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SUMMARY

The type VI secretion system (T6SS) is crucial in inter-
bacterial competition and is a virulence determinant
ofmanyGram-negative bacteria. Several T6SS effec-
tors are covalently fused to secreted T6SS structural
components such as the VgrG spike for delivery into
target cells. In Pseudomonas aeruginosa, the
VgrG2b effector was previously proposed tomediate
bacterial internalization into eukaryotic cells. In this
work, we find that the VgrG2b C-terminal domain
(VgrG2bC-ter) elicits toxicity in the bacterial peri-
plasm, counteracted by a cognate immunity protein.
We resolve the structure of VgrG2bC-ter and confirm it
is a member of the zinc-metallopeptidase family of
enzymes. We show that this effector causes mem-
brane blebbing at midcell, which suggests a distinct
type of T6SS-mediated growth inhibition through
interference with cell division, mimicking the impact
of b-lactam antibiotics. Our study introduces a
further effector family to the T6SS arsenal and dem-
onstrates that VgrG2b can target both prokaryotic
and eukaryotic cells.

INTRODUCTION

Protein secretion systems are used by bacteria to interact with

other organisms and exploit the local environment (Filloux,
C
This is an open access article und
2011). Proteins transported by these systems shape the

behavior of polymicrobial communities and interfere with eu-

karyotic cells. The type VI secretion system (T6SS) delivers

effector proteins into both bacterial and eukaryotic targets in a

contact-dependent manner (Ho et al., 2014; Jiang et al., 2014)

and has been proposed to be involved in the acquisition of public

goods such as metal ions (Lin et al., 2017; Si et al., 2017a,

2017b). Although the T6SS can manipulate signaling pathways

and the cytoskeleton of eukaryotes (Aubert et al., 2016; Chen

et al., 2017; Hachani et al., 2016), it appears to be predominantly

involved in bacterial antagonism, in which toxin delivery into

neighboring cells elicits growth inhibition and cell death (Allsopp

et al., 2017; Hachani et al., 2014; MacIntyre et al., 2010; Russell

et al., 2014).

The T6SS is a contractile injection system anchored in the

bacterial envelope, evolutionarily related to bacteriophage tails

(Leiman et al., 2009; Pukatzki et al., 2007). A conformational

change of the T6SS baseplate platform is thought to trigger the

contraction of a cytoplasmic sheath, expelling a spear-like struc-

ture to puncture a target cell membrane (Cianfanelli et al., 2016;

Salih et al., 2018; Wang et al., 2017). The spear is composed of a

stack of Hcp rings capped with a spike complex of a trimer of

VgrG proteins and a PAAR protein tip (Mougous et al., 2006;

Renault et al., 2018; Shneider et al., 2013). The trimeric VgrG

complex shares extensive structural homologywith the bacterio-

phage gp27-gp5 tail spike, which also serves as a membrane

puncturing device (Hachani et al., 2011; Leiman et al., 2009; Pu-

katzki et al., 2007). The spear is decorated with cargo effector

proteins, often associating through non-covalent interactions

with the structural components (Cianfanelli et al., 2016; Jiang
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Figure 1. H2-T6SS-Dependent Secretion of the Evolved VgrG2b

(A) vgrG2b locus of P. aeruginosa PAO1. The vgrG2b gene is colored according to its domain architecture shown in (B). PA0261, shown in blue, is also char-

acterized in this work. Scale bar represents 5 kb.

(B) Schematic of the domain organization of the VgrG2b protein. The N-terminal region (yellow) forms the spike-like structure of the T6SS spear, composed of the

gp27- and gp5-like domains and likely the DUF2345 domain. The TTR domain is a putative protein-protein interaction domain. The C-terminal domain has an

HEXXH motif typically found in the catalytic site of metallopeptidases.

(C) Model of the tertiary structure of the DUF2345 domain of the VgrG2b trimer, with the protomers depicted in red, yellow, and teal.

(D) Immunoblot demonstrating secretion of VgrG2b by the H2-T6SS. Red arrows indicate the band corresponding to the VgrG2b protein to distinguish it from the

non-specific bands recognized by the polyclonal antibody. Anti-RpoB recognizes the b subunit of RNA polymerase and is employed as a lysis control, while anti-

LasB detects a secreted type II secretion system (T2SS) effector protein, used as a supernatant loading control. Image is representative of three independent

experiments.

Uncropped immunoblots and gels of all figures are provided in Data S1.
et al., 2019; Shneider et al., 2013). Besides these cargo effectors,

effector domains can be fused to a Hcp, VgrG, or PAAR protein.

Examples of these specialized effectors, also called evolved

spear components, include the NAD(P)+-hydrolyzing toxin Tse6

from Pseudomonas aeruginosa or the peptidoglycan hydrolase

extension of VgrG3VC of Vibrio cholerae (Brooks et al., 2013; Ha-

chani et al., 2014; Whitney et al., 2015).

P. aeruginosa possesses three T6SSs, designated H1-, H2-,

and H3-T6SS (Mougous et al., 2006). Although the H1-T6SS

is well characterized as an antibacterial weapon, our under-

standing of the effectors secreted by the H2-T6SS is still in its

infancy. Two phospholipases, PldA and Tle4, are secreted by

this system into both bacterial and eukaryotic cells and have

consequently been designated trans-kingdom effectors (Jiang

et al., 2014, 2016). In addition, the antibacterial nuclease

effector TseT and the evolved VgrG2b have been linked to

this system (Burkinshaw et al., 2018; Sana et al., 2015). VgrG2b

is involved in the internalization of P. aeruginosa PAO1 into

epithelial cells, because uptake of a vgrG2b mutant is

decreased versus the wild-type strain (Sana et al., 2015). Infec-

tion of epithelial cells expressing vgrG2b displays enhanced

internalization not only of wild-type P. aeruginosa but also of

an H2-T6SS-deficient strain. Elements of the host cytoskeleton

are co-opted for invasion, because chemical inhibition of

actin and microtubule polymerization blocks bacterial uptake.

Furthermore, interactome analysis of VgrG2b ectopically ex-

pressed in host cells identified components of the g-tubulin
188 Cell Reports 29, 187–201, October 1, 2019
ring complex (gTuRC) as binding partners of this evolved spike

protein. Despite the microtubule network being implicated in

P. aeruginosa invasion, the mechanism of this process remains

to be understood.

In this study, we report that VgrG2b represents an evolved

trans-kingdom T6SS effector. We provide evidence that VgrG2b

is directly secreted by the H2-T6SS and that the VgrG2b C-ter-

minal domain (VgrG2bC-ter) possesses antibacterial activity. We

show that this domain, the structure of which we present in

this work, is a member of a widespread family of metallopepti-

dases eliciting toxicity in the bacterial periplasm and that it can

be neutralized by a cognate immunity protein. The toxicity of

VgrG2bC-ter results in profound morphological anomalies char-

acterized by blebbing of the bacterial membrane at the site of

septation, a phenotype reminiscent of inhibition of the cell divi-

sion machinery by b-lactam antibiotics.

RESULTS

VgrG2b Is an Evolved VgrG Protein Secreted by the
H2-T6SS
VgrG2b is encoded in the hcpC locus with the hypothetical pro-

tein PA0261 and the effector-immunity module Tle3-Tli3 (type VI

lipase effector 3-type VI lipase immunity 3) (Figure 1A), where

Tle3 is a predicted phospholipase (Barret et al., 2011; Wood

et al., 2019). As such, it is not genetically linked to any T6SS

core gene clusters. Beyond its canonical trimeric spike-forming



A

α1

β1

α2

β2

β3

α3

α4

α5

α6

E936
H935

H939

E983
Zn2+

B VgrG2bC-ter
Angiotensin-converting enzyme 2

Zn2+

E376

H374

H378

E402

Figure 2. Structure of the VgrG2b Metallopeptidase Domain

(A) Cartoon representation of the metallopeptidase fold of the VgrG2b C-ter-

minal domain. The zinc ion is modeled in the catalytic center as a gray sphere.

Elements of secondary structure are labeled (a, a helix; b, b strand) and the

three catalytic residues are shown as sticks. See also Figure S1 and Tables S1

and S2.

(B) Comparison of the active site of the VgrG2b metallopeptidase domain (left)

with that of angiotensin-converting enzyme 2 (right) from Homo sapiens (PDB:

3D0G). The coordinating residues of the gray zinc ion are labeled. In

VgrG2bC-ter, H935, E936, and H939 form the catalytic triad, and E983 is the

additional ligand; the corresponding residues in human angiotensin-convert-

ing enzyme 2 are H374, E375, H378, and E736, respectively.
region containing gp27- and gp5-like domains, VgrG2b harbors

a C-terminal extension, rendering it an evolved VgrG protein

(Figure 1B). VgrG2b also contains a DUF2345 domain, predicted

to adopt a b-helical fold similar to the gp5-like domain (Fig-

ure 1C), which can be considered an extension of the spike re-

gion (Sana et al., 2015). The C-terminal portion of the VgrG2b

spike protein is predicted to function as a metallopeptidase

because of the presence of a signature zinc-binding HEXXH

motif (Figure 1B). Bioinformatic analysis of the linker region be-

tween the DUF2345 and the metallopeptidase domains reveals

a transthyretin (TTR)-like fold, implicated in protein-protein inter-

actions. Indeed, C-terminal TTR folds have been described in

PAAR and VgrG proteins, with that of VgrG1 in enteroaggrega-

tive Escherichia coli empirically shown to be important in the
delivery of the cargo effector Tle1 (Flaugnatti et al., 2016;

Shneider et al., 2013).

A previous study determined that VgrG2b and the H2-T6SS

are required in invasion of epithelial cells during infection, but

no H2-T6SS-dependent secretion of VgrG2b was effectively

demonstrated (Sana et al., 2015). We have recently described

in vitro conditions in which the H2-T6SS is active and established

that the Hcp2 tail tube protein, encoded by at least one of

the identical paralogs hcpA, hcpB, hcpC, and hcp2 in

P. aeruginosa PA14, is secreted by this system (Allsopp et al.,

2017). Here, we employed antibodies raised against peptides

within the metallopeptidase domain of VgrG2b to probe for

this spike protein in the supernatant of P. aeruginosa cultures

grown in H2-T6SS-conducive conditions. VgrG2b and Hcp2

are detected in the extracellular milieu of the parental strain

(PAO1DrsmA); however, deletion of the tssE2 gene, encoding

an H2-T6SS baseplate component, abolishes their secretion

(Figure 1D). Complementation with tssE2 in trans partially re-

stores secretion of VgrG2b and Hcp2.

Altogether, this confirms that VgrG2b is secreted in an H2-

T6SS-dependent manner. Although the H2-T6SS locus of

P. aeruginosa PAO1 lacks genes encoding the spike and tube

proteins of the T6SS spear assembly, this result highlights that

the H2-T6SS supports the secretion of several of distally en-

coded effectors (Barret et al., 2011; Hachani et al., 2011).

Crystal Structure of VgrG2b C-Terminal Effector
Domain
Next, we purified VgrG2bC-ter (residues 770–1,019) to initiate

structural analysis. We solved the structure of VgrG2bC-ter, en-

compassing residues 833–1,019, using crystals of both the

native and the selenomethionine-substituted forms with resolu-

tions of 3.2 and 3.0 Å, respectively (Figure 2A). Two copies of

VgrG2bC-ter were found in the asymmetric unit of the crystal,

which could be superimposed with a root-mean-square devia-

tion (RMSD) of 0.1 Å (Tables S1 and S2). In solution, however,

the purified metallopeptidase domain exists predominantly as

a monomer, as determined by size-exclusion chromatography-

multi-angle laser light scattering (SEC-MALLS), with a dimeric

species also present (Figure S1A). It is likely that the physiolog-

ically relevant oligomerization state of the metallopeptidase

domain is achieved only in the full-length VgrG2b protein.

The VgrG2bC-ter protomer possesses a single domain

composed of six a helices and three b strands (Figure 2A), form-

ing a shallow bowl with multiple small loops. A PDB search using

the DALI server identified several thermolysin-like metallopepti-

dases as structural homologs of the VgrG2bC-ter effector domain

(Holm and Laakso, 2016). One such metallopeptidase is human

angiotensin-converting enzyme 2 (Z score: 5.0, Ca RMSD of

4.2 Å across 105 residues), with the active sites of these proteins

displaying similar architectures (Figure 2B). Although metallo-

peptidases target diverse substrates, the overall core fold of

three a helices (a2, a3, and a5) and two b strands (b2 and b3)

is highly conserved and bears the classical HEXXH catalytic

motif typical of these zinc-dependent enzymes, where X is any

amino acid (Figure 2B).

Indeed, the conformations of the HEXXH residues in our struc-

ture are suggestive of metal ion coordination, and the geometry
Cell Reports 29, 187–201, October 1, 2019 189
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Figure 3. Phylogenetic Analysis of the VgrG2b Metallopeptidase Domain

(A) Phylogenetic tree of 240 homologs of the VgrG2b metallopeptidase domain constructed using the maximum likelihood method. Clades are colored by

bacterial family, and the branch denoting VgrG2b of P. aeruginosa is labeled with a red arrow. The scale represents the number of residue substitutions per site.

(B) Schematic representation of the domain architecture of various VgrG2b metallopeptidase domain orthologs. The sequence logo shows the conservation of

residues constituting the predicted HEXXH catalytic motif.

(C) Diagram of genetic cassettes encoding VgrG2b metallopeptidase homologs (shown with an asterisk) found within T6SS loci. In each case, the gene encoding

the putative metallopeptidase lies upstream of a small ORF. The VgrG2bC-ter homolog in B. thailandensis is the evolved VgrG BTH_I2697; SARI_02727 of

S. arizonae and ACIAD0053 of Acinetobacter baylyi are predicted cargo effectors, whereas in Alcanivorax dieselolei, B5T_02182 is a putative evolved PAAR

protein.

(D) Schematic of the genetic loci of the vgrG2b satellite islands of P. aeruginosa strains PAO1 and BL21. The site of a possible recombination event suggesting

duplication of the tle3-tli3module within the 30 end of vgrG2b inP. aeruginosaBL21 is shown by dotted lines. The gene encoding the VgrG2bC-ter metallopeptidase

is marked by an asterisk. Scale bar represents 5 kb.
suggests that the electron density in the putative metal-binding

site corresponds to a divalent cation such as zinc. To confirm

that VgrG2bC-ter binds zinc, we employed differential scanning

fluorimetry to assess the thermodynamic stabilization of themet-

allopeptidase in the presence of zinc ions. The melting tempera-

ture of the domain increases from 46.3�C in the absence of zinc

to a maximum of 55.1�C in the presence of an eight-fold excess

of the metal ion (Figure S1B), providing a strong indication of the

binding of zinc to the metallopeptidase. The assigned zinc ion is

coordinated by the two histidine residues of the catalytic triad

and has a third glutamate ligand (E983) at the top of helix a5 (Fig-

ure 2B). These features permit classification of VgrG2bC-ter as a

thermolysin-like gluzincin within the MA(E) metallopeptidase

subclan (Rawlings et al., 2018).
190 Cell Reports 29, 187–201, October 1, 2019
VgrG2bC-ter Is Part of aWider Family ofMetallopeptidase
Effectors
We assessed the prevalence of the VgrG2bC-ter metallopepti-

dase domain by exploring its phylogenetic distribution. Homolo-

gous metallopeptidases were found throughout the proteo-

bacterial phylum, especially in bacteria possessing a T6SS

(Li et al., 2015) (Figure 3A). Intriguingly, the presence of

VgrG2bC-ter-like proteins in Sphingomonadaceae, which rarely

encode a T6SS, implies that this protein family may have a role

beyond constituting a T6SS effector. Nevertheless, many ortho-

logs are encoded within T6SS gene clusters and are classified as

DUF4157 domain-containing putative metallopeptidases, found

as both putative cargo and specialized effectors. For example,

Burkholderia pseudomallei encodes an evolved VgrG with this
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Figure 4. VgrG2bC-ter Is the Periplasmic

Toxin of an Antibacterial Effector-Immunity

Pair

(A) Intraspecies P. aeruginosa competition assay

between a strain lacking the vgrG2b-PA0261

module and various isogenic attacker strains un-

der H2-T6SS-conducive growth conditions at

25�C for 8 h. The competition assay between the

parental strain (PAO1DrsmA) and itself, shown in

gray, is the internal control for competitive parity.

For (A) and (B), the strains used are described in

the text. The values and error bars represent the

mean ± SEM (n = 3 biological replicates). Statis-

tical comparisons undertaken used one-way

ANOVA with Dunnett’s test using the parent

versus prey competition as the comparator (*p <

0.05, **p < 0.01, ***p < 0.001; ns, not significant).

(B) Intraspecies competition assay showing that

PA0261 is the immunity protein for VgrG2bC-ter.

The prey strain produces PA0261 in trans with or

without its native signal peptide (PA0261(no SP))

or harbors the empty vector. The attacker is the

PAO1DrsmA parental strain. See also Figure S2.

(C) Survival of E. coli expressing vgrG2bC-ter or its

catalytically inactive mutant vgrG2bC-ter (E936A).

The proteins are targeted to the periplasm by the

Tat-dependent signal peptide of TorA in the pTat

vector. Ten-fold serial dilutions of cultures (optical

density 600 [OD600] 10
0 to 10�6) were spotted on

LB agar containing the noted concentrations of

repressor (glucose) or inducer (IPTG for pET28a

and arabinose for pTat) and grown for 24 h.

Image is representative of three independent

experiments.
metallopeptidase domain, similar to VgrG2b. Yet in Collimonas

and Alcanivorax species, it is grafted as an extension of a

PAAR protein. Finally, many members of the Enterobacteriaceae

family code for this metallopeptidase as a putative T6SS cargo

effector (Figures 3B and 3C), underscoring the modularity of

T6SS effector proteins.

Further analysis of the distribution of vgrG2b genes uncovered

evidence for a remarkable recombination event in the

P. aeruginosa BL21 strain, in which the tle3-tli3 module is dupli-

cated within the 30 end of the vgrG2b gene (Figure 3D). This has

given rise to a canonical vgrG gene encoding VgrG2b up to its

TTR fold, with the metallopeptidase domain encoded by a sepa-

rate open reading frame (ORF) downstream of the phospholipase

effector-immunity locus. This genetic reorganization also implies

that vgrG genes can acquire or lose their 30 end through recombi-

nation, allowing the exchange of effector domains at the VgrG tip.

This is reminiscent of observations concerning C-terminal toxin

modules in systems such as contact-dependent growth inhibition

(CDI) andRhsproteins (Ruheet al., 2017;Wanget al., 1998).Over-

all, these in silico analyses suggest that VgrG2bC-ter is frequently

associated with proteobacterial T6SS loci and that its secretion

can be achieved via various effector configurations.

VgrG2b-PA0261 Constitutes an Antibacterial Effector-
Immunity Pair
Our bioinformatic analysis of the genetic context of T6SS-asso-

ciated VgrG2bC-ter orthologs revealed intriguing synteny of this
effector gene with a small ORF, often unannotated and encoded

downstream, such as PA0261 in P. aeruginosa (Figure 1A),

BTH_I2696 in Burkholderia thailandensis, ACIAD0054 in Acine-

tobacter baylyi, SARI_02726 in Salmonella enterica subsp. arizo-

nae, or B5T_02183 in Alcanivorax dieselolei (Figure 3C). The

juxtaposition of these genes is invariable, prompting the hypoth-

esis that P. aeruginosa VgrG2bC-ter may constitute an antibacte-

rial effector-immunity pair with the PA0261 gene product.

Indeed, T6SS effectors whose genes are systematically en-

coded in tandem with a small ORF are frequently found to exert

antibacterial activity, with the adjacent gene encoding its

cognate immunity protein (English et al., 2012; Hood et al.,

2010; Russell et al., 2011).

We engineered a strain lacking the vgrG2b-PA0261 genes and

placed it in competition with the parental strain under conditions

in which the H2-T6SS is active. Whereas competition of

the parent with itself results in competitive parity, the

DvgrG2bPA0261 strain exhibits a significant growth disadvan-

tage (Figure 4A). VgrG2b is responsible for the advantage of

the parental strain, because a DvgrG2b attacker no longer out-

competes the DvgrG2bPA0261 prey. Importantly, the attacker

and prey strains are isogenic; thus, the vgrG2b-PA0261 module

represents the sole difference between these strains. As such,

the prey strain is immune to the action of all other T6SS toxins

such as Tle3, encoded downstream of PA0261 (Figure 1A).

Deletion of tssE2 in the attacker strain, rendering the H2-T6SS

non-functional, restores competitive parity of the prey strain,
Cell Reports 29, 187–201, October 1, 2019 191



confirming the H2-T6SS-dependent secretion of VgrG2b (Fig-

ure 4A), whereas complementation of tssE2 on a plasmid

partially restores the growth advantage of the attacker strain.

Furthermore, a P. aeruginosa strain lacking the immunity gene

exhibits a growth defect on solid media, but not in liquid culture,

consistent with contact-dependent delivery by the H2-T6SS

(Figures S2A and S2B).

To assess the role of PA0261 as the immunity protein neutral-

izing VgrG2b-mediated toxicity, we introduced the PA0261 gene

into the DvgrG2bPA0261 strain in trans. Constitutive expression

of PA0261 in the prey strain abolishes the competitive growth

advantage of the attacker, whereas the empty vector provides

no such immunity (Figure 4B). Bioinformatic analysis of the

PA0261 sequence revealed the presence of a putative N-termi-

nal signal peptide, likely directing the protein into the periplasm

(Figure S2C). Provision of PA0261 without the sequence encod-

ing this N-terminal portion (PA0261(no SP)) fails to prevent elim-

ination by the parent (Figure 4B), suggesting that the predicted

extracytoplasmic localization of this protein is needed to

neutralize VgrG2b, similar to the immunity proteins of other

P. aeruginosa periplasmic-acting toxins (Jiang et al., 2016; Rus-

sell et al., 2011).

If PA0261 requires its putative N-terminal signal peptide to act

as an immunity protein, VgrG2bmust elicit its toxicity beyond the

cytoplasmic membrane. We ectopically produced VgrG2bC-ter in

E. coli and targeted the domain to the periplasm by fusing it to an

N-terminal signal peptide from the Tat-dependent substrate

TorA (Palmer and Berks, 2012; Santini et al., 2001). Production

of VgrG2bC-ter is not detrimental to E. coli when the protein re-

mains in the cytoplasm, because this strain grows similarly to

vector control strain (Figure 4C). However, this domain exhibits

acute toxicity when targeted to the periplasmic compartment

by the Tat-dependent signal peptide. Crucially, substitution of

the putative catalytic glutamic acid residue to an alanine

(E936A from HEXXH) renders VgrG2bC-ter non-toxic in the

periplasm, restoring growth. No differences in the levels of

VgrG2bC-ter production are observed between the periplasmic-

targeted toxin and its inactive isoform (Figure S2D), indicating

that the putative enzymatic activity of the VgrG2bC-ter metallo-

peptidase is responsible for toxicity. Mutation of the two histidine

residues (H935A and H939A) coordinating the zinc ion in our

structure also abolish periplasmic toxicity, supporting our desig-

nation of the HEXXH catalytic triad (Figure S2E). Interestingly,

although raising the tonicity of media has been reported to

rescue growth of bacteria producing the periplasmic-acting

T6SS effectors Tse1 and Tse3, the addition of 0.5 M sucrose

does not suppress the growth defect of E. coli producing

VgrG2bC-ter in the periplasm (Russell et al., 2011) (Figure S2F).

This suggests that VgrG2bC-ter may elicit an activity distinct

from the D,L-endopeptidase and muramidase activities of Tse1

and Tse3, respectively (described later).

We sought to determine whether toxicity was displayed by

orthologs of VgrG2bC-ter and expressed the putative T6SS cargo

effector ACIAD0053 from A. baylyi similarly. Surprisingly, induc-

tion of periplasmic-targeted ACIAD0053 expression does not

hamper E. coli growth under identical conditions to that of intoxi-

cation by VgrG2bC-ter (Figure S2G). Nevertheless, reduction of the

osmolarity of the medium (low-salt LB [LB-LS]) to increase bacte-
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rial susceptibility to lysis results in a drastic reduction in growth of

the strain expressing pTat-ACIAD0053. Once more, alanine sub-

stitution of the residues of the catalytic triad (ACIAD0053*) pro-

duces a non-toxic isoform (Figures S2G and S2H). These results

indicate that members of the VgrG2bC-ter metallopeptidase

effector family act as potent periplasmic antibacterial toxins.

Functional Characterization of the PA0261 Immunity
Protein Family
To validate the toxin-immunity relationship of the VgrG2bC-ter-

PA0261 pair, we investigated whether PA0261 could protect

E. coli from VgrG2bC-ter-mediated toxicity. Coexpression of the

immunity gene relieves the growth defect caused by the metal-

lopeptidase (Figure 5A). As a specificity control, we expressed

tli4, encoding the cognate immunity protein of the antibacterial

H2-T6SS-dependent effector Tle4, which was unable to restore

bacterial viability (Jiang et al., 2016). Immunoblot analysis deter-

mined that both immunity proteins are produced (Figure S3A).

This demonstrates that PA0261 is the cognate immunity deter-

minant of the VgrG2bC-ter toxin. Furthermore, the additional

presence of a higher molecular weight band for PA0261-HA is

indicative of the precursor form of a periplasmic protein, sup-

porting the predicted localization of this immunity protein, which

we later confirm (Figures S3A and S5A). We then used far-west-

ern dot blotting (Figure 5B) to investigate whether complex for-

mation with the metallopeptidase domain was the neutralization

mechanism of PA0261. We spotted recombinant VgrG2bC-ter

(Figure S3B) or theC-terminal TTR domain of VgrG4b as bait pro-

teins on nitrocellulose membrane and incubated them with a

bacterial lysate overproducing hemagglutinin (HA)-tagged im-

munity proteins PA0261 or Tli3. Immunoblotting shows that

despite production of both immunity proteins, only PA0261-HA

binds to VgrG2bC-ter, and not to VgrG4bC-ter, suggesting a spe-

cific interaction with the metallopeptidase domain (Figure 5B).

Furthermore, PA0261 binds the inactive metallopeptidase

variant VgrG2bC-ter (E936A), suggesting that the inactive variant

is fully folded (Figures 5B and S3C). This implies that PA0261

neutralizes VgrG2bC-ter through complex formation, as has

been shown for other biochemically characterized T6SS toxin-

immunity pairs (Russell et al., 2011; Shang et al., 2012).

In general, immunity proteins of T6SS toxins display little

sequence identity with their orthologs, likely because of selective

pressure solely on the conservation of toxin binding (Russell

et al., 2012). This phenomenon is also apparent in the PA0261

family; however, a multiple sequence alignment of homologous

immunity proteins revealed the presence of cysteine residues

in partially conserved positions (Figure S4). Because PA0261 is

a predicted periplasmic protein, the conservation of cysteine

residues engenders the hypothesis that disulfide bond formation

may be required for the function of the protein in the oxidizing

environment of this compartment. To begin answering this ques-

tion, we demonstrated through subcellular fractionation that

PA0261 is found in the periplasm when expressed in E. coli (Fig-

ure S5A). We assessed the ability of PA0261 to protect against

the toxicity of periplasmic VgrG2bC-ter in the absence of dsbA,

encoding the major oxidoreductase of the disulfide bond forma-

tion (Dsb) system in E. coli (Figure 5C). The levels of PA0261 in

the DdsbAmutant are greatly diminished, hampering the growth
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Figure 5. PA0261 Is the Cognate Immunity

Protein of VgrG2bC-ter

(A) PA0261 expression prevents intoxication of

E. coli cells producing periplasmic VgrG2bC-ter.

The non-cognate immunity protein Tli4 is used as

a negative control. The values and error bars

represent the mean ± SEM (n = 3 biological repli-

cates). Statistical significance of the difference in

survival compared with the strain under non-

inducing conditions was calculated by one-way

ANOVA followed by Tukey’s multiple comparison

test (**p < 0.01). See also Figures S3.

(B) PA0261 interacts with VgrG2bC-ter in a far-

western dot blot assay. Recombinant VgrG2bC-ter,

its catalytic mutant, or VgrG4bC-ter were spotted

and incubated with E. coli cell lysates containing

HA-tagged PA0261 or Tli3. Purified HA peptide is

an anti-HA antibody binding control. The bottom

panel shows an immunoblot of the lysate input

samples confirming immunity protein production.

See also Figure S3.

(C and D) Disulfide bond formation is required for

PA0261 to efficiently neutralize VgrG2bC-ter. E. coli

strains produce PA0261-HAwith the expression of

pTat or pTat-vgrG2bC-ter in the presence or

absence of the dsbA gene and plated onto solid

media. Measurement of colony size and images of

the spots are shown in (C). A statistically signifi-

cant difference between colony size of strains

producing periplasmic-targeted VgrG2bC-ter or not

was determined by a two-tailed Student’s t test

(n = 4 biological replicates; ***p < 0.001). Immu-

noblotting determines production of VgrG2bC-ter

and the HA-tagged PA0261 proteins in (D), where

lanes have been excised for clarity. The red arrow

shows the position of the VgrG2bC-ter band. See

also Figure S4.
of this strain in the presence of VgrG2bC-ter (Figures 5C and 5D).

This indicates that the Dsb system contributes to the protection

of bacterial cells from T6SS-mediated antagonism, in juxtaposi-

tion to a recent study demonstrating that a lack of DsbA in prey

cells can indirectly confer protection against T6SS attack

because of the improper folding of delivered toxins (Mariano

et al., 2018). Crystal structures of immunity proteins such as

those of the Tai4 family have also revealed the presence of disul-

fide bonds, extending the relevance of our observation to other

families of T6SS immunity proteins (Benz et al., 2013; English

et al., 2012; Fukuhara et al., 2018).

In silico examination of putative immunity proteins tomembers

of the VgrG2bC-ter family suggests that like PA0261, they are tar-

geted to the cell envelope. However, the mechanisms of attain-

ing this localization seem to be diverse. In Enterobacteriaceae,

PA0261 homologs are predicted to be lipoproteins (Fig-

ure S5B), whereas ACIAD0054, the putative immunity protein

to ACIAD0053 in A. baylyi, appears to bear hallmarks of an N-ter-

minal transmembrane helix (Figure S4, top line). Irrespective of

these differences, in both cases the bulk of the immunity protein

would be exposed in the periplasm. The second residue

following the lipobox cysteine residue of the predicted immunity

lipoproteins in Enterobacteriaceae is often a glycine, likely direct-

ing the protein to the outer membrane rather than constituting an

avoidance signal for the lipoprotein outer membrane localization
(Lol) pathway as described by the +2 rule (Figure S5B) (Narita

and Tokuda, 2017; Yamaguchi et al., 1988). Indeed, membrane

fractionation of the E. coli cell envelope using selective detergent

treatment showed that the PA0261 ortholog from S. arizonae,

SARI_02726, is enriched in the outer membrane fraction (Fig-

ure S5C). Likewise, the A. baylyi ortholog ACIAD0054 was en-

riched in the inner membrane fraction as predicted (Figure S5D).

Determination of the localization of members of this immunity

protein family supports the designation of VgrG2bC-ter-PA0261

as a periplasmic effector-immunity pair while highlighting the di-

versity of strategies employed by the immunity determinants to

gain access to the periplasm, as summarized in Figure S5E.

VgrG2bC-ter Is Bacteriolytic but Does Not Display
Peptidoglycan Hydrolase Activity
Next, we investigated the activity of the VgrG2bC-ter effector

domain. To determine whether VgrG2bC-ter induces growth

arrest or lysis of target bacteria, we employed an outside-in

approach, permeabilizing E. coli cells with a sublethal con-

centration of polymyxin B and measuring whether the toxin re-

duces culture turbidity. Although VgrG2bC-ter (E936A) does not

decrease the turbidity of the suspension, exogenous addition

of lysozyme or VgrG2bC-ter elicits suspension clarification,

thereby showing that the metallopeptidase effector challenges

cell integrity, having gained access to the periplasm (Figure 6A).
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Figure 6. VgrG2bC-ter Perturbs Cell Division

(A) Incubation of recombinant VgrG2bC-ter (red), VgrG2bC-ter (E936A) (yellow) and lysozyme (blue) with polymyxin B-permeabilized E. coli cells. A decrease in

turbidity indicates bacterial lysis. Points and error bars represent the mean ± SEM (n = 3 biological replicates). See also Figure S6.

(B) Single-cell analysis of E. coli cell morphology when expressing pTat, pTat-vgrG2bC-ter or pTat-vgrG2bC-ter (E936A). A series of representative fluorescence

microscopy images of bacteria labeled with the membrane dye FM1-43 to highlight the cell exterior at different time points. Scale bar represents 2.5 mm. Image is

representative of three independent experiments.

(C) Localization of membrane blebs mediated by VgrG2bC-ter activity. Using images from three independent time course experiments, typified by those in (B), the

position of the membrane bleb of 230 intoxicated bacteria was plotted as its fraction of the cell length from midcell. The solid and dashed lines show the median

and quartiles, respectively.

(D) VgrG2b delivery by the H2-T6SS results in membrane blebbing. Fluorescent microscopy images show P. aeruginosa strains labeled with FM1-43 either alone

(PAO1DrsmA, PAO1DrsmADtssE2, or PAO1DrsmADvgrG2bPA0261) or in competition (PAO1DrsmA or PAO1DrsmADtssE2 versus PAO1DrsmADvgrG2bPA0261).

Representative images from three independent experiments are shown. Scale bar represents 1 mm.

(E) Localization of the site of membrane blebbing of PAO1DrsmADvgrG2bPA0261 in competition with the parental strain PAO1DrsmA, using the dataset rep-

resented in (D). Here, 147 intoxicated bacteria were analyzed identically to (C).
Because this bacteriolytic effector is a periplasmic-acting

metallopeptidase, we reasoned that it might target either the

peptide bonds in the cell wall or a protein within the cell enve-

lope. We probed the action of the toxin toward the bacterial

cell wall with various approaches. In a turbidimetric assay, re-

combinant proteins were incubated with lyophilized Micro-

coccus lysodeikticus as a substrate, but while lysozyme reduces

turbidity, VgrG2bC-ter does not (Figure S6A). Similarly, zymogra-

phy demonstrated that lysozyme produces a zone of clearing in a

stained gel impregnated with purified E. coli sacculi, yet no such

peptidoglycan degradation was apparent for VgrG2bC-ter (Fig-

ure S6B). An analogous assay for crude protease activity was

also used, with a similar negative outcome (Figure S6C). Finally,

quantification of muropeptides released through sacculus hy-

drolysis using high-performance liquid chromatography (HPLC)

revealed that treatment with VgrG2bC-ter does not alter the

composition of either tetrapeptide-rich or pentapeptide-rich

E. coli cell wall preparations (Figures S6D–S6F). Thus, we
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conclude that VgrG2bC-ter does not exhibit peptidoglycan hydro-

lase activity.

VgrG2b Induces Lysis by Apparent Perturbation of Cell
Division
Next, we turned to single-cell analysis of E. coli producing the

periplasmic-targeted metallopeptidase or its inactive variant

from the pTat vector. Bacterial morphology was highlighted by

staining the membranes with the fluorescent dye FM1-43. Over

the course of 2.5 h, no alterations in rod-like E. coli cell shape

were observed in bacteria harboring the empty vector or pTat-

vgrG2bC-ter (E936A). However, production of the active periplas-

mic metallopeptidase causes aberrant cellular morphology

characterized by membrane blebbing, leading to cell rounding

and lysis (Figure 6B). Periplasmic VgrG2bC-ter is still toxic in

high-osmolarity conditions (Figure S2F), suggesting that the

effector does not cause lysis through global weakening of the

cell wall as with Tse1 and Tse3 (Russell et al., 2011). Figure 6C



shows that blebbing predominately originates at midcell, leading

to the cracking of the rod shape before rounding up, suggesting

a defect in cell division similar to observations during b-lactam

antibiotic administration (Chung et al., 2009; Yao et al., 2012).

This observation of site-dependent perturbation in cell shape is

also in opposition to the notion of VgrG2bC-ter exhibiting generic

peptidoglycan hydrolase activity, unless the metallopeptidase

requires a factor or structure specifically localized at the cell

septum for its activation.

To discount the possibility that this phenotype is an

artifact because of toxin overexpression, we monitored the

morphology of P. aeruginosa cells subject to VgrG2b-mediated

killing in competition assays. Upon attack of the susceptible

DvgrG2bPA0261 strain by its parent, we observed similar mem-

brane blebbing, whereas no such morphological aberrations

occurred when the attacker strain lacked a functional H2-T6SS

(DtssE2) (Figure 6D). In addition, when the strainswere incubated

alone, no blebbing occurred. The blebs produced during elimi-

nation of VgrG2b-sensitive prey again localized to the septum,

indicating that the mechanism of killing by the metallopeptidase

domain is similar whether it is delivered by the T6SS or the

effector is artificially targeted to the periplasm (Figure 6E). These

results demonstrate that VgrG2bC-ter-induced blebbing is a

physiologically relevant phenotype and that the target of this

toxin is conserved between E. coli and P. aeruginosa.

Identification of Putative Interacting Partners of
VgrG2bC-ter

Because characterization of the biochemical activity of

VgrG2bC-ter had been unsuccessful, we turned to affinity purifi-

cation-coupled mass spectrometry to investigate the identities

of putative target proteins that interact with the toxin in the peri-

plasm. A tagged inactive VgrG2bC-ter variant was directed to the

periplasm after which cellular proteins were crosslinked in vivo

using dimethyl 3,30-dithiobispropionimidate (DTBP). Affinity puri-

fication pulled down the tagged inactive metallopeptidase and

any crosslinked interaction partners. Three independent repli-

cates of the affinity-purified protein samples were subject to

mass spectrometry analysis to identify candidate interactors of

the metallopeptidase. This preliminary analysis found 89 pro-

teins enriched in the tagged sample dataset compared with

the untagged VgrG2bC-ter control, which were present in at least

two of the three replicates. Of these, just 19 proteins (21.3%)

were found with MASCOT scores (representing the probability

of true identification of the protein) higher than the threshold

set to exclude background noise. Twelve of these 19 proteins

(63.2%) are localized in the cell envelope and were subsequently

considered candidate interactors of VgrG2bC-ter (Table S3).

Three of the four highest-scoring candidates (MltC, PBP5, and

PBP6a) are involved in peptidoglycan biogenesis. This suggests

that the metallopeptidase may perturb the complex machinery,

which maintains the cell wall, inhibiting cell division and produc-

ing the observed blebbing at midcell. If VgrG2bC-ter acts through

interference with peptidoglycan remodeling, it may be through

direct cleavage of these identified target proteins; however, we

cannot exclude that the interaction with periplasmic binding

partners stimulates a putative peptidoglycan hydrolase activity

of the toxin. The periplasmic action of VgrG2bC-ter prevents
growth of E. coli strains with single deletions in mltC, dacA

(encoding PBP5), or dacC (encoding PBP6a), indicating that

cleavage of one of these enzymes individually is not sufficient

for toxicity (Figure S7).

The dataset is also enriched with lipoproteins (8/12, or 67%),

raising the possibility that VgrG2bC-ter might interact with the

linker region between the acylated cysteine residue of a lipopro-

tein and its main fold, resulting in disruption of its intrinsic local-

ization. We monitored the abundance of two lipoproteins found

in the dataset, MltC and LolB, in bacterial membranes after incu-

bation of purified VgrG2bC-ter or VgrG2bC-ter (E936A) with bacte-

rial lysates. The presence of VgrG2bC-ter elicits a reduction in

membrane-associated MltC or LolB in a manner dependent on

its catalytic activity (Figures 7A and 7B). We examined the distri-

bution of RcsF, an outer membrane lipoprotein that was identi-

fied below the significance cutoff in our pull-down experiments

(Table S3), and found that its levels were also diminished in the

membrane fraction in the presence of the toxin (Figure 7C).

The abundance of the periplasmic protein TEM-1 was unaltered

in this assay (Figure 7D), suggesting that VgrG2bC-ter may prefer-

entially target lipoproteins; specifically, the toxin may cleave lipid

anchors to release lipoproteins from membranes. Because this

assay was conducted with non-physiological levels of both toxin

and tagged lipoproteins, it is not possible to currently state

whether MltC, LolB, or RcsF is a physiological target of VgrG2b

when delivered by the T6SS. In all, our data indicate that the

VgrG2bC-ter metallopeptidase represents a hitherto-undescribed

family of antibacterial T6SS effectors that appear to dysregulate

the cell division process.

DISCUSSION

Previous work has proposed that VgrG2b is an anti-host effector

that subverts the cytoskeleton (Sana et al., 2015). VgrG2b inter-

acts with members of the gTuRC, whereas VgrG2a, sharing

99.5% identity with VgrG2b across its spike and DUF2345 do-

mains, does not, implying that the interaction occurs through

theC-terminal extension of VgrG2b, encompassing the predicted

metallopeptidase domain. The precise function of this domain

was not explored, so it is unclear whether its catalytic activity is

required for invasion. In addition, although ectopic expression

of vgrG2b within host cells enhances P. aeruginosa uptake, it is

possible that other bacterial factors are involved in the mecha-

nism, because the internalization of neither inert particles nor

other bacteriawas shown. For example, other studies have found

thatP. aeruginosa canbe internalizedbynon-phagocyticcells in a

process that requires the H2-T6SS phospholipase effectors PldA

and PldB (Jiang et al., 2014). Interestingly, PldA and PldB also

display antibacterial activity,whichnecessitates a set of immunity

proteins to avoid self-intoxication, and were coined trans-

kingdom effectors (Jiang et al., 2014; Russell et al., 2013). In

this study, we performed an in-depth characterization of VgrG2b

and propose that it is also a trans-kingdom effector.

The identification of a small ORF downstream of genes encod-

ing homologs of the VgrG2bC-ter metallopeptidase family is a key

finding in this work. We demonstrated the impact of the VgrG2b

metallopeptidase domain on bacterial survival when reaching

the periplasm of prey cells in an H2-T6SS-dependent manner.
Cell Reports 29, 187–201, October 1, 2019 195



A

B

C

D

Figure 7. Incubation with VgrG2bC-ter Re-

duces the Abundance of Lipoproteins in

Bacterial Cell Membranes

(A–C) Immunoblot analysis (left panels) and

densitometry (right panels) of the abundance of

lipoproteins MltC (A), LolB (B), and RcsF (C) in

bacterial total membrane fraction (TMF) prepara-

tions in the presence of recombinant VgrG2bC-ter,

VgrG2bC-ter (E936A), or a buffer-only control.

(D) Abundance of the periplasmic protein TEM-1

was assessed. The outer membrane protein PhoE

acts as a marker of the total membrane fraction,

and RpoB serves as the soluble fraction marker. A

statistically significant difference in protein abun-

dance between incubation with buffer or recom-

binant protein was determined by a two-tailed

Student’s t test (n = 3 biological replicates; *p <

0.05, ***p < 0.001; ns, not significant). See also

Figure S7.
The HEXXHmotif in its C-terminal domain had led to its designa-

tion as a putative zinc-dependentmetallopeptidase, and herewe

present the crystal structure of this domain, which confirms this

classification. Our phylogenetic analyses of VgrG2bC-ter-like pro-

teins also find the corresponding genewithin T6SS loci of diverse

proteobacteria. It is frequently annotated as DUF4157, which

corresponds to a small domain of approximately 80 residues en-

compassing the HEXXH motif. Our data show that mutations in

the catalytic site abrogate the antibacterial activity, although

we were unable to identify direct cleavage of a substrate by

VgrG2b.
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Our characterization of VgrG2bC-ter as

an antibacterial toxin is supported by the

recent description of the ACIAD0053 pro-

tein fromA.baylyi (Ringel et al., 2017). This

study showed that anA. baylyi strain lack-

ing ACIAD0053-ACIAD0054 can be elim-

inated by its parent, leading to the desig-

nation of the locus as encoding a type VI

metallopeptidase effector-immunity pair,

Tpe1-Tpi1. We have additionally demon-

strated that similar to VgrG2bC-ter, Tpe1

exerts its activity in the periplasm,

whereas the cognate immunity protein

Tpi1 resides in the inner membrane. The

ortholog of this immunity determinant in

S. arizonae is an outermembrane lipopro-

tein, but in both cases, the bulk of the

immunity protein is exposed to the peri-

plasm; accordingly, we also observe

PA0261 of P. aeruginosa localizing to

this compartment. It is therefore fitting to

propose that the VgrG2bC-ter-PA0261

family of metallopeptidase effector-im-

munity pairs constitutes members of the

Tpe-Tpi family.

In our study, we revealed the differing

ability of VgrG2bC-ter and the A. baylyi
toxin Tpe1 to intoxicate E. coli. Work by Ringel and colleagues

demonstrated Tpe1 toxicity in A. baylyi under standard labora-

tory conditions but failed to see an impact on E. coli (Ringel

et al., 2017). We corroborate this observation under standard

laboratory conditions but find that a defect in E. coli growth is eli-

cited by Tpe1 in conditions of low salinity, implying that osmolar-

ity, or salt per se, may regulate its action. Recently, a study of

effector synergy within a delivered payload indicates that condi-

tional efficacy is a common phenomenon among T6SS toxins;

thus, toxin efficiency should be considered in the context of

the whole T6SS-delivered payload (LaCourse et al., 2018;



Shneider et al., 2013). It may be that the biochemical action of

Tpe1 is inhibited by moderate salinity, or rather its target is regu-

lated by this condition. Alternatively, this experimental setupmay

simply reflect a more environmentally relevant condition and

imply that VgrG2bC-ter is amore robust enzyme. Salinity is known

to regulate periplasmic proteins such as peptidoglycan biosyn-

thetic enzymes, presenting the possibility that these toxins

may interact with different members of a family of peptidoglycan

remodeling enzymes such as penicillin-binding proteins (PBPs)

or lytic transglycosylases (LTases) (Möll et al., 2015; Palomino

et al., 2009). Indeed, P. aeruginosa, A. baylyi, and E. coli possess

differing quotas of these peptidoglycan hydrolases, rendering

species-dependent nuances in substrate targeting an attractive

hypothesis (Dik et al., 2017; Pazos et al., 2017).

We observed bulge formation at sites of septation resulting

from the activity of VgrG2bC-ter. Recently, a T6SS effector inhib-

iting bacterial cell division was described in Serratia proteama-

culans, for which ADP ribosylation of the essential cell division

protein FtsZ prevents Z-ring formation, causing bacterial elonga-

tion because of inhibition of septation (Ting et al., 2018). The cell

division defect mediated by VgrG2bC-ter that we observe ap-

pears to be distinct, characterized by midcell blebbing. This is

reminiscent of the inhibition of the cell wall biosynthesis machin-

eries by b-lactam antibiotics, in which the balance of peptido-

glycan growth and degradation is disrupted, causing severe

morphological aberrations and cell lysis (Cho et al., 2014; Dik

et al., 2019; Templin et al., 1992). Class A PBPs possess trans-

peptidase (TPase) and glycosyltransferase activities to incorpo-

rate new monomers into the sacculus, and these biosynthetic

processes are coordinated with the degradative action of en-

zymes such as LTases, amidases, and carboxypeptidases

(CPases), which modify the peptidoglycan to regulate its growth

and permit septation of daughter cells (Egan et al., 2017). These

enzymes form large complexes, whose subcellular localization

often regulates their activities, and dysregulation of this process

usually results in lysis. For example, the recruitment to midcell

and subsequent activity of the TPase LdtD requires the

concerted actions of PBP5, PBP6a, and PBP1b to facilitate sep-

tation under certain stress conditions, the latter of which is also

associated with LTases MltA and MltG and is recruited to the

septum by the lipoprotein LpoB (Hugonnet et al., 2016; Montón

Silva et al., 2018; Morè et al., 2019; Paradis-Bleau et al., 2010;

Typas et al., 2010; Vollmer et al., 1999; Yunck et al., 2016). Simi-

larly, perturbation of the localization of EnvC and NlpD to the di-

vision site, which controls the activity of amidases required for

separation of daughter cells, results in septation failure (Tsang

et al., 2017; Uehara et al., 2009, 2010).

Consequently, it is thought that functional redundancy may

help to insulate this crucial process from environmental insults,

and correspondingly, individual deletions in LTases and many

PBP genes often do not produce phenotypic changes, because

the enzymes display partially overlapping functions for robust

control of cell division in changing conditions (Denome et al.,

1999; Heidrich et al., 2002; Pazos et al., 2017; Peters et al.,

2016). Our pull-down assays identified the membrane-associ-

ated LTase MltC and the D,D-CPases PBP5 and PBP6a as

possible interaction partners of VgrG2bC-ter, yet individually

they are dispensable for effector-mediated toxicity, potentially
as a consequence of built-in redundancy. The precise biochem-

ical activities and functions of these peptidoglycan biosynthetic

enzymes have only started to be unraveled (Artola-Recolons

et al., 2014; Dijkstra and Keck, 1996; Meiresonne et al., 2017;

Peters et al., 2016), so further work is required to establish their

relevance during intoxication by the T6SS.

We found that VgrG2bC-ter depletes several lipoproteins from

membranes, implying broad target specificity by associating

with the lipidated linker region of these proteins. We speculate

that the activity VgrG2bC-ter may disrupt the localization of lipo-

proteins associated with cell envelope maintenance such as

membrane-associated LTases, the cell wall anchoring protein

Lpp, or components of the Lol and Bam machineries, thereby

perturbing bacterial cell division. Targeting of lipidated sub-

strates has been described for bacterial effectors of the type III

secretion system, namely, YopT of Yersinia enterocolitica and

IpaJ of Shigella flexneri. These proteases are delivered into

host cells, where they cleave the isoprenyl and N-myristoyl an-

chors of small guanosine triphosphatases (GTPases), respec-

tively, to disrupt host cell signaling and facilitate bacterial survival

(Burnaevskiy et al., 2013; Shao et al., 2002). Indeed, these effec-

tors target specific families of GTPases during infection, rather

than a single protein; thus, the notion of target promiscuity for

VgrG2bC-ter has an intriguing precedent (Burnaevskiy et al.,

2015; Fueller and Schmidt, 2008).

In summary, we find that besides its described role in invasion

of eukaryotic cells, the evolved VgrG2b spike protein of

P. aeruginosa has a direct role in bacterial antagonism. Given

the vast dissimilarity between host microtubule manipulation

and bacteriolytic activity, reconciliation of VgrG2b metallopepti-

dase dual role warrants further work to shed light on the activity

of this effector within eukaryotic systems. In prokaryotes, the

C-terminal metallopeptidase domain elicits acute toxicity when

targeted to the periplasmic space, resulting in dysregulation of

bacterial morphology and cell lysis. The prevalence of this family

of T6SS effector proteins suggests conservation of its target, so

elucidation of its antibacterial mechanism may help progress

both our knowledge of bacterial cell division and how to target

this process with therapeutic compounds.
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gins, L.T., He, J., Saucier, M., Déziel, E., et al. (2006). Genomic analysis reveals

that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 7,

R90.

Leiman, P.G., Basler, M., Ramagopal, U.A., Bonanno, J.B., Sauder, J.M., Pu-

katzki, S., Burley, S.K., Almo, S.C., and Mekalanos, J.J. (2009). Type VI secre-

tion apparatus and phage tail-associated protein complexes share a common

evolutionary origin. Proc. Natl. Acad. Sci. USA 106, 4154–4159.

Li, J., Yao, Y.F., Xu, H.H., Hao, L., Deng, Z., Rajakumar, K., and Ou, H.Y.

(2015). SecReT6: a web-based resource for type VI secretion systems found

in bacteria. Environ. Microbiol 17, 2196–2202.

Lin, J., Zhang, W., Cheng, J., Yang, X., Zhu, K., Wang, Y., Wei, G., Qian, P.-Y.,

Luo, Z.-Q., and Shen, X. (2017). A Pseudomonas T6SS effector recruits PQS-

containing outer membrane vesicles for iron acquisition. Nat. Commun. 8,

14888.

Lossi, N.S., Dajani, R., Freemont, P., and Filloux, A. (2011). Structure-function

analysis of HsiF, a gp25-like component of the type VI secretion system, in

Pseudomonas aeruginosa. Microbiology 157, 3292–3305.
Cell Reports 29, 187–201, October 1, 2019 199

http://refhub.elsevier.com/S2211-1247(19)31156-8/sref22
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref22
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref22
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref22
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref23
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref23
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref23
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref24
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref24
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref24
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref25
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref25
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref25
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref25
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref26
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref26
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref27
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref27
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref28
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref28
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref28
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref28
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref29
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref29
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref30
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref30
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref30
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref30
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref30
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref31
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref31
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref31
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref31
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref32
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref32
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref32
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref33
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref33
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref33
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref34
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref34
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref35
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref35
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref35
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref35
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref36
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref36
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref36
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref36
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref36
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref37
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref37
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref38
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref38
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref38
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref38
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref39
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref39
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref39
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref39
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref40
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref40
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref41
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref41
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref42
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref42
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref42
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref42
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref42
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref43
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref43
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref43
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref43
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref44
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref44
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref44
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref45
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref45
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref45
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref45
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref46
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref46
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref46
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref46
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref47
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref47
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref47
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref48
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref49
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref49
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref49
https://doi.org/10.1093/bib/bbx108
https://doi.org/10.1093/bib/bbx108
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref51
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref51
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref52
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref52
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref52
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref52
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref53
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref53
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref53
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref54
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref54
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref54
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref55
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref55
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref55
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref56
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref56
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref56
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref56
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref57
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref57
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref57
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref57
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref58
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref58
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref58
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref59
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref59
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref59
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref59
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref60
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref60
http://refhub.elsevier.com/S2211-1247(19)31156-8/sref60


MacIntyre, D.L., Miyata, S.T., Kitaoka, M., and Pukatzki, S. (2010). The Vibrio

cholerae type VI secretion system displays antimicrobial properties. Proc.

Natl. Acad. Sci. USA 107, 19520–19524.

Mariano, G., Monlezun, L., and Coulthurst, S.J. (2018). Dual Role for DsbA in

Attacking and TargetedBacterial Cells during Type VI Secretion System-Medi-

ated Competition. Cell Rep. 22, 774–785.

Mavridou, D.A.I., Ferguson, S.J., and Stevens, J.M. (2012). The interplay be-

tween the disulfide bond formation pathway and cytochrome c maturation in

Escherichia coli. FEBS Lett. 586, 1702–1707.

McCarthy, R.R., Mazon-Moya, M.J., Moscoso, J.A., Hao, Y., Lam, J.S., Bordi,

C., Mostowy, S., and Filloux, A. (2017). Cyclic-di-GMP regulates lipopolysac-

charide modification and contributes to Pseudomonas aeruginosa immune

evasion. Nat. Microbiol. 2, 17027.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C.,

and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Cryst. 40,

658–674.

Meberg, B.M., Sailer, F.C., Nelson, D.E., and Young, K.D. (2001). Reconstruc-

tion of Escherichia coli mrcA (PBP 1a) mutants lacking multiple combinations

of penicillin binding proteins. J. Bacteriol. 183, 6148–6149.

Meiresonne, N.Y., van der Ploeg, R., Hink, M.A., and den Blaauwen, T. (2017).

Activity-Related Conformational Changes in d,d-Carboxypeptidases Re-

vealed by In Vivo Periplasmic Förster Resonance Energy Transfer Assay in

Escherichia coli. MBio 8, 1–18.

Miller, V.L., and Mekalanos, J.J. (1988). A novel suicide vector and its use in

construction of insertion mutations: osmoregulation of outer membrane pro-

teins and virulence determinants in Vibrio cholerae requires toxR.

J. Bacteriol. 170, 2575–2583.
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E. coli 1047 pRK2013 Hachani et al., 2014 N/A

E. coli XL1-Blue Agilent Cat#200249

E. coli MC4100 Casadaban, 1976 N/A

E. coli MC1061 Casadaban and Cohen, 1980 N/A

E. coli CS703/1 Meberg et al., 2001 N/A

E. coli MC1000 Mavridou et al., 2012 N/A

E. coli MC1000 dsbA::Km Mavridou et al., 2012 N/A

E. coli BW25113 Keio collection N/A

E. coli BW25113DmltC Keio collection N/A

E. coli BW25113DdacA Keio collection N/A

E. coli BW25113DdacC Keio collection N/A

Acinetobacter baylyi ADP1 Suzana Salcedo N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Arabinose Sigma Aldrich Cat#A3256

Cellosyl (Gift from Hoechst, Germany) N/A

FM1-43 ThermoFisher Cat#T3163

HA Peptide Sigma Aldrich Cat#11666975001

IPTG Melford Cat#MB1008

Lysozyme Roche Cat#10837059001

Proteinase K QIAGEN Cat#19131

Thrombin Protease Sigma Aldrich Cat#GE27-0846-01

VgrG4bC-ter Allsopp et al., 2017 N/A

X-gal Melford Cat#M1001

Critical Commercial Assays

SuperSignal West Pico PLUS Chemiluminescent Substrate ThermoFisher Cat#34580

Deposited Data

VgrG2bC-ter crystal structure This paper PDB: 6H56

VgrG2bC-ter crystal diffraction data This paper Zenodo: 10.5281/zenodo.3246345

Oligonucleotides

See Table S4 for full list of primers N/A

Recombinant DNA

pBBR1-MCS-4 Kovach et al., 1995 N/A

pBBR1-MCS-4-tssE2-his6 This paper N/A

pET28a Novagen Cat#69864

pET28a-vgrG2bC-ter This paper N/A

pET28a-vgrG2bC-ter (E936A) This paper N/A

pET28a-mltC This paper N/A

pET28a-lolB This paper N/A

pET28a-rcsF This paper N/A

pTat This paper N/A

pTat-vgrG2bC-ter-myc This paper N/A

pTat-vgrG2bC-ter (E936A)-myc This paper N/A

pET22b Novagen Cat#69744

pET22b-PA0261-HA This paper N/A

pET22b-tli4-HA This paper N/A

pBBR1-MCS-5 Kovach et al., 1995 N/A

pBBR1-MCS-5-PA0261-HA This paper N/A

pBBR1-MCS-5-PA0261(no SP)-HA This paper N/A

pBBR1-MCS-5-tli3-HA Wood et al., 2019 N/A

pTat-ACIAD0053-FLAG This paper N/A

pTat-ACIAD0053*-FLAG This paper N/A

pET22b-SARI_02726-HA This paper N/A

pET22b-ACIAD0054-HA This paper N/A

pET22b-vgrG2aC-ter-strepII This paper N/A

pET22b-vgrG2bC-ter (E936A) This paper N/A

pET22b-vgrG2bC-ter (E936A)-strepII This paper N/A

pSCrhaB2-CV Cardona and Valvano, 2005 N/A

pSCrhaB2-CV-peri-vgrG2b(847-1019)PA14 This paper N/A

pSCrhaB2-CV-peri-vgrG2b(847-1019) PA14 (H935A) This paper N/A

pSCrhaB2-CV-peri-vgrG2b(847-1019) PA14 (E936A) This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

pSCrhaB2-CV-peri-vgrG2b(847-1019) PA14 (H939A) This paper N/A

pPSV39-CV Silverman et al., 2013 N/A

pPSV39-CV-PA14_03210 (PA0261PA14) This paper N/A

Mini-CTX-lacZ Becher and Schweizer, 2000 N/A

pEXG2 Rietsch et al., 2005 N/A

pEXG2-DPA14_52570 (rsmAPA14) This paper N/A

pEXG2-DPA14_20290 (amrZPA14) This paper N/A

pEXG2-DPA14_03210 (PA0261PA14) This paper N/A

pEXG2-DPA14_03210-20 (vgrG2bPA0261PA14) This paper N/A

pEXG2-DPA14_42980 (clpV2PA14) This paper N/A

pKNG101 Kaniga et al., 1991 N/A

pKNG101-DrsmA Allsopp et al., 2017 N/A

pKNG101-DtssE2 Wettstadt et al., 2019 N/A

pKNG101-DvgrG2b Wood et al., 2019 N/A

pKNG101-DvgrG2bPA0261 This paper N/A

Software and Algorithms

Prism 8.0 Graphpad https://www.graphpad.com/scientific-

software/prism/

FIJI Schindelin et al., 2012 https://fiji.sc/

PyMol Schrödinger https://pymol.org/2/

COOT Emsley et al., 2010 https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alain

Filloux (a.filloux@imperial.ac.uk). All reagents generated in this work shall be shared upon request without restrictions.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains were grown at 37�C in lysogeny broth (LB) with agitation unless stated otherwise. All cultures were supplemented

with antibiotics and other supplements where necessary. The following antibiotic concentrations were employed for E. coli: 50 mg/ml

kanamycin, 50 mg/ml ampicillin, 50 mg/ml streptomycin, 34 mg/ml chloramphenicol, 15 mg/ml tetracycline, 200 mg/ml trimethoprim and

15 mg/ml gentamicin. For P. aeruginosa, 50 mg/ml gentamicin, 2 mg/ml streptomycin, 50 mg/ml tetracycline and 100 mg/ml carbeni-

cillin were used. Deletion mutants were constructed as previously described (Vasseur et al., 2005). Briefly, splicing by overlap exten-

sion polymerase chain reaction (PCR) was used to generate DNA fragments of regions of the P. aeruginosa genome with in-frame

gene deletions introduced, whichwere cloned into the suicide vector pKNG101. After mobilisation intoP. aeruginosa by three-partner

conjugation from E. coliCC118lpir and with the 1047 pRK2013 helper strain, selection of conjugants was achieved on Vogel-Bonner

medium (20 mM magnesium sulfate heptahydrate, 200 mg anhydrous citric acid, 1 g potassium phosphate dibasic and 350 mg

ammonium sodium phosphate dibasic tetrahydrate) supplemented with 1.5% (w/v) agar and 2 mg/ml streptomycin. Counter-selec-

tion on solid LBmedium containing 20% (w/v) sucrose at ambient temperature for 72 h lead to plasmid excision and generation dou-

ble recombinants. All mutants were confirmed by PCR and sequencing.

METHOD DETAILS

Secretion assays and immunoblot analysis
P. aeruginosa secretion assays were conducted as previously described (Allsopp et al., 2017) with the following modifications. Cul-

tures were inoculated into 25 mL tryptic soy broth (TSB) at OD600 0.1 and grown for 8 h at 25�C with agitation. Supernatants were

cleared of cells by four rounds of centrifugation at 4000 g at 4�C, successively taking the uppermost supernatant. Proteins were

precipitated with 10% trichloroacetic acid supplemented with 0.03% sodium deoxycholate overnight at 4�C. Separation of protein

samples by SDS-PAGE and subsequent immunoblot analysis was conducted as previously described (Hachani et al., 2011) with the

exception of culture supernatants being loaded at 20x concentrated in comparison to the whole cell extracts.
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Here, bacterial culture samples were normalized to anOD600 1.0. Gels containing 6%, 8%, 10%, 12%or 15%polyacrylamidewere

used to separate protein samples by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in Tris-glycine-SDS buffer (0.3% (w/v)

Tris, 1.44% (w/v) glycine, 0.01% (w/v) SDS) at 180 V, depending on the size resolution desired. Gels were prepared using Mini-

PROTEAN Tetra handcast systems (BioRad) and the Precision Plus Protein Kaleidoscope Prestained Protein Standards marker

(Bio-Rad) was loaded to show the migration of molecular weight standards. Samples were stained with Coomassie Brilliant Blue

R250 (Sigma) or subjected to immunoblotting. For immunoblot analysis, protein samples were transferred to 0.2 mm nitrocellulose

membrane (Amersham Biosciences) after incubation in transfer buffer (10% (v/v) Tris-glycine-SDS buffer, 20% (v/v) ethanol) using

a TransBlot SD semi-dry transfer cell (BioRad) at 24 V and 0.18 A for 44 min. Membranes were blocked using a solution of 5%

(w/v) skimmed milk powder (Sigma), 50 mM Tris-HCl pH 8.0, 150 mM NaCl and 0.1% (v/v) Tween-20 for 1 h before the addition

of primary antibodies. Primary antibodies were used at 1/1000 dilutions in blocking buffer overnight at 4�C, aside from anti-RpoB

and anti-PhoE, which were used at 1/5000 and 1/2000, respectively. Membranes were washed in blocking buffer lacking milk three

times before the addition of horseradish peroxidase-conjugated secondary antibodies for 45 min at room temperature. Secondary

antibodies were used at 1/5000 dilution. Membranes were once again washed three times before development using SuperSignal

West Pico Chemiluminescent substrate (ThermoFisher) and imaging using a LAS-3000 imager (Fujifilm).

Protein purification
Purification of proteins was performed as described previously (Allsopp et al., 2017). Briefly, E. coli BL21 (lDE3) pET28a-vgrG2bC-ter

or pET28a-vgrG2bC-ter (E936A) were grown in terrific broth at 37�C for 2 h prior to induction of gene expression by addition of 1 mM

isopropyl-b-D-thiogalactopyranoside (IPTG) and growth overnight at 18�C. B834 (lDE3) was the host for selenomethionine incorpo-

ration. Cell harvesting and protein purification was done as described, but without protease inhibitors. The C-terminal hexahistidine

tagwas cleaved by thrombin protease (SigmaAldrich) and dialysed into low imidazole buffer (50mMTris-HCl pH 8.0, 500mMsodium

chloride, 20 mM imidazole) before separation from non-cleaved protein on a Ni2+-NTA column in the flow-through fractions. Proteins

were concentrated in AmiconUltra Centrifugal Filter Units (Millipore) before further purification by SEC using a Superdex S200 10/300

GL column (GE Healthcare). Purity of elution fractions was determined by Coomassie staining of proteins separated by SDS-PAGE.

Crystallization experiments and structure determination
Purified VgrG2bC-ter was concentrated to 12mg/ml and centrifuged for 20minutes at 4�C to remove dust and aggregates. The protein

was crystallized by vapor diffusion at 20�C,with small crystals growing in 100Mmbis-tris pH 6.5 and 45%polypropylene glycol P400.

Their space group was P31 and they diffracted to 3.2 Å. The structure was solved by experimental phasing, whereby crystals of se-

lenomethionylated protein were grown in 100 mM sodium citrate pH 4.7, 20 mM magnesium chloride, 50 mM sodium chloride and

29% PEG400. These crystals had space group P4212 and diffracted to 3.0 Å. Data were collected at the beamlines i02 and i04 of

Diamond Light Source (Didcot, UK) from crystals flash-frozen in liquid nitrogen without additional cryoprotection. Diffraction data

from both experiments can be downloaded from Zenodo (https://doi.org/10.5281/zenodo.3246345). Data were processed in XDS

(Kabsch, 2010). The structure was solved by single anomalous dispersion based on the selenomethionine signal, although due to

limited resolution and low anomalous signal, four datasets were combined in Blend (Foadi et al., 2013) to determine the anomalous

substructure in SHELX (Sheldrick, 2010). A partial model comprising secondary structure elements was built by phenix.autobuild

over several rounds of rebuilding and refinement before being used for molecular replacement with the P31 dataset in Phaser (McCoy

et al., 2007). The new model was rebuilt in Coot and refined in Refmac5 (Murshudov et al., 2011), phenix.refine (Adams et al., 2010)

and Buster-TNT (Blanc et al., 2004) until convergence. The crystallographic statistics are summarized in Table S1. Interface analysis

was performed on the Proteins, Interfaces, Structures and Assemblies (PISA) server while molecular graphics figures were prepared

with PyMol (Schrödinger).

Differential scanning fluorimetry
Analysis of the thermal stability of recombinant VgrG2bC-ter protein in the presence and absence of zinc ions was determined using a

Mx3005P qPCR instrument (Agilent). VgrG2bC-ter was used at 1.25 mM, in a buffer of 10 mM HEPES pH 7.4 and 100 mM NaCl sup-

plemented with zinc acetate as indicated. The fluorescent dye SyproOrange (Sigma Aldrich) was used at a 1/1000 dilution and the

thermal unfolding of VgrG2bC-ter was monitored between 25-98�C at a rate of 1.5K/min. Excitation occurred at 492 nm and emission

fluorescence at 610 nmwasmeasured every 40 s. Non-linear least-squares fitting (Kemmer and Keller, 2010) was used to analyze the

raw data and the melting point of each sample was determined from the inflection point of the fitted curve.

SEC-MALLS
The oligomeric state of recombinant VgrG2bC-ter was determined using SEC-MALLS and refractometry. VgrG2bC-ter was loaded onto

a Superdex 75 10/30 column (GE Healthcare) and separated at 20�Cwith a flow rate of 0.5 ml/min. MALLS detection was performed

with a miniDAWN TREOS detector (Wyatt Technology) using a laser emitting at 657.3 nm. The refractive index of the solution was

measured with an Optilab T-rEX detector (Wyatt Technology) with the refractive-index increment (dn/dc) set to 0.185 ml/g.

Weight-averaged molar masses were calculated using ASTRA software (Wyatt Technology).
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Bacterial competition assays
The P. aeruginosa strains used in intraspecies competitions were differentiated by integration of Mini-CTX-lacZ at the chromosomal

att site of the prey strains, permitting blue/white screening on 5-bromo-4-chloro-3-indolyl-D-galactopyranoside (X-gal)-containing

solidmedia. Bacteria were grown overnight in 5mL LBwith appropriate antibiotics before normalization to anOD600 3.0 in 1mL sterile

PBS. Attacker and prey strains were mixed at a 1:1 ratio and 5 ml competition drops were spotted onto dry 3% low salt LB agar (10 g

bactopeptone, 5 g yeast extract, 30 g bacteriological agar per liter). After drying, competitions were incubated at 25�C for 24 h. Both

the input and output of competition spots were serially diluted in PBS and plated on LB containing 100 mg/ml X-gal for enumeration of

colony forming units (CFU). The competitive index was calculated as the ratio between the input and output attacker/prey ratios. For

self-intoxication assays on solid media, overnight cultures of P. aeruginosa strains were normalized and spotted onto nitrocellulose

membrane on 3% LB agar containing gentamicin and 300 mM IPTG. CFUs were enumerated after 18 hours of growth at 25�C. For the
corresponding growth curves in liquid media, overnight cultures were back-diluted 200-fold into LB broth containing gentamicin and

300 mM IPTG. Cultures were grown at 25�C with agitation in a 96-well plate, and OD600 readings were taken every 30 minutes for

18 hours using a Synergy 4 Microplate Reader (Biotek Instruments).

Bacterial intoxication assays
E. coli DH5a was transformed with pTat plasmids harboring variants of T6SS metallopeptidase genes to target the gene products to

the periplasmic space and BL21 (lDE3) was the host when pET28a and pET22b plasmids were used. Investigation into the role of cell

wall biosynthetic enzymes employed the corresponding deletion strains and the BW25113 parent strain from the Keio collection as

hosts (Baba et al., 2006). The host for the peri-vgrG2b(847-1019) plasmids was E. coli XL1-Blue harboring the immunity gene under a

leaky promoter, since the presence of the plasmid containing thewild-type peri-vgrG2b(847-1019) construct was otherwise not toler-

ated. Overnight cultures of the strains harboring the vectors of interest were grown in LB, normalized and serially diluted. Dilutions

were spotted on LB agar containing inducer (100 mM IPTG, 0.2% arabinose or 0.3% rhamnose) or repressor (0.2% glucose). To

modify the osmolality of solid media, low tonicity was achieved with low salt LB agar, while to raise it LB agar was supplemented

with 500 mM sucrose.

Subcellular fractionation of bacterial cells
The localization of proteins within bacterial cells was probed by membrane fractionation and periplasmic extraction procedures. To

extract the periplasm, E. coli cells producing the proteins of interest were normalized to OD600 20 and resuspended in 200 ml sphe-

roplast buffer (200 mM Tris-HCl pH 8.0, 500 mMEDTA, 500 mM sucrose) to which 50 mg hen egg-white lysozyme (Roche) was added

and incubated at 4�C for 15 min. To this, 720 ml half-strength spheroplast buffer was added and incubated for a further 15 min to

release the periplasmic contents. Centrifugation at 5000 g at 4�C for 5 min separated the spheroplasts from the periplasmic fraction.

To assess the presence of proteins in the inner and outer membranes, E. coli cultures were resuspended in sonication buffer (50 mM

Tris-HCl pH 8.0, 1 mMEDTA) and lysed using a Vibra-Cell sonicator (Sonics &Materials, Inc.) on ice. Centrifugation at 4000 g cleared

the soluble fraction from the cellular debris before ultracentrifugation at 100 000 g for 1 h at 4�C pelleted the total membrane fraction.

After washing the membranes with sonication buffer, solubilisation buffer (15 mM Tris-HCl pH 7.4, 2% sodium lauroyl sarcosinate)

was added to differentially solubilise the inner and outer membrane proteins before further ultracentrifugation to pellet the insoluble

outer membrane protein fraction. The membrane fractions were separated, and the pellet was washed with solubilisation buffer. All

fractions were normalized prior to analysis by SDS-PAGE.

Far-western dot blot analysis
Protein-protein interactions were probed by far-western dot blotting as described previously (McCarthy et al., 2017). Briefly, 10 mg

purified protein of interest or HA peptide (Sigma Aldrich) was spotted onto nitrocellulose membrane and air-dried before blocking.

Lysates of E. coli strains producing the prey proteins with C-terminal HA tags were obtained by sonication and normalized to OD600

10 in protein binding buffer (20mMTris-HCl pH 7.6, 100mMsodium chloride, 10%glycerol, 0.1%Tween-20, 2% skimmedmilk pow-

der). Membranes were incubated with the lysates or protein binding buffer overnight at 4�C prior to washing three times and immu-

noblotting for the bait and prey proteins.

Turbidometric and colorimetric analysis of VgrG2b activity
Generic protease activity of 10 mg recombinant VgrG2bC-ter, its inactive mutant and a proteinase K control was assessed using 1%

proteinaceous substrates bovine serum albumin and gelatin in 2% bacteriological agar plates. After incubation at 37�C for 24 h,

plates were stained with amido black solution (Vermelho et al., 1996) to visualize zones of proteolysis. Lysozyme activity of recom-

binant proteins utilized the lyophilised substrate Micrococcus lysodeikticus (Sigma Aldrich) as previously documented (Lossi et al.,

2011). The polymyxin B-mediated permeabilisation of the bacterial outer membrane to permit access of exogenous proteins to the

periplasmic space was performed as described elsewhere (Brooks et al., 2013), except E. coli was employed. E. coli DH5a was re-

suspended in turbidometry buffer (50 mM Tris-HCl pH 8.0, 150 mMNaCl) at OD600 0.2 and incubated with 4 mg/ml polymyxin B. After

addition of 10 mg purified protein, the turbidity at OD600 was monitored at five-minute intervals for 1 h.
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Zymography
Peptidoglycan was purified from 500 mL E. coli MC4100 culture for zymographic analysis as described elsewhere (Brooks et al.,

2013; Santin and Cascales, 2017). Briefly, 10 mg purified protein was separated by SDS-PAGE in gels impregnated with 0.1% pepti-

doglycan before the gel was washed with ddH2O and equilibrated in renaturation buffer (10 mM Tris-HCl pH 7.5, 10 mM zinc acetate,

0.1% Triton X-100). Renaturation of the proteins occurred overnight at 37�C and after washing the peptidoglycan was stained with

methylene blue (0.1% methylene blue, 0.01% potassium hydroxide) to visualize zones of clearing corresponding to peptidoglycan

hydrolase activity.

Peptidoglycan hydrolase assay
Peptidoglycan was isolated from E. coli MC1061 (Casadaban and Cohen, 1980) and CS703/1 (Meberg et al., 2001) strains as

described previously (Glauner, 1988). Briefly, E. coli cultures were grown to mid-exponential phase before centrifugation to pellet

the cells. Cell membranes were solubilised by adding the cells in ice-cold water drop-wise into a boiling 8% (w/v) SDS solution under

agitation. After cooling overnight, cell sacculi were collected by centrifugation at 130 000 g for 1 h at room temperature and washed

four times to remove residual SDS. Glycogen and covalently-linked proteins were released by treatment with amylase and pronase,

respectively, before boiling in SDS once more. Purified peptidoglycan was washed four more times in distilled water before resus-

pension in 20 mM sodium phosphate buffer pH 4.8. Reactions were carried out in 50 mM Tris-HCl pH 7.5 containing 150 mM NaCl,

0.05% Triton X-100 and 1mMZnCl2. Purified VgrG2bC-ter or VgrG2bC-ter (E936A) (5 mM) was incubated with 0.1 mg/ml purified pepti-

doglycan in a final volume of 100 ml for 4 h at 37�C in a thermoshaker at 850 rpm. Reactions were terminated by boiling the samples at

100�C for 10 min. Next, 20 ml of 20 mM sodium phosphate pH 4.8 and 1 mM cellosyl muramidase (kindly provided by Hoechst, Ger-

many) were added and incubated over night at 37�C. Samples were centrifuged at 13 000 rpm for 10 min and the supernatant con-

taining the soluble muropeptides was collected. Samples were reduced using sodium borohydride and adjusted to pH 4-5 before

reduced muropeptides were separated by reversed-phase HPLC (Glauner, 1988).

Microscopy techniques
E. coliDH5a harboring pTat plasmids were grown to OD600 0.5, resuspended in LB containing chloramphenicol, 0.2% arabinose and

5 mg/ml FM1-43 lipophilic dye, and 1 ml was spotted onto a coverslip under an agarose pad for microscopic analysis. Growth of bac-

teria was monitored every 30 min in a heated chamber at 37�C using an Axio Observer Z1 epifluorescent microscope (Zeiss). Image

processing and cell length measurements were performed with FIJI software. Analysis of P. aeruginosa cell morphology was con-

ducted similarly; however, competitions were initialised as described in the section ‘‘Bacterial competition assays.’’ To investigate

the role of DsbA in PA0261-mediated neutralisation of periplasmic VgrG2bC-ter, E. coli MC1000 or its dsbA mutant derivative

harboring the relevant plasmids were normalized to OD600 1 after overnight growth. Serial dilution followed and spots were plated

on LB agar containing the appropriate antibiotics in inducing or repressing conditions. Images of the spots were acquiredwith a Leica

M205FA stereomicroscope with a 1x objective and colony area measurements were also determined within FIJI software.

Mass spectrometry analysis
Mass spectrometry analysis was conducted by the Plateforme Protéomique Structurale et Fonctionelle at the Institut Jacques

Monod, Paris. Briefly, samples underwent on-bead digestion with 12.5 mg/ml sequencing-grade trypsin (Promega), before peptide

analysis on an Orbitrap Fusion Tribrid mass spectrometer coupled to an Easy-spray nanoelectrospray ion source and an Easy nano-

LC Proxeon 1000 liquid chromatography system (all Thermo Scientific). Chromatographic separation of the peptides was achieved

by an Acclaim PepMap 100 C18 pre-column and a PepMap-RSLC Proxeon C18 column at a flow rate of 300 nl/min. The solvent

gradient consisted of 95% solvent A (water, 0.1% (v/v) formic acid) to 35% solvent B (100% acetonitrile, 0.1% (v/v) formic acid)

over 98 minutes. An Orbitrap mass spectrometer analyzed the peptides in full ion scan mode, with the resolution set at 120 000

with am/zmass range of 350 - 1550. High energy collision-induced dissociation activation with a collisional energy of 28% permitted

fragment acquisition with the quadruple isolation width of 1.6 Da. The linear ion trap was employed in top-speedmode to acquire the

MS/MS data with a 50 s dynamic exclusion and a 1min repeat duration. Maximum ion accumulation times were set to 250ms for MS

acquisition and 60 ms for MS/MS acquisition in parallelisation mode. A MASCOT search server (Matrix Science, version 2.5.1) was

used in-house to identify the peptides. Here, amass tolerance of 7 ppmwas set for precursor ions and 0.5 Da for fragments. Identified

modifications included acetylation (N-terminal), oxidation (Met) and phosphorylation (Ser, Thr or Tyr), and two missed trypsin cleav-

age sites were permitted. The E. coli SwissProt database (August 2017) was searched using the MS/MS data, while searching the

P. aeruginosa database confirmed the presence of the bait proteins. A false-discovery rate of 1%was determined with the percolator

algorithm, below which the identities of peptides could be assigned.

Analysis of lipoprotein abundance
Overnight cultures of E. coli BL21 (lDE3) harboring pET28a-mltC, -lolB, rcsF or pET22b were back-diluted in LB containing the

appropriate antibiotics and construct expression was induced with 100 mM IPTG at OD600 0.4 for 3 h. Cells were harvested by centri-

fugation at 8 000 g for 3min and resuspended in lysis buffer (100mMTris-HCl pH 7.5, 50mMNaCl, 10 mMzinc acetate) for cell disrup-

tion by sonication. Lysates were clarified of cellular debris by sonication three times at 4 000 g for 15min at 4�Cbefore incubation with

10 mg VgrG2bC-ter or VgrG2bC-ter (E936A) at 37
�C for 1 h. Ultracentrifugation at 100 000 g for 1 h at 4�C separated the soluble and
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membrane fractions, to which Laemmli buffer was added for subsequent SDS-PAGE and immunoblot analysis. Production of MltC,

LolB and RcsF was monitored using antibodies against the C-terminal hexahistidine tag, while production of TEM-1 from pET22b

was detected using a monoclonal antibody. Densitometry was conducted in FIJI software.

Bioinformatic and phylogenetic analysis
Protein sequences were obtained from the non-redundant NCBI database using the BLASTp algorithm, alignments were done in Jal-

view using MAFTT and sequence logos were generated using the Weblogo server (Crooks et al., 2004; Katoh et al., 2017). The pre-

diction of bacterial lipoprotein signal peptides, type I signal peptides and transmembrane helices was undertaken using LipoP 1.0,

SignalP 4.1 and TMHMM server v2.0, respectively (Krogh et al., 2001; Nielsen, 2017). The search algorithm Jackhmmer (EMBL-EBI)

was used to search for homologs of the VgrG2b metallopeptidase domain. Three iterations querying the UniProtKB database were

conducted, retrieving 240 sequences. Sequences were aligned and MEGA7 was employed for phylogenetic analysis, using the

maximum-likelihood method of tree generation with 1000 bootstrap replicates (Kumar et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analyses described in this work were conducted using Prism 8.0 software (GraphPad) and the statistical parameters,

including sample sizes (where n indicates the number of independent biological replicates, technical replicates or bacterial cells),

p values and statistical tests performed are indicated in the relevant figure legends. The means of biologically independent replicates

were compared using the following statistical tests: Student’s t test, a one-way ANOVA followed by Dunnett’s or Tukey’s multiple

comparisons tests. The spread is reported with the standard error of themean (SEM), or by themedian and quartiles for pooled single

cell analyses.

DATA AND CODE AVAILABILITY

The accession numbers for the crystal structure and diffraction datasets of VgrG2bC-ter reported in this paper are PDB: 6H56 and

Zenodo: 10.5281/zenodo.3246346, respectively.
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Figure S1: The VgrG2b metallopeptidase exists as monomeric and dimeric species in solution and is 

stabilised by zinc. Related to Figure 2. 

A SEC-MALLS chromatogram of VgrG2bC-ter purified from E. coli. Solid lines show UV traces of fractions 

pooled from two peaks obtained after preparatory size-exclusion chromatography. Dashed lines across the peaks 

show the MALLS-derived apparent masses. The calculated weight-average molecular masses are 56.7 kD (left 

peak) and 29.1 kD (right peak) corresponding to the dimeric and monomeric species, respectively. 

B Thermostability of the purified VgrG2bC-ter domain in the presence of different concentrations of zinc ions as 

determined by calculation of the melting temperature using differential scanning fluorimetry. Individual points 

represent the mean of three technical replicates with error bars showing the SEM (n = 3 technical replicates). 

  



 



Figure S2: Characterisation of the VgrG2b-PA0261 effector-immunity pair family. Related to Figure 4. 

A Self-intoxication assay of P. aeruginosa on solid media. Viability of the indicated strains assessed by 

enumeration of colony forming units (CFU). Here, the parental strain is P. aeruginosa PA14ΔrsmAΔamrZ. A 

statistically significant difference in recovered prey versus the parental strain was determined using a one-way 

ANOVA followed by Dunnett’s multiple comparisons test (n = 3 biological replicates; * p < 0.05).  

B Self-intoxication assay of P. aeruginosa in liquid culture. Viability was measured by monitoring turbidity 

(OD600) in a 96-well format. The parental strain is the same as in panel A. Mean values are plotted from three 

biologically independent experiments, with error bars representing the standard deviation (n = 3). 

C The putative N-terminal signal peptide of PA0261. The upper panel shows the prediction output of the 

SignalP 4.1 server. The lower panel indicates the predicted signal peptide (in pink) and putative signal peptidase 

cleavage site within the sequence of the PA0261 polypeptide. 

D Immunoblot showing that both active and inactive VgrG2bC-ter variants are produced in E. coli from the pTat 

plasmids. Both isoforms are detected with anti-myc antibodies to a C-terminal tag. RpoB is a loading control. 

E E. coli periplasmic toxicity assay showing the requirement of the metallopeptidase catalytic triad. VgrG2b 

metallopeptidase constructs (residues 847-1019) were targeted to the periplasm by an N-terminal PelB signal 

peptide. Strains were serially diluted on solid media under inducing conditions. Image is representative of three 

independent experiments. 

F Plating efficiency of E. coli harbouring pTat, pTat-vgrG2bC-ter or pTat-vgrG2bC-ter (E936A) in hypertonic 

conditions (LB agar with 500 mM sucrose). Expression from the plasmid is repressed with 0.2% glucose or 

induced with 0.2% arabinose.  

G Targeting the A. baylyi VgrG2bC-ter metallopeptidase homologue ACIAD0053 to the E. coli periplasm using 

the TorA Tat-dependent signal peptide of the pTat vector. ACIAD0053* is the catalytic mutant of the effector 

where the HEMGH motif (residues 102-106) has been mutated to AAMGA. Plating efficiency of ten-fold 

serially diluted E. coli cultures on LB agar or low-salt LB agar (LB-LS) containing 0.2% arabinose inducer are 

shown. Image is representative of three independent experiments. 

H Immunoblot detecting the FLAG-tagged ACIAD0053 toxin and its inactive AAMGA variant (designated by 

the asterisk). RpoB is a loading control. 

  



 
 

 

Figure S3: Production of immunity proteins and purification of VgrG2bC-ter. Related to Figure 5. 

A Immunoblot showing the production of the Myc-tagged VgrG2bC-ter effector and HA-tagged immunity 

proteins expressed in E. coli. RpoB acts as a loading control. 

B and C SDS-PAGE analysis of recombinant VgrG2bC-ter (B) and VgrG2bC-ter (E936A) (C) elution after size-

exclusion chromatography following Ni2+-NTA affinity chromatography. Proteins were visualised by 

Coomassie staining. Fraction numbers are shown for each lane.



 

 

Figure S4: Alignment of immunity proteins in the PA0261 family. Related to Figure 5. 

Multiple sequence alignment of putative immunity proteins for metallopeptidase effectors of the VgrG2bC-ter family. Due to low sequence homology, the alignment was 

manually curated after initial alignment by MAFFT. Omitted residues are shown in grey and cysteine residues are highlighted with red boxes. Darker coloration of the 

residues reflects the increasing conservation of identity, with the scores for each position shown below the alignment.



 

 

 

 



Figure S5: Members of the PA0261 immunity protein family utilise diverse mechanisms to access the 

periplasmic compartment. Related to Figure 5. 

A Immunoblot analysis of the subcellular localisation of HA-tagged PA0261. RpoB is used as a marker of the 

soluble fraction (Sol), DsbA for the periplasm (PP), SecA for the inner membrane (IM) and PhoE for the outer 

membrane (OM). WCE: whole cell extract; TMF: total membrane fraction. Immunoblots are representative of 

three independent experiments. 

B Multiple sequence alignment of the N-terminal region of PA0261 orthologues within Enterobacteriaceae. The 

red box demarcates a putative lipobox sequence and the predicted signal peptidase II (SPII) cleavage site is 

marked. Light to dark grey shading indicates an increasing level of residue conservation. 

C and D Immunoblot of fractionated E. coli cells producing HA-tagged PA0261 orthologues from S. arizonae 

(SARI_02726; C) and A. baylyi (ACIAD0054; D). See panel A for details of fraction markers. 

E Model showing the subcellular localisation of the three metallopeptidase immunity proteins PA0261, 

SARI_02726 and ACIAD0054. These immunity determinants, depicted in green, are a soluble periplasmic 

protein, an outer membrane lipoprotein and an inner membrane protein, respectively. The periplasmic VgrG2bC-

ter-family metallopeptidase is represented as an orange circle. Immunoblots are representative of three 

independent experiments. 

 

  



 



Figure S6: VgrG2bC-ter displays no detectable peptidoglycan hydrolase or generic protease activity. 

Related to Figure 6. 

A Recombinant VgrG2bC-ter does not cause lysis of M. lysodeikticus as measured by turbidometry. Incubation 

with lysozyme acts as the positive control, while the buffer-only condition and addition of recombinant 

VgrG4bC-ter act as the negative controls. Points and error bars represent the mean ± SEM (n = 3 technical 

replicates). 

B Recombinant VgrG2bC-ter, VgrG2bC-ter (E936A), VgrG4bC-ter and lysozyme were assessed for peptidoglycan 

hydrolytic activity by zymography with a purified E. coli peptidoglycan substrate. Samples were run on a 12% 

SDS-PAGE gel containing 0.1% peptidoglycan and stained with a methylene blue solution to visualise zones of 

clearing, indicative of peptidoglycan hydrolysis. A Coomassie-stained gel acts as a loading control for the 

purified proteins. The arrows highlight the location of the band corresponding to VgrG2bC-ter. 

C 10 µg VgrG2bC-ter, VgrG2bC-ter (E936A) or proteinase K was spotted onto bacteriological agar plates 

containing 1% bovine serum albumin or gelatin. After incubation at 37 °C for 24 h, amido black staining was 

used to visualise zones of clearing indicative of proteolytic activity. 

D and E HPLC chromatograms showing the profiles of the major muropeptides (left panels) released from 

tetrapeptide-rich E. coli MC1061 (D) and pentapeptide-rich CS703/1 (E) sacculi after incubation with VgrG2bC-

ter, VgrG2bC-ter (E936A) or a buffer-only control. The composition of muropeptide species in control and assay 

reactions is also shown (right panels). 

F Structures of the muropeptides shown in panels D and E. Abbreviations: GlcNAc, N-acetylglucosamine; 

MurNAc(r), N-acetylmuramitol; L-Ala, L-alanine; D-Glu, D-glutamic acid; mDAP, meso-diaminopimelic acid; 

D-Ala, D-alanine. 

  



 
 

 

Figure S7: MltC, PBP5 and PBP6a individually dispensable for VgrG2bC-ter-mediated toxicity. Related to 

Figure 7. 

Plating efficiency of E. coli strains harbouring pTat vector, pTat-vgrG2bC-ter or pTat-vgrG2bC-ter (E936A). 

Strains are wild type BW25113, mltC, dacA (encoding PBP5) and dacC (encoding PBP6a) mutants. Serial 

dilutions assessed toxicity in repressive (0.2% glucose) and inducing (0.2% arabinose) conditions. Images are 

representative of three biological replicates. 

  



Table S1 

 

 VgrG2b (833-1013) 

Data processing 

Wavelength (Å) 0.9795 

Resolution Range (Å) 43.9 - 3.2 (3.42 - 3.2)a 

Space Group P31 

Unit Cell 

a, b, c (Å) 78.3, 78.3, 115.3 

α, β, γ (°) 90, 90, 120 

Total Reflections 45339 

Unique Reflections 12782 

Multiplicity 3.5 (3.6)a 

Completeness (%) 99.6 (99.9)a 

I/σI 12.5 (2.0)a 

dmin for I/sig(I) > 1.0 (Å) 3.1 

Wilson B-factor 123.5 

Rsym (%) 5.7 (46.2)a 

Model refinement 

R value 0.223 

Rfree 0.232 

Number of Atoms 2745 

Protein Residues 360 

Water Molecules 0 

Root-mean-square Deviations  

Bond lengths (Å) 0.009 

Bond angles (°) 1.01 

Ramachandran Favoured (%) 95.5% 

Ramachandran Outliers (%) 0 

Clash Score 4 

 

a. Values within parentheses denote the resolution of the highest resolution shell 

 

 

 

Table S1: Data collection and refinement statistics for the crystal structure of the VgrG2b 

metallopeptidase domain. Related to Figure 2. 
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Table S2 

 Pos 1 Pos 4 Pos 5 Pos 6 All data 

Data collection 

Wavelength (Å) 0.97949 

Oscillation width (°) 0.15 

Number of images 2400 9600 

Data processing 

Space group P 4 2 2 

Unit cell parameters 168.8, 79.37 169.4, 79.37 169.4, 79.20 168.7, 79.15 168.8, 79.37 

Resolution range (Å) 40-2.7 (2.86-

2.7)a 

40-2.8 (2.97-

2.8)a 

40-2.9 (3.07-

2.9)a 

40-2.8 (2.97-

2.8)a 

40-2.7 (2.85-

2.7)a 

Unique reflections 60251 (9706)a 54432 (8760)a 48913 (7849)a 53864 (8712)a 60184 (8967)a 

Multiplicity 14.0 (13.5)a 13.6 (12.1)a 13.7 (13.6)a 13.5 (12.2)a 49.3 (20.6)a 

Rmeas (lowest resolution) 0.073 0.061 0.071 0.079 0.095 

ISa 14.7 16.7 21.8 14.2 N/A 

Rmeas 0.323 (6.17)a 0.304 (9.26)a 0.413 (8.15)a 0.345 (6.53)a 0.381 (7.60)a 

Completeness 0.999 (0.998)a 0.999 (0.999)a 0.999 (0.997)a 1.000 (1.000)a 0.999 (0.999)a 

⟨I/σ(I)⟩ 6.66 (0.13)a 7.80 (0.16)a 7.38 (0.22)a 6.65 (0.23)a 9.91 (0.13)a 

CC1/2 0.997 (0.277)a 0.997 (0.124)a 0.996 (0.201)a 0.997 (0.256)a 0.999 (0.251)a 

dmin for I/sig(I) > 1.0 (Å) 3.0 3.1 3.2 3.1 3.0 

dmin for SigAnob > 1.0 (Å) 4.65 4.82 3.88 4.19 4.27 

 

a. Values within parentheses denote the resolution of the highest resolution shell 

b. SigAno = |F+-F-|/σ(F) 

 

 

 

Table S2: Data collection and processing statistics for crystals of selenomethionine-derivatised VgrG2b metallopeptidase 

domain. Related to Figure 2. 
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Table S3 

UniProt 

Accession 
Proteina 

Replicate 1 Replicate 2 Replicate 3 

Coverage 

(%) 

Unique 

Peptides 

MASCOT 

Score (a) 

MASCOT 

Score (b) 

Coverage 

(%) 

Unique 

Peptides 

MASCOT 

Score (a) 

MASCOT 

Score (b) 

MASCOT 

Score (c) 

Coverage 

(%) 

Unique 

Peptides 

MASCOT 

Score (a) 

MASCOT 

Score (b) 

MASCOT 

Score (c) 

Cell envelope 

Q9I6M7 
VgrG2bC-ter 

(E936A) 
88 26   14949 95 29 2014 24367 4989 92 26 298 8024 192 

P0C066 MltCd 62 12   489         35 6   103   

P76537 YfeYd 37 4   155 36 4   159   29 4 0 379 26 

P08506 PBP6a        58 14 46 455   44 15 30 172   

P0AEB4 PBP5        58 18 215 417   29 9 23 156 23 

P18392 RstB        13 4   237   17 5   203   

P0A938 BamEd 76 3   199         76 3 0 166   

P69778 Lppd 33 2 28 131 33 2 53 129   33 2 16 283 20 

A7ZKY3 LolBd 54 9   227         46 8   113   

P0AC04 BamDd        33 6 119 250   39 7   152   

P77774 BamBd        47 10 77 189   35 9 14 157   

P0A903 BamCd 22 5 14 153         46 9 45 129   

P0AAS1 YlaC        33 4 31 195   33 5   134   

Cytoplasmic 

P0ACZ8 CusR 52 11 326 824 45 7 72 251 211         

P13035 GlpD        69 28 56 1063   33 13 44 169 28 

P26616 MaeA 32 9 20 287 52 19 287 695           

P67095 YfcE        36 4 39 154 35 28 3 19 100 25 

P0AGK8 IscR 38 3 35 108 54 4 34 220 0         

P0AEZ1 MetF 23 5 58 117 20 4 40 133 61           

P00561 ThrA        30 13 49 224   13 8 34 136 40 

Cell envelope (below threshold) 

P69412 RcsFd 26 3  158      10 1  33  

 

a: BL21 pET22b-vgrG2bC-ter (E936A) 

b: BL21 pET22b-vgrG2bC-ter (E936A)-strepII 

c: BL21 pET22b-vgrG2aC-ter -strepII 

d: Lipoprotein
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Table S3: Interactome of VgrG2bC-ter (E936A) in the E. coli cell envelope. Related to Figure 7. 

The MASCOT scores indicate the enrichment of the proteins pulled down within the three independent replicates, presenting the 

interactome of periplasmic VgrG2bC-ter (E936A) in E. coli. Proteins localised in the cytoplasm were discounted as relevant 

interaction partners. The UniProt accession number, defining identity of interacting partners, is also shown alongside the 

coverage and the number of unique peptides found in each replicate. The MASCOT score corresponds to -10log(P), where P is 

the calculated probability that the observed match between the experimental data and the database sequence is a random event 

and serves as a statistical representation of the positive identification of the protein in the sample, with higher scores being more 

significant. Note that replicates were entirely independent so quantitative comparisons may not be conducted. 
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