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Generalized Vibrational Perturbation Theory for
Rotovibrational Energies of Linear, Symmetric and
Asymmetric Tops: Theory, Approximations, and
Automated Approaches to Deal with Medium-to-Large

Molecular Systems

Matteo Piccardo,”® Julien Bloino,

Models going beyond the rigid-rotor and the harmonic oscilla-
tor levels are mandatory for providing accurate theoretical pre-
dictions for several spectroscopic properties. Different
strategies have been devised for this purpose. Among them,
the treatment by perturbation theory of the molecular Hamil-
tonian after its expansion in power series of products of vibra-
tional and rotational operators, also referred to as vibrational
perturbation theory (VPT), is particularly appealing for its com-
putational efficiency to treat medium-to-large systems. More-
over, generalized (GVPT) strategies combining the use of
perturbative and variational formalisms can be adopted to fur-
ther improve the accuracy of the results, with the first
approach used for weakly coupled terms, and the second one
to handle tightly coupled ones. In this context, the GVPT for-

Introduction

Vibrational and rotational spectroscopies are among the most
powerful tools for the study of chemical systems."? The inves-
tigation of the rotational and rotovibrational spectra of polya-
tomic molecules has become of basic importance to
determine accurate molecular geometries, as well as to get
information on molecular force fields, rotovibrational interac-
tion parameters and the relations between structure and
chemical-physical properties. Nowadays, there is a constant
interplay between molecular spectroscopy and computational
chemistry. Indeed, computed data have become crucial for the
interpretation of experimental results and, conversely, accurate
spectroscopic measurements are used as benchmarks to vali-
date theoretical approaches.!'-®!

The reliability of the theoretical models to support experimental
findings is related to their accuracy. To this end, attention is usually
concentrated on the choice of the method used to compute the
electronic structure. However, the way in which nuclear motions
are simulated is often basic, namely the harmonic approximation
for vibrations and the rigid-rotor approximation for rotations.
However, the neglect of anharmonicity and rotovibrational cou-
plings can lead to significant errors and may result in incorrect
interpretations of experimental data. To overcome such a limita-
tion, various strategies have been devised.”"2! Among them, the
approach based on perturbation theory applied to the expansion
of the molecular Hamiltonian in power series of products of vibra-
tional and rotational operators, also referred to as vibrational per-
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mulation for asymmetric, symmetric, and linear tops is revis-
ited and fully generalized to both minima and first-order
saddle points of the molecular potential energy surface. The
computational strategies and approximations that can be
adopted in dealing with GVPT computations are pointed out,
with a particular attention devoted to the treatment of sym-
metry and degeneracies. A number of tests and applications
are discussed, to show the possibilities of the developments,
as regards both the variety of treatable systems and eligible
methods. © 2015 The Authors International Journal of Quan-
tum Chemistry Published by Wiley Periodicals, Inc.
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turbation theory (VPT), is particularly appealing for its
computational efficiency to treat medium-to-large semirigid sys-
tems.>?~**) Moreover, some formulations of VPT, such as the Van
Vleck contact transformation method, completely justify a general-
ized model (GVPT2),"****! coupling the advantages of the pertur-
bative development to deal with weakly coupled terms and those
of the variational treatment to handle tight coupled ones. Imple-
mentation of VPT approaches in computational programs for
chemistry has become common and black-box procedures have
been devised to offer simple yet reliable ways of computing accu-
rate rotovibrational spectra.l>3146-54

Taking into account that the majority of chemical systems
fall into the asymmetric top category and because of the sim-
pler formulation, most developments in the last years have
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been focused on this case. As a result, a significant ensemble
of molecular systems, ranging from small to large sizes, and of
interest in various research fields, is excluded or approximately
treated. Among others, we can mention organic and organo-
metallic compounds as coronene and ferrocene*®>>=>"1 or
acetylene derivatives.*8¢%

The proper and effective introduction of symmetry leads to dif-
ferent developments for linear, symmetric, and spherical top sys-
tems with respect to the formulation of asymmetric tops.
Though the rotational problem is simpler in the first three cases
than in the last one, because the rigid rotor problem can be
solved analytically, the theory of linear, symmetric, or spherical
top molecules shows a number of complications due to the pres-
ence of degenerate vibrational modes, that makes analytical
expressions for the vibrational interaction terms less simple.”7"

The aim of this work is to present a complete framework, able to
handle asymmetric tops, as well as, linear and symmetric tops. Start-
ing from the developments already presented in the litera-
ture, 1293247727741 \ya review and generalize the formalism in order
to completely support intrinsic and accidental degeneracies, where
the first ones are generated by the molecular symmetry and lead to
further terms in VPT developments, and the latter are not imposed
by the symmetry of the Hamiltonian and lead to singularities in the
perturbative formulation, for example, the well-known Fermi
resonances.*>”>”® Particular attention is devoted to the latter sin-
gularities, presenting their treatment both within the rigorous
variational-perturbative coupled GVPT approach, and within
approximate methods. Moreover, a fully general formulation of the
rotovibrational energies is presented to allow a unified treatment of
both minima and first-order saddle points of the molecular poten-
tial energy surface (PES). Together with spectroscopic quantities,
also thermodynamic functions and reaction rates are considered.

The general formulation can be used in two different ways.
On an experimental level, once we have an effective Hamilto-
nian for a given vibrational state (or for a polyad of such
states), we can attempt to determine the values of the spec-
troscopic constants by fitting them to the experimental fre-
quencies of transitions between the rotation-vibration
states.>2") Such fitting means that we try to obtain the values
of the spectroscopic constants that provide the best agree-
ment with the experimental data. On the other hand, we can
attempt to evaluate the spectroscopic quantities from a fully
quantum mechanical (QM) approach.**! To do this, we need a
molecular equilibrium geometry together with a set of second,
third and semidiagonal fourth energy derivatives with respect
to normal modes. The quantities entering VPT expressions can
be computed by current electronic structure codes at different
levels of sophistication. Hartree-Fock (HF), density functional
theory (DFT), and second-order Mgller-Plesset theory (MP2)
models””®% will be employed in this article but also other
post-HF models (e.g., MCSCF, CCSD(T), etc.) could be used. In
this frame, the expressions derived in the first sections can be
used to reproduce and/or to predict the experimentally
observed results. In the second part of this article, we will vali-
date our implementation showing the feasibility and the limi-
tations of the GVPT approach based on QM electronic
computations in reproducing the experimental results.

Wiley Online Library

Theory

Let us start by reminding that a symmetric top is defined by
two properties; the equilibrium configuration of the nuclei has
a symmetry axis of order 3 or higher and, if there is more than
one axis satisfying the above condition, these axes are all coinci-
dent. If all the above conditions are present, the molecule has
two equal moments of inertia. Otherwise, the molecule is either
an asymmetric top (first condition not met, all moments of iner-
tia are different) or a spherical top (second condition not satis-
fied, all moments of inertia are equal). Moreover, in a linear-top
system all nuclei are aligned and the molecule has one vanish-
ing moment of inertia and two non-null coincident ones.

Asymmetric tops have only nondegenerate harmonic vibra-
tional frequencies, whereas linear and symmetric tops have
both nondegenerate and doubly degenerate harmonic fre-
quencies, and spherical tops can be affected by degenerations
larger than two. The development presented in the following
considers systems having at most doubly degenerate harmonic
frequencies, letting aside the case of spherical tops.

As the general development of the theory relies on a signifi-
cant number of equations, in order to make our presentation
easier to follow, we have chosen to shift redundant formulas
or the most cumbersome equations to specific appendices.

Molecular Hamiltonian and perturbation theory

Within the Born-Oppenheimer approximation,’®'#2 where the total

Hamiltonian of a molecule can be separated into an electronic and
a nuclear component, the Eckart-Sayvetz conditions are applied to
minimize the coupling between the rotational and vibrational
wavefunctions.”5#*#4 The rotovibrational QM Hamiltonian for the
nuclei in a given electronic state can be written,765°

h? 1
Houe = j;ﬂm(JT—nr)(Jn—n”H EZ PA+V+U (1)

where p., is an element of the effective inverse molecular iner-
tia tensor u and hJ; and A=, are, respectively, the components
of the total and vibrational angular momentum operators
along the molecule-fixed Cartesian axes t or #.303276861 The
explicit form of the latter is,

hr.= Z C;i.-QiP; )
7

where ( is the matrix of the Coriolis coupling constants. Q;
and P; are the mass-weighted vibrational normal coordinate
and its conjugate momentum associated to the vibrational
mode i, respectively, and the summations run on 3N—6 nor-
mal coordinates (3N—5 for linear systems). V is the PES in
which nuclei move and U is a mass-dependent contribution,
which vanishes for linear systems,/”2¢]

hz
U:_EZHH 3)

In eq. (1) both u and V can be expanded as Taylor series of
the mass-weighted normal coordinates Q about the equilib-
rium geometry,3>7¢
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Type | Fermi resonances

Table 1. Non-zero off-diagonal variational elements involved in the first order vibrational (Fermi) resonances. G;,»k=h_3/2/, /C; 0} O .

Type 1l Ferm| resonances

(nmn,,n,,\H |(nm+1)(nnf1)(nof1 Y=GmnoKimno/(Nm+1)Nano/(2v/2)
(nmnsne, ISII\H \( +1)(ng=1)(ne—=1), (ls=1)(kF1) ) =Gpmst (— ms,t/Kmsr
(nmnsny, lslt\H \(n,,,+1)(nS 1)(ne=1), (l=1)(l£1) ) =Gt

(nmnsn, lIt\H \(nm 1)(ns+1)(ne=1), (l£1)([;F1) )=Gpst

(Nmnsne, II,\’H \(nm 1)(ns+1)(ne—1), (l,=1)(le=1)

(ng ntnu,lslrlu\H \( +1)(ne—1)(ny—1), (k=) (=) (I, £1))=G

(n ”r”quIr/u‘H ‘( +1)(e=1)(ny=1), (k=) (k=) (L, F1) ) =G, stu

(a7 | (0 +2) (10— 1) ) =G Ko y/ (o T 1) (7 + 20710/ (41/2)

(s, B [ (M 1) (15— 2), 15 ) = — Ginss Ktk /(e F 1) (15 +15) (15

(e el | (1) (5= 2), (1 %2) Y= Gings (KU 4 iKY o/ (e F1) (05 5 5) (05 51— 2) /(8V/2)

(ng nt,lslr\ﬂ“ [(ng+2)(ne=1), (Is£2) (1) ) =G5t ( +Km+lesr)\/ns Is+2)(ns £l +4)(n 1)/ (8V/2)
(nene, Ll 7 |(ns+2) (ne=1), (e =2) (T1) ) = Gaae (T +iK™)) /s £+ 2) (ns =1+ 4) (0 £ 1p) /(8+/2)

)= (N + 1) (ns515) (ne 1) /(4V/2)

)= Grnst (Kot 2K )/ (i + 1) (s 55 (e = 1) / (4v/2)

)= Grmst (Kigye :Kmsr m/ 4/3)

) =Gonse(— K FIKE) /(s s+ 2) (e )/ (4V/2)

(l 1)) =G (F Ks(,,l—lK())\/(nsils+2)(nr+lr)(nu+lu)/(4ﬁ)
(1)) =G (=K —iKigy )/ (sl 2) (0T 1) (0 *1,)/(4v/2)

Hey ztujm - Z ‘ufraﬂf'?'ufmoi Z Z u”a, T’,LL,CI, ”'7H;'IQ’OJ +
i ¢
(4)

1
V= EZ),,O,?

ZK,,ko,o,ok+24ZK,,k,o,o,oko,+ (5)

ij.k ik,

where ym={[le}71}m is an element of the inverse of the equi-
librium  inertia  moment of the molecule and
Gjoy=(01%,/0Q) 3% Ji=w;?, where w; is the classical fre-
quency of vibrations, and Kji and Kijyy are respectively the third
and fourth derivatives of the potential energy with respect to
the normal modes, also referred to as the cubic and quartic

force constants,3%337¢
3V oy

Kik= ==~ and Kjg=—2 0 .

" 0a0g00 M= 90000000

After substitution of g and V in eq. (1) by their respective def-
initions in egs. (2) and (5), the terms in Hyyc can be written as,

Houe=H20+Hz0+Hao+ ...
+Hoy+H31+Hu+ ... (7)
+Hop+Hiat+Hn+

where Hy, represents all the terms with a degree f in the

vibrational operators (Q; or P;) and degree g in the rotational
operators (J;). Hence, Hyo collect purely vibrational terms,

1
Hao= EZ(P%%O?) 8)
Hzo=— Z KiQiQ;Q« 9)
IJ k
Hao=>5, Z K,,k,o,o,oko,+ Z (e (10)

Ijk/

where,
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h M T

7 ZBfZ Gij.<Cu - QiPQkPy (11

ikl

are the terms of the expanded Hamiltonian corresponding to the
zeroth-order development of u written in term of the equilibrium
molecular rotation constant BS=h?/(2/¢). Note that all the con-
stants in egs. (8-10) are given by slightly non standard expressions
based on mass-weighted vibrational normal coordinates, rather
than on their reduced counterparts, since this allows a cleaner
treatment when dealing with transition states (TS), rather than
energy minima, avoiding complex force constants. 26408781

Her and Hy, collect the Coriolis (J; - m,) and rotovibrational
(Jr - Jy) terms, respectively. More complete expressions have
been reported by Aliev and Watson (see Table 1 in Ref. [86]).
Here, we reproduce only the lower-order terms,

HOZZZ BiJz (12)
Han==2) By (j-QP; (1)
T ij
H :—EEJJ 3o % (14)
12 2”1“7:‘ 'I;’Is

This way, Hnuc can be treated perturbatively, taking as zeroth-
order contribution the harmonic oscillator Hamiltonian, Hy. The
separation in perturbative orders of Hy, terms has been widely
discussed in the literature, and different classification schemes
have been proposed.>6-2%303285 p detailed assignment was pro-
posed by Aliev and Watson (see Table 2 of Ref. [86]). It is note-
worthy that the rigid-rotor term, Ho;, is usually treated as part of
the perturbation to avoid rotational energy differences in the
denominators of the perturbation development.

Various formulations of perturbation theory have been
devised, such as the Rayleigh-Schrodinger method®*°" (RS),
the Bloch projector formalism,®>*3! or the Van Vleck contact
transformation approach (CT).[****! We recall here the main
features of the CT method. Differences with the RS develop-
ment, also commonly used in the literature, will be
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A=h|2wm— |
S1=—S,=sign(2wm —wy)
|y |2=HmmnKmmn2nm(”m—1)(nn+1)/32
|p2|2:HmmnKmmn2(nm+1)(nm+2)nn/32
A=h|2ws—om|
S1=—S,=sign(2ws—wm)
|91 2= Homss {Kinss Y (nm 1) (ns 15 (ns 1) /32
1921% =Hinss {Khs Y2 (g +1s+2) (s — s +2) /32
A=h|2ws—wm|

S] 527 53:—54 sign(ZwS—wm)

10112 = Hunss {KSYN2 (R +1) (s +1s—2) (s +15) /128
19a]* =Humss {Kipet )} (nm+1) (ns =1 —2) (ne—1;) /128

)
19317 = Hionss (K™ Y2 1 (g -1 +2) (s + 1 +4) /128
)

|P | =Hpmss ”I'ISIS/IV} nm(nsil +2)(n5715+4)/128
A=h[20s— |
S1=5,=—S3=—S4=sign(2ws— ;)

o1 [*=Hast (K3t} (ny + ><ns+/ 2)(ne—h+2)/128

|pal* =Hist {KS" ¥ (ns—=1s) (ns =1 =2) (e +1i+2) /128

1p3]? =Hase LKUM Y2 (ng 1 +2) n5+ls+4)(n[ 1)/128

|pal? =Hast (K"} (ng—=1s+2) (ns—ls+4) (e +1) /128
A=h[20s— |
51=Sz——53=—54=sign(2a)s—w,)

1 2= Hegt {KLMN2 (ng 1) (g +1s—2) (e +1+2) /128
1 sst

Ipa| —Hm{Kss“’/’”}z(nﬂs)<ns 2)(ne—1+2)/128

9312 =Hese Ak N2 (ng 414 2) (g + 1 +4) (ne+ 1) /128

|pal* =Hest (K5t Y (ns—li+2) (n =L +4) (ne— 1) /128

Table 2. A and |p|* terms involved in the DSPT2 treatment of M4 diagonal elements.

Type Il Fermi resonances
A=h|wm—wn—w,|
Sy =—S,=sign(wm—wp—w,)
1911” =HumnoKmno>Nm (M +1) (no+1) /8
0217 =HumnoKmno? (Nm+1)nano /8
A=h|wm—ws— |
$1=5;=—S53=—S54=sign(wm —w;—w;)
101 2= Humst { KD Y20 (g 1 +2) (ne— I +2) /32
19212 =Hnst (KL Y20 (ns— L +2) (ne+ 1 +2) /32
|05 =Hose (Kot Y (nm 1) (1574 15) (0 =) /32
|04l =Hose (Kinit Y (nm+1) (1= 1) (e +11) /32

A=h|wm—ws—wy|
S1:522753:754:Sign(wm*w5*w()
10112 = Hmst LKMVIN2 0 (g 1 +2) (e + e +2) /32
191> =Humst (Kt} i (s =15 +2) (ne =l +2) /32
193[* =Humst (Kt} (N +1) (s +1s) (e +1r) /32
194l =Humse (Ko™ 12 (i +1) (ns—1s) (ne— 1) /32
A=h|ws—om— x|
$1=5,=—S3=—S4=sign(ws—wm—wy)
191* =Himst K} (nen 1) (s +15) (e ++2) /32
1921 =Hunst (Kt Y (N +1) (05— 15) (ne —ly+2) /32
103> =Humst (K9 2 i (s 15 +2) (1) /32
194l” =Humst Kt} in (=15 +2) (ne—1e) /32

A=h|ws—om—wy|
S1=5,=—S3=—S4=sign(ws—wm—wy)

101” =Humst (K™} (nn+1) (s +1s) (ne—he+2) /32
192* =Humst (K™} (nn+1) (s =15 (ne +e+2) /32
1931 =Hinst (Kt Y21 (s + s+ 2) (ne— 1) /32
)

194l =Humst (Kot Y21 (=L +2) (ne+1p) /32

A=h|ws—wr—aoy|
S1=5,=—S3=—S4=sign(ws—w—wy)
|1 =Hsea {Kit)" Y (s +15) (ne =l +2) (ny = +2) /32
1012 = Hsew {KYV2 (o= 1) (ne + e+ 2) (ny +1,+2) /32
|3 =Hau (K1) j}2<ns+/ (+2)(ne—h) (nu—1,)/32
)

194l =Huta (KL V2 (= Ls+2) (ne+ 1) (ny +1,) /32

A=h|ws—w—wy|
$1=5,=—S3=—S4=sign(ws—wr—wy)
10112 =Hse (K YN2 (ng 4 ) (ne =l +2) (ny +1,+2) /32
1922 =Haw (K" 12 (ne=15) (ne+ 1 +2) (nu— 1y +2) /32
/W2 (g1 +2) (ne—I) (nu +14) /32
(

|p3| =Hitu { Koy
K/ —Is+2)(ne+le)(ny—1y)/32

|ﬂ4| =Hstu{Kstu } (ns

constants for which the relation stands.

H,-,-k=h3/w,-w,-wk and the slash symbol (“/”) between latin numbers is used as a separator between the possible force

highlighted. The CT formalism is based on the transformation
of the Schrédinger equation, 303286941

Hy=Ey) to  H¢=E¢ (15)
where the original Hamiltonian H and wavefunction i are
transformed as,

H=eSHe ™  and  ¢=€Sy (16)
S is an Hermitian operator so that €' is unitary. It is chosen
to obtain an effective block-diagonal Hamiltonian H in a given

Wiley Online Library

basis ¢, in order to separate each vibrational level or block of
degenerate or near-degenerate vibrational levels, with the
property that the eigenvalues of these blocks are the same as
for H. The operator € can be written as a product of succes-
sive contact transformations,

S =i g#?S? (17)
where S is chosen in order to diagonalize H up to the n-th
order. Up to the second-order, eq. (16) for H corresponds to,
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A =H© (18)
H =HO 4i[sD), 1] (19)
AP =1 118D 1= L sD (50, 1O 415 HO] (20)

2

where [X, Y] represents a commutator Taking matrix elements
in the ba5|s of elgenfunctlons of H9, let us first consider the
terms (([)A \H |</>B ) to illustrate the choice of S

)1 . (0) _
‘4)3,, )= <¢A ‘H |¢Bb ) ’[

(A" EN( 1SV g2 )

(21

where the uppercase subscript represents states with different
energies and the lowercase one differentiates degenerate

(0)

states. This means that £, is the eigenvalue for all eigenstates

\q&fﬁ)) of the zeroth-order Hamiltonian H®. For the case
\ngz) )=l 45,(4(2) ), which is also referred to as a diagonal matrix

element of 7:1(1), the second term in the right-hand side of eq.
(21) vanishes, that is,

(6O HM 1) =( O HD | ) (22)

which is identical to the result derived via RS first-order pertur-
bation theory.®®°" For the off-diagonal elements with

0 # E/(\O), the first-order interaction term (¢g‘:)|7:[(1)|d),(32)) will

vanish if we choose S satisfying the following equation,

i 4(0)124(1)( +(0)
i{ ¢ IH Vg5, )
(6180108 )=~ & AE) @)
A ~Lg

In this case, S will only contribute to the effective Hamil-
tonian for perturbation orders hlgher than the first one. If
E( ) ~ E , the value of ( |8 \db ) as defined in eqg. (23)
will be excesswely large. In thls case |¢A ) and |¢é°b)> are said
to be in resonance and (d)A |s1 \g/)B ) is set to be null, so that,

0) 1, (0 0 0 0 0
(O IR 1o ) =( 0 H V19 ) (B ~EY)  (24)
The case of degenerate states, where Eé°>= ﬁ\o), is treated in
the same way as for states of near-equal energies, with the
term (¢£‘?|S(”|¢£)) set to be null, so we have,

(o 1 Lol )= (0l 1O 91 25)
It is noteworthy that this off-diagonal term can result in the lift-
ing, also called doubling, of the zeroth-order energy degeneracy.
The same considerations apply for the choice of 8% in eq.
(20) W|th the difference that, now We |mpose that the terms
(([)A |H \¢>B ) vanish and i[S") 7 M]—[8M,[8M, 1] /2 is
the perturbation correction to H? that derives from the can-
cellation of the off-diagonal terms of H". It can be shown that
the general matrix element of 7 * is given by the expression,®
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(BOH 160 )= (11D 92 )

O (0

2 C#AB A

1
o <°>} > (b -1 (b HD by, )
Ec —Eg 4
(26)

where the first summation, with the % symbol, is only carried
out over the nonresonant states. It is noteworthy that for the
elements ((bA |H \(f)Ab ), be it b=a and b # a, the above
equation reduces to,

~(2)
(S TH 1) = (6 HD PP )

_izwi‘?m%é‘?><¢é‘?|ﬂ“>|¢2b ) (27)

Gz e 2

which is identical to the matrix element derived via RS
second-order perturbation theory.®®*"! Conversely, the deriva-
tion of the off-diagonal elements of 7:l(2> with B # A from the
Rayleigh-Schrodinger development is less rigorous. For this
reason, an alternative form with respect to eq. (26) has been
often used for the treatment of the latter,/*>=%"]

(B HP 10 )=( $ O HD )
(B HD P2 Y HQHD|Y ) 2
ZZ . EC(O)_E«; :
C AB

where E,g%):(E/g())-i-Eéo))/Z.

Vibrational energies for asymmetric, symmetric, and linear
tops

A pure vibrational Hamiltonian Hyio=Hao+Hzo+Hao is
obtained by correcting H®=H,, with H"=Hz and
HP =H,o, followed by the transformation step described
before.*?%%1 An additional term is usually included to account

for the zeroth-order expansion of U [(see egs. (3) and
(4)] [30,32,76,86]

= —FZ 8 rz%ﬁ (29)

where I'=1 for asymmetric and symmetric top systems, and
I'=0 for linear systems. It should be noted that, due to its
small contribution, this term is generally neglected.

If no resonance occurs, the first-order effect of Hsy does not
contribute to the energy of any vibrational state, since both
diagonal [eq. (22)], and off-diagonal [eq. (25)], terms vanish.
Hence, the perturbative corrections to the energy up to the
second order are all due to Hao, with the largest contribution
related to the diagonal elements <¢£‘2)|7:[40|d)£‘? ). Nielsen first
derived the solution for the latter,”® which was subsequently
refined with more general formulas.**3*% Later, Pliva fixed
omissions for symmetric tops with a principal axis of order
higher than three,”? mainly due to missing force constants.
His formulas were in turn corrected by Willetts and Handy.”*
Following those works, we present here a new derivation,
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taking advantage of the framework built previously for asym-
metric tops,™’3! done with an ad hoc tool, based on a sym-
bolic algebra program.”®®

By applying specific rules to orient the degenerate normal
modes,”%""1 simple symmetry relations can be established
between sets of related cubic and quartic force constants, as
well as Coriolis constants. A first detailed classification was
done by Henry and Amat in Refs. [60,99], for the first, and
Refs. [70,71] for the latter. For the force constants, at variance
with eqs. (9) and (10), restricted sums were used in the poten-
tial energy expansions. Remembering that the commutator of
the two normal coordinates associated to the same harmonic
frequency is null, the nonvanishing cubic and quartic force
constants with at least one degenerate normal mode for the
case of unrestricted summations have been reordered and
reported in Tables A1-A9 of Appendix A. The notation
adopted in those Tables is similar to the one used by Pliva.”?
Moreover, assuming hereafter the highest-order axis of sym-
metry to be along the z axis in the molecule-fixed reference
frame, the symmetry relations affecting the Coriolis terms {j
are given in Appendix A.

From here on, the subscripts i,j, k, | will be used to indicate
generic vibrational modes, degenerate or not, while m,n,o,p

h h? S Knmnn
Eo==Y Vidi+—= Smn_mmnn
2; ™ 32ZZ N/

WWW.Q-CHEM.ORG

hZ
TP
s o<l

FULL PAPER

will be reserved to nondegenerate modes and s,t,u,v to
degenerate ones. When needed, a second subscript y, €, 0, 1,
which takes the values 1 or 2, is used to distinguish the two
different normal coordinates associated to the same two-fold
degenerate harmonic frequencies. For TSs, the transition vector
(i.e, the normal mode with the nondegenerate imaginary fre-
quency) is labeled by the subscript F. In this framework, the
vibrational second-order perturbation theory leads to the fol-
lowing expression for the energies,

E(n,I) E0+Zh\/wn,+225ux,j<n,n,+n, +n,2>+Zngtllt

i#F ijzi s t>s

(30)

with,

55:(1 —5i/:)(1—(3jp)+5jf:($jp (31

0; is the Kronecker’s delta, n and I are respectively the prin-
cipal and angular vibrational quantum numbers, and d; is the
degeneracy of mode i. In the above expression, all n- and /-
independent terms are collected in E, a term which can be

written in a form devoid of resonances,

. oK

Z ; sz V skt

S

(o) 2
(IKSSSS h KmmSS
+
As 8 ZZ / T ;

F 2
5mnoKmno

OrnnK
eyl

:| Z{Ksss
48/ 7 in o (N N7 + ) 36 A2
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sst stu} T .
E;EW 2Z;;Z¢W¢z+w+m 22"
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s t>s

with,
F=(1-dk) 33)
I =(1=0iF) (1= 0jp) (1= k) + i Sy e (34)
and (see Appendix A),
1 if o= , [ Kol
N3 foss 40T 12 if o € {1V}
(35)
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The elements of the anharmonic matrices y and g are given
by,

5K, 2 Kinmn? (8.m—32,
Bmem :Kmmmm - § n;mm - mrrm ‘E A m_} n) (36)
tm nZm /Ln( Am ~n)
C N :K _ Kmmmenn _ Kmmn Knnn _ Kmmn2 _ Kmnn2
mn £mn = Rmman = = I Bom—7n) (42— Im)

2(Jm+in—2
v 3 [Honeot2ol) ) 1 57 6 i )

o#m n Amno A’O

37)
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A= 22+ 0+ 25 = 2(Aidj+ didw+ Dk

with Bi=164;/h?, Ci=4./7i%;/h*, s;=sign((s 1, Lsytc)s S¢ =sign

(y1p085om.0) @nd (see Appendix A),
, 1 ifeoe{lll
o= {1y (43)
-1 if o€ {, IV}

In the formulation adopted here, it is easy to see from egs.
(36) to (42) that the matrix elements yg;, with i # F, are imagi-
nary. They are excluded from the vibrational energy, which
contains only real terms, and enter, together with the imagi-
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nary frequency wg, in the expression providing tunneling and
non classical reflection contributions to reaction rates.!

It is noteworthy that, at variance with eq. (30), the anharmonic
contribution to the vibrational energy is usually expressed in the
literature as the sum of y;(ni+d;/2)(n;j+d;/2) and yo (or Go)
terms. In the specific case of symmetric and linear tops, the yq
term was omitted by Pliva, Willetts and Handy in their respective
works.”%>73! It was included in the derivation proposed by Truh-
lar and coworkers®® but it was based on a less general treat-
ment than the one proposed by Pliva, which led to
discrepancies with respect to the formulas given by Willetts and
Handy and obtained in the present work. To the best of our
knowledge, this is the first time that all terms needed to com-
pute the vibrational energy as given in eq. (30) for symmetric,
asymmetric and linear tops are gathered in a single work.

From eq. (30), it is possible to calculate the energy of any
vibrational state. The energy of the vibrational ground state,
that is the zero-point vibrational energy (ZPVE), is E(0,0)=E,.
It is straightforward to determine transition energies governing
vibrational spectra (i.e., at constant ng) with the relation,

v(An,Al;n, )=

E(n+An,I+Al)—E(n,I)

=Z hw, An,--i-z X,-,-An;(An,-i—Zn,--i—d,-)
i i

+ = Z;yu [An;(nj+d;)+n; Anj+An;iAnj]
i j#

+ZgSSAI (2l,+Al)

Z > gstAls(2l+Al)

S t#s
(44)

Explicit expressions for the energies of fundamentals,
first overtones and combination bands are given in the Appendix B.

Finally, the tunnel probability P, of interest in chemical rate
constants computations, can be evaluated using the microca-
nonical ensemble with the semiclassical TS theory of Miller
and coworkers."®'° They used the definitions,

(UF:I.|(UF‘ = i(Z)F (45)
1 0

N+ -=— (46)
2 n

Lie = ~ i1 (47)

to invert the relation E=E(n, I, 0), where,

1 1
E(n,1,0)=E(n,I)+i {hwp—zi: LiF (”i+ 5) (nF+ 5)] (48)

and obtain the generalized barrier penetration integral 0(n, I, E)
in terms of the n; and /; quantum numbers of the activated sys-
tem, with i # F, and the total energy E,

o(n.1,E)="AE ! (49)

O 1 4 1 +45,AE ) (hQ )2

where,
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AE=E(n,I)—E (50)
1
hQF:h@F—Z T <n,~+£> (51)

In this framework, the semiclassical tunneling probability P
for a one-dimensional barrier is given by,

1

P LE)= ey

(52)

Vibrational /-type doubling and /-type resonance

If no resonances occur, vibrational energies of nondegenerate
states can be determined directly from eq. (30). On the other
hand, for degenerate zeroth-order states, as seen above, the
interaction terms (¢§42)\7:(40|¢2?) cannot be canceled out with
S and must be treated variationally. The presence of those off-
diagonal elements in the variational matrix will result in a further
lifting of the degeneracy of the vibrational energies, initiated
with the application of the second-order correction. This splitting
is called /-type doubling or I-type resonance, depending if the
diagonal energies involved have equal or different values, respec-
tively. Using symmetry considerations, Amat derived a general
rule to identify a priori the possible non-null off-diagonal matrix
elements.*>'%? |t depends on the N-fold principal symmetry axis
and the difference of quanta in the principal (An;) and angular
(Al)) vibrational quantum numbers between the states involved
in the interaction term. The ensemble of non-zero I-type off-
diagonal terms is obtained from the following relations,

<n57 I5|7:l40\n5, (I5i4)s >:

U/ (ns=1+8) (ns+1s£2) (ns— 1, 72) (ns 7 ) 3

(nsng, Isle | Hao|nsne, (Is£2), (1 72), )= "
Rz (ns=1+2)(neF1+2) (ns ¥ 1s) (ne=1y)

(ngne, lele|Faolnsne, (s=2),(=2), )= o5
S/ (ns2l+2)(ne =1 +2) (ns ¥ 1) (ne F1y)

where, as usual, only the modes undergoing a change in their
quantum numbers between the two states involved in the matrix
elements are shown. The off-diagonal elements given in eq. (53)
are non-null if N is a multiple of 4, those given in eq. (54) for any
symmetric top molecule and the elements of eq. (55) if N is even.
The first expressions of U, R and S for the various point
groups have been given by Grenier-Besson.'®*'%* The formu-
las have been re-derived here, with the notation introduced in
this work, and validated with respect to those obtained by
Grenier-Besson. They are gathered in the Appendix C.

Vibrational first-order resonances

It has been shown that if two states are in resonance it is not possi-
ble to make the corresponding off-diagonal term vanish. A reso-
nance can connect two or several vibrational levels and, moreover,
multiple resonances can connect a network of levels. The sub-
matrices where the resonances are involved are called polyads.®®*”?
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As ﬂ(o) has only diagonal elements, its off-diagonal terms
are all null. The presence of off-diagonal first-order terms due
to Hso is related to the so-called Fermi resonances. The latter
are characterized by a strong interaction between two states
that differ by one quantum in one mode and two quanta in
either one (type |) or two different (type Il) modes.*>*>”>! Due
to the creation of one vibrational quantum and the annihilation
of two others, or conversely, these singularities are also called
vibrational 1-2 resonances.””’ They can appear when ( ¢} [H"
\4)[(;2)> in eq. (23) is excessively large or Ef\o) ~ Eéo) in eq. (21),
condition which can occur in two cases: 2w; =~ w; (type I)
or w; =~ wj+awy (type ll).

Different methods have been developed to overcome the
problem of Fermi resonances. One possible route is to solve
the Dyson equation with the frequency-dependent self-
energy.” In this way, one need not to classify the different
types of resonances or lose size-consistency, but to perform a
root search of a nonlinear, recursive equation. The most com-
mon approach, called deperturbed VPT2 (DVPT2), consists in
simply removing from the perturbative treatment the resonant
terms after their identification. The explicit expressions of the
potentially resonant terms in eqs. (36-42) are given in Appen-
dix D. However, this treatment is incomplete due to the
neglect of the resonant terms. An improvement can be
obtained by treating variationally the levels involved in the res-
onance, reintroducing the removed terms as off-diagonal inter-
action elements. This method has been called generalized
VPT2 (GVPT2)!?93032471 or more recently, CVPT2+KP¥ or
CVPT2+WK.!"%! The list of possible off-diagonal first-order
interaction terms generalized to linear, symmetric and asym-
metric tops is given in Table 1.

Although those methods have been widely discussed in the
literature, less attention has been devoted to the identification
of a general strategy to determine when an interaction term has
to be considered in resonance. Indeed, all the methods pre-
sented above rely directly on the identification of the resonant
terms. The definition of a singularity giving rise to unphysical
contributions is far from straightforward, and different schemes
have been proposed. The simplest approach is to check the
magnitude of the denominator (i.e., |2w;—w;| and |w;—w;—wy])
with respect to a fixed threshold. If the value is below this limit,
the term is considered resonant. Such a scheme does not
account for the magnitude of the numerator, which makes diffi-
cult the definition of a reliable threshold adapted to a wide
range of molecular systems. A more robust solution to this prob-
lem has been suggested by Martin and coworkers."'°® Consider-
ing two resonant states |qb/(_\2)> and |qbg:) ), we can write down
the interaction between the two states as a variational matrix,

A R e S A W
(o MO+ gg)) Cog) MO+ Vog)) )\ o B
(56)

where p=( ) [H+H"|gg) ) =( ¢y M|y ) and p' is the
complex conjugate of p. If p tends to zero, the eigenvalues E* of
the matrix in eq. (56) can be written as the following Taylor series,
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where A=\E/(‘O)f [(30)\ must be non-null. Up to the second-
order, E* coincides with the vibrational energies E,E‘O) or Eéo)
corrected with a second-order perturbation term, which arises
from the |nteract|on between |(/>A ) and |¢g°b>) (here the case
B0 £ |=£0 £

o and E=£9— o (58)
A B A

where |p|*/A is precisely the possible resonant term in the
VPT2 equations, that is, one of the terms in the summation in
the right-hand side of eq. (27). Based on those considerations,
the importance of the higher-order perturbative terms can be
estimated from the fourth-order expansion term in eq. (57),

E"=E)+

(59)

where A=h|2w;—wj| for type | Fermi resonances and A=h|w;—

—wy| for type Il Fermi resonances. Consequently, a threshold
on the term can be a good marker to evaluate the importance of
higher order effects and then if the second-order term has to be
treated as resonant. Moreover, this term accounts not only for
the energy difference but also for the magnitude of p. In a
slightly different formulation, the threshold used to evaluate the
presence of first-order resonances is calculated taking into
account all high-order expansion terms, obtained subtracting the
first two expansion terms from the square root of eq. (57),1'%”

2 2

A general approach can be derived from the development pre-
sented above, which is to apply to all potentially resonant terms
in the VPT2 formulas the transformation described previously,

2 2

%z A7+|p|2—% (61)

An interesting feature of this approach is that there is no need for
an identification of the resonant terms, which can be inconsistent
whenever one has to consider a series of force fields for a given sys-
tem, or a series of geometries along a reaction path. Indeed, varia-
tions in the set of resonant terms can make difficult any comparison
of the VPT2 results between two or more simulations. This scheme
is similar to the second-order degeneracy-corrected perturbation
theory (DCPT2) introduced by Kuhler and coworkers,"® which will
be discussed afterwards. The interest is to prevent the appearance
of singularities in the calculation of anharmonic contributions using
a simplified variational approach, since the right-hand side of eq. (61)
cannot diverge if A becomes small. Far from resonance, the substitu-
tion still accounts for the interaction between the vibrational states
\q&&i)} and |¢g:) ). It is noteworthy that, at variance with what
has been done in Refs. [53] and [108], this time we apply the
transformation of eq. (61) directly on all possibly resonant terms
in the effective Hamiltonian, that is all terms in the summation in

International Journal of Quantum Chemistry 2015, 115, 948-982

International Journal of

WWW.Q-CHEM.ORG M

HEMISTRY

the right-hand side of eq. (27) which have frequencies differences
(i.e., 2w;—w; or w;—w;—wy) in the denominator. For this reason,
we will refer to this approach as degeneracy-smeared vibrational
perturbation theory (DSPT2). After the complete development of
eg. (27), the possibly resonant terms can be grouped in sets of 2
or 4 components sharing the same A. For the two terms with the
same A the substitution given in eq. (61) leads to,

0 0 0 0
(o NG | KSR  1piP o loal
£ —EY £ —EY) A A
A A’ A
5 \/7+|P1 \2+52\/j +pa = (S1 +S2)5
(62)

with  A=[EY—EP =Y —E9)| s =sign(EY—E”)  and
Sz=sign(E,<4°)—E(C°)). Since S; and S, are opposite, the last term
of the transformation disappears.

As an example, let us consider

A=h|20m—wy),

the terms involving

(P HO (7 +2) 5 (70 = 1))
h(2wm—op)
_ h3Kmmn2 (nm +1 )(nm +2)nn
32Amwnh(2wm—wp)
(63)

(e (11 +2) y (10 +1),, ) |
h(2wm—wnp)

_ thmmnznm(nm_ 1 )(n,,+ 1 )
32mwnph(200m—wp)

The substitution given in eq. (62) can be carried out with
the following definitions,

A=h|20m—wy]|
|91 2= 03K 2 (M= 1) (M + 1)/ (3205
19212 =P K2 (en+ 1) (N +2)11n / (32 im0
S1==S,=sign(2wm—wp)

The transformation to be applied in the case of 4 terms hav-
ing the same A is straightforwardly derived,

0 0 0 0
N T A Sl
E,E\O)_E[(;O) E/E‘O)—Eéo)
(e 110 ) (i (119 )
E,SO)—Eg’) E/(4°>—E,(_;°>
‘P1| lp | |P3‘ |P4|
+S, +S3 +5S,
A A

\/— +1p1] +52\/— +|p,)?
A? A?
+53\/7 +p3|2+54\/7 Jr|P4|2

A
2

—(S1+52+55+54)

(64)
. 0 0 0 0 0 0 0 0
with  A=|E —EQ|=|EQ —EQ)|= e —ED | =X —EX)|.  As
before, the previous transformation can be further simplified
as the term (S;+S,+S3+S4) is null.
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All potentially resonant terms and the definition required to
apply the transformation given above are gathered in Table 2.
The extension of the DSPT2 treatment to the off-diagonal ele-
ments (¢22)|7:[40\¢5\?> requires further discussion. Let us con-
sider one of the terms in the summation in the right-hand
side of eq. (27) with a # b. This contribution can be related to
the eigenvalues of the following matrix,

(0)
E

’ (0) (65)
P Ec

where p;=( ¢y [HO|pC) ) and p,=($C [HD|p5) ), with asso-
ciated eigenvalues,

(0) 4 £(0) 2 (0) 4 £(0) ~ =22
. Ey+E A E,’+E, A p p _
Fr="A _C +y/[—4+p - A € + =4+ L2 45(p*
2 4 P20 2 2 AN °(")

(66)
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p=p,p, and A=|E£\°)7E<CO)|. This matrix differs slightly from
the one obtained with the proper variational description,
which has the form,

(<</»2‘?|H<°>+H“>¢;‘?> <(é‘2>H<°>+H“>|r/);‘3)>>_<o pz)

(0)
(ODHO+HD () (o HO+HM ) poEc

(67)

Nevertheless, the matrix given in eq. (65) is more convenient
for the mathematical derivation of the possible resonant
terms, on which the previous substitution is applied,

where S accounts for the signs of both (E,&O)—Eéo)) and p.
To illustrate this point, let us consider the resonant term
with 20, ~ @, in U™,

(Mo, L HO | (10— 1) (04 2, (652),) (=) (15 2),, (652) [ HD |1, (14), )

h(2ws—wm)

(69)

_ Pk 0T+ A) (0, T+ 2) (0,5 2) (17 )

We then apply the relation given in eq. (68) after the proper
identification of the terms involved in the transformation,

A=h|20s—wp|

S=sign(2ws—wm)

W (K32 /(ng =15+ 8) (ns+ 15 £2) (n,— I, 72) (ns 7 1s)
128wmAs

p=

The other identification sets to be used in the transforma-
tions of the possibly resonant terms in U, R and S are gathered
in Table 3. An alternative way to treat resonances was pro-
posed by Kuhler and coworkers in 1995 and slightly modified
by some of us. The difference with the DSPT2 development
lies in the terms on which the substitution given in eq. (61) is
applied. Indeed, in degeneracy-corrected PT2 (DCPT2), the ele-
ments of the y matrix are derived first and the possibly reso-
nant terms are identified within the elements of y; [egs. (36-
40)] and transformed. Further details can be found in Refs. [53]
and [108]. For degenerate modes, not treated in those previ-
ous works, we use the same transformation as for nondegen-
erate modes. To illustrate this point, let us consider the last
term in the right-hand side of eq. (39), developed in partial
fractions,

PR (8h—34) _ RKGY (4, 1
1645 A¢(44s—¢) 32sw¢ \w; 2ws+®;  2ws—w;
(70)
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32swih(2m5—wy)

128wm Ash (25— wpm)

By setting A=h|2ws—aw| and |p*=h*{K\)}?/(32%sw;), we
obtain the following transformation,

”3 K(rf) 2
(Ko } — sign(2ws—wy)

(71)

hl2os—ox® | PG ) hl20—o
4 32/0¢ 2

The new y matrix obtained by replacing possibly resonant
terms in nonresonant ones is then used in the calculations of
the vibrational energies.

However, both DSPT2 and DCPT2 transformations can give
poor results far from resonance when both numerator and
denominator become large. Indeed, when p is large, the equiv-
alence of eq. (57) is not true and, while the VPT2 term |p|*/A
can be still valid due to a large A, the DSPT2 and DCPT2 trans-
formations are incorrect. To cope with this shortcoming, an
hybrid scheme called hybrid DCPT2-VPT2 (HDCPT2) has been
proposed by some of us. In this method, a switch function, A,
is used to mix the results from the original VPT2 and the
DCPT2 approaches for all possibly resonant terms in y as
follows,*

fupcpra=Afypr2+ (1= A)fpcer (72)

where fypr, represents the value of a possibly resonant term
calculated with the original VPT2 formulation [left-hand side
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Table 3. A, s, and p terms involved in the DSPT2 treatment of 7:l40
I-doubling off-diagonal elements.

U I-type doubling
A=h[20;—wp|
S=sign(2ws—wm)
p= Hmss{Knglsls/IV} \/
R I-type doubling
A=h|wp—os—o|
S=—sign(wm—ms—wy)

P =Hmst {K Y2 /(s = I+ 2) (e Tl +2) (s 515 ) (e = r) /32
A=h|ws—wm—wy|

S=sign(ws—omn—w;)

P =Hmst{K Y2 /(s 21+ 2) (e e+ 2) (ns 5 15) (e =) /32
=h|om—ws—oy|

=sign(wm —ws—w)

ms,{Kmsr} V(s =l +2)(ne %1 +2) (ns s ) (ne 1) /32
=h|ws—m— |

=—sign(ws—wm—w)

P =Hmst {KI Y2 /(s =1+ 2) (e e+ 2) (ns 515 ) (e =) /32
S I-type doubling

A=h|wm—ws—w|

S=—sign(wm—ws—w)

p=Hmst (Kt} /(0 E L 2) (0 =+ 2) (0,5 1) (e ) /32
A=h|ws—wm—oy|

S=sign(ws—wm—aw;)

P =Hmst {Ko 2 /(s =1+ 2) (0 = le+2) (ng 1) (7 7 1r) /32
A=h|wm—ws—w|

S=sign(wm—ws—w;)

P =Hmse (K12 V(s =l +2)(ne =l +2) (s s) (ne %) /32
A=h|ws—om—oy|

S=—sign(ws—wm—wr)

p= ms,{Kmsr} V/(ns=l+2) (ne =1 +2) (ns 1) (ne 1) /32

Hy=h®/wjwjor and the slash symbol (“/”) between latin numbers is
used as a separator between the possible force constants for which the
relation stands.

s £l+4) (ng+15+2) (ns—1s+2)(ns*15) /128

tnll>

wn| [>w

term in eq. (71)], and fpcpry its counterpart calculated by mean
of DCPT2 [right-hand side term in eq. (71)]. A is defined as,

tanh [oc( “":Az—ﬂ)} +1
A= (73)

2
where f§ controls the transition threshold between DCPT2 and
VPT2, and « the “smoothness” of the transition. The same
scheme applies for the hybrid DSPT2-VPT2 (HDSPT2),

frospr2 = Afvpr2+ (1= A)fpsprz (74)

where fypr, is the true VPT2 term [e.g., S1|p1|2/A in eqgs. (62
or 64) and DSPT2  counterpart (i.e.,

(&% /4)+[p1 )

fDSPTZ is its

Vibrational second-order resonances

In analogy with first-order resonances, when two zeroth- order
states involved in the contact transformation glven by S are
close to each other, the off-diagonal elements (¢A |H \(j)Bb )
cannot be canceled out and have to be treated variationally.
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Many types of resonances lead to off-diagonal second-order
energy corrections. According to the classification of the total
change of quanta, there are 1-1, 2-2 and 1-3 second-order
resonances. For asymmetric tops, a detailed description of all
these off-diagonal terms has been recently given by Rosnik
and Polik.® The total number of non-zero second-order off-
diagonal elements becomes very large when doubly degener-
ate normal modes are also taken into account, because of the
large number of combinations of nondegenerate/doubly
degenerate normal modes that can be obtained when consid-
ering all states involved in the matrix elements. In this work,
we have generalized the expression for the 2-2 vibrational
second-order resonances to support also doubly degenerate
states, in the specific case of the annihilation of two quanta in
one mode and the creation of two quanta in another one.
Known also as Darling-Dennison resonances,!'®” the non-zero
off-diagonal elements for this situation are given by,

(Anal H? (i +2),,,(nn—2),, ) =
Kmn (75)
16 V(N 1) (nm+2)nn(n,—1)
(s, LI (M +2),,,(ns—=2),. 1y ) =
o (76)
T3 (Nm+1)(Nm+2)(ns—15) (ns+15)
(e, L H P | (ng+2) (ne—=2),, sl ) =
N0 (77)
% (ns—Is+2)(ns+1s+2) (ne—1) (ne+1)
(nane, Lk 77 (0 +2), (0= 2),, (%2), (I £2), ) =
0 (78)
2—4\/(nsils+2)(n5tls+4)(n,1/,72)(n,1lt)
(a7 (0 +2), (0 =2),, (%2), (1 72), ) =
= (79)
2—4\/(nsils+2)(nstls+4)(ntilt—2)(ntilt)

The definition of the x terms is reported in Appendix E. The
second-order off-diagonal elements are then used within the
GVPT2 approach in the variational treatment of the polyads.

Therefore, each polyad contains the deperturbed vibrational
energies of the resonances interacting states as diagonal ele-
ments, the first- and second-order resonances off-diagonal ele-
ments, as well as the possibly I-doublings and /-resonances, also
off-diagonal terms Note that up to the second order we W|II
never have ﬁb |H 'R ® |¢B ), with both (¢A |H \d) )
and (¢§42)|7:( |¢B ) non-null, because the couples of states
interacting within first-order resonances are always different
from the couples interacting by second-order resonances.

Vibrational partition function for thermodinamics and
kinetics

The partition function of a system is the sum of the Boltzmann
factors of the energy levels E, each weighted by its degener-
acy D,
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(M=>_e "D, (80)

where =1/(kgT), kg and T are the Boltzmann constant and
the temperature, respectively, and the summation is on all
possibly states . We treat here the vibrational molecular parti-
tion function Qi, for which E, and D, are the energies and
degeneracies of vibrational levels. Starting from eq. (80) and
focusing on at most doubly degenerate vibrational modes, the
harmonic vibrational partition function OS';Q is obtained by,

Qi ZZ ZZ e

Nm=0n,= =0n;=

n+1)(nr+1)... (81

where E(n)= )", hwi(nj+d;/2) is the harmonic formulation of
the vibrational energy and (ns;+1) is the degeneracy due to
the degenerate mode s. Developing the previous expression,

vnb_e ﬁELH ZZ ZZ He ﬁhwn, +1)(nr+1)

Nm=0n,=0 =0n;=

—pe) S — Bhomn, - — Bhasn.
=e o Ze mm,..Ze s (ng+1) ...
ns=0

nm=0

(82)
> hwid;/2 is the harmonic ZPVE and we have

1/(1=q) and 3_2o(n+1)g"=1/

where EéH)=
used the relations Y o7, q"=
(1—q)* when |q| < 1.

Unfortunately, an analytical development of Qi is not available
beyond the harmonic level. Several routes have been proposed to
deal with this situation.""""""*) Here, we employ the approxi-
mated method proposed by Truhlar and Isaacson, called simple
perturbation theory (SPT), in which the formal expression of the
harmonic partition function is retained, but the ZPVE and w; terms
are replaced with their anharmonic counterparts,>198114!

—PEo
e
Q= (83)

H (176,—/;\-(1,*:1 or o),.>df
i

Ey is the anharmonic ZPVE given in eq. (32), and
v(1,£1 or 0);, defined in eq. (B1), is reduced to v; below for the
sake of readability. This approximation leads to analytical expres-
sions for the vibrational contributions to the internal energy U,
entropy S, and constant volume specific heat ¢,°"""%

[E0+Zeﬁh_1} (84)
kBTZ di |: fvi —

kBTZ e [ (86)

where R is the Boltzmann universal gas constant.

~ksTin(1-e")] (85)
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Rotational Hamiltonian

The terms 7:{09 (g=2,4,6,8,...) in the effective Hamiltonian
are the pure rotational and centrifugal contributions to the
energy, which describe the rotational energy levels for the
zero-point vibrational state. Their complete treatment has
been widely discussed in the literature®®3>11371291 gnd we will
recall here only some key aspects.

The quartic centrifugal terms Hos form the simplest second-
order contribution to H,o. Their expression results from the
second-order effect of HV=H,,,

a;, ,yd;. Y
Hor__ZJJJJ ZZ%

™mee e

= Z E TI}];QJ'[J”J;JQ

mee

(87)

where the tensor 1., was originally introduced by Wil-
on.l"21221 The sextic centrifugal distortion constants are from
the term Hqs. The perturbation terms required for its calcula-
tion are HixH12Hz, (harmonic), HieH12H21H1 (@nharmonic)
and HixHixHarHar, HizHi2HaiHoz, Hi2Hi2Ho2Hoz (Coriolis),
where the last two Coriolis contributions should be considered
even if they have a degree in J greater than six because they
can be reduced to sixth degree terms by the rotational com-
mutators (i.e, [J;,J,]=—iJ). (see Refs. [32,115] for further
details). With the assignment HO =Hgp +Hap+Ha +Hszo and
H@=H,,, all contributions reported above appear in the
fourth order perturbative development. The final expression
for Hos was obtained by Chung and Parker?'?* and col-
lected by Aliev and Watson (see Table 3 of Ref. [120]).

The vibrational contact transformation then leads to the
rotational Hamiltonian,

Hyor=Hoz+Hoa+Hos (88)

where now both Hgs and Hee contain terms that can be
reduced by the use of rotational commutation relations. Tak-
ing as an example the explicit form of Hos4 given in eq. (87),
there are 3*=81 terms that can be reduced to,

~ 1 /
Hos = p Z Tro -/rz-jnz (89)
™
where
Trrm], =Teopy + 2‘51»117] (1 - 511]) (90)

As a consequence of this reduction, BS is corrected by a
small contribution from the quartic terms,

} 1
B® =B+ 4 (317;7217:_2‘5;1;1_21“7“7) oD

Bf,’ and Be are obtained by cyclic permutation of the indices.
Further contact transformations with purely rotational oper-

ators, thus diagonal in the vibrational quantum numbers, are

required in order to achieve a complete reduction of Hror. In
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the completely reduced Hamiltonian, combinations of quartic
and sextic distortion parameters are strictly related to the
eigenvalues of Mo, and then to physical observables. Different
results can be obtained depending on the arbitrary choice
applied to fix the reduction’s parameters. The general form of
the reduced Hamiltonian of an arbitrary molecule has been
given by Watson.!""®'1%7251 Wwith the choice called by Watson
asymmetric top (A) reduction, the matrix representation of
Hyor in the symmetric top basis has the same form as that of
a rigid asymmetric top,

F = EB

-5 [(5JJ2+5kJZZ), (2 41-2)] 40,2

=N (PP) = APl — A

(92)
F Oy (J2)° P+ D2 ), + By S,

1
+ 5 [((pj(.lz)z+(kaJZJ22+(kaZ4), (J+2+J,2)]

where J? and J- are the total angular momentum and the lad-
der operators, respectively”?® and [X, Y], represents an anti-
commutator. A and ¢ refer to the quartic distortion constants,
®, and ¢ to the sextic ones. The latter coefficients are given in
Refs. [86,115]. The disadvantage of the asymmetric top reduc-
tion is that it fails for both genuine and accidental symmetric
tops. For the latter, the symmetric top (S) reduction suggested
by Winnewisser and Van Eijck can be used,'?”'?#!

)
O IL
+dy (J A1)+ Hy (PP +Hy (B2 )2+ Hig P4+ Hid,8

+h ()22 +had? (J4 4+ )% +hs(J1 6 +1_5)
(93)

—Dy(I2) —Dy S22~ DiJ A+ di P (U2 ) 2)

where the expression for the quartic (D and d) and sextic (H
and h) distortion constants are presented in Ref. [115]. General
expressions for sextic distortion constants have been recently
revised in Ref. [129].

For linear molecules, the angular momentum J, is null. In
this case, Watson has shown that the molecular Hamiltonian in
eq. (1) becomes,! 3%

2

—u [(Jx—nx)z-i- (Jy—ny)z] +

Hhuc= 5

%Z S PV (94)

H ot for linear molecules is then given by,!3%7686:1151

~ 2 3
Hoor=B° (J§+J§> -D, (J§ +J§> +H, (Jf +J§) — ... (95

in which B¢ is the equilibrium rotational constant and the
explicit formulation of the quartic (D)) and sextic (H,) centrifu-
gal distortion constants are given in Refs. [32,115]. Hyor is
already in a fully reduced form. The rotational energies for lin-
ear tops are obtained by replacing (J,2+J,2) with (J2—J,?)
and then by their eigenvalues,
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Eo=B° [JU+1)=F] =Dy [+ 1) =P +H,[JU+1)=P]”  (96)

where J is the total angular momentum quantum number and
| the total vibrational angular momentum /=" _;

Vibrational dependence of the rotational Hamiltonian

The operators Hay, Haz, Haa, ... contain the terms describing
the dependence of the rotational and centrifugal constants on
the vibrational quantum numbers. The vibrational dependence
of the rotational constants in the quartic approximation is
described by,

d;
—pe__ ) 4 !
—BT Ei Ot (n, —2 ) (97)

where now v indicates a specific vibrational state. The vibra-

tional correction derives from the diagonal matrix elements of

Ha, specifically by the second-order corrections, considering

HP=Hy and H=Ha +Hszo. For asymmetric tops, the «

constants are given by,?%3%86]

2B’ {Z 3amc
hawpm — 4

Z{C 23; +;n

Om,t
"n

Z Kmmn an, n:|

(98)

Using the symmetry relations for g;., and (. given in Refs.
[70,71] and accounting for the doubly degenerate normal
modes, the o coefficients for linear and symmetric tops are,B2

2{B2}’ |3am.> 234m+/n Un 2
== Z_ 4 22T N Kmn 2
Om, 4,5 ; {é’mnz} ;tm _jvn ; mmn 2/1”

hwm
(99)
2{35}2 _3051 xz (i 23/L5+/1t KO am zz
= 2y
i h(us 4[)2( Z {és “5 mss 2;
(100)
y— 2{Be}? -3(amAXX2+am,Xy2)
mx hom 4

] (101)
3mt+A Anxx

30 (Y Y 57250+ 3 Ko ”

n

772{85}2 3051,x22 3051‘xx2 1 3s+Am
B [ 8z | al +§zm:({ s+ Al })m

haws

PUORYS «(IV)2 35+ At () Am xx
+ + —_— K
> (e ) T K 5

(102)

with ajx=0;y. The first contribution in eqgs. (98-102) is a cor-
rective term related to the moment of inertia, the second one
is due to the Coriolis interactions, and the last is an anhar-
monic correction. It is noteworthy that the Coriolis coupling
term may be affected by resonances. In analogy with vibra-
tional first-order resonance, the strategy that is adopted when
a resonance occurs is to expand the Coriolis term and neglect
the resonant part, as shown in Appendix D. By contrast, the
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summed Coriolis coupling term ) . «;.d; is not affected by
resonances, as it is possible to write,

2{Be}? . 23t
a {w} Z{é"fﬂ}z ;.’_;L.]
1 i v
(103)
(w,+wj)2
wWj— wj

{Be} Z{c,,f} —op)’

w,+wj

Taking as an example the resonance o, ~ w, we have
(dn=1and d,=1),

{Cmnf} 3) +A’
Om <4, —2{B¢}
; e { ; Om /Lm_)»n

2 {Cnm.r}z 3/Abn +)bm
—2{B°) @0 In—im

2
=... +{B§}ZZ—{i’:’;i

(wm_w")z — (wm+wn)2 (wn_wm)2 _ (wn+cm)
Wm+tw, Wm—Wp Wn+wm Wn—Wm
2 2
= rafeyy ROl
mn WmWnp wm+w,,

(104)

Similar simplifications can be applied for w,, ~ w; [note that
the factor 1/2, which multiplies the Coriolis terms in eq. (102),
is simplified by d;=2] and w; ~ w; resonances. Taking these
considerations into account, it easy to see that eq. (97) for the
vibrational ground state is devoid of resonances, that is,
B?:Bgf Zi O(,‘Jd,‘/z.

Computational Details

The theoretical approach presented in the previous section
has been included in a development version of the Gaussian
package.®" The implementation can be used with any QM
procedure for which analytical second derivatives are available,
among which HEY” DFT,"® and MP27 will be explicitly con-
sidered in the following. Examples of applications with each
model will be given in the next section. Within DFT, the stand-
ard B3LYP functional™**""** has been used in conjunction
with the SNSD basis set,”"** that has been validated for vibra-
tional studies.l'**7"3*¥ The double-hybrid functional B2PLYP!*%!
and MP2 have been used in conjunction with the Dunning
correlation-consistent valence aug-cc-pVTZ (AVTZ) and aug-cc-
pVQZ (AVQZ) basis sets.['*"'*? For ferrocene, an organometal-
lic compound taken as an example of medium-size systems,
the B3LYP functional has been used in conjunction with the
SNSD basis set for H and C atoms and the double-{ ECP basis
set of Hay and Wadt augmented with polarization functions (p
type with exponent 2=0.1349150) (aug-LANL2DZ) for Fe, with
the LANL2DZ pseudo potential to describe core electrons.l'*!
The hybrid B3PW91 functional'* has been also employed in
conjunction with the m6-31G basis set, based on 6-31G and
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improved for first-row transition metals."** For triphenyl-
amine, the B3LYP functional has been coupled with the
valence double-{ polarized basis set 6-31G*."**"*® Frequency
calculations have been systematically carried out at the equi-
librium geometry obtained at the same level of theory, using
respectively tight (1078) and very-tight (on force: 107® Hartree/
Bohr, estimated displacement: 4 - 107® Bohr) convergence crite-
ria for the self-consistent field and geometry optimization steps,
respectively. For all DFT computations, an ultra-fine grid (199
radial points, 590 angular points) was used for the numerical
integration of the two-electron integrals and their derivatives.
The third and semidiagonal fourth derivatives of the PES have
been obtained by numerical differentiation of the analytical sec-
ond derivatives along the mass-weighted normal coordinates,
with the default step 6Q;=0.01 y/amu - A, as,*"14

K. __{ Kij(+0Qk) —Kj(—0Qk) | Kix(+6Q)) —Ki(—5Q;)
"3 26Q 26Q;
(105)
;k(+5Q:) ( 50,)}
250:
P {/Ci(+50j)+/<ii(*5oj)*ZKii(Qeq)
w2 5Q?

(106)

" ’(1'1'("‘50:')""(/‘/‘(_50:‘)_2ij(Qeq)}

0Q?

K= L0 E;;fOi)_z’(fk(Qe“) (107)

It should be noted that the calculation of the cubic and
quartic force constants is the most demanding step in terms
of computational cost. It can be sped up by using a reduced-
dimensionality scheme where the numerical differentiations
are done along a subset of normal coordinates corresponding
to the modes to be treated anharmonically. In this case, the
averaging done for Kj and Kjj; is applied over the number of
elements actually calculated (1, 2 or 3 for Kjx and 1 or 2 for
Kij). Note that, if finite differentiation is performed along
mode i, but not along modes j and k, the force constants Kj;,
Kikk, Kjik and Ky can not be evaluated. The anharmonic correc-
tions for fundamental and combination bands of w; will still
be given by eq. (B1) and egs. (B2) and (B3), respectively, where
xi and g; terms are unchanged, whereas y; terms differ from
the fully-dimensionality ones for the absence of the elements
[see egs. (36-42)],

LHKM and —K”k Ki (108)
A Ak
More details on those schemes are available in Refs.

[150,151], while an example of application will be given in the
next Section.

A hybrid CCSD(T)/DFT approach has also been used to carry
out VPT2 calculations,!'*”152715% \where the harmonic frequen-
cies are evaluated at the CCSD(T) level and the anharmonic
correction at the DFT level. This scheme is based on the obser-
vation that most of the discrepancy with experimental results
is due to the harmonic frequencies, which can be corrected by
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Table 4. Comparison of computed and experimental harmonic @ and anharmonic fundamental VPT2 wavenumbers v for the linear molecules HCN, HNC,
OCS, HCP (in cm ™).

MP2 B3LYP B2PLYP CCSD(T) Expt.

AVTZ AvVQZ SNSD AVTZ AVQZ AVTZ AVQZ

HCN[a]
on IT 718 721 747 759 758 745 745 729 727
w3 z 2022 2034 2196 2200 2201 2125 2129 2125 2129
w3 3467 3466 3449 3444 3440 3460 3456 3435 3442
v(1y,%=14) 715 718 729 745 744 733 733 717 714
v(12) 1987 1999 2169 2173 2175 2094 2098 2096 2097
v(13) 3334 3339 3317 3312 3312 3327 3328 3309 3312
A -3 -3 —18 —14 —13 —12 —12 —-12 -13
A, —35 —-35 —27 —26 —26 —31 —30 —-29 —32
As —133 =127 —132 —132 —128 —133 —128 —-126 —130
HNC®
w 11 485 488 477 468 467 467 467 471 490
Wy 2 2016 2027 2097 2103 2104 2059 2063 2044 2067
w3 3818 3824 3801 3799 3801 3815 3818 3837 3842
v(19,%£1y) 505 497 355 463 463 469 470 474 477
v(1y) 1983 1993 2063 2069 2070 2023 2027 2008 2029
v(13) 3656 3661 3631 3634 3635 3650 3652 3666 3653
Ay +20 +9 —122 -5 —4 +2 +3 +3 —-13
A —33 —34 —34 —34 —34 —36 —36 —36 —36
As —162 —163 —-170 —165 —165 —165 —165 =171 —189
ocs!e
on 11 506 524 518 527 527 523 523 524 524
w; z 888 893 865 874 876 872 875 872 876
w3 2124 2092 2116 2108 2110 2079 2083 2095 2093
v(19,%£19) 502 520 514 523 524 519 520 520 521
v(1y) 869 876 849 858 860 855 859 855 863
v(13) 2097 2064 2084 2078 2080 2048 2052 2064 2060
Ay —4 —4 -4 —4 -3 —4 -3 —4 -3
A —-19 —-17 —16 —16 —16 —-16 —16 —-17 —-13
As —27 —28 —32 —31 —30 —31 —31 —31 —-33
HCPY
on 11 677 689 697 712 720 699 707 689 688
Wy z 1245 1255 1322 1338 1342 1291 1297 1299 1298
w3 3355 3360 3345 3349 3348 3359 3359 3345 3346
v(1y,%=14) 678 680 682 700 704 689 693 675 675
v(13) 1226 1236 1304 1319 1323 1272 1278 1281 1278
v(13) 3231 3233 3216 3219 3219 3231 3231 3213 3217
Ay +1 -9 —-15 —13 —16 -9 —14 —-14 —-13
A —-19 —-19 —18 —19 —18 —-19 —19 —18 —20
As —124 —128 —-129 —130 —-129 —128 —129 —132 —-129
A represents the anharmonic correction. Reference values were taken from: [a] CCSD(T)/AVTZ and experimental values from Ref. [155]. [b] CCSD(T)/
ANO1 and experimental values from Ref. [156]. [c] CCSD(T)/CVQZ and experimental values from Ref. [157]. [d] CCSD(T)/CV5Z and experimental values
from Ref. [158]. [e] experimental values from Ref. [68].

employing a higher level of theory. The CCSD(T) harmonic fre-
quencies are inserted in eq. (30) in place of the DFT ones. In
order to get reliable results, the equilibrium geometries and
the normal coordinates at the CCSD(T) and DFT levels must
be consistent. This is automatically checked by our procedure
when applying the hybrid scheme.

To overcome the problem of 1-2 resonances in VPT2 calcula-
tions, the computational strategies presented in the previous
section have been employed. For the DVPT2 and GVPT2
approaches, a term is identified as resonant if the absolute fre-
quency difference in the denominator, A, is smaller than
200cm™ " and E in eq. (59) is larger than 1cm™'. The default
parameters previously used for HDCPT2 (x=1.0, f=5.0x10°
with p and A in cm™") have been used to compute A for both
HDCPT2 and HDSPT2, see Ref. [53]. Vibrational second-order 2-2
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resonances are identified by two criteria: the absolute frequency
difference between the two resonant states must be smaller
than 10cm™’, and the off-diagonal term greater than 20cm™".
For Coriolis resonances, the terms in eqs. (95-98) with an abso-

lute frequency difference lower than 20 cm ™! are discarded.

Results and Discussion

Full DFT and hybrid methods for the vibrational energies of
small- to medium-sized linear systems

A set of linear molecules, that is, HCN, HNC, OCS, HCP, CO2, C,H,
and C4H,, have been selected to test the performance of full
DFT and hybrid CCSD(T)/DFT methods to calculate the anhar-
monic corrections to the vibrational frequencies. On these
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Table 5. Comparison of experimental and computed harmonic » and anharmonic v wavenumbers for CO, (in cm™").

B2PLYP™ HYBRID™ Best theo. Expt.
State [} VGVPT2 VDCPT2 VDSPT2 &) VGVPT2 VDCPT2 VDSPT2 &) v v
[19,%1q) 669 664 642 664 673 668 646 668 673" 668! 668<defl
[15) 1344 1275 1197 1285 1351 1284 1202 1293 1351 12859 1285 defl
[2;,01) 1337 1382 1374 1374 1346 1390 1381 1381 13889 1388defdl
[21,%2;) 1337 1330 1286 1330 1346 1338 1293 1338 1336 13361411
[31,+1) 2006 1918 1752 1934 2018 1931 1759 1947 1933 1934
[1315,+14) 2013 2070 2061 2055 2024 2082 2072 2066 2077 207741
[13) 2390 2345 2345 2345 2391 2347 2347 2347 23911 2349¢9 2349lcdetal
[2,) 2688 2526 2220 2581 2702 2543 2227 2597 25489 25489
[41,0) 2674 2656 2660 2679 2691 2671 2673 2694 267119 267119
[2112,01) 2681 2791 2742 2714 2696 2797 2757 2729 27979 27979
[23) 4780 4666 4666 4666 4782 4670 4670 4670 46739 46731911
[1513,+14) 3059 2997 2975 2997 3064 3003 2980 3003 3004911
[15135) 3734 3600 3517 3605 3742 3610 3524 3615 3613Mdedl 3613Mdebd]
[2113,0) 3727 3706 3701 3701 3737 3715 3710 3710 3715Mdedl 3714ldebdl
The vibrational states | n; n;,[; I;) are grouped by polyads. [a] AVQZ basis set. [b] harmonic CCSD(T)-F12a/AVTZ, from Ref. [155], and anharmonic B2PLYP/

s 1i lj 9 y poly

AVQZ force fields. Refs.: [c] [155], [d] [160], [e] [161], [f] [162], [g] [159].

molecules, all the schemes presented in the previous section to
treat first-order resonances have been employed, and the results
for the |-doubling interaction terms have been directly com-
pared with the experimental data when present in the literature.

The VPT2 anharmonic corrections for the linear systems HCN,
HNC, OCS, and HCP, shown in Table 4, were calculated at the
MP2, B3LYP and B2PLYP levels of theory, in conjunction with
AVTZ and AVQZ, as well as SNSD for B3LYP, basis sets. In the Table,
the best theoretical results, computed at the CCSD(T) level, and
experimental data are also reported for comparison purposes. For
those systems, which are not affected by resonances, the anhar-
monic corrections calculated with the different methods are very
close to one another. The main discrepancies with experimental
results are found to be related to the harmonic part. More pre-
cisely, the corrections to the nondegenerate frequencies are very
close to the observed values, while the corrections to the low-
degenerate wavenumber show a greater sensitivity to the elec-
tronic methods and the size of the basis set. For HCN, OCS, and
HCP, B3LYP/SNSD gives very good result, while, for HNC, the large
anharmonic correction for the degenerate wavenumber is due to
its underestimation of the Kfq)” quartic force constants.

CO, represents an interesting test to validate the DCPT2
and DSPT2 schemes in presence of resonances. It has been
one of the first molecules used in infrared and Raman meas-
urements and has served as a prototype for the study of
resonances. Vibrational wavenumbers for fundamental, over-
tones and combination bands obtained at the B2PLYP/AVQZ
level and with the hybrid scheme, where the CCSD(T)-F12a/
AVTZ harmonic frequencies taken from Ref. [155] are used in
conjunction with the B2PLYP/AVQZ force field, are shown in
Table 5. The states are grouped based on the polyads. The
well-known type | Fermi resonance that affects this system is
due to 2w; =~ wy;, with normal modes 1 and 2 of (and
(symmetry, respectively. The lowest energy states |n;n;, /)

Wiley Online Library

that are affected are collected in the following four polyads:
| 1915, =17 ) with |31, %1;), |2,) with [4,,0;) and |2;1,,0;),
‘ 1213) with |2113,01 >, and |21,01 > with | 1, > Note that the
states |2;,*=2;) are not involved in the latter polyad since
their interaction with |1,) is symmetry forbidden. From a
numerical point of view, this is due to the fact that only K,(,gs is
non-null for linear systems (see Tables 1 and A2). The discrepancies
of the GVPT2 frequencies at the B2PLYP/AVQZ level with respect
to the experimental results are mostly due to the underestimation
of the w, harmonic frequency (1344cm™" vs. 1351 cm ™), as con-
firmed by the improvements obtained with the GVPT2 hybrid
scheme, which leads to satisfactory agreements (the discrepancies
never exceed 5cm™ ' and are on average 1-2cm ™ V).

DSPT2 and DCPT2 treatments of resonances deserve some con-
siderations. DSPT2 results coincide with their GVPT2 counterparts
for all the states that are not affected by resonances. Conversely,
DCPT2 provides values equal to GVPT2 ones just for the states
that do not contain excitations on degenerate normal modes 1
and 2 (i.e, | 13) and | 23 )), while the energies for the states | 17, =
1), |22) and | 24, £2; ), which should also be unaffected by the
resonance, are underestimated. In the perturbative treatment,
these states do not involve resonant terms because those present
in the elements of y are exactly erased by those in g when the
summations in eq. (30) are performed. DSPT2 reproduces correctly
this behavior, while the DCPT2 results are slightly different due to
a noncomplete cancellation of the transformed resonant terms.

DSPT2 reproduces well the energies of the states involved in 2-
dimensional polyads, while the results are not satisfactory for ener-
gies involved in larger dimensionality polyads. This is due to the
approximation of treating the interactions terms by simplified two-
state interacting matrices, then losing in DSPT2 the simultaneous
interactions between more than two states. Despite this, DSPT2 can
be used to estimate the energies for the fundamental states, since
the latter are usually involved in at most 2-dimensional polyads.
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Figure 1. Deviations of harmonic @ and anharmonic v wavenumbers from experimental values (the origin of the y axis) for acetylene (in cm ™). Experimen-
tal values are reported in the x axis at the bottom and the corresponding assignment at the top. The series of four values for each anharmonic frequency
stands for, from left to right, VPT2, DCPT2, HDCPT2, DSPT2, and HDSPT2 treatments for possibly resonant terms. Computational methods: MP2 and B2PLYP
with AVTZ basis set and B3LYP with SNSD. CCSD(T)/A'CVQZ harmonic and anharmonic frequencies from Table 5 of Ref. [163]. In the hybrid method, the
harmonic frequencies are from CCSD(T)/A'CVQZ and the anharmonic force-field from B2PLYP/AVTZ calculations. Experimental values are taken from Ref.
[163] for fundamental frequencies, and from Ref. [59] for overtones and combination bands. MAE stands for mean absolute error.

Shifting to longer chain linear systems, the results for acety-
lene and diacetylene are shown in Figure 1 and Table 7,
respectively. Acetylene is a well-known system, for which fun-
damentals, first overtones, combination bands, and /-doublings

International Journal of Quantum Chemistry 2015, 115, 948-982

have been largely studied in the literature. The results for the
vibrational frequencies calculated at the MP2 and B2PLYP lev-
els, with the AVTZ basis set, and B3LYP, with the SNSD basis
set, are graphically reported in Figure 1, together with the

WWW.CHEMISTRYVIEWSORG  , ChemistryViews
.- . ..


http://q-chem.org/
http://chemistryviews.com/
http://chemistryviews.com/
http://chemistryviews.com/

International Journal of

UANTUM
HEMISTRY

Table 6. VPT2 second-order 2-2 interactions (Darling-Dennison) for
2C,H, and 'C,D, (in cm ™).
mp2 B3LYP™ B2PLYP Expt.
12c2H2
|204—2ws|/2 102.0 98.8 100.7 —
2K45/16 -532 -50.0 —524 —49,01
—52.41
,5]5[&]
12c2Dz
|207 —2w5|/2 523 215 25.6 —
4,/16 -6.2 —14. -82 -8.0"
8illt /64 15 0.1 1.0 0.4
|24 —2ws|/2 269.9 302.8 287.7 —
2K45/16 —25.7 -2238 —25.0 —23.91
Basis sets: [a] AVTZ, [b] SNSD. [c] k1133/2 term in Ref. [167], [d] x1133/2
term in Ref. [166], [e] x1133/2 term in Ref. [59], [f] 535 term in Ref. [165],
[g] (rds+2g%)/2 term in Ref. [165].

results obtained with the hybrid CCSD(T)/B2PLYP scheme. For
each wavenumber value, the series of five marks corresponds,
from left to right side, to VPT2, DCPT2, HDCPT2 and DSPT2,
and HDSPT2 results. In line with our previous comments, the
deviations from experimental values are mainly due to the har-
monic part. This error is strongly reduced with hybrid schemes,
which yield very good results. The perturbative correction
reproduces well the partial lifting of the zeroth-order degener-
acy, as can be observed for v(21,0;) and v(2;, =2;), as well as,
for v(2,,0,) and v(2;,*=2,). Moreover, the inclusion of /-dou-
bling is necessary to lift the degeneracy between v(171,, +1,
—1,) and v(1;1,,—1;+1,) and to obtain accurate energies for
the combination energies involving degenerate normal modes.
For all electronic methods, no first-order resonances are found
with Martin’s test. Therefore, the purely perturbative VPT2
approach gives good results, slightly improved with the DSPT2
and DCPT2 methods. This is due to the approximate inclusion
of higher-order perturbative terms in the treatment of the pos-
sibly resonant terms.

High-resolution infrared and Raman spectra of C;H,
reported in the literature show the presence of fairly weak
couplings between vibrational levels of the same symmetry

WWW.Q-CHEM.ORG
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due to second-order resonances.*'%*7'%"] The 2-2 resonances
between the two degenerate normal modes of acetylene were
first reported by Huet and coworkers for '°C,D,.1"%! In their
work, the off-diagonal interaction energies between |2,0;)
and |2;,0,), and between |2;,%2;) and |2;,*2,), which
involve respectively Kﬁ’g and A’;’“, are expressed with the 3
and (r);+2g3)/2 terms (see Table 2 in Ref. [165]). It has been
found that those resonances are particularly relevant for the
isotopomers of acetylene, whose two bending vibrations are
very close in energy. Furthermore, the need to account for
these interactions appears crucial in the study of the highly
excited trans-bend levels in '2C,H,, observed by Field and
coworkers using the stimulated emission pumping tech-
nique."®® Our results obtained at the MP2/AVTZ, B3LYP/SNSD
and B2PLYP/AVTZ levels show a very good agreement with
those of Huet et al. (see Table 6). Another case of interacting
states, between |24) and |25), was first considered by
Mills.'"8”) In Mills’ formalism, the interacting energy is reported
in Table 1 of Ref. [167] as k1133/2. This coupling ought to be
considered in all symmetric isotopes of C,H,, in particular for
13C,H,. Even in this case, the agreement between our compu-
tational results and the observed values is remarkable.
Diacetylene has been extensively studied from both experi-
mental and theoretical points of view, because of its preva-
lence in hydrocarbon combustion and pyrolysis and is known
to be present in the interstellar medium and in the atmos-
pheres of several planets and moons of our solar sys-
tem 016319 The fundamental frequencies for diacetylene have
been calculated at the B3LYP/AVTZ and B2PLYP/AVTZ levels,
and with the hybrid scheme, where the harmonic frequencies
obtained at the AE-CCSD(T)/cc-pCVQZ level®" are coupled
with the B2PLYP/AVTZ force-field. The results are reported in
Table 7. For this system, Martin’s test reveals a weak interac-
tion due to w3 ~ 2wy for B2PLYP and hybrid calculations,
which is not found for B3LYP computations. The B2PLYP result
for v(13) (890cm™"), calculated with the GVPT2 approach, is in
better agreement with the experimental data (872cm™") than
the B3LYP result (901cm™'), where the interaction term
between the |13) and |2,09) states is treated at the

Table 7. Experimental and computed harmonic w and anharmonic v fundamental wavenumbers for diacetylene (in cm™").

B3LYP'! B2PLYP! HYBRID™ Expt.
State Symm.

[0} v 10} v w v v

[19) g 3466 3343 3477 3352 3463 3338 3332
[12) 2278 2238 2234 2189 2243 2197 2189
[13) 915 901 908 890 894 872 872
[14) 2 3467 3344 3478 3353 3465 3339 3334
[1s) 2111 2078 2064 2028 2064 2027 2022
|16, +16) L 659 647 645 638 636 627 626
[17,%17) 529 522 507 512 485 491 483
[1g, =1g) 1l 665 654 651 640 640 628 628
[19,%19) 237 237 231 232 221 222 220
The vibrational states are indicated as | n;, ;). DFT calculations were done in conjunction of the AVTZ basis set. Within the hybrid scheme, the harmonic
wavenumbers, obtained at the AE-CCSD(T)/cc-pCVQZ level, were taken from Ref. [61], and the anharmonic force-field calculated in this work at the
B2PLYP/AVTZ level. The experimental values were taken from Refs. [61] and [63]. [a] VPT2 values, no Fermi resonances identified with Martin’s test. [b]
GVPT2 values, one weakly interaction between | 13 ) and | 29,04 ) states.
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Table 8. Harmonic , anharmonic v wavenumbers for cyclopropane (in
cm ).
State Symm. VwpT2  VDCPT2 VDSPT2  VGvPT2  VExpt.
[19) A 3163 3042 3040 3041 3046 3027
12;) 3061 2993 2983 2982 2954 —
\12> A 1531 1502 1497 1498 1515 1499
| 214,014 ) 1487 1471 1478 1475 1459 1461
\13) A 1218 1191 1191 1191 1191 1189
[14) A/{ 1162 1129 1129 1129 1129 1127
[15) Ay 1095 1072 1072 1072 1072 1067
[16) A/z’ 3254 3108 3108 3108 3108 3102
[17) A 83 860 860 860 860 854
[1g, =1g) F 3154 3006 3005 3005 3016 3019
[151q, 2 1o) 3016 2909 2924 2926 2907 —
‘197i19> E 1486 1422 1441 1441 1446 1440
[ 214, £214) 1487 1515 1505 1495 1491 1480
| 110, =110 E 1056 1030 1030 1030 1030 1028
[ 141, 210) E 887 854 854 854 854 868
[ 112, £112) E’ 3233 3087 3087 3087 3087 3082
[143, 2 113) E’ 1219 1194 1194 1194 1194 1191
\ 114, =114) E’ 744 742 744 742 742 738
[ 211,011 ) 1775 1714 1714 1714 1714 1727
[211,%211) 1775 1690 1690 1690 1690 1734
[ 15110, =110 2150 2097 2097 2097 2097 2090
[15114, =114 ) 1838 1814 1817 1814 1814 1805
[ 110114, 110+ 114) 1799 1772 1775 1779 1772 1766
[ 110114, +110—T14) 1799 1771 1774 1771 1771 1767
[ 110114, —T1o+114) 1799 1772 1775 1773 1772 —
Computed values at the B2PLYP/AVTZ level. The vibrational states are indi-
cated as |n;nj,lil;). Observed values were taken from Ref. [170]. Note
that the /-doubling between | 119114, +110—114) and | 110114, =110+ 114)
has not been taken into account in the experimental values.

perturbative level (VPT2). As expected, the hybrid values show
a very good agreement with the observed ones.

From medium to large symmetric top systems

The wavenumbers calculated at the B2PLYP/AVTZ level for the
fundamental, first overtones and combination bands for cyclo-
propane, which is an oblate symmetric top belonging to the
D3, symmetry point group, are reported in Table 8. Also in
this case, the states are ordered by polyads. Martin's test iden-
tifies for this system three weak Fermi resonances, related
to the interaction between |17) and |2, ), | 12) and | 214,044 ),
|1s,+1g) and |1g12,*=19), and one tight Fermi resonance,
involving | 19, £19) and | 244, £244) states. GVPT2, DCPT2, and
DSPT2 results are reported in Table 8, together with the VPT2
values. HDCPT2 and HDSPT2 give results equal to DCPT2 and
DSPT2, respectively, and are, therefore, omitted. The agree-
ment with the experimental values is good for most of the
energies, and both DCPT2 and DSPT2 show good results for
the states not affected by resonances, as well as, for the states
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involving resonant interaction terms. Some discrepancies are
found for | 14 ), for which all methods slightly overestimate the
experimental value, and | 241, 24 ), that is underestimated by
the theoretical results with respect to the experimental one.
VPT2 reproduces well the energy of |1, ), but slightly overesti-
mates | 214,014 ). GVPT2, which treats variationally the interac-
tion between the latter two states, overestimates the energy
of |1,), whereas that of |214,0:4) is in agreement with the
experimental value. For this case, DCPT2 and DSPT2 reproduce
well the energy of |15 ), while for | 214,014 ) the overestimation
is similar to that of VPT2. At variance, the results are very
good for the combination states involving the excitations of
the normal modes labeled as 10 and 14.

As shown above, the hybrid method allows to reduce the
computational costs leading to satisfactory results. Table 9
shows the fundamental frequencies for benzene obtained with
the hybrid model. Benzene is an oblate symmetric top (Den
symmetry), which has been widely studied in the literature by
both Raman and infrared spectroscopy.%'”'=74 |n the hybrid
computation, the harmonic frequencies have been calculated
at the CCSD(T)/ANO4321" level,"”*! and the anharmonic force
field at the B3LYP/SNSD level. In Table 9, the fundamental fre-
quencies at the B3LYP/SNSD level are also reported. B3LYP/
SNSD calculations show a qualitatively good agreement with
the experimental values for the majority of the frequencies.
Martin’s test identifies two weak type Il Fermi resonances, the
first affecting |19, =19) and |1117, *1;) states, the second |14g,
*11g) and |19117,=19%1y7), and a slightly stronger one,
involving |113) and |19117,=19%147). The latter resonance
leads to wrong VPT2 results for v(1;3) (3143 cm™"), that shows
a discrepancy of about 100 cm™" with respect to the observed
value (3057 cm™"). At variance, the coupling between |19, =14)
and [1717,%=17) is small, and the VPT2 result for v(1o,*=1o)
(1604cm™") is closer to the observed value (1601 cm™") than
the GVPT2 one (1588cm™"). The result of the DSPT2 and
DCPT2 treatments (1599cm™") is also very good. Some dis-
crepancies are present also for v(11g, =145); VPT2, DSPT2 and
DCPT2 (x3070cm™") overestimate the reference value
(3047 cm™ "), while the opposite is true for GVPT2 (3029cm™").
This frequency is close to the experimental value in the hybrid
models, showing once again that the error is mainly due to
the unsatisfactory treatment of the harmonic part. In the
hybrid method, the two vibrational states | 113) and | 115, =115
) are still affected by resonance, showing similar results to
those obtained by full DFT calculations. On the other hand,
Martin’s test does not identify the resonance affecting the |1o,
*19) and |11, =17) states in the hybrid case, because of the
differences between the CCSD(T) and DFT harmonic frequen-
cies. Moreover, two new weak couplings are identified, the first
involving |15) and | 119720, 119+ 150 ), the second |1,) and
| 29,09 ). Consequently, v(19, £19) is not variationally treated
and shows coincident values for all methods (1598 cm™"), that
is in good agreement with the observed one (1601cm™"),
while v(1;) and v(13) are very satisfactory in all VPT2, DSPT2,
DCPT2 and GVPT2 approaches. These considerations show that
a good description of the harmonic frequencies is also impor-
tant to identify correctly the resonant terms affecting the
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Table 9. Computed harmonic w and experimental and calculated anharmonic fundamental wavenumbers v for benzene (in cm™").

B3LYP/SNSD HYBRID Expt.
State Symm. () WPT2 VDSPT2 VDCPT2 VGVPT2 ] VWPT2 VDSPT2 VDCPT2 VGVPT2 v
[19) Aig 1011 997 997 997 997 1003 989 989 989 989 993
[12) 3195 3054 3055 3055 3054 *3210 3069 3070 3070 3073 3074
[13) Az 1375 1349 1349 1349 1349 *1380 1348 1351 1351 1350 (1350)
[14) Byg 717 692 692 692 692 709 684 684 684 684 (707)
[15) 1015 980 980 980 980 1009 974 974 974 974 (990)
[ 16, =16 ) Eig 864 842 842 842 842 865 843 843 843 843 847
[17,%£17) Eyg 616 612 612 612 612 611 607 607 607 607 608
\18.,i18> 1193 1179 1179 1179 1179 1194 1179 1179 1179 1179 1178
\ To, *x1g ) *1635 1604 1599 1599 1588 1637 1598 1598 1598 1598 1601
| 110, £110) 3169 3008 3008 3008 3008 3183 3023 3022 3022 3023 3057
[111) A 688 673 673 673 673 687 673 673 673 673 674
[112) By 1013 1009 1009 1009 1009 1020 1016 1016 1016 1016 (1010)
[113) *3159 3143 3069 3069 2996 *3173 3105 3076 3076 3009 (3057)
\114) By, 1169 1158 1158 1158 1158 1163 1152 1152 1152 1152 1150
[115) 1349 1323 1323 1323 1323 1326 1304 1302 1302 1304 1309
[ 116, = 116) Ery 1056 1038 1038 1038 1038 1056 1038 1038 1038 1038 1038
[ 147, £147) 1509 1479 1479 1479 1479 1509 1479 1479 1479 1479 1484
| 11g, =14g) *3185 3073 3067 3069 3029 *3200 3083 3080 3081 3040 3047
[ 110, £110) Ea 411 402 402 402 402 406 397 397 397 397 398
[ 120, =120) 987 968 968 968 968 985 966 966 966 966 976
MAE 13 9 9 12 10 9 9 9
The vibrational states are indicated as | n;,/; ). In the hybrid method, the harmonic frequencies are calculated at the CCSD(T)/ANO4321’ level, from Table
1 of Ref. [175], and the anharmonic force field at the B3LYP/SNSD one. The experimental values are from Ref. [38]. The values in parentheses have not
been observed directly but have been deduced from combination bands. The frequencies treated as resonant (DVPT2/GVPT2) are indicated with a *.
MAE stands for Mean Absolute Error.

Table 10. R and S /-type doublings for CgHg, (in cm ).

This This
Const. Modes work Lit. Const. Modes work Lit.
S 7 6 0.10 — S 18 8 0.60 0.64
S 8 6 0.19 0.27 S 18 9 —1.50 —1.56
R 8 7 0.18 — S 18 10 —10.09 —10.26
S 9 6 -—-0Mm — R 18 16 0.36 0.36
R 9 7 032 029 R 18 17 —-026 —039
R 9 8 -072 -0.78 S 19 6 1.51 1.92
S 10 6 0.61 0.71 R 19 7 0.03 —0.09
R 0 7 0.04 — R 19 8 —0.60 —0.39
R 0 8 0.68 0.70 R 19 9 —0.21 —0.20
R 10 9 -—-166 -—184 R 19 10 0.03 —
R 16 6 —0.01 — S 19 16 0.69 0.68
S 16 7 -—0.13 — S 19 17 —0.33 —0.33
S 16 8 —053 -049 S 19 18 0.03 0.04
S 16 9 0.62 0.64 S 20 6 -071 —035
S 16 10 0.33 0.34 R 20 7 0.05 —
R 17 6 —0.09 — R 20 8 —0.24 —0.21
S 17 7 0.05 — R 20 9 —0.28 —0.30
S 17 8 —-071 -0.68 R 20 10 0.75 0.85
S 17 9 0.13 0.10 S 20 16 0.19 0.23
S 17 10 -—-0.44 -047 S 20 17 0.04 —
R 17 16 —-040 -—-0.46 S 20 18 0.77 0.80
R 18 6 0.59 0.77 R 20 19 —0.50 —1.21
S 18 7 —0.02 —
Calculations at the B3LYP/SNSD level, with resonant terms treated
within the DVPT2 approach. The reference values are calculated at the
B3LYP/TZ2P level, from Table 6 of Ref. [172]. Note that in the reference
the values are reported as r=4R and s=4S. [a] indicates that the value
corresponds with the one reported between parentheses in Ref. [172].

system. In this case as well, HDCPT2 and HDSPT2 treatment of
resonances have been omitted from Table 9 since they are
equivalent to DCPT2 and DSPT2.

Following Amat's rule, (ns,ls|Hao|ns, (Is=4))) and (nsne, Isl|
Haolnsne, (I=2)(1;72) ) I-doublings are found to be non-null
for benzene. The B3LYP/SNSD results for the R and S constants
are shown in Table 10, together with the values calculated at
the B3LYP/TZ2P level, taken as benchmark from Ref. [172].
Note that in Ref. [172], R and S are reported as r=4R and s=4S. In
both sets of results the resonances are treated at the DVPT2 level.
The agreement between the two series of data is remarkable.

Moving to larger systems, the importance of taking into
account the anharmonicity appears clearly in Tables 11 and 12.

Table 11. Fundamental vibrational wavenumbers for triphenylamine (in
=1
cm ).

B3LYP/6-31G* Scaled Expt.
Symm. ® Vel vl vl
E 3182 3029 3127 3016
3043
Ay 3190 3072 3135 3067
E 3190 3074 3135
E 3205 3070 3150
E 3217 3069 3159
Ay 3214 3096 3158 3096
E 3214 3097 3157 3107

[a] Anharmonic correction computed within the reduced dimensionality
approach (see text), applying the DSPT2 method for resonances. [b]
Harmonic values at the B3LYP/AVTZ level and scaled with a factor equal
to 0.986, from Ref. [181]. [c] Observed values from Ref. [181].
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Table 12. Computed harmonic @, GVPT2 anharmonic v, and experimental wavenumbers for staggered Ds4 and eclipsed Dsy, ferrocene (in cm ).
B3LYP™! B3PW91! B3LYP™ B3PW91! Expt. [
D5h DSd
Symm. w v (0] v Symm. [0} v [0} v v
A; 453 440 488 475 A 448 437 482 470 480
Ey 466 457 501 492 Eqy 436 427 470 460 496
A; 828 815 830 829 Ay 827 813 830 820 816
E/ 845 837 857 840 Eqy 844 841 855 839 840
Ey 1022 1000 1025 1006 Eqy 1021 1002 1026 1006 1012
A, 1130 1112 1142 1125 A 1131 1113 1142 1126 1112
Ey 1449 1415 1451 1418 Ewy 1450 1417 1451 1419 1416
E/ 3239 3106 3245 3116 Eqy 3238 3107 3245 3115 3106
A'z' 3250 3116 3256 3126 A 3249 3118 3256 3126 —
[a] SNSD/aug-LANL2DZ basis set. [b] SNSD/m6-31G basis set. [c] Observed values from Ref. [176].

In the first Table, both the harmonic and anharmonic computational
results for triphenylamine are compared with the observed frequen-
cies. Triphenylamine has a D; three-bladed propeller structure, with
a planar central NCCC moiety (see Fig. 2), and has found applications
in different fields, including for instance photoconductors and semi-
conductors."77~8 With 96 vibrational normal modes, the determi-
nation of the complete anharmonic force field for this system is
computationally very expensive even at the DFT level. However,
within the reduced-dimensionality approach, it is possible to calcu-
late the anharmonic corrections for a small selection of vibrational
energies of interest. If the harmonic energy of the latter are well sep-
arated from the energies of the vibrations ignored in the anhar-
monic treatment, the cubic and quartic forces involving normal
modes of both sets can be assumed to be negligible. In Table 11,
the anharmonic corrections have been applied to fundamental
vibrational states having harmonic wavenumbers larger than
3000cm ™" which correspond to the CH stretchings region. The cal-
culation has been done at the B3LYP/6-31G* level, and the resonan-
ces have been treated with the DSPT2 method. In Table 11, the
empirical fundamental frequencies, obtained scaling the B3LYP/AVTZ
harmonic frequencies by a factor of 0.986 (see Ref. [181]), are also
reported, together with the experimental results, measured by FTIR
spectroscopy of triphenylamine monomers isolated in an argon
matrix.'®" The inclusion of anharmonic effects leads to a signifi-
cantly better agreement between the theoretical and experimental
results with respect to the scaled values.

As a last example, we report the results for ferrocene, an orga-
nometallic compound of great interest in biotechnologies and
nanotechnologies, with important applications of its derivatives
in catalysis, molecular electronics, polymer chemistry, nonlinear

optical, and solar engineering."®>7'®" |ts geometry has been
studied by several theoretical methods and shows a sandwich
structure with the metal situated between two parallel cyclopen-
tadienyl rings. A small energy barrier separates the staggered Dsgy
and eclipsed Ds, rotational orientation of the two rings (see Fig.
2), with an energy difference of 0.9 kcal mol ™' from gas phase
electron diffraction measurements."®-"°% |n gas phases calcula-
tions, the eclipsed conformer is a global minimum, whereas the
staggered conformer is a saddle point with an imaginary fre-
quency. In a recent study, a quite good agreement was obtained
between the harmonic vibrational frequencies of ferrocene calcu-
lated at the B3LYP/m6-31(d) level and the observed values.!'*® A
noticeable improvement in the theoretical results is obtained by
taking into account the anharmonicity. From B3LYP calculations,
with the hybrid SNSD/aug-LANL2DZ basis set as discussed in the
computational details section, the anharmonic fundamental
wavenumbers show a quantitative agreement with the experi-
mental ones, especially for the range above 800cm™', where
vibrations involving C and H atoms are excited. The lowest wave-
numbers (480 and 496 cm™ ") are due to the excitations of vibra-
tional modes involving the metal. The latter are better described
by the B3PW91 functional, coupled with the SNSD/m6-31G basis
set. It is noteworthy that B3PLYP and B3PW91 anharmonic correc-
tions are not significantly different, showing that the discrepan-
cies between the observed and B3LYP values are due again to
deficitary description of the harmonic vibrations associated to Fe.

Rotovibrational interaction terms

The importance of including the vibrational corrections to the
rotational constants to achieve both accurate rotational

triphenylamine (D3)

Figure 2. Medium-sized symmetric top systems of interest.
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Table 13. Vibrational corrections «, rotational constants B. and By and quartic D and sextic H§ distortion constants for HCP, OCS, and CoH, (in cm™ ).
MP2 B3LYP'! B2PLYP Best theo. Expt.

HCP

of —0.00046"! —0.00058 —0.00047" —0.00045'7 —0.000459

of 0.00409 0.00346 0.00388 0.00362 0.00362'

of 0.00313 0.00307 0.00313 0.00322 0.00318™

B. 0.65822 0.66174 0.66702 0.66931 —

Bo 0.65506 0.65905 0.66400 0.66634 0.66633'

(Bo—Be) —0.00316 —0.00269 —0.00302 —0.00297 —

D5 108 0.70884 0.64986 0.69155 0.70545' 0.70420'1

ocs

of —0.00037" —0.00035 —0.00036™ —0.00035'9! —0.00034'9!

of 0.00056 0.00068 0.00064 0.00066 0.00067

of 0.00125 0.00121 0.00125 0.00123 0.00125

B 0.20219 0.20030 0.20247 — -

Bo 0.20166 0.19971 0.20188 — —

(Bo—Be) —0.00053 —0.00059 —0.00059 — -

D$10° 0.04063 0.04164 0.04223 0.04203 0.04270

C,H,

of —0.00137™M —0.00145 —0.00135™" —0.001411 —0.00135"

o —0.00201 —0.00221 —0.00218 —0.00220 —0.00223

of 0.00653 0.00556 0.00609 0.00584 0.00588

of 0.00579 0.00575 0.00586 0.00601 0.00618

of 0.00693 0.00672 0.00697 0.00686 0.00690

B 116883 117463 1.18369 1.18245 —

Bo 1.16259 1.16928 1.17775 1.17670 1.17665

(Bo—Be) —0.00624 —0.00535 —0.00594 —0.00575 -

D5 10° 1.58695 1.46786 1.56394 1.5902 1.627™

He 10" 0.89529 1.11004 1.08214 1.2631 1.6

Basis sets: [a] SNSD; [b] AVQZ; [h] AVTZ. Refs.: [c] [196]; [d] [198]; [e] [199]; [g] [157]; [i] [163]; [jl [59]; [K] [197]. [f] Ground state observed values.

energies and accurate geometrical parameters has been
widely illustrated in the literature.'"®'~'%*! The vibrational cor-
rections o, the equilibrium B® and ground vibrational state
rotational constants B® for the linear systems HCP, OCS, and
C,H, obtained at different computational levels are reported
in Table 13, together with the equilibrium quartic distortion
constants. Like for vibrational energies, the discrepancies with
the reference values are mainly associated to B¢, while the B°
—B¢ differences show a lower sensitivity to the change of the
computational level. On the other hand, the centrifugal distor-
tion constants have a slightly larger variability. Accurate values
for the latter are obtained from calculations involving accurate
geometrical parameters and equilibrium rotational constants.
The rotational constants for the symmetric top CsHg at the
B3LYP/SNSD level are shown in Table 14. Those results are com-
pared with experimental and theoretical data, the latter
obtained at the highly reliable CCSD(T) level. For this system,
oz g and o35 are affected by a Coriolis resonance, due to w;
~ wq3 (see Table 8) and the two associated states, that is, |13)
and |1;3), are not prevented by symmetry to interact. On the
other hand, o3¢ and ay3¢ are not affected by resonance, since
{313, vanishes for symmetry reasons. On the other hand, the
total rotovibrational corrections to the rotational constants are
not affected by resonances. The B3LYP/SNSD calculation shows
good results also for equilibrium quartic distortion constants.

Thermodynamics

If the fundamental, overtone and combination energies have
to be handled with care because of resonances, it has been

Wiley Online Library

shown in the theoretical section that the ZPVE is not affected.
Both harmonic and anharmonic ZPVEs of linear (HCN, CO,,
C,H,), and symmetric top molecules (PHs, CICH3;, FCH3) are
shown in Table 15. On overall, the mean anharmonic correc-
tion with respect to the harmonic ZPVE is about 0.4% for CO,,
1% for HCN, 1.2% for C;H,, and 1.4% for the symmetric top
systems. It is noteworthy that for all these molecules the mag-
nitudes of the anharmonic corrections are little affected by the
choice of the computational method and the basis set, at least
in the present cases. From the ZPVE and the anharmonic fun-
damental energies, a comparison with the experimental ther-
modynamic data can be achieved by the SPT model.%>3! The
calculated and experimental absolute entropies at 298.15 K

Table 14. Rotational constants and quartic distortion constants for C3Hg
(in cm™).

B3LYP® Best theo. Expt.
B, 0.67034 0.67807™! —
Bo 0.66342 0.67104 0.670240<d
(Be—Bo) 0.00692 0.00702
Ce 0.41890 0.42414"! —
Co 0.41405 0.41914 0.41770<

041881

(Ce—Go) 0.00485 0.00500
D5 10° 0.95346 0.93288" 0.96668!%29!
D% 10° —1.23376 —1.18929 —1.24924
Dg 108 0.47968 0.45564 0.48619
[a] SNSD basis set. Refs.: [b] [200]; [c] [201]; [d] [170]; [e] [202]; [f] [203].
[g] Ground state observed values.
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Table 15. Comparison of computed and experimental harmonic (H) and anharmonic (A) ZPVE (in KJ mol~") and absolute entropies at 298.15 K and 1
atm (in J mol~' K™ "), for linear and symmetric top molecules.

Mmp2t B3LYP™! B2PLYP®
Best theo. Expt.
H A H A H A
HCN
ZPVE 41.42 41.05 4246 42.02 4231 41.90 41,551 4161
A —-0.37 —0.44 —0.41
S 201.79 201.82 201.99 202.20 201.39 201.50 — 201.83¢9!
COo,
ZPVE 30.18 30.08 30.49 30.36 30.24 30.12 30.28'¢! —
A —0.10 —0.13 —0.12
S 213.88 213.95 213.74 21378 213.72 213.79 — 213.69149
CoH,
ZPVE 69.65 68.93 70.73 69.58 70.59 69.85 68.61! —
A —-0.72 —1.15 —0.74
S 200.82 200.92 200.08 201.14 200.06 200.34 — 200.85'%9!
PH;
ZPVE 64.39 63.59 6221 61.37 63.49 62.67 62.44" —
A —-0.80 —0.84 —0.82
S 209.90 209.98 210.25 210.33 209.97 210.05 — 210.139!
CICH;
ZPVE 100.75 99.36 98.73 97.34 99.79 98.43 — —
A —-1.39 —1.39 —1.36
S 233.77 233.92 23442 234,58 234.06 234.22 — 234.26!49!
FCH3
ZPVE 104.80 103.37 102.61 101.18 103.72 102.30 — —
A —1.43 —143 —1.42
S 222.52 222.62 222.75 222.85 222.59 222.69 — 2227319
A’s are the anharmonic corrections. Basis sets: [a] AVTZ, [b] SNSD. Refs.: [c] [156]; [d] [204]; [e] [155]; [f] [55]. [g] The tabulated values have been lowered
by 0.11 J mol™" K7, to pass from the original 1 bar=0.1 MPa values to 1 atm=0.101325 MPa (see “reference part” in [204]).

and 1 atm are also reported in Table 15. Under those thermo-
dynamic conditions, the absolute entropies calculated with all
methods available to treat the resonances lead to very close
results. Compared to accurate experimental values,the inclu-
sion of anharmonic corrections in the calculated thermody-
namic values improves the accuracy of the results by about
010—020 J mol ™' K.

Conclusion

The VPT for rotovibrational energies and thermodynamic func-
tions for asymmetric, symmetric and linear top systems has been
revised and fully generalized to allow for the treatment of both
minima and first-order saddle points of the PES. A particular
attention has been devoted to the treatments of off-diagonal ele-
ments of the Hamiltonian and the perturbative equations in the
presence of resonances. Previous strategies for dealing with first-
order resonances (i.e., GVPT2, DCPT2, and HDCPT2) have been
generalized and a new treatment (i.e,, DSPT2 and its hybrid coun-
terpart HDSPT2), has been presented and validated. A versatile
implementation has been included in the Gaussian package.
Several case studies ranging from triatomic to large molecular
systems have been explicitly treated by different QM approaches
to fully validate the computational tool. The results show that the
perturbative developments are very effective and reasonably accu-
rate, and can be applied easily to DFT and DFT/CCSD(T) hybrid lev-
els in conjunction with medium sized basis sets, and with
reduced-dimensionality schemes. The latter approximations are
particular appealing when dealing with medium- to large-

International Journal of Quantum Chemistry 2015, 115, 948-982

molecules, allowing the inclusion of anharmonicity also in the
cases otherwise unpractical due to prohibitive computational cost.

Appendix A: Symmetry Classification of Cubic
and Quartic Force Constants and Coriolis
Constants

The force constants involving degenerate modes can be related
to one another based on symmetry considerations. This section
gathers those relations for cubic and quartic force constants,
used to define the proper terms to be employed in the vibra-
tional Hamiltonian. The symmetry relations for the cubic and
quartic force constants involving degenerate modes are reported
in Tables A1-A9. In the latter, the molecular point group symme-
tries are labeled with the notation presented in Table A1.

As for force constants, symmetry relations can be introduced
also for the Coriolis terms C; .. L, =1 and . ,=C,, . are
the only Coriolis terms that are non-null for linear molecules.
For symmetric top systems, C,, ., Cunys Gusy oo @Nd Gy, . are
always zero, and we have used Cg):Cm” and the following
relations in the equations,

Table A1. Symmetry groups labels. | and Il are non-abelian and abelian,
respectively.

| la: Cnw Dy Dyp (any N); Dyg (N odd);
Ib: Dn/2)d (N/2 even);

I lla: Cni Cyn (@any N); Sy (N odd);
llb: Sn (N/2 even).
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Table A2. Non-vanishing cubic energy derivatives with respect to Q; and their symmetry relations.”*”
Symmetry Hf,},f w.rt. Qs Q; Q. Qm G ¢ Gy Group N
Knsisi = Kmsys, 57’15 Qm(Qf, +Q§z)/ A, any ¢ I, N> 3,00
Kmns,s; = —Kms, s, ni’s’st(Qf Qi)/ B, 4c,=N (Al N=4,8.4p, ...
1
Kims; s, kM) QmQs, Q, B, 4¢,=N I N=4,8,4p,...
Knsyy = K, ms, Qn(Q5,Q, +Q5,Q:,) A &= ! N2 3,00
Kins, t, = —Kmsyt, K Qm(Qs, Qr, —Qs, Qr, ) Az G=0C Al N>3
Kms,t, = —Kms, t, m“s’r Qm(Q;,Q;,—Qs, Q) By +c=N/2 I, 1l N=4,6,2p,...
Kms,t, =  Kms,t, mst Qm(Qs‘ Q,+Qs,Q:,) B, ¢+ =N/2 I N=4,6,2p, ...
Ks 5151 = —Ksy5,5, k9 (@3 —30,,@2)/6 3¢;=N Il N=3,6,3p,...
Ks,55,= —Ksys:5, 55“5) (Q?2 —3Q§‘ Q,)/6 3¢,=N I N=3,6,3p,...
Korsits = —Ksysats K (@2 Q, —Q2 Q,—20;,Q,,Q,,) /2 240 =N Ll N=3.> 5
7Ks‘szt;
Kisity =—Ksysyt, K% (@2 Q, — @2 Q, +20,,Q5,Q1,)/2
sst 51 <h 5y < 51454t 2¢c,+c=N I N=3,>5
Ks|szt|
= K
Ksisit =—Ks5ot, K (@2 Q, —Q2Q,+20,,Q,Q;,)/2 (=2 L NS
Ks|szt2
KS'SW rz:_KSZSZrZ sst (Q§| sz Q?zofz 2QS| Qszoh)/z Ct=2Cs I N >5
77Ks‘szt‘
K tyur = —Ksytou KU) — - —
1t 20U stu (Qs‘ Of‘ Qu‘ Osz Qtz Qu| Os‘ Otz Ou; OSz Qh Ouz)
—Ks,t,u, c+ctc,=N 1,1 N=3, > 5
7Kszt1uz
K. =—K. (I _
Sitiuy S2tU2 sz (Qs, Qn Quz Qsz Qrz Qu; +Qs1 Qt; Qu| +Qsz Ot| Qm )
Ks,tyus CGt+ctce,=N Il N=3, > 5
Kszr1u|
Ksitn = = Kartouy Kt (Qs,Qt, Qu, —Q5, Q1, Qu, +Qs, Q1 Qu, +Q5,Q, Qu)
Ks,tyu, Cu=Cs+ct I, N>5
Ksznuz
K. =—K (V) _ _ _
Sitiuz Sat2Uz Ks[u (Qs| Qr‘ Quz Qsz Qtz Quz Qs‘ Qr2 Qu| Qsz Qt| Qu‘ )
—Ks toun Cy=Cs+Ct I N>5
:_Ksznm
¢; is the subscript labelling the degenerate representation of mode i, for example ¢;=1 for E or E;, ¢;=2 for E,, etc. p is a non zero integer number
and N indicates the order of the principal symmetry axis. For | and Il Group classification see Table A1.

|Cms1ﬁx|:|émsz,y g 495: msy x (A1)

[Cimsoox | =Emsyy| = (ot =Cimsy 0 (A2)
and,

|Cs1t1 ,z|:‘§sztz,z‘ i Cg‘):é’_ﬁ t.z (A3)

Msﬂz,z‘:Kszﬁ ,z| - Cglrl):é’sw .z (A4)

(1
‘45111 X| |€Szl’z X| |CS1l’zy| |C52T1 y| - C gsﬂl«,x (AS)

v
‘Cs1t1<y|:Msztz,y|:‘Cs1t2<x|:‘€szt11x| - é’gr ):Csmy (A6)

Appendix B: Fundamental, First Overtones and
Combination Vibrational Excitations

For excitations from the vibrational ground state, the funda-
mental bands are given by,

Wiley Online Library

v(1j, £1; or 0;)=hw;+y;(1+d;)+ Zy,]d+g,, (B1)

1#'

where, between parentheses, n=0 and I=0 in eq. (44) are
omitted, as well as all null quantum numbers related to the
normal modes not involved in the excitation. If i is a nonde-
generate mode, g;; vanishes and, as [;=0, it is usually omitted
and only the principal quantum number n; is specified. The
expressions for the first overtones are,

V(Z,‘, O,) =2hw,—+21,~,~(2+d,—)+z x,jd,-=2v(1 i, =1; or 0,) +2}(,-,-—29,','
Iz
(B2)

\)(2[7 i2,~)=2ha),‘+2X,~,~(2+di)+ZXijdj+4g[[
J#i (B3)
=2v(1;, =1; or 0;)+2y;+2g;

Finally, the first combination bands are given by,
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Table A3. Non-vanishing quartic energy derivatives Kp,mss, Kmnss and Kpnse With respect to Q;, and their symmetry relations.’”
Symmetry H‘(,fg w.rt. QiQ;, Qx. Q;, Qnm Q, [ Group N
Kmms;s1 = Kmmsys, Kinmss Q3,(Q2 +Q2,) /4 A, or A, any ¢ I N> 3,00
By or B, any ¢ I N=4.,6,2p,...
Kmsty = Kot Kist Q2,(Q5,Q, +Q5,Q,) /2 A; or A, G=c 1 N> 3,00
B, or B, CG=C I, N=4,6,2p,...
Kmmswrz :7Kmmszt1 K,(ymm an(st Qt2 *QSZQM )/2 Aq or Ay Cs=Ct 1} N> 37 o0
By or B, Cs=C; 1l N=4,6,2p,...
— () 2 2
Kmnsws1 - Kmns;s; Kmnss Omon (051 +QSZ)/2 212 2; any ¢, |’ M N Z 3’ 50
B, B,
B, B, any ¢ I N=4,6,2p,...
I
Kmnsm :_Kmnszsz Kr(m:ss Qan(Qi _QSZZ)/z 2; g; CSZN/4 Il N=4.8,4p, ...
i
Kmns‘sz K:Enn)ss QanQs, Qsz A1 BZ CSZN/4 |: 1l N:4, 8, 4p7 .
Az B,
!
Kinnsit, = Kimns, K,S,Ls,Oan(Qs, Q, +05,Qy,) 212 2; CG=¢C (A} N2> 3,00
B, B,
8 B, C=¢; I N=4,6,2p,
_ (1)
K =—K, Kinnst QmQn (Qs, Q, —Qs,Q A B
s et O (s B = Q) 4 8, c+a=N/2 L N=4,6,2p,
Kennsit; = Kennsyt, Kiomk QmQn (Qs, Q:, +Q5,Q1,) A Az _ .
A2 A1 G =G ' N> 37 oo
B B
B; Bj G=c Il N=4,6,2p,
v
Kimns,t, = —Kmns,t, Kfnnﬁr QmQn(Q5,Q;, —Q5, Q1) 212 g? e+ =N/2 1,1 N=4,6,2p, ...

¢; is the subscript labelling the degenerate representation of mode i, for example ¢;=1 for E or E;, ¢;=2 for E,, etc. p is a non zero integer number

and N indicates the order of the principal symmetry axis. For | and Il Group classification see Table A1.

Table A4. Non-vanishing quartic energy derivatives Ksss, Kmsst and Kmsr, With respect to Q; and their symmetry relations.®”’

Symmetry Hf,fg w.rt. Qi Q;, Qk. Q;, Qm G G Cy Group N
Kmsys151 = —Kms, s,s, Kr(r?sss (Q?‘ —3Q;, Q?z)/G A 3¢;=N [l N=3,6,3p,...
B, 3¢,=N/2 L N=6,12,6p, ...
Kmsysys, = —Kms; 5,5, K,(,I,IS)SS Qnm (Q?2 730521 Qs, )/6 Ay 3¢=N [l N=3,6,3p, ...
B, 3¢,=N/2 Il N=6,12,6p, ...
Kims 16, = ~Kmsyst Kinst Om (@, @1, ~ Q% Q1 +20:,05,Q1) /2 A =26 L Nz5
p B, ce=2¢,—N/2 Il N=6,8,2p, ...
ms; sty
Kyt = =K Ko On (@, @, =5, Q, =205,0,Q1)/2 A 26ta=N o N=3,25
_ B, 26+ =N/2 Il N=6,8, 2p,
- msq St
Kimsis12 = ~Kmsasot Kinsie O (Q2 Q1 = Q2 Q, ~205, 05,0, ) /2 A2 =26 L Nz5
_ B, ce=2¢,—N/2 L N=6,8, 2p,
=" Rms; st
Kmsy st =~ Kmsasaty Kinok Qm(Q2 Qt, ~ Q4 Q, 205,05, Q)2 Az 25+ =N L N=3,>5
Kunsy st B, 2¢,+¢=N/2 1L, N=6,8,2p
[, K o Qm(Qs, Qr, Qr, —Qs,Q,, Q, A c=cte Ll N=>5
Kins: + +
ms;tyuz OS1 Qt;Otz OS;QM Qrz) B1 CU:CS‘PC[*N/Z |’ " N:6,8,2p,‘..
Kms;n uz
=— ()
Kins:ty0n Kmsatoun Kr<ns)ru Qm(Qs, 01, Q1 —Qs,Q1,Q, Al ¢He+c,=N L, N=3,>5
=—Kns,t — —
1uy st Qrzorz Oszon Qrz) B1 C5+Cf+Cu:N/2 Il ” N:6,8,2p,...
= _Kmsztw uy
Kmsi 1, =~ Kimsy o0, Kiers Om(Qs, Q@ Q= Q5, Q1. Qs Az C=C+er Il N=>5
=K, _ _
i 240, Q =200 Q1) B Ce=CHc—N/2 I N=6,8,2p,...
= _Kmszn uy
= v
Kimsityu, = = Kmsy o0 Kr(nst)u Qm(Qs,Q,Q, —Qs,Q1,Q;, As CHc+c,=N 1,0 N=3,>5
Kms tu + +
1t Qs‘ Qr;ot‘ Qs;Qt‘ Qr‘) 82 C;+Cr+Cu:N/2 |, ” N:678,2p7...
Kmszt‘ u

¢; is the subscript labelling the degenerate representation of mode i, for example ¢;=1 for E or E;, ¢;=2 for E,, etc. p is a non zero integer number

and N indicates the order of the principal symmetry axis. For | and Il Group classification see Table A1.
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Table A5. Non-vanishing quartic energy derivatives Kss and K.s with respect to Q;, and their symmetry relations.

s [60]

Symmetry Hgg w.rt. Qi Q;, Qk. Q, G Gt Group N
Kosisisi = Kopsas, K (Q4 +Q% +2Q2 @2) /24 6 £ N/4 " =35 5,00
=3K;,5,5,5, .
oo = Ko SSSS(QA Qe ¢=N/4 ] N=4,8,4p
Ksisisas KM@ @2 /4
Kspsosis = = Ks 0515, Kind (@3 Q,,—Q,,Q%)/6 =N/4 Il N=4,8, 4p
Ksitin = Kooty KD (Q2 Q2 +Q2Q2+Q2 Q2 +Q2.Q2) /4
= Kositt, c+cs #£NJ2 I, N2>5
= Kount Ct # Cs
Kssitnty = Kssitots sm(Qsz‘ Qi 4‘02 02 +2Q5,Q5,Q,Qy,) /4 . N=3.> 5 o
Ksisitt, = Ksystity SS"t'[ (@ Q2 +Q2 Q2 —2Q,,Q,,Q, Q,,) /4 =c; #N/4 ) , 25,
Ksys,tt, = (sz sitit; —Ksisi60t, )/2
Ksisint = Keastn ssrr (Osz1 Qﬁ +0522 sz +2Q;,Q;,Qy, Qtz)/4 _
K, = K C+cs=N/2 (Al N=6,8,2p,...
e Tashh KSn (@2 Q2 +Q3 Q2 +2Q,,Q,Q,Q;,) /4
K156, = (Ksysiot, = Ksysii, ) /2 G # G
Ksisinty = Ks,sot Sm (Qf| Qi +Qf2 Qé)/
Ksitrts= Koot Kt (Q2 Q@2 +Q2 Q2 )/4 a=c=N/4 Ll N=4.8,4p,...
Ksisatity ss‘ﬁ‘” Q;,Q5,Q;,Q,,
Ksisitrt, = — K501 Sm (Qi Q;,Q,— Q;, Q;,Qy,
K 53t +QSZQSZQt,_Qs| QSerZ)/Z Cetcs=N/2 Il N=6,8,2p,...
—Ks, 66, Ct # Gs
Ksisitit, =Kty Ks(s)g (Q2Q,Q,—Q2Q,Q,
P -Q,Q,@ +Q,,Q,Q2)/2 Ce=cs 7 N/4 I N=3,> 5,00
Ksitott,
Kssii, = Koyt K (@2 Q,Q,—0Q2Q,Q;,)/2
KO c=c;=N/4 I N=4,8,4p,...

Ks|s;n th= 7Ks‘ Stty

SStt (QS| QSZ Q?. O5| QSz Qrz )/

¢; is the subscript labelling the degenerate representation of mode i, for example ¢;=1 for E or E;, ¢;=2 for E,, etc. p is a non zero integer number
and N indicates the order of the principal symmetry axis. For | and Il Group classification see Table A1.

Table A6. Non-vanishing quartic energy derivatives K with respect to Q; and their symmetry relations.

[60]

Symmetry H(Wzg w.rt. QicQ;, Qx. Q. G G Group N
I
K5|5151 t :7K525252[z Ks(szr(oz Oh 70531 Otz =3¢ N N>7
K515152f2 2 2 ¢ ' -
+3Q5,Qs,Qr, =305, Q5,Qr, ) /6
=K sy, 20 300 ;00 )/ ¢=3¢—N I =5,>7
Ksisisit0 = Kspsosot, sssr(oi Q — 05320:1 34 N o N>
—K. CsTC = ’ =z
e +3Q20,,Q, ~30,, Q2. Q,)/6
515252t
Ksisisin = Kspsisoty s(s”slr) (0531 Qy +Q3 Q,
= =3>
= Kysse +9Q2 0,0, +9Q5, @, Q1 )/6 &=a # N/4 Wi N=3,2 5,00
= 3Ks‘szszt‘
Ksmsm = KSzSzSzfz sssr (03 Otw +O3 Otz)/6 c.=c _N/4
ST (Al
Ksisisot, = Ksisysaty ngr(on Q;,Qr, +Qs, Qs;Qtw)/z N=4,8,4p
Vi)
KS|$1 sitp = Ks:s;szh s(ssr (Og, Ql‘z +Qsz Qh =3¢ 1] 7
Ksms;n 2 :
-3 -3 6
=Kt %0100 730, 0500/ a=3¢—N I =5>7
viny
Ksisi516, = K530t Ks<ssr (Q; Q, 7032 Qy
K. 3¢+ =N Il N>5
_ K‘ +3Q2 Q;,Q, —3Q,,2 Q) /6 s
1525212
]
Ksis1516 = K550t Ks<ssr (Qi Q, 70?2 Q,
=-3K, Cs=C N/4 Il N=3,> 5,00
B 1515210 _902 QSz Or‘ +905‘ Q?z Qrz)/6 S t 7é / =
= 3Kssos0t,
Ksms‘rz = _K525232t1 sssr (03 sz 70532 Of! )/6 c.=c —N/4 1l N=4,8,4p
s=Ct= =500, ..

Ks‘ s155t = —K;

1525212

K%(Q2 0,0, —Q5, @2, /2

¢; is the subscript labelling the degenerate representation of mode i, for example ¢;=1 for E or E;, ¢;=2 for E,, etc. p is a non zero integer number
and N indicates the order of the principal symmetry axis. For | and Il Group classification see Table A1.
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Table A7. Non-vanishing quartic energy derivatives K, with respect to Q;, and their symmetry relations.’”
Symmetry Hf,,zg w.rt. Qi;Q;, Qk. Q;, G G Cy Group N
Ksm tuy = 7K5252fzuz Ks(sliu(wa Qn Qu1 _QSZZ Orz Quz “'Qsz1 Qr2 Quz
= K Cy=2¢s+¢ N>7
151t ~Q@2,Q,,Qu, +205,Q;,Q,, Qi ~205,Q;,Q,Qs, )2 (i tanN P Nes sy
= _Kszs;h u T
= Ks|szt| uy
= 7Ks|s;fzu1
Ksisitin = Ks,spt0, Kl (Q2 Q¢ Qu, +Q2 Q,Qu, — Q2 Q;, Qu,
=—K,
1511202 _ng Qt| Qu‘ _205‘ Qsz Qr‘ Quz _205‘ Qsz Qrz Qu‘ )/2 265+Ct+cu:N |, 1l N 2 5
= 7Kszs;n uy
_ ¢ #N/4,ctc # NJ2
- 7Ks|s;n uy
= 7K5|Szt1U|
Ksisitin = Kesytou, Kt (Q2 Q Qu, +Q2 Q,Qu, — Q2. Q;, Qu,
=—K,
5151620 —Q2,Q, Qu, +2Q;,Q;,Q;, Qu, +2Q,05,Q, Q) /2 Ctcu=2¢, #N/2 Al N=7
= 7K525;r1 uy
Ct # ¢
= Kssyt, t 7 Cu
= Ksm;rzu‘
Kasinn = Kt Kl (@2 Q1 Qu, +Q2 Q,Qu, ~ Q2 Q,Qu, ~@%,Q1,Qu, ) /2 ctau=N/2 L N=8,12,4p,...
:_K5|5112U2 Ct 7& Cy
= _Kszszn uy
Kisotr, = Ksisatouy KW (Qs, Qs, Qt, Qu, +Qs, Qs, @1, Qu,) c=N/4 I N=8,12,4p,...
K5|Sw tu = KSZSZfzuz KS(S‘;L) (Qsz‘ Qn Qu‘ +Q?z Qtz Quz +Qsz‘ Qrz Quz +Q?2 Qt| Qu| )/2 G ;é Ce=Cu I' I N 2 3
= KS|S\foz CS+CI‘ 7& N/2
= Kszszn uy
Koty = K Ko (Q2 Q¢ Qu, +Q2 Q1 Qu, — Qs Q5, Qr, Qu, —Q5, @5, 1, Q) /2
s1$1t1U7 $252t2U2 sstu ( 51 <t < 5y <ta Uy 51452 <t LUy 5152 <t Uy )/ Ll N=6,8,2p
Ksisit, = Ksysotyun Ks(s‘i/li/)(ofl Q,Qu, +Qszz Q1 Qu, +Qs, Q5, Qr, Qu, +Qs, s, Q1, Quy ) /2 C # G=Cy , ,8,2p,
Ksisitu, = Ksysptyuy c+e #NJ2
= (Ksm tuy _Ksm tiuy )/2
X
Ksm tu; = Kszszrzu; Ks(stu) (0521 wa Quw +Q§2 le Quz +QSw OSz Oh OU: +QS| QS: sz QLH )/2
K -« @ =c=c, # N/4 1,1 N=3,> 5,00
$1511202 252t Kssm(Qi Qtz Quz + QSZ2 Qn Qu‘ _Qs| Qsz Qt| Quz - Qs‘ Qsz Qrz Qu| )/2
Ks|sznu;: Ks|s;r2u1
:(Ksm tiuy 7K5151tzuz)/2
X
Kot = Koot K (Q2 Q1 Qu, +Q2 0, Qu,) /2
Keisits = Keasytrun K (@2 Q, Qu, + Q2 Q1 Quy ) /2 G=c=c,=N/4 I 1l N=4,8,4p,...
Ks|5;n u= Ks|szrzu‘ Kg’uﬂ) (Qs‘ Qsz On Quz +Os| Qsz Qtz Qu‘ )
¢; is the subscript labelling the degenerate representation of mode i, for example ¢;=1 for E or E;, ¢;=2 for E,, etc. p is a non zero integer number
and N indicates the order of the principal symmetry axis. For | and Il Group classification see Table A1.

V(1,’1j,i1,’ or 0,'i1j or Oj):

di d
hoj+hay+;(1+d;)+;(1+d)) + 1 (1 + E’ + 5’

1 (B4
+EZ(Xikdk+Xjkdk)+gii+gjj+gif
pury
J
:V(1i, *+1; or O,~)+v(1j, *1; or Oj)+Xij+gij

di 4
v(1:1y, 21, F 1) =haw;+hoy+1;(1+d) +7;(1+d)) + i (1 + 3’ + %)

1
*3 Z(Xikdk+Xjkdk) +9itg;—9ij
pury
21’(1,‘, i1i)+v(1j, i]j)%’XU*g/j
(B5)

International Journal of Quantum Chemistry 2015, 115, 948-982

From the above equations it can be observed that the funda-
mental band for a degenerate mode is degenerate with
respect to /, while the first overtone shows a partial lifting of
the degeneracy resulting in one nondegenerate and one dou-
bly degenerate levels. Combination bands of two degenerate
modes are split into two doubly degenerate levels.

Appendix C: Vibrational I-Doubling Constants

The off-diagonal elements <¢£ﬁ>|7~14o|¢g)> presented in egs.
(53-55) are all composed by a part dependent on the quan-
tum numbers and a constant one. In the notation adopted in
this paper, the explicit form of the latter is given by the fol-
lowing expressions,
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Table A8. Non-vanishing quartic energy derivatives K, with respect to Q;, and their symmetry relations.’”
Symmetry Hwb w.rt. QiQ;, Ok, Q;, G G Cy Group N
Ksisitr = Kyt Kt (Q2 Q1 Qu, +Q2 Q1 Qu — Q2. @, Qu,
= _Ks|5‘11u| _Qsz Qt| Quz _2Qs‘ Qsz Qr‘ Qu| _205‘ Qsz sz Quz)/z
K Cu=2¢+¢ 1 N>7
S22t cu=2¢+c—N [ N=5,>7
7Ks|s;r1 u
_Ks|szrzu2
Ksisitru, =~ Ksysytoun Ko (Q2 Qr, Qu, ~ Q% Qr, Qu, + @2 Q1. Qu,
KSw s1tath - Of; Qh Ouz +2031 QS: Qll Quw 72051 Qsz Qtz Quz )/2
2¢s+c+cy=N 1] N>5
_Kszs;n Uy
¢ #N/4 c;+c #NJ2
szszn w
7Ks|5111u2
Ksmn u = 7K5252 tuy SS)ZI (OSZ‘ Qt‘ Ouz sz Qtz Qu‘ +Qs‘ Qt2 Qu‘
K.
S15182U0 _Qszof\ Qu1_203| Qszon Qu‘ +2051 Qszotzouz)/z ey =2c, ;é N/2 I N>7
= 7Kszs;r1 uy
G FCy
7K5|5;r1 u
sz sathun
—_ KOV
Ksisitiu, = = Kspstoun ssru (0521 QQu,— Q?; Q,,Q, +0521 Q,Qu, — Qs; Qy Quz)/ Ct+Cu:N/2 Il N=8,12,4p, ...
Ks, 51t G #
_Kszs;h uy
Kssatrun = —Ksisatous K& (Q, Qs Qr, Qu, —Qs, Q5,Q1, Qu, ) =N/4 [ N=8,12,4p, ...
KX
Ksys1t1u, = —Ksysotou0 ssru (Qf‘ Q;,Qu, — QSZz Q,Qy, +O§] Q;,Qy, *Qszz Q, Qu, )/2
G # G=Cy Il N>3
K.
s cte #NJ/2
= _Kszs;rw uy
Ksysit = —Kspsytoun Ko (@2 Q1 Qu, ~ Q4 Qr, Qu, +Q5, Q5, Q1 Quy —Qs, Q5,2 Q) /2
Ksys1t0 = —Ksysatrus Ko (@2 Qt,Qu, —Q2 Q1 Qu, +Qs, Qs,Qr, Qu, — Q5,Q5,Q, Qu, ) /2 ¢ # C=c I N=6,8,2p, ...
Ks|szh u :_Ks|szrzuz Gta ?é N/2
= (Kssytru, TKsy51600,)/2
Ksys1ty0s = —Ksysataun K" (Q2 Q¢ Qu, — Q2 Q;, Qu, —Q5, @5, Q, Qu, +Q5, Q5,Q;,Qu, ) /2
Keysitaun = = Kysatyu, K" (Q2 Qi Qu, — Q2 Q, Qu, —Qs, Q5,Q, Qu, +Q5,Q5,Q;,Qu, ) /2 G=c=c, # N/4 I N=3,> 5,00
Kns;n uw= 7Ks|szr;uz
- (K5|51 tyuy +KSzSzle| )/2
KO)
Ks 5160, = =Ksy5,6u0 sstu (Qf. Q:,Qu,— sz Q,Qy,)/2
XXV)
Ks 5160 = —Ksy5,t10, Ko (@2 0,0 —Q2Q,Qy,) /2 =c=c,=N/4 I N=4,8,4p, ...
Ks| Ssatiup — _Ks| Sataly KS(S):)JVI (051 032 Qn Qm 7051 052 Qt; Quz)
¢; is the subscript labelling the degenerate representation of mode i, for example ¢;=1 for E or E;, c;=2 for E,, etc. p is a non zero integer number
and N indicates the order of the principal symmetry axis. For | and Il Group classification see Table A1.
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Table A9. Non-vanishing quartic energy derivatives K, with respect to Q; and their symmetry relations.’”!

Symmetry Hf,fg w.rt. Qi Q; Qx. Q;, G G C Cy Group N

Ksityun, = ~Ksytouav, K (Qs, Qs Qr, Qu, — Q5,5 @1, Qu, +Qs, Qs, @1, Qu, —Q5, 0, 2, Qu
= KSW tiuxvy +Qs| Qsz Qt| Quz - Osz Qs| Qtz Qu| _Qs| Qsz Otz Qu‘ +Qsz Qs| Qt| Quz )

=—Ks,t,un, G, =Ctctcy I N>7
Ks,tou1v, ¢, =C+cte,—N LI N=5>7

= Ksz tuavy
= Ks| tuavy
KSz tiuiva
Kot = Kty Kt (Q5, Qs Qt, Quy 05,05, Q1 Qu, ~ Qs Qs @1, Qu, Q505,01 Qs
:7Ks|t| u2v2 _Os| OSZ Qn Ouz _Qsz 051 Qtz Qu| _Qs| Qsz Qtz Qu1 _Qsz Qs| Qt| Quz) Cs+ct+cu+cv:N (]l N>5

=—Kstyun,

c+ce #NJ2
cstey #NJ/2,
c+e, #N/2

==K touv,

= 7Kszt| uyvy

= 7Ks| tyuavy

= 7KSzf| uvy

_ i

Ksitirn = Ksytouzv, KS (Qs, Qs, Q1 Qu, +Qs, Q5 Qr, Quy +Qs, Qs @y Quy +Q5,Q5, @1, Qu,

= KS‘ tiuzvz +051 Qsz Qn Quz + Qsz Qs1 Qtz Qu| 7Qs| Osz Qrz Ou1 7052 Qs, Qt, Quz )
Ksataun GHe=GHc £N2 LI N>7
K.

S1tU1 V2 G<G <<

Ks;n uvp

= 7Ks| tatyv,

= _Kszfl uvy

K52 tuivy KS(A‘Q (Qs‘ Qs‘ Qt‘ Qu| +Qsz Qsz Qrz Ouz _Qs| Qsz Qtz Qu‘ _Qsz Qs‘ Qt‘ Quz )
K
e K (Qs,Q5,Qt,Quy +Q5, 05, Q1 Quy +Q5, 25,04, Qu, +Q5,Q5,Q,Qu)  ¢yte,=citeu=N/2 I, Il N=8,10,2p,...

Ksz tiupvy

KSI tiuvy T

<G <C<C

KSI tuivi = KSzfozVZ
= _Ks| tatyv,

= _Ksznu‘vz

KS| tiuvy = KSz tHuyVvy K%&(Qs. Qs| Qt| Qu‘ + Qsz Qsz Qtz Quz +Qs| Qs‘ Qrz Quz +Qsz Qsz Qt| Qu‘ )
= K,
$itilava KS(,VJ‘I,) (Q,—1 Qs; Q[1 Qu2 +Qsz st O:z Ouw 7Qs, Qsz Qtz Qm 7051 QS1 Qh Quz) CG=C < u=Cy [l N2>5

Ksz thuivq
_ cs+cy #NJ2
Ks| taurvy — Ksz tyuavy

= _Ks| tuavy
= _Ksznu‘vz
Kition = Katr, Kitar (@5, Qs Q1 Qu, +Q5, 0, @, Qu, ~ 05, 0,0, Quy — 05,05, 21, Quy)
K = K
sy sl KS(Z:\Z(Qﬁ QS| szouz +Oszoszof| Q“w +Q§1 Qszofz QU1 +Qszosw Of| Quz) C=Ct # GQ=¢Cy Ll N=6,8,2p,...
Ks|tzu1 v, Kszn vy K(X) B B _
smv(os1 Qsz Qn Quz + Qs; 051 Qt; Qu, Qs| 052 Qrz Ou1 Qsz Qs1 Qt1 Quz ) Cs +Cu —N/2

Ks| tuvy — Ksz tiu vy

= (Ks| vy _K51 tiuava +KS1 tu vz )
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TABLE A9. Continued

Symmetry

7—[5’?2 w.rt. QiQ; Qx. Q;,

G C Cy Cy Group N

Ksitinvi = Ksptaupvy
Ks| tiuvy, = Ksz turvp
Ks| tuva — Ksz tiuavy

Ksityuzn = Ksptiuv,

Ks| tuvy — Ksz thusvy
Ks| tiuvy — Ksz tuyvp
Ks| tuva — Ksz tiuavy
Ks| tyuavy — Ksz tiu vy
Ks| tuva — Ksz thuavy
= Ks| tuavy
= Ksz tt vy
=- Ks| tuv
=- Ksz tiuyvs
== Ks| tyuav;
= Kszn urvy
Ks| tuv, = 7Kszr2u1v1
sz tiuvq
= Ksz tuva
Ksy tyuvy
= Ksz tuavy
=- Ks| tauyva
Ksyt,u0v,
Ks| tuva — Ksz tuavy
= Ks| tuavy
Ks,tyuv,
=- Ks| tuv
Ksz tiuvy
=- Ks| tuavy
:Ksz v
Ks| tiuvy — 7Ks;t;u1 Vs
Ks, tyuvy
=- Ksz tiuavs
Ks| tuva = Ksz tuavy
= Ks| tUavy

K52f| uvy

K.90(Qs, Qs, @y Quy +Qs,Q5, Q1 Quy +Q5, @, Q1 Qu, +05,Q5, @1, Quy )

(xin)

Kstuy (Qs, Qs Qr, Qu, +Q5,Qs, Qr, Qu, +Qs, Q5, Qr, Qu, +Q5,Q5, Qr, Qu, )

(i)

Ksruv (Os| Qsz Qt| Qu; +Qs; Os, Ot; Ou| _051 Qsz Qrz Qu1 _Qsz Qs| Qt| Qu; )

=(Ksityurvi TKsitrurv, —Ksityunvy)

Ks(:(ul\‘//) (QSI st Qn Qm +Qsz Qs2 Q[2 Qu2 )

KX (Qs5, Qs Qe Qu, +Q5,Q5, Q1 Quy)
K (Qs, Qs, Q1 Quy +Qs, Qs @, Q)

K Qs Qs, Q1 Quy +Q5, Qs Q1, Q)
(o

(o

(mn

K49 (Qs, Qs Qt, Quy —Qs,Qs,Q1, Quy — Qs Q, Q1 Qu, +Q5, 05, Q, Qu )
K (Qq Qs Qty Quy — Q5 Qs, @1y Qu, +Qs5, Qs, Q1 Quy —Q5,Q5,Q1, Quy)

Kstu\)/ (051 Os| Qr. Ouz - Qsz Qsz Orz Ou| _Qs| st Qrz Qu1 _Osz Qsz Qr. Ouz
_Qs| Qsz Qn Qu‘ _Qsz Qs| Qtz Quz - Qs‘ Qsz Qr2 Ouz _Qsz Qs‘ Qn Qu‘ )

Km“), (Qs| Qs, Qt, Qu2 - Qs; Qsz Ot; Qu| +Qs| Os‘ Qt2 Ou‘ _Qsz Qsz Qt, Qu;
+Q$| QSz Qﬁ Quw 705; QS| Qtz Quz - st Os; Qtz Ouz +Qsz 051 Qn Om )

Kstu\)/ (Qs1 Qs| Qn Quz - Osz Qsz Qtz Qu| _Qs| st Qrz Qu1 +Qsz Qsz Qn Quz
—Qs,Qs5,Qr, Qu, +Q5,Q5,Q:, Qu, —Qs5, Q5, Qr, Qu, +Q5,Q5, Q, Quy )

=c=c,=c¢,=N/4 1Ll N=3,>5 00

)

c=c¢=c,=¢,=N/4 1L N=4,84p,...

C,=Cst ¢ty 1] N>7
C,=Cstcit+cy,—N I N=52>7

¢+ctc,+c,=N 1l N>5
c+ce #NJ/2
c+e, #N/2
c+e, #NJ/2

o, =c+c, #N/2 Il N>7

<G <<

c+c,=c+c,=N/2 ] N=8,10,2p,...

<G <C<C
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TABLE A9. Continued
Symmetry Hf,,zg w.rt. Qi Q;, Qk. Q,, G G Cy Cy Group N
KS| tuvy, = _Ksztzllz\/w 5[)1(,)3” (Qs‘ Qs| Qr‘ Quz Qsz Qsz Qtz Qu‘ _Qs‘ Qs| Qtz Qu| +052 Qsz Qr‘ Quz)
=—K,
sihitave s:,)‘(,lv (Qs5,Q5,Qr, Qu, —Qs5,Q5, Q1 Qu, +Q5, Q5,Q, Qu, —Q5, Q5, Qr, Quy ) CG=C < Q=C I N=>5
= Kt c+ey #NJ/2
S u
Ks|r2u‘ v :7Kszr| uyvy
= sztzuzvz
7Kszt|u1v1
Kstyurvs = —Kstyuom, K (Qs, Q5, Qry Quy —Qs, Qs @y Quy, —Q5, Qs, Q1 Qu, +Q5, Q5 Q1 Qi)
Katyuan = ~Kasturv, KO (05, Q50400 — 05,05, Q0 Qi ~ 05,05, 8, Q0+ Q5,04 Q0 Q) =i £co=c, | N=6.8.2p, ..
s, tyurv, = — Kot
s T B Kitor " (Qs, Qs, Q1 Quy = Qs 05, @1, Qus Qs Qs Qs =05, 05, Q1 Q) ta=N/2
Ks|tzu;v; = 7Kszt| vy
= (Ksytounvy =Kty =Ksytyv,)
Ksityunva ==Kt Kiow " (Q,Q5, Q1 Qu, ~Q5,Q5, Q1. Qu, +Q5,Q;,Q;, Qu, ~Q5, 0, Q1 Q)
K =—K
sty = Eatur, Ko (Qs, Qs, Qe Quy —Q5, Qs Qt, Qu, +Qs, Q5, @1, Qu, — Qs Qs Q, Q)
K, =—K; =C=C,=C,= =3.>
st = et K% (Q,, 0, Q1 Quy ~Q5, Qs Qi Quy #0505, Q Quy — Q5 Q6 @y Q) S w=a=N/4 I N=3,2 5,00
Ks|rzuzv1: Kszr‘u‘ v
:(Ksm uyvy +Ks| tiuyvy +KS| tuvy )
KSI tuv, = _Ksztzusz S?L(l)\(/XI (OS| OS| Qn Ou2 Os; Qs; Qt; Qu1 )
Pl
Ks| tiugvy — _Ksztzu‘vz stuv (051 QS| Qtz Ouw OS: QSz Qlw QUz)
XXXIII
Ks tyunvs = = Ksytyuv, sruv (051 Q5,Qr,Qu, —Q5,Q5,Q1, Qu, ) c=c¢=c,=¢,=N/4 1l N=4,8,4p,...
Ksmu;v; = 7Ksmum s?t(z)\(/XIV (051 QSz Qtz Ouz QSz QSw Qh QU1 )
¢; is the subscript labelling the degenerate representation of mode i, for example ¢;=1 for E or E;, ¢;=2 for E,, etc. p is a non zero integer number
and N indicates the order of the principal symmetry axis. For | and Il Group classification see Table A1.

84s—34 v vil
DUT *( KD —3KI1 + 4iK (1" ) Z [{Knﬂs} —{kW) }2] T_ﬂm) 57_2[ s(srr)_Ks(srg_Ks(srr)}+[Ks(stt)_Ks(srt)}
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where D;=128)\/I?, and E;j=32w;w; /%
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Appendix D: Deperturbed Treatment of
Resonances

The possibly resonant terms present in y, g matrices [see eqs.
(36-42)], and U, R, S [see eqs. (C1-C3)] equations can be found
by rewriting the expression as partial fractions,

1
+ 1
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1 1 1 1
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(D7)

If a resonance such as 2m; = m; or ®; = ®;+w; occurs, the last
term in the right-hand side of the equations presented above
is discarded.

Concerning the vibrational correction to rotational constants,
the possibly resonant terms in the formulas of «;. equations
[egs. (94-102)] are,

32,’4‘/1]': 2(0,' 1+ 260,‘ (D8)
j.,'_)»j Wit w; Wi —j

If m; = w;, the last term in the right-hand side of the above
equation is removed.

Appendix E: 2-2 Second-Order Resonance
Constants

The constant terms present in the off-diagonal elements (
M)B ) involved in 2-2 second-order resonances [egs. (75—

79)] are,
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where F=w;0;/*, B;=1,;=1/2 (j>1) and all the contribu-
tions are expressed in partial fractions to easily identify the pos-
sible first-order resonant terms. When a first-order resonance
occurs, the relative term is removed from S in eg. (20) and
then from both the diagonal and off-diagonal elements of #"?
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