concentration directly to the
pH value of the solvent, while the concentration of the sub-
strate influences the dissolution rate through mass conser-
vation. Notation-wise, we will use the subscript f to refer
below to the fuel and the subscript s to the substrate.

2.2.1 Mathematical model

The mathematical development is similar to the non-
reacting swimmer, with an important change to the
boundary conditions. Indeed, unlike eq. (4) where the con-
centration at the boundary was fixed, the boundary con-
ditions for the fields cs and cf are now given by

−Dsn · ∇cs|R = kscf , −Dfn · ∇cf |R = −kfcf , (28)

where ks and kf are the constant reaction rates for solute
and fuel, respectively and Df the diffusivity of fuel in the
solution. Mass conservation for the colloidal particle leads
to

dR

dt
= −kscf (R)

ρs
. (29)

Furthermore, we once again have conservation of fluid vol-
ume giving rise to a source flow

u = Ṙ(1 − ρs/ρl)
R2

r2
r̂. (30)

Similar to what was done above, we assume that the Péclet
numbers associated with the solute and the fuel dynamics
are small, so that only volume conservation gives rise to
advective flows. We can then write the advection-diffusion
equation for cf as

∂cf

∂t
− (1 − ρs/ρl)

kscf (R)
ρs

R2

r2

∂cf

∂r
=Df

(
∂2cf

∂r2
+

2
r

∂cf

∂r

)
.

(31)
Introducing non-dimensionalised variables as

c∗f =
cf

cf,∞
, R∗ =

R

R0
, r∗ =

r

R0
, t∗ =

Df t

R2
0

,

(32)
where cf,∞ is the mass concentration of fuel in the bulk,
we may substitute in eqs. (29) and (31) and dropping stars
immediately we find

∂cf

∂t
− Da(α2 − β2)cf (R)

R2

r2

∂c

∂r
=

∂2c

∂r2
+

2
r

∂c

∂r
, (33)

dR

dt
= −Da α2cf (R), (34)

with the boundary conditions

cf → 1, r → ∞,

∂cf

∂r
= Da cf , r = 1,

(35)
cf (r, 0) = 1, r > 1,

R(0) = 1,

where we have defined the three dimensionless numbers

Da =
R0kf

Df
, α2 =

cf,∞ks

ρskf
, β2 = α2

ρs

ρl
. (36)

Here Da is a Damköhler number for the fuel, indicating the
ratio between reactive and diffusive fluxes, while α2 and
β2 may be interpreted as dimensionless ratios comparing
the mass of fuel consumed against the mass of solute shed
in the reaction.

Upon rescaling our coordinates according to

x =
r

R
, y(x, t) = cfx, (37)

our system becomes

R2 ∂y

∂t
+RṘy−Da(α2−β2)R

(
1
x2

∂y

∂x
− y

x3

)
y(1, t)=

∂2y

∂x2
,

(38)
and

R = 1 − Da α2

∫ t

0

y(1, t′)dt′, (39)

with
y(x, 0) = 1,

∂y

∂x
(1, t) = Da y(1, t). (40)

From here, we can again proceed by means of an asymp-
totic expansion.
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2.2.2 Asymptotic expansion

We next assume α2 Da, β2 Da � 1 and write the solution
as a power expansion

y(x, t;α2, β2; Da) =
y0(x, t; Da) + α2yα(x, t; Da) + β2yβ(x, t; Da) + h.o.t.

(41)

The boundary condition in eq. (40) consitutes a Robin
problem and can be solved by considering the quantity
φ = y − Da−1 ∂y/∂x subject to Cauchy conditions [35].
The solution for y0 is

y0(x, t; Da) = erf
(

x − 1
2
√

t

)
+ eDa(x−1)+Da2 t

× erfc
(

x − 1
2
√

t
+ Da

√
t

)
. (42)

It follows that

y0(1, t; Da) = eDa2 t erfc
(
Da

√
t
)

, (43)

and hence to leading order in α2,

R(t) = 1− 2α2

√
t

π
− α2

Da

[
eDa2 t erfc

(
Da

√
t
)
− 1

]
. (44)

Upon reinserting dimensions we finally arrive at

R(t) = R0

{
1 − α2

2√
π

√
t

tf

− α2

Da

[
eDa2 t/tf erfc

(
Da

√
t

tf

)
− 1

] }
. (45)

where tf = R2
0/Df is the diffusive time scale for the fuel.

2.2.3 Slow reaction limit (fixed solute flux)

Inspired by a study of boundary conditions in the context
of finite Péclet-number propulsion in ref. [7], we may con-
sider separately the limits Da → 0 and Da → ∞. Each
of these limits will lead to a different model that we will
consider in the remainder of this paper.

For small Damköhler number, we find

R(t) = R0

[
1 − α2 Da

tf
t + O

(
Da2

(
t

tf

)3/2
)]

,

Da → 0,
t

tf
� Da−2 . (46)

When Da = 0, no reaction takes place and the radius of
the colloid remains constant. At next to leading order we
have linear decay, so the lifetime Td is

Td =
tf
α2

Da−1 =
R0ρs

cf,∞ks
(Da → 0), (47)

which is consistent with the asymptotic expansion to this
order. Thus we arrive at a model for the dissolution with
a constant solute flux. We note the different scaling com-
pared to the non-reacting model where the lifetime scaled
as Td ∼ R2

0. This is indicative of the absence of diffu-
sion in this limit. Note that the model can be recovered
from simply applying mass conservation to a flux bound-
ary condition of the form

−Ds
∂c

∂r

∣∣∣∣
r=R(t)

= cf,∞ks, (48)

which shows that the flux is equal to cf,∞ks.

2.2.4 Fast reaction limit

Conversely, as Da → ∞ (still with α2 Da � 1), we find
that

R(t) = R0

{
1 − 2α2√

π

√
t

tf
+ O

(
Da−1

)}
,

Da → ∞,
t

tf
� Da−2 . (49)

In this limit the reaction is infinitely fast, so the boundary
condition on the fuel effectively reduces to instantaneous
depletion, cf (R, t) = 0, and the dissolution rate is limited
by the diffusive flux of fuel from the bulk. Correspondingly
the lifetime Td in dimensional units is

Td =
π

4α2
2

R2
0

Df
(Da → ∞, α2 Da � 1), (50)

a result which is again consistent with the expansion.
Apart from the introduction of reaction rates, this result
is qualitatively different from the non-reacting swimmer
insofar as the lifetime depends on the square of swimmer
density and reactant concentration at infinity, rather than
being inversely proportional to solubility. We remark that
in the case of H+-ions, the concentration cf is directly
related to the pH value of the solvent, which establishes
an experimentally accessible relationship between the pH
and swimmer dissolution dynamics.

In fig. 3 we illustrate the different decay behaviour
for our three models: i) Non-reacting (red solid line, with
td/Td = 0.01); ii) slow reaction (green dashed line); and
iii) fast reaction (blue dash-dotted line). We note for the
non-reacting model the decay rate increases with time,
whereas it is constant for the slowly reacting, and decreas-
ing for the fast reacting model. In the following two sec-
tions, we will explore the important consequences this has
for the stochastic behaviour of dissolving microswimmers.

3 Passive dynamics of dissolving colloids

After developing three models for the dissolution of a
spherical colloid, we now ask what effect this reduction in
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Fig. 3. Comparison of the decay dynamics between the three
models: decay of the dimensionless colloid radius as a function
of dimensionless time. i) Non-reacting (red solid line; td/Td =
0.01); ii) slow reaction (green dashed line); iii) fast reaction
(blue dash-dotted line).

size has on its fluctuating trajectory. As will be shown, the
mean squared displacement of a stochastic self-propelled
particle is given by the sum of the contributions from
translational noise and active motion. This allows us to
split the analysis into the case of a passive colloid with
no intrinsic propulsion mechanism but with translational
noise and an active colloid with rotational but no trans-
lational diffusion. We treat the former case in this sec-
tion and consider the motion of self-propelled particles in
sect. 4.

3.1 Mathematical model

The change in the dynamics of colloidal particles arises
through the time dependence of the translational diffu-
sion coefficient, which is given by the Stokes-Einstein re-
lation [36]

D(t) =
kBT

6πμR(t)
≡ D0

R0

R(t)
, (51)

where kB is Boltzmann’s constant, T is absolute temper-
ature and D0 ≡ D(0) = kBT/6πμR0. In analogy with
classical Brownian motion, we consider the following over-
damped Langevin equation for the position of the passive
colloidal particle, r(t):

dr =
√

2D(t)dW. (52)

Classically, W(t) is white noise with the properties that

〈dW〉 = 0, 〈dWi(t)dWj(t′)〉 = δijδ(t − t′)dt, (53)

with brackets denoting ensemble averages. The right-hand
side of eq. (52) therefore varies on two different time
scales: the rate of change of D and the time scale of the

molecular chaos τMC that gives rise to noise. Typically,
τMC = O(10−13s) [33]. The mathematical assumption of
δ-correlated noise only holds true if τMC is very small
compared to the time scale of diffusion, which holds true
for microscopic colloids. However, since the rate of change
of D diverges as the swimmer size tends to 0, this model
is expected break down at the very end of the swimmer
lifetime. In the case of the non-reacting model this singu-
larity is integrable and poses no problem, whereas for the
reacting model we will also include a physical discussion
of the breakdown.

For an active self-propelled particle at velocity U(t),
the right-hand side of the Langevin equation, eq. (52),
includes an additional term U(t)dt, which is determinis-
tic in the sense that it is uncorrelated with translational
white noise (even if U(t) is subject to rotational noise). A
straightforward integration using the properties in eq. (53)
then shows that the total mean squared displacement is
given by the sum of active and passive contributions,

〈r2〉tot = 〈r2〉a + 〈r2〉p, (54)

as claimed.
The stochastic dynamics in eq. (52) gives rise to a

Fokker-Planck equation for the probability for the posi-
tion of the particle, P (r, t), as

∂P

∂t
= D(t)∇2P. (55)

We can solve this by a rescaling of time, introducing τ(t)
such that

τ =
∫ t

0

D(s)ds = D0

∫ t

0

R0

R(s)
ds, (56)

which yields
∂P̃

∂τ
= ∇2P̃ . (57)

where P̃ (r, τ) = P (r, t). In three spatial dimensions this
equation has a well known Gaussian solution correspond-
ing to the initial condition of a particle located at the
origin

P̃ (r, τ) = P̃ (r = |r|, τ) =
1

(4πτ)3/2
exp

(
− r2

4τ

)
. (58)

The first two moments are well known to be 〈r〉 = 0 and
〈r2〉 = 6τ . The total passive mean squared displacement
of the particle in its lifetime, 〈r2〉p ≡ 〈r2〉(Td), is therefore
given by the integral

〈r2〉p = 6D0

∫ Td

0

R0

R(t)
dt. (59)

Note that since R ≤ R0, the integral has value larger
than Td. Therefore dissolution always enhances passive
diffusion. All that remains to be done is to calculate the
integral for each of our three models.
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3.2 Total root mean squared displacement

In the following we consider the solutions to eq. (59). Bear-
ing in mind the order of terms we neglected in the deriva-
tion of eq. (24), we can integrate eq. (59) directly to obtain
the following result for the non-reacting model:

〈r2〉p = 6D0 ×
ts
α1

(
1 −

√
π

2
√

α1 + O(α1, β1)
)

,

(non-reacting). (60)

Comparing with eq. (25) we can see that at leading order
in α1, dissolution enhances the total mean squared dis-
placement by a factor of two. Through the scaling of ts
with R0 we also find that 〈r2〉p ∼ R0. This may be tested
easily in experiments without affecting the other parame-
ters. Perhaps surprisingly, this also means that in contrast
to fixed-size swimmers, the importance of passive Brown-
ian effects increases with swimmer size, since the smaller
diffusivity is overcompensated for by the longer life span.
The scaling with α1 can be explained the same way, as a
colloid with small α1 decays slower, lives longer and there-
fore travels further.

For the slow reaction model we can use eq. (46) in the
integration of eq. (59) to find

〈r2〉(t) = 6D0 × Td log
(

R0

R(t)

)
, (slow reaction). (61)

This expression diverges logarithmically as t → Td. This
should not be taken as indicative of superdiffusion, but can
be resolved by the breakdown of the Stokes-Einstein rela-
tion below a certain colloid size. Past experiments suggest
this happens for colloids smaller than a few nanometres in
diameter [37]. Compared to an initial colloid size on the
scale of a few microns, this corresponds to 2 to 4 orders
of magnitude. Since the divergence of the mean squared
displacement is logarithmic, this will give a total mean
squared displacement that is greater than that of a non-
dissolving colloid by a factor of O(1)–O(10). Furthermore,
since D0Td is independent of R0 for this model, the contri-
bution of passive Brownian motion only depends weakly
on the initial colloid size. This is in contrast with the other
models, and indicative of the absence of diffusion.

Finally, using eq. (49) in eq. (59) we obtain for the fast
reaction limit the result

〈r2〉(t) = 6D0 × 2Td

(
log

(
R0

R(t)

)
+

R(t)
R0

− 1
)

,

(fast reaction). (62)

where again we have a logarithmic divergence as t → Td.
Using previous definitions we find that as in the non-
reacting model 〈r2〉p ∼ R0 (+ logarithmic corrections)
and also that 〈r2〉p ∼ α−2

2 . The passive mean squared
displacement therefore depends rather sensitively on the
availability of fuel for the reaction.

Fig. 4. 2D projections of sample trajectories of active dissolv-
ing colloids with different values of γ. The colloids initially
swim from left to right (see arrow) and dissolve according to
the non-reacting model with the same length scale and lifetime.

4 Active motion of dissolving colloids

After examining the dynamics of passive particles, we
now turn to the effect of dissolution on self-propelled mi-
croswimmers. For the case of active particles subject to
rotational diffusion with coefficient Dr, it is well known
that self-propulsion at velocity U gives rise to an effective
enhanced translational diffusivity [8]

Deff = D +
U2

6Dr
, (63)

for times much longer than D−1
r , the time scale of ro-

tational diffusion (i.e. in the limit tDr � 1). On scales
much shorter than this the motion is instead ballistic, i.e.
〈r2〉 ∼ U2t2.

In this new scenario however, an additional scale is in-
troduced through the swimmer lifetime, Td. It is therefore
vital to consider the dimensionless quantity

γ := Dr,0Td, (64)

where we define Dr,0 = kBT/8πμR3
0. If γ � 1, then the

particle disappears before displaying macroscopically dif-
fusive behaviour. Conversely, if γ � 1 we expect trajecto-
ries that are qualitatively similar to that of a classically
diffusive colloid at long time scales. The qualitative role of
γ is illustrated in fig. 4 where we observe three trajecto-
ries becoming more curly as time progresses, since diffu-
sivity increases as the swimmer dissolves. However, only
colloids with large values of γ (here, γ = 10) exist long
enough for this effect to become significant, giving rise to
a macroscopically “diffusive” trajectory. Conversely, for
small γ (here, γ = 0.1) trajectories appear macroscop-
ically “ballistic”. Depending on the application, it may
be desirable to design swimmers that belong to either
of these two regimes. In water at room temperature we
have D−1

r,0 ≈ 6(R0/μm)3 s [33], so depending on the initial
colloid size the threshold lifetime ranges from seconds to
hours. Therefore both regimes are conceivable for appli-
cations and thus relevant to study. We proceed with the
development of our theoretical framework to derive ex-
pressions for the active mean squared displacement and
present analytical solutions for each model both as γ → 0
and as γ → ∞. We then validate our theoretical results
against numerical simulations of the associated Langevin
dynamics.
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4.1 Mathematical model

In the rest of this section we assume that the colloid is
subject to Langevin dynamics as

dr = Uedt, (65)

de = −2Dr(t)edt +
√

2Dr(t)Π(e) · dW, (66)

to be understood in the Itô formulation of stochastic
calculus. Here U is the particle self-propulsion speed, e
the unit vector along the direction of propulsion and
Πij = δij−eiej . As is the case for a wide range of phoretic
swimmers [5], we assume the velocity U to be independent
of the swimmer size. Moreover, we set D = 0 to isolate the
effect of active diffusion, which generally exceeds that of
(regularised) passive diffusion discussed previously. Since
both contribute independently however, they may simply
be added together if the total mean squared displacement
is desired. We also neglect the details of the propulsion
mechanism and possible interactions with our dissolution
models.

As in the classical case, the e-dynamics decouple from
the r-dynamics. With the same assumptions regarding the
separation of time scales as in the passive case, e(θ, φ) is
therefore subject to the Fokker-Planck equation

∂

∂t
P (θ, φ, t) = Dr(t)∇2

angP, (67)

where ∇2
ang denotes the angular part of the Laplacian op-

erator. By introducing a rescaled time τr(t) as

τr =
∫ t

0

Dr(s)ds = Dr,0

∫ t

0

(
R0

R(s)

)3

ds, (68)

this may be used to show that 〈e(t) · e(0)〉 = exp(−2τr).
Therefore we have the following expression for the total
active mean squared displacement:

〈r2〉a = 2U2

∫ Td

0

dt′
∫ t′

0

dt′′ exp {−2 [τr(t′) − τr(t′′)]} .

(69)
Substituting values for our models and rescaling variables,
this gives the following general expressions:

〈r2〉a = U2T 2
d

∫ ∞

0

dx′
∫ x′

0

dx′′ 2e−2γ(x′−x′′)

(1 + x′/2)3(1 + x′′/2)3
,

(non-reacting) (70)

〈r2〉a = U2T 2
d

∫ ∞

0

dx′
∫ x′

0

dx′′ 2e−2γ(x′−x′′)

(1 + 2x′)3/2(1 + 2x′′)3/2
,

(slow reaction) (71)

〈r2〉a = U2T 2
d

∫ ∞

0

dx′
∫ x′

0

dx′′ 2e−2γ(x′−x′′)

(1 +
√

x′)3(1 +
√

x′′)3
.

(fast reaction) (72)

Unfortunately, while these are exact results, it is not pos-
sible to evaluate these integrals analytically for arbitrary
values of γ. However, we can derive asymptotic solutions
in both the diffusive and ballistic limits, as we now show.

4.1.1 Diffusive limit (γ → ∞)

In the diffusive limit, γ � 1, we can use Watson’s lemma
to develop an asymptotic expansion, with details given in
the appendix. In the case of a non-reacting swimmer, we
find

〈r2〉a∼
2
5

U2Td

Dr,0

[
1− 5

8γ
+. . .

]
, γ→∞ (non-reacting).

(73)
As expected, the behaviour is diffusive and the leading-
order scaling is

〈r2〉a ∼ U2μρsR
5
0

kBTDs(c0 − c∞)
, γ → ∞ (non-reacting).

(74)
We notice the appearance of the 2/5 factor in eq. (73),
indicating that the enhancement of the diffusivity through
active motion is reduced dramatically, to just 40% of that
of a comparable classical colloid. Furthermore, the active
mean squared displacement scales as ∼ R5

0, making the
range of the swimmer extremely sensitive to its initial size.
This scaling breaks down for very large swimmers, since
it is necessary that γ ∼ R−1

0 is sufficiently large for this
expansion to remain valid.

For the slowly reacting swimmer we find in a similar
fashion that

〈r2〉a∼
1
4

U2Td

Dr,0

[
1− 1

γ
+. . .

]
, γ→∞ (slow reaction).

(75)
with the leading-order scaling

〈r2〉a ∼ U2μρsR
4
0

kBTcf,∞ks
, γ → ∞ (slow reaction). (76)

We see that the diffusivity in eq. (75) is reduced even
further, to 25% that of a classical colloid. Finally, for the
fast reacting swimmer we obtain

〈r2〉a ∼ 1
10

U2Td

Dr,0

[
1 − 5

2γ
+ . . .

]
, γ → ∞

(fast reaction), (77)

and the leading-order scaling

〈r2〉a ∼
U2μρ2

sk
2
fR5

0

kBTDfc2
f,∞k2

s

, γ → ∞ (fast reaction). (78)

This third dissolution model gives the strongest reduction
of the active mean squared displacement in the diffusive
regime, to just 10% that of a classical colloid.

The strong reduction in mean squared displacement
across all three models suggests that it is impractical to
rely on active diffusion to transport dissolving microswim-
mers. Instead designs may be aimed at exploiting the bal-
listic regime (γ � 1) or making use of external flows and
geometries to direct swimmers.
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Fig. 5. Normalised active mean squared displacement as a
function γ for the non-reacting model. The solid black line
corresponds to direct numerical integration of eq. (70), while
the dashed orange line is our theoretical prediction in eq. (73)
for the large γ limit. Each scatter point represents the mean
and one standard deviation obtained from 103 Monte Carlo
simulations of the associated Langevin equations. Inset: the
small γ behaviour, comparing eq. (70) (solid black line) with
the asymptotic solution eq. (79) (dashed orange line).

4.1.2 Ballistic limit (γ → 0)

The asymptotic expansions in the ballistic limit are more
complicated, and rely on careful splitting of the integra-
tion range to tame divergences. With all details shown in
the appendix, we obtain the following leading-order re-
sults:

〈r2〉a = U2T 2
d

(
1 − 16

3
γ + O(γ3/2)

)
,

(non-reacting) (79)
〈r2〉a = U2T 2

d

(
1 − 2

√
π
√

γ + O(γ log γ)
)
,

(slow reaction) (80)

〈r2〉a = U2T 2
d

(
1 − 4

√
2π

√
γ + O(γ log γ)

)
.

(fast reaction) (81)

Once again, we observe the same hierarchy among the
three models, with the non-reacting swimmer exhibiting
the smallest decrease in range compared to a classical col-
loid, in contrast with a fast reacting swimmer with the
same lifetime Td. Note that in this limit not only the co-
efficient but also the leading-order scaling varies between
the models.

We obtain therefore that in both the ballistic and dif-
fusive limit there exists a hierarchy among the three mod-
els. The mean squared displacement for a given value of
γ is always largest for the non-reacting swimmer, followed
by the slowly reacting and finally the fast reacting colloid.
This may be explained by considering the decay behaviour
in fig. 3. Since the decay rate of the non-reacting swimmer
is accelerating, it is only significantly smaller than its orig-
inal size for a comparatively short proportion of its total
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Fig. 6. Normalised active mean squared displacement against
γ for the slow reaction limit of the reacting model. The
solid black line corresponds to direct numerical integration of
eq. (71), the dashed orange lines to the theoretical predictions
of eq. (75) and eq. (80), and the scatter points to Monte Carlo
simulations in analogy with fig. 5.

lifetime. Since rotational diffusion is strongest for parti-
cles of small radius, this means that it is comparatively
weakly affected by the enhancement in rotational diffu-
sion. In contrast, colloids decaying according the other
two models experience strong rotational diffusion for a
significantly longer proportion of their lifetime, leading to
less directed motion and smaller overall displacement. In
figs. 8 and 9 we illustrate this further using results from
our numerical simulations.

4.2 Computational results

4.2.1 Validation of the method

In order to test our theoretical approach, we perform di-
rect numerical integrations of our integral expressions for
the active mean squared displacement in eqs. (70)–(72).
We compare them with Monte Carlo simulations of the as-
sociated Langevin dynamics to assert its validity, and sub-
sequently with our analytical predictions for the asymp-
totic behaviour. The results are shown in figs. 5, 6 and 7 for
the non-reacting, slowly reacting and fast reacting models
respectively. Since the large γ limit corresponds to strong
rotational diffusion and long lifetimes, the Monte Carlo
simulations necessitate very small time steps and very
long run times. Depending on the model, such simulations
therefore become prohibitively expensive even for moder-
ate values of γ. Since rotational diffusion is strongest for
small colloids, this effect is most pronounced for the fast
reacting swimmer whose rate of dissolution is decreasing
since this swimmer spends the longest proportion of its
lifetime in this regime. Conversely, the non-reacting swim-
mer is the least expensive to simulate.

As can be seen in fig. 5, we obtain excellent agreement
between the Langevin dynamics and the predicted mean
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Fig. 7. Normalised active mean squared displacement against
γ for the slow reaction limit of the reacting model. The
solid black line corresponds to direct numerical integration of
eq. (72), the dashed orange lines to the theoretical predictions
of eq. (77) and eq. (81), and the scatter points to Monte Carlo
simulations in analogy with fig. 5.

squared displacement for a wide range of γ values. In the
diffusive limit (γ � 1), the next-to-leading-order asymp-
totics agree extremely well with the exact result down to
γ = O(1) on a log-log scale. In the ballistic limit, diver-
gences begin to appear at γ = O(10−1). Similar conclu-
sions hold for the slowly reacting swimmer, as shown in
fig. 6. In the case of the fast reacting swimmer, shown
in fig. 7, the active mean squared displacement is a less
smooth function of γ, leading to stronger diversion from
the asymptotic expressions.

4.2.2 Distribution of spread

From these Monte Carlo simulations, we can deduce fur-
ther information regarding the spread of particle trajec-
tories. As predicted in sect. 4.1, a hierarchy between the
models is revealed that applies for a wide range of values of
γ, covering both the ballistic and the diffusive regime. This
is illustrated in fig. 8, where we show histograms of root
mean square displacement distributions. For equal values
of γ, the non-reacting model consistently produces the
largest displacement. The distribution is strongly peaked
for small γ (ballistic), but spreads as γ shifts to larger val-
ues. This may be attributed to the general shift towards
diffusion. Contrastingly however, the distribution of the
fast-reacting colloids is spread rather widely even in the
ballistic regime and in fact peaked much more strongly in
the diffusive regime than both the non-reacting and the
slowly reacting particles, whose distribution lies between
the two others. This is indicative of fast-reacting dissolu-
tion fostering diffusive behaviour independent of the pa-
rameter γ.

In order to further illustrate this point, we examine the
lateral spread of colloid trajectories in the weakly ballistic
regime. In fig. 9, we plot the final positions of colloids

Fig. 8. Histograms illustrating the distribution of root mean
squared displacement from the initial position for different val-
ues of γ, scaled by the ballistic length scale Lb = UTd for
γ = 0.1 and γ = 1, and the diffusive length scale Ld = Lb/

√
γ

for γ = 10. Each histogram is generated from 103 Monte Carlo
simulations. Dashed lines indicate sample means.

with identical initial orientations, including non-dissolving
particles for comparison. A clear stratification between the
models is visible with non-dissolving colloids being closely
confined to a spherical cap on the one extreme, and fast
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Fig. 9. Cloud scatter plot of lateral displacement, r⊥ =
p

x2 + y2, vs. vertical displacement, z, of 103 Monte Carlo
simulations in the weakly ballistic regime for our three models
compared to the non-dissolving case. All simulations started
at the coordinate origin (filled circle) with initial orientation
vertically upwards in Cartesian coordinates (x, y, z). Symbols
indicate positions of the colloids at time of disappearance. The
non-dissolving data points are generated by initialising a sim-
ulation with a given rotational diffusivity Dr and terminating
after a time T such that TDr = γ. Lengths are scaled by the
ballistic length scale UTd.

reacting colloids in a near-spherical diffusive cloud close to
the origin. These also exhibit the smallest absolute lateral
spread, while the classical colloids are the most spread out.
However, the average angular spread is similar between
the models.

5 Discussion

In this paper we provide two fundamental models for the
dissolution and stochastic dynamics of self-propelled ar-
tificial microswimmers. Inspired by recent experimental
realisations, we seek to identify the swimmer decay rates
and their influence on translational and rotational diffusiv-
ity, and in turn analyse both theoretically and numerically
how changes in these modify the distribution of swimmer
trajectories. We identify a new dimensionless parameter,
γ, defined as the product of lifetime and initial rotational
diffusivity, that classifies colloids with finite lifetime into
“ballistic” and “diffusive” types independent of the dis-
solution process, and study the differences between our
dissolution models in three distinct limits for various val-
ues of this parameter. We find that for a given value of

γ, particles dissolving in the absence of a reaction be-
have the most ballistic, whereas colloids reacting at high
Damköhler number, defined as the ratio of fuel reactivity
and diffusive replenishment, behave the most diffusively.
We find that this is due to increasing and decreasing dis-
solution rates, respectively, for the different models. Fur-
thermore we derive asymptotic expressions of their mean
squared displacement for both small and large values of
γ, and perform extensive Monte Carlo simulations to val-
idate our theoretical results and derive more information
about the distribution of spread.

Under experimental conditions, Damköhler numbers of
more than about 10 are often very difficult to realise. How-
ever, this does not really constrain the applicability of our
fast-reacting model, since we only require tf/Da2 � Td

for the expansion to be valid on the scale of dissolution
dynamics. Since typically tf � Td anyway, we find that
even Damköhler numbers of order unity are sufficient for
this limit. On the other hand, this argument implies that
very small Damköhler numbers are required in the slow-
reaction asymptotic limit, a situation which might not
be realisable experimentally. Note, however, that we in-
clude also the general expression of the decay for arbi-
trary Damköhler number in eq. (45), for which compu-
tations similar to the ones provided in sect. 4.2 may be
performed.

Despite this, not all our models can apply to all kinds
of microswimmer designs. Specifically, the non-reacting
model might be at odds with phoretic self-propulsion.
Therefore this model only describes colloids that propel
through different mechanisms, such as magnetic swim-
mers. Furthermore, our statistical results only hold true
for microswimmers that are fully degradable. A Janus col-
loid with, e.g., degradable and inert halves is not going
to exhibit divergent diffusivity since the relevant length
scale is bounded. Instead such a swimmer would show a
decrease in velocity, which if known can be dealt with in a
manner similar to our theoretical approach. In this case,
however, the changing geometry of the swimmer would
likely have to be solved for numerically.

Another important problem that remains to be inves-
tigated is the influence of directed motion, such as chemo-
taxis. Breaking the isotropy of orientational dynamics pre-
vents an analytical investigation similar to the one car-
ried out in this paper since it relies on the result that the
directional correlation of a particle decays exponentially.
However, we can still address the issue directly in at least
one special case. It was shown recently in ref. [38] that
artificial colloids perform chemotaxis by adjusting their
trajectory by means of rotation, translation in the direc-
tion to a chemical gradient, and translation at an angle,
each with a coefficient of strength that can be calculated
from the surface activity and mobility of the colloid. In the
case of uniform surface activity, the only coefficient that is
non-zero is the one giving rise to translation in the direc-
tion of a chemical gradient. In particular, the rotational
dynamics remain unaffected. In that case, the swimmer
trajectories behave therefore just like we describe in our
paper, plus a constant velocity displacing the colloid in
the direction of the chemical gradient. Furthermore nu-
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merical work will be required to address the full interplay
between chemotaxis behaviour and dissolution dynamics.

Before degradable designs may be employed in real-
world applications, it will be furthermore necessary to ex-
amine the effects of collective dissolution. Since our models
are sensitive to the background distribution of fuel and/or
solute, the influence of other nearby colloids on their disso-
lution will be noticeable. It is conceivable that, in analogy
with bubbles [34], different decay patterns and complex
stochastic behaviour emerge. Similar effects may also be
triggered by confinement and also warrant further inves-
tigation.

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement 682754 to
EL).

Author contribution statement

EL conceived the study, AC developed models and per-
formed computations, all authors contributed to the in-
terpretation and writing of the manuscript.

Conflict of interest

There are no conflicts to declare.

Publisher’s Note The EPJ Publishers remain neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

Appendix A. Details of the asymptotics for
active MSD

Appendix A.1. Diffusive limit (γ → ∞)

The general expression for the active mean squared dis-
placement is

〈r2〉a = 2U2

∫ Td

0

dt′
∫ t′

0

dt′′ exp {−2 [τr(t′) − τr(t′′)]} .

(A.1)
In the case of the non-reacting swimmer we have R ≈
R0

√
1 − t/Td, and thus

τr = Dr,0Td

∫ t/Td

0

dt′

(1 − t′)3/2
= 2γ

(
1√

1 − t/Td

− 1

)
.

(A.2)
We can use this to change integration variables in eq. (A.1)
by setting x = τr/γ and obtain

〈r2〉a = 2U2T 2
d

∫ ∞

0

dx′
∫ x′

0

dx′′ e−2γ(x′−x′′)

(1 + x′/2)3(1 + x′′/2)3
.

(A.3)

This transformation can be interpreted as mathematically
equivalent to the motion of a non-dissolving colloid with
constant rotational diffusivity and algebraically decaying
velocity. We switch variables again to

y′ = x′,
(A.4)

y′′ = x′ − x′′.

and obtain

〈r2〉a = 2U2T 2
d

∫ ∞

0

dy′
∫ y′

0

dy′′e−2γy′′
(

1 +
y′

2

)−3

×
(

1 +
y′ − y′′

2

)−3

. (A.5)

It is then possible to write the y′′-integral in terms of
auxiliary Gamma functions. These may be expanded in
the limit γ → ∞ to give

〈r2〉a = U2T 2
d

∫ ∞

0

dy′ 64
γ(2 + y′)6

+
96

γ2(2 + y′)7

− 8e−2γy′

γ(2 + y′)3
+ O(γ−3). (A.6)

The first two terms can be evaluated directly, while the
last one may be expanded using Watson’s lemma. We find
that

〈r2〉a = U2T 2
d

(
2
5γ

− 1
4γ2

+ O
(
γ−3

))
, (A.7)

which is the same as eq. (73).
The case of a slowly reacting swimmer can be solved

in a very similar fashion. This time we have

x =
1
2

(
1

(1 − t/Td)2
− 1

)
. (A.8)

It follows that the active part of the mean squared dis-
placement may be written as

〈r2〉a =2U2T 2
d

∫ ∞

0

dx′
∫ x′

0

dx′′ e−2γ(x′−x′′)

(1 + 2x′)3/2(1 + 2x′′)3/2
.

(A.9)
Developing an asymptotic expansion as before we get

〈r2〉a = U2T 2
d

∫ ∞

0

dy′ 1
γ(1 + 2y′)3

+
3

2γ2(1 + 2y′)4

− e−2γy′

γ(1 + 2y′)3/2
+ O(γ−3) (A.10)

= U2T 2
d

(
1
4γ

− 1
4γ2

+ O
(
γ−3

))
, (A.11)

which is eq. (75).
Finally, for the fast reacting swimmer we have

x =
t/Td

(1 −
√

t/Td)2
, (A.12)
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from which we can derive that

〈r2〉a = 2U2T 2
d

∫ ∞

0

dx′
∫ x′

0

dx′′ e−2γ(x′−x′′)

(1 +
√

x′)3(1 +
√

x′′)3
.

(A.13)
In this case it is easier to interchange the integrals as∫ ∞
0

dx′ ∫ x′

0
dx′′ =

∫ ∞
0

dy′′ ∫ ∞
y′′ dy′ and perform the y′-

integral first. The resulting expression produced by Wol-
fram Mathematica 11 contains 1692 terms, but may again
be expanded and simplified significantly upon the appli-
cation of Watson’s lemma, giving

〈r2〉a = U2T 2
d

∫ ∞

0

dy′′e−2γy′′
(

1
5
− y′′ + O

(
y′′3/2

))

(A.14)

= U2T 2
d

(
1

10γ
− 1

4γ2
+ O

(
γ−5/2

))
, (A.15)

as claimed in eq. (77).

Appendix A.2. Ballistic limit (γ → 0)

First we consider the non-reacting swimmer. We have

〈r2〉a = 2U2T 2
d

∫ ∞

0

dx

∫ x

0

dy
e−2γ(x−y)

(1 + x/2)3(1 + y/2)3
,

(A.16)
and are interested in the limit γ → 0. We set U2T 2

d = 1
to keep the notation clean. Since the denominator decays
rapidly enough at ∞ we can Taylor expand the exponen-
tial to pick up the two leading-order contributions to the
integral:

〈r2〉a =
∫ ∞

0

dx

∫ x

0

dy
2 − 4γ(x − y) + . . .

(1 + x/2)3(1 + y/2)3
(A.17)

= 1 − 16
3

γ + o(γ), (A.18)

which is eq. (79).
For the slowly reacting swimmer we have

〈r2〉a = 2
∫ ∞

0

dx

∫ x

0

dy
e−2γ(x−y)

(1 + 2x)3/2(1 + 2y)3/2
. (A.19)

Because of the slower decay, it is necessary to divide and
conquer from the start. We set z = x − y and note that∫ ∞
0

dx
∫ x

0
dy =

∫ ∞
0

dz
∫ ∞

z
dx. Upon performing the inner

integral we have

〈r2〉a =
∫ ∞

0

dz
e−2γz

1 +
√

1 + 2z + z(2 +
√

1 + 2z)
. (A.20)

We define δ such that 1 � δ � γ−1 and split the integral
into

I1 =
∫ δ

0

dz
e−2γz

1 +
√

1 + 2z + z(2 +
√

1 + 2z)
,

I2 =
∫ ∞

δ

dz
e−2γz

1 +
√

1 + 2z + z(2 +
√

1 + 2z)
. (A.21)

Upon expanding the exponential in I1 and taking δ → ∞
we have

I1 =1 + (2 − 2 log 2)γ+O(γ2) + terms depending on δ.
(A.22)

Meanwhile, we rescale z → γz in I2 and expand the de-
nominator for small γ:

I2 =
∫ ∞

γδ

dze−2z

(
γ1/2

√
2z3/2

− γ

z2
+ . . .

)
. (A.23)

Performing the integral and taking the limit δ → 0 we
arrive at

I2 = −2
√

πγ1/2 − 2γ log γ + (2 − 2γe − 2 log 2) γ

+o(γ) + terms depending on δ, (A.24)

where γe is the Euler-Mascheroni constant. Since δ is ar-
bitrary, the divergent terms in both integrals must cancel.
In summary, we have for the slowly reacting swimmer that

〈r2〉a =1−2
√

πγ1/2−2γ log γ+(4 − 2γe − 4 log 2) γ+o(γ),
(A.25)

which is eq. (80).
Finally, for the fast reacting swimmer we have

〈r2〉a = 2
∫ ∞

0

dx

∫ x

0

dy
e−2γ(x−y)

(1 +
√

x)3(1 +
√

y)3
. (A.26)

This time there is no closed-form expression for the inner
integral, forcing us to split both integrals in two domains.
We define δ as before and write

〈r2〉a =
∫ δ

0

dx

∫ x

0

dy

︸ ︷︷ ︸
I1

+
∫ ∞

δ

dx

∫ x

0

dy

︸ ︷︷ ︸
I2

2e−2γ(x−y)

(1+
√

x)3(1+
√

y)3
.

(A.27)
The first part, I1, is straightforward to do once the expo-
nential is expanded and yields

I1 = 1 − 296
3

γ + O(γ2) + terms depending on δ. (A.28)

To perform I2 we write

I2 =
∫ ∞

δ

dx
2e−2γx

(1 +
√

x)3

∫ x

0

dy
e2γy

(1 +
√

y)3︸ ︷︷ ︸
J(x)

, (A.29)

and split the range of J(x) again with the goal to obtain
an expansion valid for small γ. Defining δ1, J1 and J2 in
a similar fashion, we find

J1 = 1 + 10γ + O(γ2) + terms depending on δ1, (A.30)

whereas for J2 we have

J2 =
3e2γx

x
− 2e2γx

√
x

+ 2
√

2πγ1/2 Erfi
(√

2γx
)

−6γ Ei (2γx) + 2γ log γ + γ (6γe − 6 + 6 log 2)
+o(γ) + terms depending on δ1, (A.31)



Eur. Phys. J. E (2019) 42: 88 Page 15 of 15

where Erfi(z) = Erf(iz)/i and Ei(z) = −
∫ ∞
−z

e−t/t dt.
Combining these allows us to write

I2 =
∫ ∞

γδ

dz
2γ1/2e−2z

z3/2

− γ

z2

(
6e−2z + 4 − 4

√
2πz Erfi

(√
2z

))
+ o(γ).

(A.32)

Expanding as before and combining with I1 we ultimately
find that

〈r2〉a = 1 − 4
√

2πγ1/2 − 28γ log γ

−γ

(
164
3

+ 28γe + 60 log 2
)

+ o(γ), (A.33)

corresponding to eq. (81) in the main text.
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