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Avoiding dynastic, assortative mating, and
population stratification biases in Mendelian
randomization through within-family analyses
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Estimates from Mendelian randomization studies of unrelated individuals can be biased due

to uncontrolled confounding from familial effects. Here we describe methods for within-

family Mendelian randomization analyses and use simulation studies to show that family-

based analyses can reduce such biases. We illustrate empirically how familial effects can

affect estimates using data from 61,008 siblings from the Nord-Trøndelag Health Study and

UK Biobank and replicated our findings using 222,368 siblings from 23andMe. Both Men-

delian randomization estimates using unrelated individuals and within family methods

reproduced established effects of lower BMI reducing risk of diabetes and high blood pres-

sure. However, while Mendelian randomization estimates from samples of unrelated indivi-

duals suggested that taller height and lower BMI increase educational attainment, these

effects were strongly attenuated in within-family Mendelian randomization analyses. Our

findings indicate the necessity of controlling for population structure and familial effects in

Mendelian randomization studies.
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Mendelian randomization is an approach that uses
genetic variants as instrumental variables to estimate
the causal effects of one trait (the ‘exposure’) on

another (the ‘outcome’)1–5. It has gained popularity due to the
recent expansion in the scale of genome-wide association studies
(GWAS) and because it can ameliorate bias due to processes of
residual confounding and reverse causation that affect most other
observational approaches. In order for Mendelian randomization
estimates to be valid, the genetic instrument must meet three
assumptions: (1) relevance, it must associate with the exposure,
(2) independence, there must be nothing that causes both the
instrument and the outcome and (3) exclusion, the association of
the instrument and the outcome must be entirely mediated via
the exposure. Attention has been focused on developing methods
to overcome bias in Mendelian randomization studies due to
horizontal pleiotropy6–11, which would violate the exclusion
assumption. However, in this paper we focus on the second
assumption: independence. We demonstrate how population and
familial effects can violate the second assumption, and that tra-
ditional family-based methods are well placed to rectify this
problem.

Mendel’s laws of genetic inheritance provide a rationale for
why much genetic variation for a given trait will be independent
of the environment and genetic variation for other traits1,12.
However, environmental and social factors such as assortative
mating, dynastic effects, and population structure may affect the
distribution of genetic variants for specific traits within popula-
tions (see Supplementary Note 1)13–16. Figure 1 illustrates the
impact of these processes in the context of Mendelian randomi-
zation. The commonality amongst all three processes is that they
induce a spurious association between the instrumenting variant
and the outcome through confounding. Assortative mating
occurs when partners are selected on the basis of phenotype6,17.
For example, couples tend to have more similar education and
body mass index than would be expected by chance18,19. If
assortative mating arises due to individuals with a particular
genetic predisposition selecting mates who have a particular
genetically influenced phenotype, this can induce spurious genetic
associations which can result in biased estimates from Mendelian
randomization studies6. In addition, social homogamy may lead
to people selecting partners who are similar to themselves20, and
this can compound across generations6. Dynastic effects can
occur when the expression of parental genotype in the parental
phenotype directly affects the offspring phenotype. For example,
higher educated parents might support their children’s education
by providing a stimulating environment, being able to afford
tutoring for their child, buying homes in better school districts, or
paying for private schools. Other relationships including siblings,
grandparents, uncles/aunts and cousins which may affect the
offspring’s phenotype can also be thought of as a likely generally
weaker form of dynastic effects. Finally, residual population
structure occurs when there are geographic or regional differences
in allele frequency relating to a trait of interest that cannot
necessarily be controlled for via principal components13. Con-
founding by population stratification1, in which ancestry is cor-
related with both phenotypes and genotypes, was a major concern
during the early development of Mendelian randomization1.
However, this fear was gradually assuaged by a decade of GWAS
results that were apparently reliable in the face of population
structure21. GWAS are now performed on a huge scale; as a
consequence the problem of population stratification is again of
potential concern because the high statistical power of large
studies renders them susceptible to bias from very subtle popu-
lation structure13,22.

Confounding in genetic association estimates, as induced by
population stratification, dynastic effects and assortative mating,

can and has been resolved by using family-based study
designs6,23,24. For example, in sibling pair studies, genetic asso-
ciations at loci can be partitioned into between pair and within
pair components23. Because genetic differences within sibling
pairs reflect random independent meiotic events, within pair
effects are unrelated to population stratification and most
potential confounders that might influence the phenotype.
Similarly, other family-based designs and within-family tests to
adjust for or exploit parental genotypes exist, such as estimating
maternal and offspring genetic effects using structural equation
modelling25, quantitative transmission/disequilibrium tests26,27,
or mother-father-offspring trios to adjust for parental geno-
types28. Such within-family designs have been used to validate
results from GWAS29,30, obtain unbiased heritability estimates31,
and assess causation in the classical twin design32,33. Yet, despite
the initial extended proposal of Mendelian randomization
advising that the only way to ensure true randomization was
through a within-family design1, to-date contemporary imple-
mentations using modern genomic methods have rarely been
performed. The principal reason for this has been a lack of
genomic data collected from families at a scale sufficient to be
suitably powered. As we now enter the age of national scale
biobanks and very large twin studies, this essential extension of
Mendelian randomization is becoming feasible.

This paper presents theory and simulations that demonstrate
how within-family designs can be coupled with genomic data to
perform Mendelian randomization analyses unbiased by popu-
lation structure and family effects. We integrate these approaches
in a modular fashion alongside other methods that have been
developed for pleiotropy-robust inference (i.e. to be resilient to
violations of the third assumption of Mendelian randomization)
7–9,34. Using 28,777 siblings from HUNT, 32,231 siblings from
the UK Biobank, and 222,368 siblings from 23andme we illustrate
these methods empirically. First, we estimate the causal effect of
BMI on high blood pressure and risk of diabetes as positive
controls. Second, we estimate the casual effect of height and BMI
on educational attainment and find substantial differences
between estimates from unrelated individuals and estimates using
within-family-based approaches, demonstrating the importance
of controlling for family effects and population structure in
Mendelian randomization studies.

Results
Bias evaluated using directed acyclic graphs. There are three
mechanisms depicted in Fig. 1 that induce bias in the SNP-
outcome relationship of a Mendelian randomization design. The
problem of population structure is well known and has been
examined in detail in Lawson et al. 201935. A similar confounding
structure can be induced through dynastic effects because there is
a path between the offspring instrument value and the offspring
outcome value, which arises through parental inheritance.

Similarly, cross trait assortative mating can induce bias due to a
form of collider bias, where conditioning on the assortment of
parents induces a correlation between the SNP effects on x and all
other genetic effects on y. As this has been demonstrated in
simulations before6, below we demonstrate the utility of within-
family designs for protecting MR estimates from bias due to
familial effects, and then illustrate their importance using
empirical examples. We report the analytic bias terms for the
dynastic effects and assortative mating in Supplementary Notes 2
and 3.

Simulations demonstrates robustness of the within-family
design. We conducted forward-in-time simulations to investi-
gate bias and power related to estimating the causal effect of an

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17117-4

2 NATURE COMMUNICATIONS |         (2020) 11:3519 | https://doi.org/10.1038/s41467-020-17117-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


exposure on an outcome. In the simulations each parent trans-
mits genotypes to their offspring, and the parents’ exposure had a
direct causal effect on the offspring’s outcome (Fig. 1b). In null
simulations where the exposure effect on the outcome was zero,
the Mendelian randomization estimates using unrelated indivi-
duals were biased and had high false discovery rates in the pre-
sence of dynastic effects (false discovery rate > 0.75 when the
confounders were Cx and Cy= 0.1, bux ¼ 0:1, n > 10,000). The
pattern of bias in the sibling and trio methods was substantially
improved, with a small amount of weak instrument bias observed,
which attenuated as sample sizes improved (Fig. 2).

Where we simulated the exposure to have a causal effect on
the outcome Mendelian randomization using unrelated
individuals had the highest power (Fig. 2). However, the sibling

and trio design also performed well with larger sample and
effect size (power > 0.9 when sample sizes ≥ 10,000, dynastic
effect ≤ 0.2, effect size= 0.05). The within-family models were
substantially less powerful than Mendelian randomization
using unrelated individuals; as usual, controlling bias comes at
a cost.

Empirical study using HUNT, UK Biobank and 23andMe. We
begin our empirical study by using two positive control MR
analyses to estimate the causal effects of two well established
causal effects: BMI on diabetes and BMI on high blood pressure.
We ran these analyses with and without allowing for a within
family effect.
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Fig. 1 Directed acyclic graphs illustrating how population structure and familial effects can cause confound MR studies. Black arrows indicate causal
paths in the index individual, red arrows indicate causal paths in the parents, and dashed red arrows indicate confounding paths. The MR estimate of the
causal effect of the exposure on the outcome is biased because of potentially unobserved confounders between the SNPs and the exposure and the
outcome. a Illustrates how population demography and structure can confound the SNP-outcome association. b Illustrates how dynastic effects can induce
the same statistical confounding structure of the SNP-outcome association through an entirely different mechanism. The solid red vertical arrow indicates
the genetic inheritance of germline DNA. The dotted line indicates the direct (dynastic) effect of the parents on the offspring’s outcomes. These can either
be mediated via the exposure, the outcome or some other mechanism indicated by the direct arrow from SNP to offspring outcome. MR estimates of the
effect of the exposure on the outcome in samples of unrelated individuals will be biased because there is a path between offspring SNP and the outcome via
the effect of the parents’ phenotypes on their offspring’s outcomes (dynastic effects). The presence of dynastic effects would violate one of three key MR
(instrumental variable) assumptions—the independence assumption. Estimates that control for mother or father genotype, or sibling genotype will close
this path and be unbiased. c Illustrates how assortative mating is a third mechanism that can confound the SNP-outcome association. In this example we
present cross-trait assortative mating where there is a pathway between the mother’s genotype and offspring’s outcome via the father’s genotype for the
outcome. All these forms of SNP-trait confounding can be accounted for by using methods based on within-family contrasts.
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Participants with higher BMI were more likely to have diabetes:
each 1 kg/m2 higher BMI was associated with a 0.60 (95%CI:
0.55–0.65, p-value <1.2 × 10−136) percentage point increase in the
diabetes risk. These differences were modestly attenuated after
including a family fixed effect (0.46, 95%CI: 0.40–0.52, p-value=
8.5 × 10−52). The Mendelian randomization estimate using
unrelated individuals suggested that each unit increase in BMI
increased the risk of having diabetes by 0.82 (95%CI: 0.71–0.93,
p-value= 3.3 × 10−50) percentage points. This estimate remained
after allowing for the fixed effects of family (1.01 percentage point
increase per 1 kg/m2 increase in BMI, 95%CI: 0.58–1.44, p-value
= 3.3 × 10−06). The summary data Mendelian randomization
analysis allowing for family effects estimates were similar (0.75
percentage point increase per 1 kg/m2 increase in BMI, 95%CI:
0.38–1.13, p-value= 7.6 × 10−05, pdiff unrelated= 0.74). On average
the associations of the SNPs with BMI and diabetes were similar
before and after allowing for a family fixed effect, falling 7% (95%
CI: −5% to 20%, p-value= 0.26) and increasing 11% (95%CI:
−17% to 40%, p-value = 0.42) respectively.

Participants with higher BMI were more likely to have high
blood pressure; each 1 kg/m2 higher BMI was associated with a
2.63 (95%CI: 2.54–2.72, p-value < 1 × 10−300) percentage point

increase in high blood pressure risk. This association did not
attenuate after including a family fixed effect (2.42, 95%CI:
2.30–2.54, p-value < 1 × 10−300). The Mendelian randomization
estimate using the sample of unrelated individuals suggested that
each unit increase in BMI increased the risk of having high blood
pressure by 1.59 (95%CI: 1.34–1.83, p-value= 1.3 × 10−36)
percentage points. The Mendelian randomization estimate was
similar after allowing for a family fixed effect (1.13 percentage
point increase per 1 kg/m2 increase in BMI, 95%CI: 0.04–2.21, p-
value= 0.04). The summary data Mendelian randomization
estimates were similar (0.76 percentage point increase per 1 kg/
m2 increase in BMI, 95%CI: −0.19 to 1.70, p-value= 0.12, pdiff
unrelated = 0.10). On average the associations of the SNPs and
high blood pressure fell by 51% (95%CI: 23–80%, p-value=
0.0006) after allowing for family fixed effects. Overall, the
associations found from the within-family studies for these
positive controls establish the utility of the study design with the
current scale of data.

Next, in order to examine the contrast between MR methods
using unrelated individuals and family-based designs, we
investigate two associations that are more liable to bias due to
population structure and familial effects: height on years of
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Fig. 2 Results of simulations comparing different Mendelian randomization study designs for power and bias. a SNP-exposure r2= 0.05; sample size=
10000 singletons, sibs, or trios; simulation involves an influence of parental exposure influencing child’s confounder, which explains 10% of variance in
child exposures and outcomes. For a simulated causal effect= 0, we expect the false discovery rate to be 0.05. b Estimated bias by sample size using
different Mendelian randomization designs. The simulations are similar to a but allow sample size to vary and fixing the causal effect of an exposure x on an
outcome y to 1% of variance explained. The bias in within-family Mendelian randomization estimates is slightly elevated when sample sizes are small due
to weak instrument bias, but are otherwise are protected from the large bias seen when using unrelated samples.
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education, and BMI on years of education. Taller participants
were more educated; each 10 cm increase in height was associated
with an additional 0.45 (95%CI: 0.43–0.48, p-value= 9.0 × 10
−307) years of education (Fig. 3). This association was attenuated
after including a family fixed effect (0.22, 95%CI: 0.18–0.26, p-
value= 4.6 × 10−25). The Mendelian randomization estimate
using the sample of unrelated individuals implied that each 10
cm increase in height caused an increase of 0.17 (95%CI:
0.14–0.20, p-value= 8.5 × 10−26) years of education. After
allowing for a family fixed effect, the Mendelian randomization
estimate was greatly attenuated suggesting little evidence of a
causal effect of height on education (mean difference per 10 cm
increase in height: 0.002, 95%CI: −0.13 to 0.13, p-value= 0.98).
When we used two sample Mendelian randomization by
estimating the SNP-exposure and SNP-outcome associations in
different samples (split sample)36,37 and then meta-analysing,
there was little evidence of a causal effect of height on education
(mean difference per 10 cm increase in height= 0.009, 95%CI:
−0.11 to 0.13, p-value= 0.87, pdiff unrelated= 0.008). On average,
the associations of these SNPs with height and education fell by
18% (95%CI: 14–22%, p-value= 8.5 × 10−24) and 61% (95%CI:
49–73%, p-value= 1.5 × 10−21) after allowing for family fixed
effects, respectively.

On average, participants with higher BMI were less educated:
each 1 kg/m2 higher BMI was associated with 0.07 fewer years
of education (95%CI: 0.06 to 0.07, p-value = 8.4 × 10−222, see
Fig. 3). This association was attenuated after including a family
fixed effect (0.02, 95%CI: 0.01 to 0.02, p-value = 5.1 × 10−13).
The Mendelian randomization estimate without allowing for

familial effects implied that each additional unit of BMI
decreased years of schooling by 0.03 (95%CI: 0.02–0.04, p-
value= 2.6 × 10−06). This effect was eliminated after allowing
for a family fixed effect, providing little evidence for a causal
effect of BMI on educational attainment (mean difference per 1
kg/m2 higher BMI= 0.00, 95%CI: −0.04 to 0.05, p-value=
0.89). Again, the effect was also largely attenuated when we
used two sample summary data approaches. Using separate
samples to estimate the SNP-exposure and the SNP-outcome
associations allowing for family fixed effects, there was little
evidence of an effect of BMI on educational attainment (mean
difference per 1 kg/m2 higher BMI=−0.01, 95%CI: −0.05 to
0.03, p-value= 0.59, pdiff unrelated= 0.002). On average, the
association of the 69 BMI SNPs and education fell by 65% (95%
CI: 34–76%, p-value= 1.8 × 10−06) after allowing for family
fixed effects. These results suggest that the methods that do not
account for familial effects may be biased estimators of the
individual level causal effect. We found little evidence of
heterogeneity between the two sample Mendelian randomiza-
tion estimates from UK biobank and HUNT, except for the
effect of BMI on diabetes (p-value= 0.027).

We investigated whether our results could be explained by
pleiotropy using the weighted median, weighted modal and MR-
Egger estimators. These summary data Mendelian randomization
estimators use estimates of the SNP-exposure and SNP-outcome
associations to estimate the effect of the exposure on the outcome.
These estimators are robust to a number of forms of pleiotropy.
There was little evidence of differences between the inverse
variance weighted (IVW) and pleiotropy robust methods,

Risk difference ×100 (95% Cl)

Risk difference ×100 (95% Cl)

Fig. 3 Estimates of the effect of BMI on self-reported diabetes and high blood pressure and height and BMI on educational attainment using ordinary
least squares, Mendelian randomization in unrelated individuals and samples of siblings, point estimates and 95% confidence intervals reported. All
methods were consistent with higher BMI increasing diabetes and high blood pressure risk. Being taller and having lower BMI were observationally
associated with higher educational attainment. The effects of height and BMI on educational attainment were attenuated but still apparent when using
Mendelian randomization estimates based on unrelated individuals from HUNT and UK Biobank. The effects were eliminated after allowing for a family
effect using individual-level or summary data Mendelian randomization.
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pleiotropy from the MR-Egger intercept, or heterogeneity across
the studies (Supplementary Fig. 1).

We investigated the difference (shrinkage) of the total to within
family SNP-phenotype associations in HUNT and UK Biobank
using seemingly unrelated regression (SUR). The estimated
shrinkage is given in Supplementary Table 1. The shrinkage of
the estimates suggests that accounting for familial effects affects
the estimated SNP-phenotype associations for all phenotypes
analysed. Educational attainment was the most strongly affected,
falling by 56.8% (95%CI: 49.2–64.4%). Diabetes was the least
affected falling by 11.2% (95%CI: 1.3–21.1%).

We replicated our findings using data from 223,368 individuals
(111,684 families) sampled by 23andMe (Supplementary Fig. 2).
There was evidence that a 1-kg m−2 higher BMI increased the
absolute individual level liability to diabetes and high blood
pressure by 0.69 (95%CI: 0.37–1.00) and 1.26 (95%CI: 0.90–1.63)
per 100 people, respectively. There was little evidence of
heterogeneity across the weighted median, modal or MR-Egger
estimators. This suggests that under a range of assumptions about
pleiotropy and controlling for familial effects, BMI is likely to
increase risk of diabetes and high blood pressure. In contrast,
there was little evidence that height or BMI had a substantial
effect on educational attainment. The results are precise and
suggest that each 10 cm taller height is unlikely to increase years
of education by more than 0.02 years (mean difference= 0.00,
95%CI: −0.01 to 0.02), and a 1 kg/m2 unit higher BMI is unlikely
to decrease years of education by more than 0.02 years (mean
difference= 0.00, 95%CI: −0.02 to 0.02). The weighted median,
modal and MR-Egger estimators were consistent with the IVW
estimates.

Discussion
We have presented within-family methods for Mendelian
randomization and demonstrated how confounding due to
population structure and familial effects can bias Mendelian
randomization studies using unrelated individuals. As with
most instrumental variable estimators, ceteris paribus the size
of the bias induced by familial effects will be larger the smaller
the individual level causal effect of the genetic variant on the
exposure. The simulations illustrated how bias occurs even if
the phenotype of interest has no direct causal effect on the
outcome, and that these effects can theoretically induce false
positive findings. The simulations further demonstrated how
samples of related individuals can be used to control for these
effects either using siblings or parent-offspring trios. These
designs can be used in conjunction with existing approaches
for accounting for horizontal pleiotropy, another potential
source of bias to arise in Mendelian randomization studies.
However, estimates from within-family Mendelian randomi-
zation are less precise than estimates using unrelated indivi-
duals, which is consistent with those seen for allelic
association38–40. Compounding the issue of statistical power,
there are fewer relatives than unrelated individuals in most
studies. In samples from HUNT, UK Biobank and 23andMe,
we investigated the impact of population structure and familial
effects on four empirical examples; the effects of BMI on the
risk of diabetes and high blood pressure and the effects of
height and BMI on educational attainment. We found that the
effects of BMI on the risk of diabetes and high blood pressure
were less precise, but consistent when allowing for family
effects. Conversely, the effects of height and BMI on educa-
tional attainment were almost entirely attenuated after allow-
ing for family fixed effects, suggesting that results from
previous Mendelian randomization studies using unrelated
individuals may have been biased.

A substantial literature has used Mendelian randomization and
samples of unrelated individuals to establish that BMI increases
the risk of diabetes and high blood pressure later in life41. Our
results suggest that confounding due to familial effects is unlikely
to explain these results, and that they are more likely due to an
individual level causal effect of BMI on an individual’s risk.
Behavioural geneticists have used longitudinal data from samples
of twins to understand how different family members affect each
other over time42,43. Other studies have used animal models to
investigate how social genetic effects (i.e. indirect or dynastic
effects) can affect health outcomes44. A rich literature has
established that height and BMI are respectively positively and
negatively associated with educational attainment and socio-
economic position45–47. Consistent with our results, previous
studies using twin data have indicated that the relationship
between height and educational attainment is likely to be due to
familial effects48,49. These findings raise questions about whether
height and BMI have individual level causal effects on socio-
economic outcomes later in life50–52. Our results indicate that
familial effects can have important phenotypic consequences on
widely studied relationships such as between height and BMI and
education.

In general, within-family Mendelian randomization estimates
are less precise than estimates from samples of unrelated indivi-
duals. Thus, within-family estimates of a specific association can
be considered more robust, but less efficient estimates. Therefore,
if there is evidence of differences between the estimates, then
generally the more imprecise but less biased within-family esti-
mates should be preferred. Our estimates of the effect of height
and BMI on educational attainment are an example of this
situation. If there is little evidence of differences between esti-
mates using unrelated individuals and those allowing for family
effects, then the former estimates should be preferred. Our esti-
mates of the effect of BMI on risk of diabetes and high blood
pressure are an example of this situation. This is analogous to
comparing instrumental variable estimates to multivariable
adjusted estimates3. While allowing for family fixed effects or
using difference estimators will account for dynastic effects or
assortative mating, these methods will not address bias due to
violations of the third Mendelian randomization assumption
(exclusion restriction). This assumption is that the SNPs have no
direct effect of the SNPs on the outcome (i.e. no pleiotropy). MR-
Egger, weighted median and mode, or Lasso estimators are robust
to various forms of violations of this assumption7–9,34. It is trivial
to use these estimators with the summary data methods we
describe above and illustrate in Supplementary Figure 1. How-
ever, typically these estimators have lower power than the IVW
estimator. The within-family summary data SNP-exposure and
SNP-outcome associations, which allow for a family fixed effect,
can be used with existing summary data estimators. Other pro-
posed approaches allow for sophisticated control and estimation
of pleiotropy and can trivially include family fixed effects53, but
again generally have lower power and require more data than
Mendelian randomization approaches using allele scores or IVW.
Supplementary Table 2 contains the ratio of standard errors for
the MR analyses using unrelated individuals and allowing for a
familial effect for the empirical results for the MR using indivi-
dual participant data (IPD) and polygenic scores (MR-PRS) and
two sample Mendelian randomization (2SMR) using an IVW.
These estimates use identical samples, but the within family
estimates had standard errors that were between 23% and 71%
larger. This implies that the within family analyses would require
total samples sizes between 150% and 294% larger in order to
match the power of current sample sizes of unrelated individuals.
A further issue concerns residual population stratification in
ancestrally heterogenous GWAS such as GIANT, which may bias
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SNP-phenotype associations for height, and affect analyses in
other samples using SNPs identified in those GWAS22. Within-
family Mendelian randomization can control for residual popu-
lation stratification.

Within-family estimates from samples of siblings that allow for
a family fixed effect are robust to biases due to dynastic effects,
assortative mating and fine population structure1,54,55. Unlike
analyses using summary data from unrelated individuals, two
sample within family designs do not require the familial effects to
be the same in the two samples. This is because the (different)
familial effects in each sample are controlled for and the MR
estimates use the individual level causal effect. Of family-based
approaches, the sibling design is potentially most useful because
large amounts of such data are available through biobanks and
family-based studies. A limitation of current sibling designs is
that they assume no sibling-sibling interaction effects. Phenotypic
similarity of siblings may reflect ‘passive’ sharing of environments
or genes, or ‘active’ imitation or contrast effects arising from
interaction between siblings56. Contrast effects, which may inflate
the estimated contribution of the nonshared environment in twin
studies57, can be mimicked by parental rating bias58,59. However,
for biological phenotypes where rating bias is not a concern,
Mendelian randomization could be used to study the influence
via imitation or contrast of one sibling’s genotype on the other’s
phenotype, sometimes called ‘social genetic effects’44, thereby
adding to work on dynamic interplay between siblings42,43.

Population structure, dynastic effects and assortative mating
may cause bias in GWAS14. If a GWAS is aiming to estimate the
causal effect of variants on a given phenotype, then samples of
unrelated individuals may produce biased estimates and poten-
tially spurious findings. Population structure and dynastic effects
can cause bias under the null hypothesis of no effect i.e. induce
spurious false positive signals. Single trait assortative mating will,
however, be an unbiased test of the null hypothesis that the SNP
does not affect the phenotype but will inflate SNP-phenotype
associations. However, cross trait assortative mating can cause
bias under the null hypothesis. Future studies could re-run
GWAS on a full range of traits on samples of siblings allowing for
family fixed effects. This approach would also address concerns
about residual population stratification in GWAS, which may bias
SNP-phenotype associations in GWAS including populations
with heterogeneous ancestry22. However, to detect genetic var-
iants that explain 0.1% of the variance of either the offspring or
maternal effects (i.e. a 2 df test) will require sample sizes of 50,000
mother-offspring pairs to detect GWAS (α= 5 × 10−08). Sample
sizes of around 10,000 will be required to partition known loci of
similar size to the above into maternal and/or offspring genetic
effects (α= 0.05)60. This sample size would provide valuable
information about which phenotypes are likely to be most
strongly affected by dynastic effects and assortative mating. It is
likely that many, particularly biological, traits are relatively
unaffected by these effects and thus GWAS results for these traits
are unlikely to be biased due to these factors, how this requires
investigation. Recent GWAS of social traits such as education
reported the attenuation after allowing for family effects in their
estimates in small samples30. Further work in this area should
include estimating the consequences of familial effects for GWAS
and Mendelian randomization estimates.

Population structure and familial effects can cause bias in
Mendelian randomization studies. We found differences between
estimates from unrelated individuals and within-family estimates
in simulations and empirical analysis. The causal estimates of the
effect of height and BMI on educational attainment were almost
entirely attenuated after allowing for family fixed effects. Within-
family methods, either using individual-level, or summary data
Mendelian randomization approaches can be used to obtain

unbiased estimates of the causal effects of phenotypes in the
presence of dynastic effects, assortative mating and population
stratification.

Methods
Statistical models. We describe four methods of using family data for Mendelian
randomization below. If there are only two siblings, the difference and family fixed
effects methods are equivalent, see appendix for proof.

The model to be estimated can be described as:

xk;i ¼ γ0 þ γ1gk;i þ γ2Ck;i þ f k þ vk;i ð1Þ

yk;i ¼ β0 þ β1xk;i þ β2Ck;i þ f k þ uk;i ð2Þ
where yk,i and xk,i are the outcome and exposure for individual i from family k. gk,i
is a set of genetic variants that are associated with the exposure. fk is a family-level
confounder, modelled in the empirical analysis via a family fixed effect (i.e. an
indicator variable for each family). This accounts for all time invariant family-level
confounders of the genetic variant-outcome association. Both gk,i and fk are
functions of a family-level genetic component. uk,i and vk,i are random error terms.
Ck,i is a confounder of the association of the exposure and the outcome, γ2 and β2
indicate the effect of the confounder on the exposure and the outcome. β1 is the
true causal effect of the exposure on the outcome which we wish to estimate. This
model implies that Mendelian randomization using data from unrelated
individuals would produce biased estimates of β1 due to the correlation between gk,
i,j and fk. The effect of the exposure on the outcome can be estimated using
individual level data allowing for a family fixed effect, or summary level data using
difference methods within families, or by allowing for a family fixed effect. We
describe these approaches below.

Siblings difference method. To apply Mendelian randomization to samples of
siblings, effect estimates for the SNP-exposure association and SNP-outcome
association are based on correlating the phenotypic divergence with the genotypic
divergence within sibling pairs. Taking the difference between siblings removes the
effect of the family-level confounder. For any pair of siblings within family k,
indicated k,1 and k,2, the genotypic difference at genetic variant j is:

δk;j ¼ gk;1;j � gk;2;j ð3Þ
The association between the genotypic differences and phenotypic differences in

the exposure, x, and outcome y, for SNP j can be estimated via:

xk;1 � xk;2 ¼ γjδk;j þ _vk;j ð4Þ

yk;1 � yk;2 ¼ Γjδk;j þ _uk;j ð5Þ
The estimated associations, yj and Γj, can be used with any summary level

Mendelian randomization estimator. Here we apply the inverse variance weighted
(IVW) approach. Each pair of siblings can be included as a separate pseudo-
independent pair.

Family fixed effect with sibling data. Alternatively, we can estimate the asso-
ciations using family fixed effects indicated by fk for each family, which is
equivalent to centring the data by subtracting the family mean.

xk;i ¼ γ0 þ γ1;jgk;i;j þ fk þ €vk;i;j ð6Þ
and

yk;i ¼ β0 þ Γ1gk;i;j þ fk þ €uk;i;j: ð7Þ
This estimator accounts for any differences between families, which includes

any effect of assortative mating or dynastic effects common to all siblings by
including a dummy variable for each family. This provides unbiased estimates of
the SNP-exposure and SNP-outcome associations. These estimates can be used
with standard summary data Mendelian randomization methods. The difference
and family fixed effects methods are identical if there are only two siblings in each
family. This fact follows from substituting equations iv and v into equations ii and
iii and simplifying (see “Appendix” for proof). If there are more siblings, then the
estimators are non-identical, but likely to be similar, see the appendix for further
details. An analytically convenient method to use for this estimator is the within
transformation. The within transformation either de-means the variables for or
additionally adjusts for the family level means. Demeaned using the within
transformation is computationally efficient, particularly for large sample sizes—and
is the analytic method used by many statistical packages for fixed effects estimators.
An advantage of further adjusting for the within family mean is that it provides an
estimate of the between family effect. Cluster robust standard errors can be used to
allow for clustering and relatedness within families.

Adjusting for parental genotype with mother-father-offspring trio data.
Finally, if data on mother-father-offspring trios are available, the estimates of the
SNP-exposure and SNP-outcome associations for each child can be adjusted for
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their mother’s and father’s genotypes, indicated by gim,j and gif,j respectively61:

xi ¼ γ0 þ γ1;jgi;j þ γ2;jgim;j þ γ3;jgif ;j þ ui;j ð8Þ

and

yi ¼ β0 þ Γ1gi;j þ Γ2gim;j þ Γ3gif ;j þ vi;j ð9Þ
Again, these associations can be used to estimate the effect of the exposure on

the outcome using summary data Mendelian randomization methods. It is possible
to estimate the effect of offspring genotype on the exposure and outcome
conditional on the mother and father genotype using summary data25,61. The
estimated causal effect can be biased if both the SNP-exposure and SNP-outcome
associations are estimated in the same sample62. This bias can be eliminated by
splitting the sample and estimating the associations in separate samples.

Two-stage least squares with sibling data. Many summary data methods
assume no measurement error on the SNP-exposure association (NOME)63. This
assumption may lead to underestimation of the standard error of the effect of the
exposure on the outcome. Two-stage least squares can estimate the effect of the
exposure on the outcome using the individual-level data from siblings. Estimators
that use individual-level data can integrate the estimation error from the SNP-
exposure association. We used cluster robust standard errors that allow for clus-
tering and relatedness within family. We used the commands xtivreg and plm64.

Simulation of dynastic effects. We simulated a cohort consisting of pairs of
unrelated mothers and fathers who had two offspring. All individuals had a gen-
ome of 90 SNPs. We set the distribution of identity by descent (IBD) across the 90
SNPs as N (0.5,0.037) for each sibling pair, as per theory, because there are on
average 90 recombination events separating human siblings. Hence, we assume that
each SNP has an independent effect on the exposure.

We defined parents’ exposure and outcome by defining confounders u,
exposure x and outcome y. A directed acyclic graph illustrating these relationships
is shown in Fig. 1b. The confounder influences the parents’ exposure and outcome.
The offspring have the same confounding structure, except the parent’s exposure
affects their offspring’s outcomes via a dynastic or ancestry effect. The genetic
influence of each of the 90 SNPs on the exposure amounts to explaining Vgx of the
variance in the exposure. We assumed no horizontal pleiotropy. All estimates
assume Vgx= 0.1 and 90 independent causal variants (i.e. somewhat similar to
GIANT results for BMI)65.

To generate the phenotypes under a model of dynastic effects, the offspring
outcome was influenced by both the offspring exposure and the parents’ exposures.
In these simulations all phenotypes had mean of 0 and variance of 1. Differing
strengths of dynastic effects by which the parental exposure influenced the
offspring outcome were generated (bux= 0,0.01,0.02) under a set of models with a
range of causal effects of the exposure on the outcome (bxy= 0,0.001,0.002,
0.005,0.01,0.05). We calculated the false discovery rate (proportion of test with p-
value < 0.05) for 100 iterations of each simulation using each of three methods:
standard IVW as applied to one of each individual in a set of siblings (i.e. a sample
of unrelated individuals), the within-family sibling design, and the within-family
trio design. Finally, we calculated bias (estimated effect— simulated effect) for all
three study approaches by simulated confounding (Cx and Cy= 0,0.1,0.2), dynastic
bias (bUx= 0,0.1,0.2) and simulated causal effects (bxy=
0,0.001,0.002,0.005,0.01,0.05). The sample sizes were 10,000, 20,000, 40,000, 60,000
and 100,000 sibling pairs for all simulations.

If the familial effect influences the exposure, but does not affect the outcome,
then we would not expect bias in the Mendelian randomization analysis. This is
because there would be no open path between the SNP and the outcome. This is
illustrated in the directed acyclic graph illustrated in Supplementary Fig. 3.

Empirical analysis. To demonstrate the approach and assess potential bias from
population structure and familial effects, we conducted within-family Mendelian
randomization using two illustrative examples in the HUNT and the UK Bio-
bank66–68. We estimated the effects of BMI on high blood pressure and diabetes
and the effects of height and BMI on educational attainment. The effects of BMI on
diabetes and high blood pressure have been well studied and provide a positive
control41. These effects on clinical outcomes experienced later in life are unlikely to
be due to assortative mating or dynastic effects, because parents are less likely to
assort on genetic liability for diabetes or high blood pressure. The genetic liability
for these conditions was probably unknown when the couples were formed. Pre-
vious longitudinal and Mendelian randomization studies using unrelated indivi-
duals have suggested that height and BMI may affect educational attainment45,50.
Such an association, if causal, might be counteracted by changing educational
policy. However, the association may be due to parents’ education, via dynastic
effects or assortative mating, where more educated people select taller and slimmer
partners. Assortative mating and dynastic effects can confound the association
between genetic variants when data from the offspring generation are used.
Therefore, the ratio of individual-level causal effects to family-level effects is likely
to be higher for the effects of BMI on clinical end points than for the effects of
height and BMI on education.

The Nord-Trøndelag Health Study. The Nord-Trøndelag Health Study (HUNT)
is a population-based cohort study. The study was carried out at four time points
over approximately 40 years (HUNT1 [1984-1986], HUNT2 [1995-1997] and
HUNT3 [2006-2008] and HUNT4 [2017-2019]). A detailed description of HUNT
is available66. We include 71,860 participants from HUNT2 and HUNT3 as they
have been recently genotyped using one of three different Illumina HumanCor-
eExome arrays (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM
HUNT Biobank v1.0). For a flow chart of participants inclusion and exclusion from
the study see Supplementary Figure 4. Imputation was performed on samples of
recent European ancestry using Minimac3 (v2.0.1, http://genome.sph.umich.edu/
wiki/Minimac3) from a merged reference panel constructed from the Haplotype
Reference Consortium (HRC) panel (release version 1.1) and a local reference
panel based on 2202 whole-genome sequenced HUNT participants12–14. Ancestry
of all samples was inferred by projecting all genotyped samples into the space of the
principal components of the Human Genome Diversity Project (HGDP) reference
panel (938 unrelated individuals; downloaded from http://csg.sph.umich.edu/
chaolong/LASER/)15,16, using PLINK. We defined recent European ancestry as
samples that fell into an ellipsoid spanning exclusively the European population
within the HGDP panel. We restricted the analysis to individuals of recent Eur-
opean ancestry who passed quality control. Among these, 17,329 pairs of siblings
comprising of 28,777 siblings, were inferred using KING17, where an estimated
kinship coefficient between 0.177 and 0.355, the proportion of the genomes that
share two alleles IBD > 0.08, and the proportion of the genome that share zero
alleles IBD > 0.04 corresponded to a full sibling pair.

HUNT descriptive data. There were 56,374 genotyped individuals in HUNT,
including 11,448 families with at least two siblings comprising of 28,777 siblings
(14,718 women) with complete data on genotype, height and education, diabetes
and blood pressure (see supplementary figure 5 for a flow chart of participant
inclusion and exclusion). On average the participants in the full unrelated sample
were 48.7 (SD= 15.1) years old, had a BMI of 26.3 kg/m2 (SD= 3.9), were 177.5
cm tall (SD= 6.6) and 164.3 cm tall (SD= 6.1) for men and women respectively,
2.5% of them had diabetes, and 42.5% had high blood pressure and had 12.3 years
(SD= 2.3) of education. High blood pressure was defined as either currently taking
anti-hypertensive medication or having systolic or diastolic blood pressure above
140 mmHg or 90 mmHg on average across up to three measurements in HUNT2.

Questionnaires, clinical measurements and hospitalizations. Participants
attended a health survey which included comprehensive questionnaires, an inter-
view and clinical examination. The participants’ height and weight were measured
with the participant wearing light clothes without shoes to the nearest centimetre
and half kilogram, respectively. Education was defined using the question ‘What is
your highest level of education’. Participants answered one of five categories (1)
primary school, (2) high school for 1 or 2 years, (3) complete high school, (4)
college or university less than 4 years, and (5) college or university 4 years or more.
Participants with university degrees were assigned to 16 years of education, those
who completed high school were assigned 13 years, those who attended high school
for 1 or 2 years were assigned to 12 years, and those who only attended primary
school were assigned to 10 years. Diabetes was defined using responses to the
question ‘Have you had or do you have diabetes?’, which has high validity69. High
blood pressure was defined as those with systolic or diastolic blood pressure equal
to or more than 140 or 90 mmHg, respectively, or reported use of antihypertensive
medication.

Ethics. This study was approved by the Regional Committee for Medical and
Health Research Ethics, Central Norway and all participants gave informed written
consent (application numbers 2015/1209, 2015/2292 and 2017/2479).

The UK Biobank. The UK Biobank invited over 9 million people and sampled
503,317 participants from March 2006 to October 2010. The study sampled
individuals from 21 study centres across Great Britain. A detailed description of the
study can be read elsewhere67,68,70. The participants gave blood samples, from
which DNA was extracted. Full details of the quality control process are available
elsewhere71. Briefly, we excluded participants who had mismatched genetic and
reported sex, or those with non-XX or XY chromosomes, extreme heterozygosity
or missingness. We used variants in the Haplotype Reference Consortium (HRC)
panel.

The UK Biobank descriptive data. There were up to 370,180 genotyped indivi-
duals in the UK Biobank, among whom were 16,847 families with at least two
siblings, with 33,642 siblings (19,445 women) with complete data on genotype,
height and education, diabetes and blood pressure. We restricted the analysis to
siblings born in England to ensure that they experienced a similar school system.
For a flow chart of participants inclusion and exclusion from the study see Sup-
plementary Fig. 5. On average, the participants without siblings were 57.5 (SD=
7.4) years old, had a BMI of 27.4 kg m−2 (SD= 4.8), were 175.0 cm tall (SD= 6.8)
and 162.8 cm tall (SD= 6.2) for men and women respectively, had 14.1 (SD= 2.3)
years of education. 4.5% of them had diabetes and 54.0% had high blood pressure.
High blood pressure was defined as either having a diagnosis of high blood
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pressure or having systolic or diastolic blood pressure above 140 mmHg or 90
mmHg respectively on average across up to two clinic measurements.

Questionnaires, clinical measurements and hospitalizations. Weight
(ID:21002) and standing height (ID:50) were measured using standardised
instruments the baseline assessment centre visits. We defined education using the
participants’ response to the touch screen questionnaires about their educational
qualifications (ID= 6138). We defined educational attainment using the partici-
pants’ highest reported educational qualification at either measurement occasion.
We assigned participants with university degrees to 17 years of education, those
with professional qualifications such as teaching or nursing to 15 years, those with
A-levels to 14 years, those with National Vocational Qualifications (NVQs), Higher
National Diplomas (HNDs) to 13 years, General Certificate of Secondary Educa-
tion (GCSEs), Certificate of Secondary Education (CSEs) or O-levels to 12 years,
and those who reported no qualifications to 11 years, which was the legal minimum
length of education for this cohort. Diabetes and high blood pressure were defined
using responses to the self-reported touch screen questionnaire (ID= 6150 and ID
= 2443). We used self-reported measures because measured blood pressure is
affected by medication use. Missing values at the baseline visit were replaced by
measures from subsequent visits if available.

Ethics. UK Biobank received ethical approval from the Research Ethics Committee
(REC reference for UK Biobank is 11/NW/0382). This research was approved as
part of application 8786.

23andMe replication. Individuals in the 23andMe replication dataset were cus-
tomers of 23andMe, Inc., a personal genomics company. The 23andMe study
protocols were approved by an external AAHRPP-accredited institutional review
board and conducted in accordance with the Declaration of Helsinki principles.

There were 111,684 sibling pairs in the 23andMe dataset for a total of 223,368
genotyped individuals with complete data on genotype, height, BMI, education,
diabetes, and blood pressure. For a flow chart of participants inclusion and
exclusion from the study see Supplementary Fig. 6. Participants self-reported their
mass (in kilograms) and height (in metres), from which BMI was calculated. To
determine years of education, participants were asked ‘What is the highest degree
or level of school you have completed? If currently enrolled, please select the
previous grade or highest degree received’. The following response options were
then mapped onto the corresponding years of education: less than high school= 10
years, high school diploma or equivalency (GED)= 12 years, Associate’s degree
(for example, AA, AS)= 14 years, Vocational degree= 14 years, some college but
no degree= 14 years, Bachelor’s degree (for example, BA, BS)= 16 years, Master’s
degree (for example, MA, MS, MEng, MEd, MSW, MBA)= 19 years, Professional
degree beyond a Bachelor’s degree (for example, MD, DDS, DVM, LLB, JD)= 19
years, doctoral degree (for example, PhD, EdD) = 22 years. Research participants
self-reported having ever been diagnosed or treated for both Type II diabetes or
high blood pressure.

As previously described73, DNA extraction and genotyping were performed on
saliva samples by National Genetics Institute. Samples were genotyped on one of
five Illumina-based genotyping platforms. Samples had minimum call rates of
98.5%. We phased participant data using either an internally developed tool, Finch
(V1-V4 genotyping arrays) or Eagle2 (V5 genotyping array)74. We imputed phased
research participant data using Minimac3 and a reference panel that combined
both the May 2015 release of the 1000 Genomes Phase 3 haplotypes with the
UK10K imputation reference panel (n= 6285). Throughout, we treated structural
variants and small indels the same as SNPs. We used the same list of SNPs as for
HUNT and UK Biobank, restricted to those that passed the 23andMe genotypic
data QC.

We computed association test results using the sibling difference method
assuming additive allelic effects logistic regression for case-control exposures, linear
regression for quantitative exposures.

Genotype arrays. As previously described73, samples were genotyped on one of
five genotyping platforms. The v1 and v2 platforms were variants of the Illumina
HumanHap550+ BeadChip, including about 25,000 custom SNPs selected by
23andMe, with a total of about 560,000 SNPs. The v3 platform was based on the
Illumina OmniExpress+ BeadChip, with custom content to improve the overlap
with our v2 array, with a total of about 950,000 SNPs. The v4 platform was a fully
customized array, including a lower redundancy subset of v2 and v3 SNPs with
additional coverage of lower-frequency coding variation, and about 570,000 SNPs.
The v5 platform is an Illumina Infinium Global Screening Array (~640,000 SNPs)
supplemented with ~50,000 SNPs of custom content.

The Finch phasing algorithm. As previously described73, Finch implements the
Beagle haplotype graph-based phasing algorithm, modified to separate the
haplotype graph construction and phasing steps75. It extends the Beagle model
to accommodate genotyping error and recombination, to handle cases
where there are no consistent paths through the haplotype graph for the
individual being phased. We constructed haplotype graphs for European and
non-European samples on each 23andMe genotyping platform from a

representative sample of genotyped individuals, and then performed out-of-
sample phasing of all genotyped individuals against the appropriate graph. For
the X chromosome, we built separate haplotype graphs for the non-pseudo
autosomal region and each pseudo autosomal region, and these regions were
phased separately.

Imputation panel generation. As previously described73, imputation panels cre-
ated by combining multiple smaller panels have been shown to give better
imputation performance than the individual constituent panels alone76. To that
end, we combined the May 2015 release of the 1000 Genomes Phase 3 haplotypes
with the UK10K imputation reference panel to create a single unified imputation
reference panel77,78. To do this, multiallelic sites with N alternate alleles were split
into N separate biallelic sites. We then removed any site whose minor allele
appeared in only one sample. For each chromosome, we used Minimac3 to impute
the reference panels against each other, reporting the best-guess genotype at each
site79. This gave us calls for all samples over a single unified set of variants. We then
joined these together to get, for each chromosome, a single VCF with phased calls
at every site for 6285 samples.

Imputation. In preparation for imputation we split each chromosome of the
reference panel into chunks of no more than 300,000 variants, with overlaps of
10,000 variants on each side. We used a single batch of 10,000 individuals to
estimate Minimac3 imputation model parameters for each chunk. We imputed
phased participant data against the chunked merged reference panel using Mini-
mac3, treating males as homozygous pseudo-diploids for the non-pseudo auto-
somal region.

Selection of genotypes for instruments. For the analysis of HUNT and UK
Biobank we selected 385 independent (r2 < 0.01 within 10,000 kb) SNPs associated
with height (p < 5 × 10−08) from Wood et al. and 79 associated with BMI in Locke
et al.65,72. Neither HUNT nor UK Biobank were included in these studies. We
clumped variants using the TwoSampleMR package80. We harmonized the alleles’
effect sizes across the two samples and constructed weighted polygenic scores
which were sums of the phenotype increasing alleles and weighted each variant by
its effect on the phenotype in the published GWAS. For the analysis of the
23andMe data we used the subset of 347 and 64 SNPs available in the
23andMe data.

Empirical analyses. We compared seven empirical estimates of the effect of BMI
on self-reported diabetes and high blood pressure and the effects of height and BMI
on educational attainment. We used the familial fixed effects models (2) described
above:

1. IPD ordinary least squares (OLS): The multivariable adjusted phenotypic
association using ordinary least squares. Estimated using reg/plm
commands.

2. IPD OLS family fixed effects (FE): The multivariable adjusted phenotypic
association using ordinary least squares allowing for a family fixed effect
across siblings. Estimated using xtreg/plm commands.

3. IPD MR-PRS unrelateds: A standard MR estimate of the effect of each
exposure on the outcomes using the largest available sample of unrelated
individuals. These models do not allow for any familial effects and are likely
to suffer from bias. The estimate uses a polygenic score for each exposure
and two stage least squares. Estimated separately in HUNT and UK Biobank
using the ivreg and ivreg2 packages.

4. IPD MR-PRS siblings: As with 3. above, but restricted to siblings. Estimated
using the ivreg2 package. We include this estimate to demonstrate the
impact of including a family fixed effect on the estimates when holding the
sample constant.

5. IPD MR-PRS siblings family fixed effects: An estimate using individual level
data from the full sample of siblings allowing for family fixed effects. This
allows for familial effects. Estimated separately in UK Biobank and HUNT
using the xtivreg and plm packages64. This equivalent to family fixed effects
models (vi and vii) described above and uses the same sample as 4. above.

6. 2SMR IVW siblings: An estimate using SNP summary data for Mendelian
randomization including family fixed effects. The SNP-exposure and
SNP-outcome associations were estimated on the same sample. The SNP
level estimates of the effect of the exposure on the outcome were
estimated separately in HUNT and UK Biobank and the overall
Mendelian randomization (Wald) estimates are calculated for each SNP.
For each SNP the Wald estimate is the ratio of the SNP-outcome and
SNP-exposure association. We combine the estimate using random effects
Inverse Variance Weighted (IVW) meta-analysis. This demonstrates how
within family association estimates can be used within the two-sample
MR framework.

7. 2SMR IVW siblings—split sample: As with 6. above, but the SNP-exposure
and SNP-outcome associations were estimated in separate samples (i.e. split
sample approach). The overall Wald estimates were combined via IVW
meta-analysis as above. This ensures that there is no sample overlap between
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the samples used to estimate the SNP-exposure and SNP-outcome
associations. This eliminates the risk of weak instrument/sample
overlap bias.

Covariates and standard errors. All analyses included age, sex, and the first 20
principal components of genetic variation. Cluster robust standard errors were
used to allow for heteroskedasticity and allow for clustering and relatedness across
siblings within families. Inclusion of the covariates age, sex, and principal com-
ponents did not meaningfully affect the within family estimates, as they are
independent of genotype conditional on sibling genotype. However, including these
covariates may absorb some of the variation in the outcome and increase the
precision of our estimates.

Sensitivity analyses. Finally, we tested for difference (pdiff unrelated) between the
Mendelian randomization estimates using the unrelated individuals and the
summary data within-family estimates using the split sample approach (i.e. as in
6. above)81. We investigated whether our results could be explained by pleio-
tropy using the weighted median, weighted modal and MR-Egger estimators and
the SNP-phenotype associations allowing for a family fixed effect8,10,82. We used
a split sample approach in which the SNP-exposure and SNP-outcome asso-
ciations were estimated in separate samples. We estimated the percentage change
in the SNP-phenotype coefficients with and without allowing for a family fixed
effect.

Shrinkage. We investigated shrinkage of the total to within family SNP-phenotype
associations using seemingly unrelated regression. We estimated the shrinkage for
each of the 455 SNPs included in the analysis and the five phenotypes (education,
BMI, height, diabetes and high blood pressure). We then meta-analysed estimates
for each SNP and phenotype across the two studies. Finally, independently for each
phenotype we meta-analysed across all 455 SNPs used in the analysis to give an
average shrinkage for all SNPs.

Data availability
Data from the HUNT study was accessed under ethics approvals 2015/1209 REK midt
2015/2292 REK midt, and 2017/2479 REK sør-øst, and project number 2019/2181. Data
from the UK Biobank was accessed as part of application 8786. The empirical datasets
used with the HUNT study and UK Biobank will be archived with the studies and will be
made available to individuals who obtain the necessary permissions from the studies’
data access committees. Data from 23andMe was processed by 23andMe, and the
individual level data cannot be made publicly available, however, 23andMe do provide
access to summary data via a system of managed access. If you would like to apply for
access, please see the following website for more details https://research.23andme.com/
dataset-access/.

Code availability
The code used to clean and analyse the data and the SNP level summary statistics are
available here: https://github.com/nmdavies/within_family_mr. Code for the simulations
are available here: https://github.com/mrcieu/mrtwin_power.
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