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Astrocytes are essential for proper regulation of the central nervous system (CNS). 
Importantly, these cells are highly secretory in nature. Indeed they can release hundreds of 
molecules which play pivotal physiological roles in nervous tissues and whose abnormal 
regulation has been associated with several CNS disorders. In agreement with these 
findings, recent studies have provided exciting insights into the key contribution of astrocyte-
derived signals in the pleiotropic functions of these cells in brain health and diseases. In 
the future, deeper analysis of the astrocyte secretome is likely to further increase our 
current knowledge on the full potential of these cells and their secreted molecules not 
only as active participants in pathophysiological events, but as pharmacological targets 
or even as therapeutics for neurological and psychiatric diseases. Herein we will highlight 
recent findings in our and other laboratories on selected molecules that are actively 
secreted by astrocytes and contribute in two distinct functions with pathophysiological 
relevance for the astroglial population: i) regulation of neural stem cells (NSCs) and their 
progeny within adult neurogenic niches; ii) modulation of the blood–brain barrier (BBB) 
integrity and function.
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INTRODUCTION
Astrocytes are essential for brain homeostasis. They indeed support neurons both structurally and 
functionally by providing nutrients and neurotrophic factors, removing neurotransmitters and waste 
metabolites to ensure a homeostatic environment (Perez-Alvarez and Araque, 2013). Astrocytes 
regulate neurogenesis, axonal guidance, synaptogenesis (Allen and Lyons, 2018), as well as blood–
brain barrier (BBB) function. Although still controversial, astrocytes may also release gliotransmitters 
to modulate synaptic transmission (Araque et al., 2014; Fiacco and McCarthy, 2018). Last but not least, 

Abbreviations: ahNG, adult hippocampal neurogenesis; AJ, adherens junctions; aNG, adult neurogenesis; CCL, CC 
Chemokine Ligand; CXCL, C-X-C motif chemokine 12; DG, dentate gyrus; ECM, extracellular matrix; ICAM-1, intercellular 
adhesion molecule 1; IFNγ, interferon γ; IL-1, interleukin 1; IL-6, interleukin 6; LCN-2, lipocalin-2; NB, neuroblast; NPC, 
neural progenitor cell; NSC, neural stem cell; NVU, neurovascular unit; OB, olfactory bulb; PBMCs, peripheral blood 
mononuclear cells; SGZ, subgranular zone; SVZ, subventricular zone; TNFα, tumor necrosis factor α; TSP, thrombospondin; 
VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor.

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 1346

MINI RevIew

doi: 10.3389/fphar.2019.01346
published: 21 November 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio Istituzionale della Ricerca- Università del Piemonte Orientale

https://core.ac.uk/display/327086755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://creativecommons.org/licenses/by/4.0/
mailto:msortino@unict.it
mailto:mariagrazia.grilli@uniupo.it
https://doi.org/10.3389/fphar.2019.01346
https://www.frontiersin.org/article/10.3389/fphar.2019.01346/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01346/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01346/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01346/full
https://loop.frontiersin.org/people/201649
https://loop.frontiersin.org/people/422566
https://loop.frontiersin.org/people/22168
https://loop.frontiersin.org/people/13312
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.01346
https://www.frontiersin.org/journals/pharmacology#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.01346&domain=pdf&date_stamp=2019-11-21


Astrocytes as Relevant Secretory Cells in the BrainSpampinato et al.

2

after brain injury, astrocytes are involved in neuroinflammatory 
responses in an attempt of repair and/or remodeling.

Astrocytes are highly secretory cells, with their secretome 
containing hundreds of molecules (Chen and Swanson, 2003; 
Dowell et al., 2009; Harada et al., 2015). Recent proteomic 
studies provided exciting insights into the contribution of 
astrocyte-derived signals in their pleiotropic functions in brain 
health and diseases (Jha et al., 2018). In this minireview, we will 
highlight recent findings on some molecules actively secreted 
by astrocytes and implicated in two specific functions, namely, 
regulation of neural stem cells (NSCs) and their progeny within 
adult neurogenic niches and modulation of BBB function. These 
apparently distant conditions are analyzed together as they share 
a strict dependence on astrocyte-secreted products.

ASTROCYTeS AS KeY MODULATORS IN 
ADULT NeUROGeNIC NICHeS
The term adult neurogenesis (aNG) refers to the generation of new 
functionally integrated neurons in the adult brain. This peculiar 
form of neuroplasticity occurs in restricted areas of mammalian 
brain, the subventricular zone (SVZ) in the lateral ventricles and the 
subgranular zone (SGZ) in the hippocampal dentate gyrus (DG).

While the SVZ region is considered a poorly relevant 
neurogenic site in humans, neurogenesis occurring in the DG 
appears of physiological significance. Recently, the presence of 
thousands of adult-born neuroblasts (NBs) in the hippocampus 
of healthy people was described (Moreno-Jimenez et al., 2019). 
In this region, neural stem/progenitor cells (NSC/NPC) self-
renew and give rise to transiently amplifying progenitor cells 
which, in turn, can generate NBs capable of terminal neuronal 
differentiation. Post-mitotic neuronal progeny can be functionally 
integrated as granule cells into the adult hippocampal circuitry 
(Bond et al., 2015; Kempermann et  al., 2015). In recent years, 
adult hippocampal neurogenesis (ahNG) has attracted growing 
interest due to its potential involvement in cognition and memory, 
mood, and emotional behavior (Aimone et al., 2010; Eisch 
and Petrik, 2012; Aimone et al., 2014; Bortolotto et al., 2014). 
ahNG is profoundly dysregulated in several neuropsychiatric/
neurodegenerative disorders opening to the possibility that it 
may participate in their pathophysiology or contribute to some 
associated symptoms, such as dementia and depressed mood 
(Grilli and Meneghini, 2012; Bortolotto and Grilli, 2016; Yun 
et al., 2016). Very recently, it has been reported that postmortem 
tissue from AD patients contained remarkably fewer DG NBs 
suggesting their degeneration in the disease (Moreno-Jimenez 
et al., 2019). This seminal paper confirmed previous key studies 
in the field (Spalding et al., 2013; Boldrini et al., 2018).

An important functional and anatomical concept in 
aNG is the "neurogenic niche," a permissive and instructive 
microenvironment which is crucial for preserving NSC functions, 
including their proliferative and differentiative properties 
(Ghosh, 2019). Although cell–cell contacts are relevant, paracrine 
signals originating from astrocytes within the niche appear very 
important. It was demonstrated that astrocytes are important 
neurogenic niche components which instruct NSC/NPC to 

adopt a neuronal fate (Song et al., 2002). Hence, the interest in 
the identity of astrocyte-secreted niche signals has been growing 
(Casse et al., 2018). We will now highlight key findings showing 
how astrocytes modulate aNG through release of different classes 
of secretory substances, as summarized in Figure 1.

Morphogens
Among the first candidate molecules identified for their role in 
aNG were morphogenic factors of the Wnt protein family. Several 
members, including Wnt3 and Wnt7, are expressed by hippocampal 
astrocytes together with Wnt receptors and Wnt/β-catenin 
signaling pathway components (Lie et al., 2005). Hippocampal 
niche astrocytes actively induce ahNG through secretion of Wnt 
proteins and activation of Wnt downstream signaling pathways. 
Overexpression of Wnt3 enhances neuronal differentiation, while 
blockade of Wnt signaling strongly reduces ahNG in vivo and in 
vitro (Lie et al., 2005). Moreno-Estelles demonstrated that Wnt7a 
released by astrocytes in the adult neurogenic niche is a key factor 
promoting NSC self-renewal (Moreno-Estelles et al., 2012).

Gliotransmitters
D-serine and Glutamate (Glu) were identified as molecules 
by which niche astrocytes regulate maturation, survival, and 
functional integration into local synaptic networks of adult-
born neurons. To investigate the role of astrocytic exocytosis on 
aNG, SNAP Receptor protein (SNARE)-dependent exocytosis 
was genetically impaired in niche astrocytes (Sultan et al., 2015). 
Inhibition of vesicular release resulted in severely impaired 
integration and survival of newly generated hippocampal 
neurons, whereas developmentally born neurons appeared 
unaffected (Sultan et al., 2015). Adult-born neurons located 
within the territories of exocytosis-deficient astrocytes displayed 
reduced dendritic spine density and glutamatergic synaptic 
input, which correlated with decreased D-serine. Chronic 
administration of D-serine partially rescued defective phenotypes 
and restored N-methyl-D-aspartate (NMDA)-mediated synaptic 
transmission and dendritic maturation in mice with impaired 
astrocytic vesicular release (Sultan et al., 2015). The observation 
that rescue was only partial suggested that other molecules 
released by astrocytes could be important for maturation of 
adult-born hippocampal neurons. A critical role of vesicular 
Glu release from astrocytes was previously demonstrated in 
the SVZ where newly generated NBs migrate a long distance to 
reach their final destination, the olfactory bulb (OB). Platel et 
al. demonstrated that migrating NBs, which acquire functional 
NMDA receptor activity on their way to the OB, are ensheathed 
by astrocytes releasing glutamate in a Ca2+-dependent manner 
(Platel et al., 2010). They showed that: i) increasing calcium in 
astrocytes induced NMDA receptor activity in NB; ii) blocking 
vesicular astrocytic release eliminated spontaneous NMDA 
receptor activity in NB; and iii) deletion of functional NMDA 
receptors in adult-born NB decreased generation and survival of 
newborn neurons in adult OB (Platel et al., 2010). Altogether, 
these findings correlate astrocyte-released Glu with generation, 
survival, and functional integration into local synaptic networks 
of adult-born OB neurons.
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extracellular Matrix (eCM) Proteins
Several astrocyte-secreted ECM proteins modulate cellular 
functions. Usually these proteins are expressed at high levels 
during development and at lower levels in adulthood. Upon 
brain injury, their expression is upregulated, especially in reactive 
astrocytes, and they are often associated with CNS remodeling 
and synaptogenesis. Some ECM proteins play also an important 
role in the neurogenic microenvironment. The most investigated 
astrocyte-secreted matricellular proteins are thrombospondins 
(TSPs) which mediate cell–cell and cell–matrix interaction by 
binding other ECM components, membrane receptors, growth 

factors, and cytokines. TSP-1 represents a key astrocyte-derived 
pro-neurogenic factor which promotes neuronal differentiation of 
NSC (Lu and Kipnis, 2010). Adult TSP-1−/− mice exhibit reduced 
NSC proliferation and neuronal differentiation in both SVZ and 
SGZ (Lu and Kipnis, 2010). The voltage-gated calcium channel 
α2δ1 subunit was proposed to be a receptor which mediates TSP-1 
synaptogenic effects (Eroglu et al., 2009). The α2δ1 subunit was 
also proven to be functionally expressed by adult hippocampal 
NPC and to mediate TSP-1 and pregabalin (an anticonvulsant/
analgesic α2δ1 ligand) pro-neurogenic effects both in vitro and in 
vivo (Valente et al., 2012). These findings were further extended 

FIGURe 1 | Role of astrocyte-derived molecules in the adult neurogenic niche. In the permissive and instructive microenvironment of the neurogenic niche, 
astrocytes profoundly modulate adult neurogenesis through soluble signals. Neural stem/progenitor cells (NSC/NPC) self-renewal, neuronal commitment/
differentiation, migration of neuroblasts, as well as survival and functional integration of newly born neurons can be affected by different classes of astrocytic-derived 
factors such as morphogens (i.e., Wnt3 and Wnt7), gliotransmitters (i.e., D-serine and glutamate), extracellular matrix (ECM) proteins [i.e., thrombospondin 1 (TSP-
1)], and cytokines/chemokines/acute phase proteins [i.e., IL-1β, IL-6, and lipocalin-2 (LCN-2)].

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 1346

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Astrocytes as Relevant Secretory Cells in the BrainSpampinato et al.

4

in recent studies proposing a key role for nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling whose 
activation occurs in adult NSC via membrane receptors, including 
neurotransmitter receptors and α2δ1 (Meneghini et al., 2010; 
Bortolotto et al., 2017a; Bortolotto et al., 2019). NF-κB p50−/− 
mice exhibit strongly reduced ahNG in vivo (Denis-Donini et al., 
2008) and in vitro (Meneghini et al., 2013; Valente et al., 2015; 
Bonini et al., 2016). Interestingly, TSP-1 promotes an increase 
in the percentage of newly formed neurons in wild type, but not 
in p50−/−-derived ahNPC which have reduced α2δ1 expression 
levels (Cvijetic et al., 2017). Altogether, these data suggested 
that a disturbed astrocyte–NSC communication via TSP-1 may 
contribute to defects in ahNG in absence of p50.

Cytokines and Acute Phase Proteins
In contrast with the notion that inflammatory cytokines inhibit 
neuronal differentiation (Vallieres et al., 2002; Monje et al., 
2003), IL-1β and IL-6, both highly expressed in neurogenic 
niches astrocytes, strongly promote NSC neuronal differentiation 
(Barkho et al., 2006). Lipocalin-2 (LCN-2) is an acute phase protein 
produced by and acting on astrocytes (Jha et al., 2015) which serves 
as "help-me" signal to activate astrocytes and microglia (Xing et al., 
2014). Although its modulatory role in the CNS is not completely 
understood LCN-2 is commonly regarded as a deleterious signal 
(Ferreira et al., 2015) and a key target in regulating astrocyte 
reactivity. Indeed it has been demonstrated that knockdown of 
LCN-2 leads to reduced protein secretion from reactive astroglial 
cells, counteracting the perpetuation of inflammation in nearby 
astrocytes (Smith et al., 2018). LCN-2 is encoded by a NF-κB 
target gene (Uberti et al., 2000), and its expression is increased in 
the secretome of p50−/− astrocytes (Cvijetic et al., 2017; Bortolotto 
and Grilli, 2017b). Initially, based on these findings and its 
deleterious effects, our group hypothesized that overexpressed 
LCN-2 may contribute to impaired ahNG in p50−/− mice. To our 
surprise, LCN-2 promoted, in a concentration-dependent manner, 
neuronal differentiation of ahNPC. Under the same experimental 
conditions, LCN-2 had little effect on neuronal differentiation 
of p50−/− ahNPC which exhibited downregulation of the LCN-2 
receptor 24p3R (Cvijetic et al., 2017). Altogether, these novel data 
proposed LCN-2 as a novel and unexpected astroglial-derived 
signal able to promote neuronal fate specification of ahNPC 
(Bortolotto and Grilli, 2017b). Recently, these findings were 
further extended by the demonstration that LCN-2−/− mice display 
deficits in proliferation and neuronal commitment of NSC and, in 
parallel, hippocampal dysfunction (Ferreira et al., 2018).

In summary, at present several astrocyte-derived signals 
which act as positive modulators of NSC and their progeny have 
been identified and characterized. Of note, little is currently 
known on soluble molecules of astrocytic origin which may exert 
negative effects on aNG. Anatomical and functional segregation 
along the hippocampal dorso-ventral axis is a well-established 
concept (Grilli et al., 1988; Tanti and Belzung, 2013), and 
marked differences in neurogenesis rate have been described in 
the dorsal compared to the ventral dentate gyrus (Piatti et al., 
2011). It would be interesting to investigate whether subregional 
specificities in ahNG may also rely, at least in part, on different 
astrocyte-secreted molecules.

THe DUAL ROLe OF ASTROCYTIC-
DeRIveD FACTORS: FROM eNDOTHeLIAL 
PROTeCTION TO DISRUPTION OF BBB 
FUNCTION
The BBB is constituted by specialized endothelial cells, supported 
in their functions by astrocytes and pericytes, and is part of a more 
complex network, the neurovascular unit (NVU), that includes 
also microglia, neurons, and mast cells. Brain microvascular 
endothelial cells, the main anatomical BBB elements, express tight 
junctions (TJs) and adherens junctions (AJs) (Huber et al., 2001; 
Dejana and Giampietro, 2012), that allow a selective para- and 
transcellular movement of molecules and solutes across the barrier 
(Garg et al., 2008; Garcia et al., 2014). Trafficking through the BBB 
is regulated by specific transporters (Kastin and Pan, 2008), as well 
as by efflux pumps such as P-glycoprotein (P-gp) (Begley, 2004). 
The BBB contributes to make CNS a site of immune privilege, as 
low expression of adhesion molecules and tightness of cell-to-
cell connections limit the access of pathogens and immune cells, 
preserving immune surveillance (Engelhardt and Ransohoff, 2005).

Astrocytes appear fundamental in BBB function. In vitro,  
barrier properties are lost in the absence of astrocytes (Ghazanfari 
and Stewart, 2001) and reestablished by astrocyte conditioned 
media or when astrocyte–endothelial cells contact is provided 
(Tao-Cheng et al., 1987; Neuhaus et al., 1991; Hayashi et al., 1997; 
Colgan et al., 2008). Further, endothelial cells derived from non-
CNS districts, cultured in the presence of astrocytes or astrocyte-
secreted factors, acquire BBB specific features, including 
expression of TJ or P-gp (Prat et al., 2001; Abbott et al., 2006).

Pericytes and radial glia, the major source of astrocyte 
precursors (McDermott et al., 2005), are essential in an early stage 
of barrier induction, whereas astrocytes play a major role later 
on, favoring barrier maturation and maintenance (Obermeier 
et al., 2013; Obermeier et al., 2016).

In pathological conditions, morphological changes in reactive 
astrocytes may induce loss of their interaction with endothelial 
cells (Alvarez et al., 2013). Depending on insult type, astrocytes 
undergo loss-of-function [e.g., failure of glutamate uptake (Broux 
et al., 2015)] and/or gain-of-function [production of a wide range 
of molecules including cytokines (Gimsa et al., 2013; Brambilla, 
2019)]. All these events can lead to reduction or exacerbation 
of BBB damage. Herein we will analyze the crosstalk between 
astrocytes and endothelial cells in BBB function, focusing on few 
astrocytic soluble mediators that belong to the classes discussed 
above (Figure 2).

Morphogens
Sonic hedgehog (Shh) is one of the main mediators of BBB 
induction. It is expressed in astrocytes, and its receptor has been 
detected in vivo in mice and human blood vessels as well as in 
cultured BBB endothelial cells (Alvarez et  al., 2011). Its genetic 
deletion results in reduced expression of endothelial junctional 
proteins and accumulation of solutes in CNS (Alvarez et al., 2011). 
Shh is overexpressed in astrocytes following an ischemic insult 
and reinforces junctional tightness (Liu et al., 2019) thus reducing 
BBB leakage and brain edema (Xia et al., 2013). Accordingly, Shh 
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mimetics promote immune-quiescence dampening leukocyte 
extravasation into the CNS, through the downregulation of 
adhesion molecules, as observed both in vitro (Alvarez et al., 2011) 
and in vivo (Singh et al., 2017). Retinoic acid (RA) is produced by 
radial glia and behaves as a morphogen playing a main role during 
brain development (Halilagic et al., 2007; Mizee et al., 2013). It 
is enhanced in reactive astrocytes after middle cerebral artery 
occlusion (Kong et al., 2015) and contributes to ameliorate barrier 
properties. RA indeed reinforces the expression of junctional 
proteins and P-gp in endothelial cells (Mizee et al., 2013) and 
reduces inflammatory genes (IL-6, CCL2, and VCAM-1) (Mizee 
et al., 2014). It also modifies ICAM-1 glycan composition (Chen 
et al., 2012), affecting the interaction of endothelial cells with 
PBMCs, an event that is modulated by astrocytes (Spampinato 
et al., 2019). Thus, beyond their physiological function in 
barrierogenesis, both Shh and RA play a role in the delay of BBB 
breakdown under pathological conditions.

Trophic Factors
The main vascular trophic factor is VEGF-A. In contrast to its main 
activity in promoting angiogenesis, proliferation, differentiation, 
and survival of endothelial cells during brain development (Esser 
et al., 1998; Zhao et al., 2015), in adulthood VEGF is a potent 
inducer of BBB disruption. Reactive astrocytes are VEGF-A 
primary source and increased BBB immunoreactivity is often 
observed in animal models of multiple sclerosis (Maharaj and 
D'Amore, 2007; Argaw et al., 2012), Alzheimer's disease (Zand 
et al., 2005), ischemia, and traumatic brain injury (Shore et al., 
2004; Jiang et al., 2014; Wu et al., 2018). Acting either directly on 
its receptors on endothelial cells, (Argaw et al., 2012; Chapouly 
et al., 2015), or indirectly, through the modulation of matrix 
metalloproteinases (MMPs) (Michinaga et al., 2015; Spampinato 
et al., 2017), VEGF-A induces changes in the tightness of 
endothelial junctions, causing brain edema, as well as leukocyte 
adhesion and infiltration in the CNS. Accordingly, blockade of 

FIGURe 2 | The dual role of astrocytic-derived factors on blood–brain barrier (BBB). Under physiological conditions, astrocytes release morphogens [sonic hedgehog 
(Shh) and retinoic acid (RA)], trophic factors (VEGF), and gliotransmitters (Glu) that, reinforcing both the formation of new vessels and the tightness of their junctions, 
improve the proper endothelial function at the BBB. After inflammatory stimuli, secretion of morphogens (Shh and RA) is reactivated in an attempt to reduce the 
inflammatory-mediated damage on endothelial layer. On the contrary, VEGF and Glu induce junctional damage and BBB leakiness, as well as increased expression of 
efflux pumps [P-glycoprotein (P-gp)]. The secretion of cytokines and chemokines is further increased, thus facilitating BBB leakage and leukocyte migration.
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VEGF-A through specific antibodies alleviates BBB disruption 
(Michinaga et al., 2018), whereas VEGF-A knockdown in 
astrocytes results in reduced endothelial expression of MMP9 
and prevention of barrier leakage (Spampinato et al., 2017).

Cytokines and Chemokines
Cytokines released by reactive astrocytes in close proximity to 
the BBB induce TJ re-organization [TNF and IFNγ (Chaitanya 
et al., 2011), CCL2 (Yao and Tsirka, 2014)], and immune cells 
recruitment [CXCL10, CCL2, CCL5, IL-8, CXCL12 (Brambilla, 
2019)], further contributing to neuroinflammation. By stimulating 
proteosomal degradation of junctional proteins (Chang et al., 
2015), astrocyte-derived IL-6 increases barrier permeability and 
the release of chemokines, thus enhancing PBMCs' access into 
the CNS (Takeshita et  al., 2017). Astrocytes may also mediate 
endothelial responses to cytokines. Their presence is in fact 
necessary for INFγ to affect barrier properties, whereas only slight 
effects are reported on endothelial cells cultured alone (Chaitanya 
et al., 2011). Conversely, astrocytes counteracted increased barrier 
permeability induced by TNF alone, or in association with IL-6, 
on induced plutipotent stem cells-derived endothelial cells. The 
modulation of BBB properties by astrocyte-derived factors appears 
to be the result of a complex balance. Indeed, stressed astrocytes 
release not only factors triggering barrier breakdown (i.e., IFNγ, 
IL-1β, CCL5, CCL2, and CCL4), but anti-inflammatory ones like 
IL-4 (Mantle and Lee, 2018).

In addition, among astrocyte-derived factors, granulocyte 
and macrophage colony-stimulating factor (GM-CSF) exhibits a 
dual and controversial role. While promoting TJ internalization 
and downregulation (Shang et al., 2016; Zhang et al., 2018) and 
monocyte migration through the BBB (Vogel et al., 2015), GM-CSF 
also protects endothelial cells from apoptosis (Spampinato et al., 
2015), induces claudin-5 overexpression (Shang et al., 2016), 
and stimulates angiopoietin-1 release from pericytes, thereby 
reducing barrier permeability (Yan et al., 2017).

Gliotransmitters
Glu modifies BBB function through interaction with endothelial 
NMDA and metabotropic glutamate receptors. Activated 
astrocytes release large amounts of glutamate that act on 
endothelial NMDA receptors and promote oxidative stress (Scott 
et al., 2007), TJ disruption, and increased BBB permeability 
(Andras et al., 2007). Further, glutamate increases the expression 
of P-gp, as reported in endothelial cells cultured with astrocytes 

derived from amyotrophic lateral sclerosis (ALS) patients 
(Mohamed et al., 2019). This  condition can justify "P-gp–
mediated pharmacoresistance" (Mohamed et al., 2017), often 
observed in diseases including ALS and epilepsy (Avemary et al., 
2013; Feldmann et al., 2013).

CONCLUDING ReMARKS
Our current understanding of the role of astrocytes in adult 
mammalian brain is growing exponentially, unraveling a 
remarkable variety of functions under the control of these cells 
both under physiological and pathological conditions. In recent 
years, the fact that astrocytes execute many of their crucial 
functions in a paracrine manner is also providing fuel to major 
advancements in astrocyte biology. Several proteins identified 
in studies that have applied proteomics for comprehensive 
profiling of astrocyte-secreted proteins confirmed that many of 
them correlate with well-known astrocyte-mediated cell-to-cell 
communication pathways. In some cases, soluble signals released 
by astrocytes in vitro created the opportunity to propose novel 
unexpected roles for these molecules and astrocytes. Hopefully, in 
the future, deeper analysis of the astrocyte secretome may further 
increase our current knowledge on the full potential of these cells 
and their secreted molecules not only as active participants in 
pathophysiological events, but as pharmacological targets or 
even as therapeutics for CNS diseases.
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