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Abstract

We present a new challenging stance detection
dataset, called Will-They-Won’t-They1 (WT–
WT), which contains 51,284 tweets in English,
making it by far the largest available dataset
of the type. All the annotations are carried out
by experts; therefore, the dataset constitutes a
high-quality and reliable benchmark for future
research in stance detection. Our experiments
with a wide range of recent state-of-the-art
stance detection systems show that the dataset
poses a strong challenge to existing models in
this domain. The entire dataset is released for
future research2.

1 Introduction

Apart from constituting an interesting task on its
own, stance detection has been identified as a cru-
cial sub-step towards many other NLP tasks (Mo-
hammad et al., 2017). In fact, stance detection is
the core component of fake news detection (Pomer-
leau and Rao, 2017), fact-checking (Vlachos and
Riedel, 2014; Baly et al., 2018), and rumor verifi-
cation (Zubiaga et al., 2018b).

Despite its importance, stance detection suffers
from the lack of a large dataset which would allow
for reliable comparison between models. We aim
at filling this gap by presenting Will-They-Won’t-
They (WT–WT), a large dataset of English tweets
targeted at stance detection for the rumor verifi-
cation task. We constructed the dataset based on
tweets, since Twitter is a highly relevant platform
for rumour verification, which is popular with the
public as well as politicians and enterprises (Gor-
rell et al., 2019).

To make the dataset representative of a realis-
tic scenario, we opted for a real-world application

1https://en.wiktionary.org/wiki/will-they-won%27t-they
2https://github.com/cambridge-wtwt/

acl2020-wtwt-tweets

of the rumor verification task in finance. Specifi-
cally, we constructed the dataset based on tweets
that discuss mergers and acquisition (M&A) op-
erations between companies. M&A is a general
term that refers to various types of financial trans-
actions in which the ownership of companies are
transferred. An M&A process has many stages that
range from informal talks to the closing of the deal.
The discussions between companies are usually
not publicly disclosed during the early stages of
the process (Bruner and Perella, 2004; Piesse et al.,
2013). In this sense, the analysis of the evolution
of opinions and concerns expressed by users about
a possible M&A deal, from its early stage to its
closing (or its rejection) stage, is a process similar
to rumor verification (Zubiaga et al., 2018a).

Moreover, despite the wide interest, most re-
search in the intersection of NLP and finance has
so far focused on sentiment analysis, text mining
and thesauri/taxonomy generation (Fisher et al.,
2016; Hahn et al., 2018; El-Haj et al., 2018). While
sentiment (Chan and Chong, 2017) and targeted-
sentiment analysis (Chen et al., 2017) have an
undisputed importance for analyzing financial mar-
kets, research in stance detection takes on a crucial
role: in fact, being able to model the market’s per-
ception of the merger might ultimately contribute
to explaining stock price re-valuation.

We make the following three contributions.
Firstly, we construct and release WT–WT, a large,
expert-annotated Twitter stance detection dataset.
With its 51,284 tweets, the dataset is an order of
magnitude larger than any other stance detection
dataset of user-generated data, and could be used to
train and robustly compare neural models. To our
knowledge, this is the first resource for stance in the
financial domain. Secondly, we demonstrate the
utility of the WT–WT dataset by evaluating 11 com-
petitive and state-of-the-art stance detection models
on our benchmark. Thirdly, we annotate a further
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M&A Buyer Target Outcome

CVS_AET CVS Health Aetna Succeeded
CI_ESRX Cigna Express Scripts Succeeded
ANTM_CI Anthem Cigna Blocked
AET_HUM Aetna Humana Blocked
DIS_FOXA Disney 21st Century Fox Succeeded

Table 1: Considered M&A operations. Note that AET
and CI appear both as buyers and as targets.

M&A operation in the entertainment domain; we
investigate the robustness of best-performing mod-
els on this operation, and show that such systems
struggle even over small domain shifts. The en-
tire dataset is released to enable research in stance
detection and domain adaptation.

2 Building the WT–WT Dataset

We consider five recent operations, 4 in the health-
care and 1 in the entertainment industry (Table 1).

2.1 Data Retrieval

For each operation, we used Selenium3 to retrieve
IDs of tweets with one of the following sets of
keywords: mentions of both companies’ names or
acronyms, and mentions of one of the two compa-
nies with a set of merger-specific terms (refer to
Appendix A.1 for further details). Based on histori-
cally available information about M&As, we sam-
pled messages from one year before the proposed
merger’s date up to six months after the merger
took place. Finally, we obtain the text of a tweet by
crawling for its ID using Tweepy4.

2.2 Task Definition and Annotation
Guidelines

The annotation process was preceded by a pilot
annotation, after which the final annotation guide-
lines were written in close collaboration with three
domain experts. We followed the convention in
Twitter stance detection (Mohammad et al., 2017)
and considered three stance labels: support, refute
and comment. We also added an unrelated tag,
obtaining the following label set:

1. Support: the tweet is stating that the two com-
panies will merge.
[CI_ESRX] Cigna to acquire Express Scripts for
$52B in health care shakeup via usatoday
3www.seleniumhq.org
4www.tweepy.org/

2. Refute: the tweet is voicing doubts that the two
companies will merge.
[AET_HUM] Federal judge rejects Aetna’s bid
to buy Louisville-based Humana for $34 billion

3. Comment: the tweet is commenting on merger,
neither directly supporting, nor refuting it.
[CI_ESRX] Cigna-Express Scripts deal unlikely
to benefit consumers

4. Unrelated: the tweet is unrelated to merger.
[CVS_AET] Aetna Announces Accountable Care
Agreement with Weill Cornell Physicians

The obtained four-class annotation schema is simi-
lar to those in other corpora for news stance detec-
tion (Hanselowski et al., 2018; Baly et al., 2018).
Note that, depending on the given target, the same
sample can receive a different stance label:

• Merger hopes for Aetna-Humana remain, An-
them-Cigna not so much.
[AET_HUM]→ support
[ANTM_CI]→ refute

As observed in Mohammad et al. (2017), stance
detection is different but closely related to targeted
sentiment analysis, which considers the emotions
conveyed in a text (Alhothali and Hoey, 2015). To
highlight this subtle difference, consider the follow-
ing sample:

• [CVS_AET] #Cancer patients will suffer if
@CVSHealth buys @Aetna CVS #PBM has re-
sulted in delfays in therapy, switches, etc – all
documented. Terrible!

While its sentiment towards the target operation
is negative (the user believes that the merger will
be harmful for patients), following the guidelines,
its stance should be labeled as comment: the user
is talking about the implications of the operation,
without expressing the orientation that the merger
will happen (or not). Refer to Appendix A.2 for a
detailed description of the four considered labels.

2.3 Data Annotation

During the annotation process, each tweet was inde-
pendently labeled by 2 to 6 annotators. Ten experts
in the financial domain were employed as anno-
tators5. Annotators received tweets in batches of
2,000 samples at a time, and were asked to anno-
tate no more than one batch per week. The entire
annotation process lasted 4 months. In case of dis-
agreement, the gold label was obtained through

5Two MPhil, six PhD students and two lecturers at the
Faculty of Economics of the University of Cambridge

www.seleniumhq.org
www.tweepy.org/
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Label

Healthcare Entertainment

CVS_AET CI_ESRX ANTM_CI AET_HUM DIS_FOXA

# samples % # samples % # samples % # samples % # samples %

support 2,469 21.24 773 30.58 0970 08.78 1,038 13.14 01,413 07.76
refute 518 04.45 253 10.01 1,969 17.82 1,106 14.00 0 378 02.07
comment 5,520 47.49 947 37.47 3,098 28.05 2,804 35.50 0 8,495 46.69
unrelated 3,115 26.80 554 21.92 5,007 45.33 2,949 37.34 0 7,908 43.46

total 11,622 02,527 11,622 07,897 18,194

Table 2: Label distribution across different M&A operations (Table 1): four mergers in the healthcare domain
(33,090 tweets) and one merger in the entertainment domain. The total number of tweets is: 51,284.

total twt avg twt/target

Mohammad et al. (2016b) 4,870 811
Inkpen et al. (2017) 4,455 1,485
Aker et al. (2017) 401 401
Derczynski et al. (2017) 5,568 696
Gorrell et al. (2019) (only Twitter) 6,634 829

WT–WT 51,284 10,256

Table 3: Statistics of Twitter stance detection datasets.

majority vote, discarding samples where this was
not possible (0.2% of the total).

2.4 Quality Assessment

The average Cohen’s κ between the annotator
pairs6 0.67, which is substantial (Cohen, 1960).
To estimate the quality of the obtained corpus, a
further domain-expert labeled a random sample
of 3,000 tweets, which were used as human up-
perbound for evaluation (Table 4). Cohen’s κ be-
tween those labels and the gold is 0.88. This is
well above the agreement obtained in previously
released datasets where crowd-sourcing was used
(the agreement scores reported, in terms of percent-
age, range from 63.7% (Derczynski et al., 2017) to
79.7% (Inkpen et al., 2017)).

Support-comment samples constitute the most
common source of disagreement between anno-
tators: this might indicate that such samples are
the most subjective to discriminate, and might
also contribute to explain the high number of mis-
classifications between those classes which have
been observed in other research efforts on stance
detection (Hanselowski et al., 2018). Moreover,
w.r.t. stance datasets where unrelated samples were
randomly generated (Pomerleau and Rao, 2017;
Hanselowski et al., 2018), we report a slightly

6The average κ was weighted by the number of samples
annotated by each pair. The standard deviation of the κ scores
between single annotator pairs is 0.074.

higher disagreement between unrelated and com-
ment samples, indicating that our task setting is
more challenging.

2.5 Label Distribution

The distribution of obtained labels for each oper-
ation is reported in Table 2. Differences in label
distribution between events are usual, and have
been observed in other stance corpora (Mohammad
et al., 2016a; Kochkina et al., 2018). For most op-
erations, there is a clear correlation between the
relative proportion of refuting and supporting sam-
ples and the merger being approved or blocked
by the US Department of Justice. Commenting
tweets are more frequent than supporting over all
operations: this is in line with previous findings in
financial microblogging (Žnidaršič et al., 2018).

2.6 Comparison with Existing Corpora

The first dataset for Twitter stance detection col-
lected 4,870 tweets on 6 political events (Moham-
mad et al., 2016a) and was later used in SemEval-
2016 (Mohammad et al., 2016b). Using the same
annotation schema, Inkpen et al. (2017) released
a corpus on the 2016 US election annotated for
multi-target stance. In the scope of PHEME, a
large project on rumor resolution (Derczynski and
Bontcheva, 2014), Zubiaga et al. (2015) stance-
annotated 325 conversational trees discussing 9
breaking news events. The dataset was used in Ru-
mourEval 2017 (Derczynski et al., 2017) and was
later extended with 1,066 tweets for RumourEval
2019 (Gorrell et al., 2019). Following the same
procedure, Aker et al. (2017) annotated 401 tweets
on mental disorders (Table 3).

This makes the proposed dataset by far the
largest publicly available dataset for stance detec-
tion on user-generated data. In contrast with Mo-
hammad et al. (2016a), Inkpen et al. (2017) and



1718

Macro F1 across healthcare opertations Average per-class accuracy

Encoder CVS_AET CI_ESRX ANTM_CI AET_HUM avgF1 avgwF1 sup ref com unr

SVM 51.0 51.0 65.7 65.0 58.1 58.5 54.5 43.9 41.2 88.4
MLP 46.5 46.6 57.6 59.7 52.6 52.7 55.7 40.3 48.6 68.1
EmbAvg 50.4 51.9 50.4 58.9 52.9 52.3 55.2 50.5 52.7 67.4
CharCNN 49.6 48.3 65.6 60.9 56.1 56.8 55.5 44.2 41.6 82.1
WordCNN 46.3 39.5 56.8 59.4 50.5 51.7 62.9 37.0 31.0 71.7
BiCE 56.5 52.5 64.9 63.0 59.2 60.1 61.0 48.7 45.1 79.9
CrossNet 59.1 54.5 65.1 62.3 60.2 61.1 63.8 48.9 50.5 75.8
SiamNet 58.3 54.4 68.7 67.7 62.2 63.1 67.0 48.0 52.5 78.3
CoMatchAtt 54.7 43.8 50.8 50.6 49.9 51.6 71.9 24.4 33.7 65.9
TAN 56.0 55.9 66.2 66.7 61.2 61.3 66.1 49.0 51.7 74.1
HAN 56.4 57.3 66.0 67.3 61.7 61.7 67.6 52.0 55.2 69.1

mean 53.1 50.5 61.6 62.0 − − 61.9 44.2 45.8 74.6

upperbound 75.3 71.2 74.4 73.7 74.7 75.2 80.5 89.6 71.8 84.0

Table 4: Results on the healthcare operations in the WT–WT dataset. Macro F1 scores are obtained by testing on
the target operation while training on the other three. avgF1 and avgwF1 are, respectively, the unweighted and
weighted (by operations size) average of all operations.

PHEME, where crowd-sourcing was used, only
highly skilled domain experts were involved in the
annotation process of our dataset. Moreover, pre-
vious work on stance detection focused on a rela-
tively narrow range of mainly political topics: in
this work, we widen the spectrum of considered
domains in the stance detection research with a new
financial dataset.

For these reasons, the WT–WT dataset consti-
tutes a high quality and robust benchmark for the
research community to train and compare perfor-
mance of models and their scalability, as well as for
research on domain adaptation. Its large size also
allows for pre-trainining of models, before moving
to domain with data-scarcity.

3 Experiments and Results

We re-implement 11 architectures recently pro-
posed for stance detection. Each system takes as
input a tweet and the related target, represented
as a string with the two considered companies. A
detailed description of the models, with references
to the original papers, can be found in Appendix
B.1. Each architecture produces a single vector
representation h for each input sample. Given h,
we predict ŷ with a softmax operation over the 4
considered labels.

3.1 Experimental Setup

We perform common preprocessing steps, such as
URL and username normalization (see Appendix
B.2). All hyper-parameters are listed in Appendix
B.1 for replication. In order to allow for a fair

comparison between models, they are all initial-
ized with Glove embeddings pretrained on Twitter7

(Pennington et al., 2014), which are shared between
tweets and targets and kept fixed during training.

3.2 Results and Discussion

Results of experiments are reported in Table 4. De-
spite its simple architecture, SiamNet obtains the
best performance in terms of both averaged and
weighted averaged F1 scores. In line with previ-
ous findings (Mohammad et al., 2017), the SVM
model constitutes a very strong and robust base-
line. The relative gains in performance of CrossNet
w.r.t. BiCE, and of HAN w.r.t. TAN, consistently
reflect results obtained by such models on the Se-
mEval 2016-Task 6 corpus (Xu et al., 2018; Sun
et al., 2018).

Moving to single labels classification, analy-
sis of the confusion matrices shows a relevant
number of misclassifications between the support
and comment classes. Those classes have been
found difficult to discriminate in other datasets as
well (Hanselowski et al., 2018). The presence of
linguistic features, as in the HAN model, may help
in spotting the nuances in the tweet’s argumentative
structure which allow for its correct classification.
This may hold true also for the refute class, the
least common and most difficult to discriminate.
Unrelated samples in WT–WT could be about the
involved companies, but not about their merger:
this makes classification more challenging than
in datasets containing randomly generated unre-

7https://nlp.stanford.edu/projects/

https://nlp.stanford.edu/projects/
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lated samples (Pomerleau and Rao, 2017). SVM
and CharCNN obtain the best performance on un-
related samples: this suggests the importance of
character-level information, which could be better
integrated into future architectures.

Concerning single operations, CVS_AET and
CI_ESRX have the lowest average performance
across models. This is consistent with higher dis-
agreement among annotators for the two mergers.

3.3 Robustness over Domain Shifts

We investigate the robustness of SiamNet, the best
model in our first set of experiments, and BiCE,
which constitutes a simpler neural baseline (Sec-
tion 3.2), over domain shifts with a cross-domain
experiment on an M&A event in the entertainment
business.

Data. We collected data for the Disney-Fox (DIS_-
FOXA) merger and annotated them with the same
procedure as in Section 2, resulting in a total of
18,428 tweets. The obtained distribution is highly
skewed towards the unrelated and comment class
(Table 2). This could be due to the fact that
users are more prone to digress and joke when
talking about the companies behind their favorite
shows than when considering their health insurance
providers (see Appendix A.2).

train→ test
BiCE SiamNet

acc F1 acc F1

health→ health 77.69 76.08 78.51 77.38
health→ ent 57.32 37.77 59.85 40.18

ent→ ent 84.28 74.82 85.01 75.42
ent→ health 46.45 33.62 48.99 35.25

Table 5: Domain generalization experiments across en-
tertainment (ent) and healthcare datasets. Note that the
data partitions used are different than in Table 4.

Results. We train on all healthcare operations
and test on DIS_FOXA (and the contrary), consid-
ering a 70-15-15 split between train, development
and test sets for both sub-domains. Results show
SiamNet consistently outperforming BiCE. The
consistent drop in performance according to both
accuracy and macro-avg F1 score, which is ob-
served in all classes but particularly evident for
commenting samples, indicates strong domain de-
pendency and room for future research.

4 Conclusions

We presented WT–WT, a large expert-annotated
dataset for stance detection with over 50K labeled
tweets. Our experiments with 11 strong models
indicated a consistent (>10%) performance gap be-
tween the state-of-the-art and human upperbound,
which proves that WT–WT constitutes a strong chal-
lenge for current models. Future research direc-
tions might explore the usage of transformer-based
models, as well as of models which exploit not
only linguistic but also network features, which
have been proven to work well for existing stance
detection datasets (Aldayel and Magdy, 2019).

Also, the multi-domain nature of the dataset
enables future research in cross-target and cross-
domain adaptation, a clear weak point of current
models according to our evaluations.
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Appendix A: Dataset-related Specifications

A.1 Crawling Specifications

• M&A-specific terms used for crawl-
ing: one of merge, acquisition,
agreement, acquire, takeover,
buyout, integration + mention of a
given company/acronym.

• Crawl start and end dates:

CVS_AET 15/02/2017→ 17/12/2018
CI_ESRX 27/05/2017→ 17/09/2018
ANTM_CI 01/04/2014→ 28/04/2017
AET_HUM 01/09/2014→ 23/01/2017
DIS_FOXA 09/07/2017→ 18/04/2018

A.2 Description and Examples of the
Considered Labels

This is an extract from the annotation guidelines
sent to the annotators.

The annotation process consists of choosing one of
four possible labels, given a tweet and an M&A op-
eration. The four labels to choose from are Support,
Comment, Refute, and Unrelated.

Label 1: Support – If the tweet is supporting the
theory that the merger is happening. Supporting
tweets can be, for example, one of the following:
1. Explicitly stating that the deal is happening:
→ [CI_ESRX] Cigna to acquire Express Scripts
for $52B in health care shakeup via usatoday

2. Stating that the deal is likely to happen:
→ [CVS_AET] CVS near deal to buy Aetna (Via
Boston Herald) <URL>

3. Stating that the deal has been cleared:
→ [CVS_AET] #Breaking DOJ clears #CVS
$69Billion deal for #Aetna.

Label 2: Comment – If the tweet is commenting
on the merger. The tweet should neither directly
state that the deal is happening, nor refute this.
Tweets that state the merger as a fact and then talk
about, e.g. implications or consequences of the
merger, should also be labelled as commenting.
Commenting tweets can be, for example, one of
the following:
1. Talking about implications of the deal:
→ [CI_ESRX] Cigna-Express Scripts deal un-
likely to benefit consumers

2. Stating merger as fact and commenting on some-
thing related to the deal:
→ [CVS_AET] #biotechnology Looking at the
CVSAetna Deal One Academic Sees Major Dis-
ruptive Potential

3. Talking about changes in one or both of the
companies involved:
→ [CVS_AET] Great article about the impact of
Epic within the CVS and Aetna Merge <URL>

Label 3: Refute – This label should be chosen if
the tweet is refuting that the merger is happening.
Any tweet that voices doubts or mentions potential
roadblocks should be labelled as refuting. Refuting
tweets can be, for example, one of the following:
1. Explicitly voicing doubts about the merger:
→ [ANTM_CI] business: JUST IN: Cigna termi-
nates merger agreement with Anthem

2. Questioning that the companies want to move
forward:
→ [CI_ESRX] Why would $ESRX want a deal
with $CI?

3. Talking about potential roadblocks for the
merger:
→ [CI_ESRX] Why DOJ must block the Cigna-
Express Scripts merger <URL>

Label 4: Unrelated – If the tweet is unrelated to
the given merger. Unrelated tweets can be, for
example, one of the following:
1. Talking about something unrelated to the com-

panies involved in the merger:
→ [DIS_FOXA] I’m watching the Disney ver-
sion of Robin Hood someone tell me how I have
a crush on a cartoon fox
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2. Talking about the companies involved in the
merger, however not about the merger:
→ [CVS_AET] CVS and Aetna’s combined rev-
enue in 2016 was larger than every U.S. com-
pany’s other than Wal Mart <URL>

3. Talking about a different merger:
→ [CVS_AET] What are the odds and which
one do you think it will be? Cigna or Humana?
Aetna acquisition rumor

Appendix B: Models-related Parameters

B.1 Encoder’s Architectures
• SVMs: linear-kernel SVM leveraging bag of n-

grams (over words and characters) features. A
similar simple system outperformed all 19 teams
in the SemEval-Task 6 (Mohammad et al., 2017).
• MLP: a multi-layer perceptron (MLP) with one

dense layer, taking as input the concatenation
of tweet’s and target’s TF-IDF representations
and their cosine similarity score (similar to the
model in Riedel et al. (2017)).
• EmbAvg: a MLP with two dense layers, taking

as input the average of the tweet’s and the tar-
get’s word embeddings. Averaging embeddings
was proven to work well for Twitter data in pre-
vious papers by Zubiaga et al. (2016); Kochkina
et al. (2017), who - differently than in this paper -
classified stream of tweets in a conversation tree.
• CharCNN and WordCNN: two CNN models,

one over character and one over words, following
the work by Vijayaraghavan et al. (2016).
• BiCE: a similar Bidirectional Conditional En-

coding model to that of Augenstein et al. (2016):
the tweet is processed by a BiLSTM whose for-
ward and backward initial states are initialized
with the last states of a further BiLSTM which
processed the target.
• CrossNet: a BiCE model augmented with self-

attention and two dense layers, as in the cross-
target stance detection model (Xu et al., 2018).
• SiamNet: siamese networks have been recently

used for fake news stance detection (Santosh
et al., 2019). Here we implement a siamese net-
work based on a BiLSTM followed by a self-
attention layer (Yang et al., 2016). The obtained
tweet and target vector representations are con-
catenated with their similarity score (following
Mueller and Thyagarajan (2016), we used the
inverse exponential of the Manhattan distance).
• Co-MatchAtt: we use a similar co-matching

attention mechanism as in Wang et al. (2018) to

connect the tweet and the target, encoded with
two separated BiLSTM layers, followed by a
self-attention layer (Yang et al., 2016).
• TAN: a model combining a BiLSTM and a

target-specific attention extractor over target-
augmented embeddings (Du et al., 2017; Dey
et al., 2018), similarly as in Du et al. (2017).
• HAN: we follow Sun et al. (2018) to implement

a Hierarchical Attention Network, which uses
two levels of attention to leverage the tweet repre-
sentation along with linguistic information (sen-
timent, dependency and argument).

SVM model
Word NGrams 1, 2, 3
Char NGrams 2, 3, 4

Common to all neural models
max tweet len 25
batch size 32
max epochs 70
optimizer Adam
Adam learning rate 0.001
word embedding size 200
embedding dropout 0.2

TFIDF–MLP model
BOW vocabulary size 3000
dense hidden layer size 100
EmbAvg model
dense hidden layers size 128

WordCNN model
window size 2, 3, 4
no filters 200
dropout 0.5
CharCNN model
no of stacked layers 5
window size 7, 7, 3, 3, 3
no filters 256
dropout 0.2

BiCE, CrossNet, SiamNet and TAN model
BiLSTM hidden size 265*2
BiLSTM recurrent dropout 0.2

HAN model
max sentiment input len 10
max dependency input len 30
max argument input len 25
BiLSTM hidden size 128

Table 6: Hyperparameters used for training. Whenever
reported, we used the same as in the original papers.

B.2 Preprocessing Details
After some preliminary experiments, we found the
following preprocessing steps to perform the best:
1. Lowercasing and tokenizing using NLTK’s Twit-

terTokenizer8.
2. Digits and URL normalization.

8https://www.nltk.org/api/nltk.tokenize.html

https://www.nltk.org/api/nltk.tokenize.html
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3. Low-frequency users have been normalized;
high frequency users have been kept, stripping
the ”@“ from the token. Such users included
the official Twitter accounts of the companies
involved in the mergers (like @askanthem),
media (@wsj), official accounts of US politi-
cians (@potus, @thejusticedept, ...)

4. The # signs have been removed from hashtags.

We keep in the vocabulary only tokens occurring
at least 3 times, resulting in 19,561 entries consid-
ering both healthcare and entertainment industry.

We use gensim to extract the TF–IDF vectors
froms the data9, which are used in the TFIDF–MLP
model. For the HAN model, following Sun et al.
(2018), we use the MPQA subjective lexicon (Wil-
son et al., 2005) to extract the sentiment word se-
quences and the Stanford Parser10 to extract the
dependency sequences. We train an SVM model to
predict argument labels on Hasan and Ng (2013)’s
training data, and we predict the argument sen-
tences for the WT–WT dataset, as discussed in Sun
et al. (2018).

9https://radimrehurek.com/gensim/models/tfidfmodel.
html

10https://nlp.stanford.edu/software/lex-parser.html
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