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Abstract

It has been recently shown that spot volatilities can be very well mod-
eled by rough stochastic volatility type dynamics. In such models,
the log-volatility follows a fractional Brownian motion with Hurst pa-
rameter smaller than 1/2. This result has been established using high
frequency volatility estimations from historical price data. We revisit
this finding by studying implied volatility based approximations of the
spot volatility. Using at-the-money options on the S&P500 index with
short maturity, we are able to confirm that volatility is rough. The
Hurst parameter found here, of order 0.3, is slightly larger than that
usually obtained from historical data. This is easily explained from a
smoothing effect due to the remaining time to maturity of the consid-
ered options.

Keywords: Rough volatility, fractional Brownian motion, implied volatil-
ity, Medvedev-Scaillet approximation.

1 Introduction

Since the seminal work of Black and Scholes [4], the most classical way to
model the behavior of the price St of a financial asset is to use a continuous
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semi-martingale dynamic of the form

d logSt = µtdt+ σtdWt,

with µt a drift process and Wt a Brownian motion. The coefficient σt is
referred to as the volatility process. As is well-know, it is the key ingredient
in the model when one is interested in derivatives pricing and hedging.

Historically, following the pioneering approach of [4], practitioners have first
considered the case where the process σt is constant or deterministic, that
is the Black and Scholes model. However, in the late eighties, it became
clear that such specification for the volatility is inadequate. In particular,
the Black and Scholes model is inconsistent with observed prices for liquid
European options. Indeed the implied volatility, that is the volatility pa-
rameter that should be plugged into the Black-Scholes formula to retrieve a
market option price, depends in practice on the strike and maturity of the
considered option, whereas it is constant in the Black-Scholes framework.

Hence more sophisticated models have been introduced. A first possible ex-
tension, proposed by Dupire [7] and Derman and Kani [6], is to take σt as
a deterministic function of time and asset price. Such models, called local
volatility models, enable us to perfectly reproduce a given implied volatil-
ity surface. However, its dynamic is usually quite unrealistic under local
volatility. Another approach is to consider the volatility σt itself as an Ito
process driven by an additional Brownian motion, typically correlated to
W . Doing so one obtains less accurate static fits for the implied volatil-
ity surface but more suitable dynamics. Among the most famous of these
stochastic volatility models are the Hull and White model [17], the Heston
model [16] and the SABR model [15]. More recent market practice is to use
so-called local-stochastic volatility models which both fit the market exactly
and generate reasonable dynamics.

In all the Brownian volatility models mentioned above, the smoothness of
the sample path of the volatility is the same as that of a Brownian motion,
namely 1/2 − ε Hölder continuous, for any ε > 0. However, it is shown in
[13] that in practice, spot volatility is much rougher than this. This result
in [13] is based on a statistical analysis of historical data using sophisticated
high frequency estimation methods. More precisely, it is established in [13]
that the dynamic of the log-volatility process is very close to that of a
fractional Brownian motion with Hurst parameter smaller than 1/2. Recall
that a fractional Brownian motion WH with Hurst parameter H ∈ (0, 1) is
a Gaussian process with stationary increments such that

Cov[WH
t ,W

H
s ] =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
.
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The Hölder regularity of WH is H − ε for any ε > 0 and for H = 1/2 we re-
trieve the classical Brownian motion. Therefore models where the volatility
is driven by a fractional Brownian motion with H < 1/2 are called rough
volatility models. Beyond fitting almost perfectly historical volatility time
series, rough volatility models enable us to reproduce important stylized
facts of liquid option prices that local/stochastic volatility models typically
fail to generate. In particular, the exploding term structure when maturity
goes to zero of the at-the-money skew (the derivative of the implied volatility
with respect to strike) is readily obtained, see [1, 11]. Other developments
about rough volatility models can be found in [2, 3, 8, 9, 10, 12, 14, 18, 21].

The goal of this paper is to revisit the finding in [13] using implied volatility
data. Indeed in [13], the authors work with historical price data from under-
lyings to estimate spot volatility. Here we use a spot volatility proxy which
is not based on historical data, but on implied volatility. More precisely, we
approximate the spot volatility by the implied volatility of an at-the-money
liquid option with short maturity (or a refined version of it). This idea
can be justified by the fact that in most models, the at-the-money implied
volatility tends to the spot volatility as maturity goes to zero, see for ex-
ample [20]. Our main result is a confirmation of that in [13]: When using
alternate spot volatility measurement methods based on option prices, we
can still conclude that volatility is rough.

The paper is organized as follows. We investigate in Section 2 the roughness
of time series of spot volatility approximations given by implied volatilities
of at-the-money options on the S&P500 index, with maturity one month.
In Section 3, instead of using raw implied volatilities, we compute spot
volatilities from implied ones through a correction formula due to Medvedev
and Scaillet, see [19]. We then carry the same analysis as in Section 2.
The results in Sections 2 and 3 are very similar to those in [13]. However,
the estimated values for the Hurst parameter, although smaller than 1/2,
are actually larger than those obtained in [13]. We show numerically and
analytically in Section 4 that this upward bias comes from a regularizing
effect due to the remaining time to maturity of the considered options.

2 At-the-money implied volatility with short ma-
turity as spot volatility proxy

As explained in the introduction, our goal is to study the behavior of the
spot volatility and to show that it is well approximated by a rough process.
Of course this is a difficult task since volatility is a latent, unobserved vari-
able. In [13], the authors use recent estimation methods based on ultra high
frequency price data to estimate spot volatility. In this work, instead of
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using historical data as in [13], we wish to use option price data. This idea
is reasonable if we use at-the-money options for which the time to maturity
is short. Indeed, it is well-known that in most models, the at-the-money
implied volatility converges to the spot volatility as maturity goes to zero,
see for example [20].

2.1 Data description

In this section, we use a data set from Bloomberg1, made of daily obser-
vations of the implied volatility of the option with maturity one month on
the S&P500 index, from January 5, 2006 to May 5, 20112. Note that the
data are in fact already extrapolated internally by the data provider (us-
ing quoted options at 4 PM) and do not necessarily exactly correspond to
transaction data, see [5]. In Section 3, we present a method enabling us to
derive spot volatilities from observed option prices with various maturities.
Here we rely on the data provider approach to get option prices with the
same maturity. This is not an issue since our aim in this work is to show
that a rough dynamic for the volatility is obtained from any reasonable spot
volatility proxy.

2.2 Scaling property

Let σimpt0
, ..., σimptN

be the time series of implied volatilities extracted from
our data base. Here for i ≥ 0, ti+1 − ti corresponds to one business day. In
the spirit of [13], we wish to review the behavior of the so-called structure
function m(q,∆) given by

m(q,∆) =
1

N

b(N−1)/∆c∑
k=0

| log(σimpt(k+1)∆
)− log(σimptk∆

) |q

for various q > 0 and lags ∆ going from 1 to about 40 days3. Through the
quantity m(q,∆), our goal is to revisit the finding in [13] that the (spot) log-
volatility is well approximated by a fractional Brownian motion with Hurst
parameter H smaller than 1/2. In this case, assuming spot and implied
volatilities coincide, we should observe the following relationship:

m(q,∆) ∼ cq∆qH , (1)

with cq a constant depending on q. Indeed, we have for t ≥ 0 and ∆ > 0

E[|WH
t+∆ −WH

t |q] = c̃q∆
qH ,

1Data obtained from AXA Group Risk Management.
2Data around the third Friday of each month (settlement date) are removed from the

data base. We have 1166 points in total.
3Of course when computing m(q,∆) we in fact also average over the possible starting

points t0, ..., t∆−1.
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with c̃q the absolute moment of order q of a standard Gaussian random
variable.

To investigate the validity of (1), we plot in Figure 1 the logarithm ofm(q,∆)
against the logarithm of ∆, for several values of q.
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Figure 1: Scaling property of log-volatility increments.

For every q, the points with coordinates (log(∆), log(m(q,∆))) are almost
perfectly on the same line, and this for a wide range of ∆. Figure 1 is actually
very similar to that obtained from historical volatility measurements in [13].
Thus we can deduce that indeed, for a given q,

m(q,∆) ∼ cq∆ζ(q),

for some ζ(q).

Now we want to check whether ζ(q) can be taken of the form qH for some
H, as suggested in [13]. This would lead to the same monofractal scaling as
that of the fractional Brownian motion with Hurst parameter H. To answer
this, we plot in Figure 2 the points with coordinates (q, ζ(q)), where ζ(q) is
taken as the slope of the line in Figure 1 corresponding to the power q, and
the points with coordinates (q, 0.32q).
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Figure 2: Monofractal scaling.

We see that the two graphs on Figure 2 can hardly be distinguished. This
means that (1) almost perfectly holds, with H around 0.32. Note that such
value for H corresponds to rough volatility since it is smaller than 1/2.
However, it is larger than those reported in [13]. This is actually due to
the fact that our options have a significant remaining time to maturity of
one month. This induces a smoothing phenomenon in the estimation of the
Hurst parameter. This effect is of the same nature as that described and
explained in [13] caused by the discrepancy between spot and integrated
volatility over a short time interval. We quantify this measurement bias
numerically and analytically in Section 4.

2.3 Distribution of log-volatility increments

Recall that it is suggested in [13] that the log-volatility process is well mod-
eled by a fractional Brownian motion with Hurst parameter smaller than 1/2.
This implies monofractal scaling as investigated above but also a Gaussian
behavior of the log-volatility increments. This feature is indeed satisfied
when using historical estimates as measurements for spot volatility, see [13].
Here we wish to study whether such property also holds when the volatility
proxies are given by our short term at-the-money implied volatilities. To
this end, we display in Figure 3 histograms of log-volatility increments over
different time intervals, together with a Gaussian density fit and the Gaus-
sian density associated to the increments of a fractional Brownian motion
with Hurst parameter equal to 0.32.
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Figure 3: Distribution of the log-volatility increments when using implied
volatility as spot volatility proxy. The Gaussian fit is in blue and the density
associated to the increments of a fractional Brownian motion with Hurst
parameter equal to 0.32 is in red.

From these graphs, we obtain that empirical distributions of log-volatility
increments are reasonably approximated by Gaussian laws. However, we
can remark that the empirical distributions are slightly more concentrated
around their center. Finally, the Gaussian fits almost exactly coincide with
those associated to the fractional Brownian motion with Hurst parameter
equal to 0.32.

In conclusion, using at-the-money implied volatilities with maturity one
month as spot volatility proxies, we obtain that log-volatility is well approx-
imated by a rough fractional Brownian motion. This confirms the finding
in [13].

3 A refined implied volatility based proxy for the
spot volatility

In this section, we wish to study the robustness of the results obtained
in Section 2. To do so, we work with another spot volatility proxy based
on at-the-money options with short maturity. More precisely, we use the
approximation formula from Medvedev and Scaillet, see [19]. This correction
formula enables us to compute a spot volatility proxy from an at-the-money
implied volatility with any (short) maturity. This is an advantage compared
to what is done in Section 2 where only options with one month maturity are
considered4. The drawback of Medvedev-Scaillet formula is that it is proved
to be valid only within a restricted class of stochastic volatility models,
which does not include rough volatility models. However our goal here is to
see whether a proxy obtained from a Brownian volatility model still exhibits
a rough behavior.

4Mixing various maturities without any correction would have been very arguable.
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3.1 Data description and processing

Here our data set is provided by OptionMetrics and consists in daily close
bid/ask prices of European puts and calls on the S&P500 index, from
September 5, 2001 to January 31, 2012, for various strikes and maturities,
together with the daily traded volumes. We discard options with price less
than 2.5 cents of dollars or with zero trading volume. Besides, as in Section 2,
prices corresponding to settlement dates are removed, so as obvious outliers.

We then want to compute implied volatilities from put and call prices. Thus
we have to invert (everyday) the Black-Scholes formula. Therefore we need
to fix for any time to maturity τ an underlying forward price F (τ) and a zero
coupon bond price D(τ). To do so, we use the following classical approach
based on put-call parity. The values of F (τ) and D(τ) are taken as solutions
of the minimization problem

arg min
D,F

{∑
i

wi

(1

2
(Ca

i − P b
i ) +

1

2
(Cb

i − P a
i )−D(τ)(F (τ)−Ki)

)}
,

where Ca,b
i and P a,b

i are respectively the call and put market prices (a stand-
ing for ask, b for bid) quoted at strike level Ki. The weights wi are given
by

wi =

√
min{V C

i , V
P
i }

1
2(Ca

i − Cb
i ) + 1

2(P a
i − P b

i )
,

with V C
i and V P

i the trading volumes of call and put options at strike Ki.
Finally, our implied volatility is taken as that of a call whose price would be
the midprice between the bid and ask prices.

Recall that for our approximations to be valid, we focus on at-the-money
implied volatilities with short maturity. Following [19], we only select im-
plied volatilities of options with time to maturity ranging from 15 to 60 days.
Shorter term options are discarded because quotes can be noisy. Moreover,
we restrict our data to log forward moneyness belonging to the interval
[−0.03, 0.03]. Such procedure yields a total number of 34842 implied volatil-
ities over 2569 days.

3.2 The Medvedev-Scaillet correction formula

In [19], the authors consider a general modeling framework encompassing
most of the classical parametric price models. They use a two factors jump-
diffusion stochastic volatility model of the form{

dSt = (r − µ (σt))Stdt+ σtSt dZt + St dJt

dσt = a(σt)dt+ b(σt)
(
ρ dZt +

√
1− ρ2 dWt

)
,

(2)
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where Zt and Wt are two independent Brownian motions and Jt is a Poisson-
type jump process, independent of Zt and Wt. Both r and the correlation
coefficient ρ are assumed to be constant. The expected jump size E [∆J ]
is also constant, but the jump intensity λ(σt) may depend on the volatility
in a deterministic way. Here, as in the numerical experiments in [19], we
consider the following parametric forms:

b(σt) = βσφt , λ(σt) = λ0σ
ψ
t ,

for some non-negative constants β, φ, λ0 and ψ.

Let σ be the spot volatility and σ̂ = σ̂(τ) be the at-the-money implied
volatility of an option with time to maturity τ . Following [19], we build up
our option-based spot volatility proxy in two steps. First, the chosen model
is calibrated from the approximation formula in Proposition 7 in [19] using
all our option prices over the entire time period. To retrieve the proxy for
the spot volatility, we then consider the following expansion as τ goes to
zero shown in [19]:

σ = σ̂ − I1(0, σ̂)
√
τ

+
(

I1(0, σ̂)
∂I1(0, σ̂)

∂σ
− I2(0, σ̂) +

1

2
ρb(σ̂)E[∆J ]

∂λ(σ̂)

∂σ

)
τ +O(τ

√
τ). (3)

The functions I1 and I2 are explicitly defined in [19] and depend only on β,
ρ, φ, λ0, ψ and E[∆J ].

3.3 The scaling property revisited

We now wish to study the scaling property of spot volatility proxies based
on the approximation formula (3). We consider two cases: The Heston case,
where φ = 0 and λ0 = 0, and the general case, where all the parameters are
calibrated. The calibration results are given in Table 1.

Parameter Heston General case

βρ −0.18 (0.00) −3.27 (0.08)
ρ −0.48 (0.00) −0.39 (0.00)
φ 0 1.79 (0.02)
λ0E (∆J) 0 −0.6924 (0.03)
E (∆J) −− −− −0.17 (0.00)
ψ −− −− 1.11 (0.01)

Table 1: Parameters calibrated on quoted S&P500 option prices, from
September 5, 2001 to January 31, 2012.

Once the parameters are obtained, we can implement Equation (3) to com-
pute everyday a spot volatility proxy. Note that in Equation (3), we take
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for σ̂ the implied volatility with shortest time to maturity. Then we conduct
the same analysis as in Section 2.2. The results are given in Figure 4 for the
Heston model and Figure 5 for the general case (notations are the same as
in Section 2.2).
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Figure 4: Scaling property of log-volatility increments when based on Heston
proxy. In the second graph H is taken equal to 0.33.
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Figure 5: Scaling property of log-volatility increments when based on the
general case proxy. In the second graph H is taken equal to 0.34.

The results are very similar to those in Section 2.2. Here again we can
confirm the fact that volatility is rough. This is even obtained although in
the models in which the proxies are computed, volatility is of Brownian type
and therefore not rough.

4 On the upward bias when estimating the Hurst
parameter

We explain in this section why using implied volatility measures as spot
volatility proxies induces an upward bias in the estimation of the Hurst
parameter. We start with a numerical investigation of this phenomenon.
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4.1 Monte Carlo study

To understand the extend of the bias when estimating the Hurst parameter,
we simulate option prices in a rough volatility model. Then we compute the
Hurst parameter based on these simulated data. Let T > 0. We consider
the following model without leverage effect over the time interval [0, T ]:

d logSt = σtdZt, d log σt = ηdWH
t .

Here Zt is a Brownian motion, WH
t a fractional Brownian motion indepen-

dent of Zt and η > 0.

4.1.1 Simulation of fractional Brownian motion

We consider a time interval [0, T ] and fix an equidistant partition 0 = t0 <
t1 < ... < tn = T . We first wish to simulate (WH

t1 , . . . ,W
H
tn ). For i, j ∈

{1, ..., n}, we have

E[WH
ti W

H
tj ] =

1

2

(
t2Hi + t2Hj − | ti − tj |2H

)
.

Then we can use the Cholesky decomposition of the covariance matrix Σ of
(WH

t1 , . . . ,W
H
tn ): Σ = LLT , where L = (lij)i,j∈{1,n} is lower-triangular. Thus

simulating a sample path of the fractional Brownian motion at times (ti)
can be done generating a vector X = (X1, ..., Xn) of independent standard
Gaussian random variables and setting (WH

t1 , ...,W
H
tn ) = LX.

4.1.2 Simulating option prices under rough volatility

We place ourselves at time ti > 0 and assume past spot volatilities and
prices have been observed at times t1, . . . , ti. We want to compute the price
at time ti of an option with expiration date tk = ti + τ for some τ > 0. The
procedure goes as follows:

• We generate M paths of the volatility process on the interval [ti+1, tk].
This is done simulating (WH

tj )ti+1≤tj≤tk conditional on past informa-
tion, that is the filtration generated by (Xt1 , ..., Xti). Using the lower
triangular form of L, these new values for the fractional Brownian
motion at times ti+1 ≤ tj ≤ tk can be obtained writing

WH
tj =

i∑
p=1

ljpXp +

j∑
p=i+1

ljpXp.

The i first variables Xp are those used to simulate the fractional Brow-
nian motion up to time ti, whereas (Xi+1, . . . , Xj) is a sample of inde-
pendent standard Gaussian random variables, independent from past
values. Taking the exponential, we get our spot volatility sample path.
We write σm for the m-th volatility trajectory.
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• The price at time ti of an at-the-money option with time to maturity
τ is obtained computing

1

M

M∑
m=1

CBS

Sti , τ,
√√√√1

τ

k∑
p=i+1

(σmtp )2

 ,

where CBS(Sti , τ, σ) is the price of an at-the-money option with time
to maturity τ in a Black-Scholes model with volatility σ, zero interest
rate, and underlying value Sti .

• Eventually we invert Black-Scholes formula to obtain the implied volatil-
ity.

4.1.3 Results

We consider the following set of parameters: H = 0.04, η = 1.0 and
T = 1000 days. Such parameters are consistent with [1, 13]. We take
τ ∈ {1, . . . , 20} days and run M = 104 simulations. Figure 6 displays the
sample path of the spot volatility together with those of the implied volatil-
ities associated to 5 and 20 days.
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Figure 6: Sample paths of spot volatility and implied volatilities for τ = 5
and τ = 20.
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At the visual level, it is already clear that implied volatility trajectories are
not as rough as that of the spot volatility. Furthermore, the longer the time
to maturity, the larger the smoothing effect.

As in Sections 2 and 3, we now consider Equation (1). Based on our simu-
lation, for several values of q, we plot in Figure 7 the logarithm of m(q,∆)
against the logarithm of ∆. This is done in two cases: when m is obtained
from spot volatility values and when m is derived from implied volatility
values, with τ = 5 days.
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Figure 7: Scaling property of log-volatility increments: spot volatility and
implied volatility with τ = 5.

We see that for a given q, whenm(q,∆) is computed from implied volatilities,
the points with coordinates (log(∆), log(m(q,∆))) remain on the same line.
However, the slope of this line is larger than that obtained when m(q,∆) is
computed from spot volatilities (which provides the true underlying H up
to small statistical error). Hence there is indeed a smoothing effect due to
the remaining time to maturity of the considered options.

Finally, we give in Figure 8 the estimated values of H when using implied
volatilities from the simulation, for different times to maturity.
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Figure 8: Estimated values of the Hurst parameter using implied volatilities
as a function of time to maturity.

Under our simulation framework, we see that using options with maturity 1
day, we obtain a quite accurate value for H of 0.06, while the true parameter
is equal to 0.04. Taking longer maturities leads to an increasing bias. With
20 days maturity, one gets an estimated Hurst parameter of about 0.27.
These results are in line with those in Sections 2 and 3.

4.2 Analytical illustration of the upward bias

In the spirit of Appendix C in [13], we finally want to provide a more quanti-
tative understanding of the observed upward bias when estimating the Hurst
parameter from implied volatilities. To do so, we consider a very crude ap-
proximation. Indeed we suppose that the at-the-money implied variance at
time t of an option with time to maturity τ > 0, denoted by v̂τ (t), is given
by

v̂τ (t) =
1

τ

∫ t+τ

t
Et[vu]du,

where vu is the spot variance at time u and Et[.] the conditional expectation
operator with respect to information up to time t. Furthermore, we take a
simplified rough volatility model assuming that for u > 0,

vu = v0 + νWH
u ,

for some v0 > 0 and ν > 0. These approximations are actually probably
enough to shed light on the bias phenomenon. Indeed it is due to the ef-
fects of the conditional expectation and integral operators appearing in the
implied volatility.

In this simplified setting, our goal is to illustrate the smoothing effect leading
to the upward bias. To do so, we compute a quantity very related to m(2,∆),
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namely
m̂τ (2,∆) = E[(v̂τ (∆)− v̂τ (0))2].

Indeed, under our assumptions, if the implied volatility were equal to the
spot one, this quantity would be proportional to ∆2H . However, we now
show that because of the use of implied volatility in m̂(2,∆), this relation-
ship no longer holds, particularly for large τ/∆.

We recall the Mandelbrot and Van Ness representation of fractional Brow-
nian motion:

WH
t = cH

(∫ t

0
(t− s)H−1/2dWs +

∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dWs

)
,

where Wt is a two-sided Brownian motion and cH is so that the variance of
WH

1 is equal to 1. We easily have

v̂τ (∆) = v0 +
ν

τ
cH

∫ τ

0

∫ 0

−∞

(
(∆ + u− s)H−1/2 − (−s)H−1/2

)
dWsdu

+
ν

τ
cH

∫ τ

0

∫ ∆

0
(∆ + u− s)H−1/2dWsdu.

Using stochastic Fubini theorem, this gives

v̂τ (∆)− v̂τ (0) =
ν

τ
cH

∫ 0

−∞

∫ τ

0

(
(∆ + u− s)H−1/2 − (u− s)H−1/2

)
dudWs

+
ν

τ
cH

∫ ∆

0

∫ τ

0
(∆ + u− s)H−1/2dudWs.

Hence we easily deduce from Ito isometry that

m̂τ (2,∆) = A
(
h1(∆, τ) + h2(∆, τ)

)
,

with

A =
c2
Hν

2

(H + 1/2)2
,

h1(∆, τ) =
1

τ2

∫ 0

−∞

(
(∆ + τ − s)H+1/2 − (∆− s)H+1/2 − (τ − s)H+1/2 + (−s)H+1/2

)2
ds,

h2(∆, τ) =
1

τ2

∫ ∆

0

(
(∆ + τ − s)H+1/2 − (∆− s)H+1/2

)2
ds.

We write h1(∆, τ) under the form

1

τ2
∆2H+2

∫ 0

−∞

(
(1+

τ

∆
−s)H+1/2−(1−s)H+1/2−(

τ

∆
−s)H+1/2+(−s)H+1/2

)2
ds.
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Setting θ = τ/∆, we obtain

h1(∆, τ) = ∆2Hf1(θ),

where

f1(θ) =
1

θ2

∫ 0

−∞

(
(1+θ−s)H+1/2−(1−s)H+1/2−(θ−s)H+1/2+(−s)H+1/2

)2
ds.

Similarly, we have
h2(∆, τ) = ∆2Hf2(θ),

where

f2(θ) =
1

θ2

∫ 1

0

(
(1 + θ − s)H+1/2 − (1− s)H+1/2

)2
ds.

So
m̂τ (2,∆) = A∆2H

(
f1(θ) + f2(θ)

)
.

Now remark that

lim
θ→0

f1(θ) = (H + 1/2)2

∫ 0

−∞

(
(1− s)H−1/2 − (−s)H−1/2

)2
ds

and

lim
θ→0

f2(θ) = (H + 1/2)2

∫ 1

0
(1− s)2H−1.

Consequently,

lim
θ→0

(f1(θ) + f2(θ)) = (H + 1/2)2 1

c2
H

.

Thus, when θ is small,
m̂τ (2,∆) ∼ ν2∆2H .

This means that the same scaling relationship as that associated to the
spot volatility is approximately satisfied when considering implied volatil-
ities with small enough times to maturity. Otherwise, one should add the
multiplicative factor

f(θ) =
c2
H

(H + 1/2)2

(
f1(θ) + f2(θ)

)
on the right hand side of the above relationship. This disrupts the scaling
property and implies biased estimations for the Hurst parameter. We draw
in Figure 9 the graph of the function f for H = 0.04.
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Figure 9: The function f for H = 0.04.

For fixed τ (as in Section 2), the function f is increasing with ∆. Therefore,
when doing a regression analysis of the cloud of points with coordinates
(log(∆), log(m̂τ (2,∆))), this implies an upward bias in the estimation of H
due to a higher slope.
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