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Abstract

Since the discovery of transfer RNAs (tRNAs) as decoders of the genetic code, life science

has transformed. Particularly, as soon as the importance of tRNAs in protein synthesis has

been established, researchers recognized that the functionality of tRNAs in cellular regulation

exceeds beyond this paradigm. A strong impetus for these discoveries came from advances in

large-scale RNA sequencing (RNA-seq) and increasingly sophisticated algorithms. Sequencing

tRNAs is challenging both experimentally and in terms of the subsequent computational

analysis. In RNA-seq data analysis, mapping tRNA reads to a reference genome is an error-

prone task. This is in particular true, as chemical modifications introduce systematic reverse

transcription errors while at the same time the genomic loci are only approximately identical

due to the post-transcriptional maturation of tRNAs. Additionally, their multi-copy nature

complicates the precise read assignment to its true genomic origin. In the course of the thesis

a computational workflow was established to enable accurate mapping of tRNA reads. The

developed method removes most of the mapping artifacts introduced by simpler mapping

schemes, as demonstrated by using both simulated and human RNA-seq data. Subsequently,

the resulting mapping profiles can be used for reliable identification of specific chemical tRNA

modifications with a false discovery rate of only 2%. For that purpose, computational analysis

methods were developed that facilitates the sensitive detection and even classification of most

tRNA modifications based on their mapping profiles. This comprised both untreated RNA-seq

data of various species, as well as treated data of Bacillus subtilis that has been designed to

display modifications in a specific read-out in the mapping profile. The discussion focuses

on sources of artifacts that complicate the profiling of tRNA modifications and strategies to

overcome them. Exemplary studies on the modification pattern of di�erent human tissues
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and the developmental stages of Dictyostelium discoideum were carried out. These suggested

regulatory functions of tRNA modifications in development and during cell di�erentiation.

The main experimental di�culties of tRNA sequencing are caused by extensive, stable

secondary structures and the presence of chemical modifications. Current RNA-seq methods

do not sample the entire tRNA pool, lose short tRNA fragments, or they lack specificity for

tRNAs. Within this thesis, the benchmark and improvement of LOTTE-seq, a method for

specific selection of tRNAs for high-throughput sequencing, exhibited that the method solves

the experimental challenges and avoids the disadvantages of previous tRNA-seq protocols.

Applying the accurate tRNA mapping strategy to LOTTE-seq and other tRNA-specific RNA-

seq methods demonstrated that the content of mature tRNAs is highest in LOTTE-seq data,

ranging from 90% in Spinacia oleracea to 100% in D. discoideum.

Additionally, the thesis addressed the fact that tRNAs are multi-copy genes that undergo

concerted evolution which keeps sequences of paralogous genes e�ectively identical. Therefore,

it is impossible to distinguish orthologs from paralogs by sequence similarity alone. Synteny, the

maintenance of relative genomic positions, is helpful to disambiguate evolutionary relationships

in this situation. During this thesis a workflow was computed for synteny-based orthology

identification of tRNA genes. The workflow is based on the use of pre-computed genome-wide

multiple sequence alignment blocks as anchors to establish syntenic conservation of sequence

intervals. Syntenic clusters of concertedly evolving genes of di�erent tRNA families are then

subdivided and processed by cograph editing to recover their duplication histories. A useful

outcome of this study is that it highlights the technical problems and di�culties associated

with an accurate analysis of the evolution of multi-copy genes. To showcase the method,

evolution of tRNAs in primates and fruit flies were reconstructed.

In the last decade, a number of reports have described novel aspects of tRNAs in terms

of the diversity of their genes. For example, nuclear-encoded mitochondrial-derived tRNAs

(nm-tRNAs) have been reported whose presence provokes intriguing questions about their

functionality. Within this thesis an annotation strategy was developed that led to the

identification of 335 and 43 novel nm-tRNAs in human and mouse, respectively. Interestingly,

downstream analyses showed that the localization of several nm-tRNAs in introns and the

over-representation of conserved RNA-binding sites of proteins involved in splicing suggest a

potential regulatory function of intronic nm-tRNAs in splicing.
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Zusammenfassung

Nach der Entdeckung von Transfer-RNAs (tRNAs) als Dekodierer des genetischen Codes, wurde

postuliert, dass die Funktionalität von tRNAs über dieses Paradigma hinausgeht. Ein Anstoß

dafür war die Entwicklung der RNA-Sequenzierung (RNA-seq) und zunehmend ausgereiftere

Algorithmen. Die Sequenzierung von tRNAs ist sowohl experimentell als auch im Hinblick auf

die anschließende computergestützte Analyse eine Herausforderung. Hinsichtlich der RNA-seq

Datenanalyse ist das Mapping der gelesenen tRNA Fragmente (Reads) auf das Referenzgenom

anfällig für Fehler. Dies gilt insbesondere dann, wenn chemische Modifikationen systematische

Fehler bei der reversen Transkription einführen, während gleichzeitig die Genloci aufgrund

der posttranskriptionellen Reifung von tRNAs nur annähernd identisch sind. Da tRNAs in

mehreren Genkopien vorliegen können, erschwert dies zusätzlich das zielgenaue Mapping von

tRNA-Reads zu ihrem genomischen Ursprung. Im Rahmen dieser Dissertation wurde ein

computergestützter Arbeitsablauf etabliert, der ein präzises tRNA-Read Mapping ermöglicht.

Die entwickelte Methode beseitigt die meisten Mapping-Artefakte, die durch einfachere

Mapping-Schemata eingeführt werden, wie die Verwendung von simulierten und menschlichen

RNA-seq Daten demonstrierte. Anschließend können die resultierenden Mapping-Profile für die

zuverlässige Identifizierung spezifischer chemischer tRNA-Modifikationen verwendet werden,

mit einer Falscherkennungsrate von nur 2%. Zu diesem Zweck wurden computergestützte

Analysemethoden entwickelt, die den sensitiven Nachweis und sogar die Klassifizierung der

meisten tRNA-Modifikationen, basierend auf ihren Mapping-Profilen, ermöglichen. Dazu

wurden sowohl RNA-seq Daten von verschiedenen Arten als auch chemisch behandelte Daten

von Bacillus subtilis analysiert, die bestimmte tRNA-Modifikationen konvertieren, so dass

diese im Mapping-Profil nachweisbar werden. Das Diskussionsthema konzentriert sich auf
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Artefaktquellen, die das Detektieren von tRNA-Modifikationen erschweren und auf Strategien,

um diese Hindernisse zu überwinden. Exemplarische Studien über das Modifikationsmuster

verschiedener menschlicher Gewebe und über die Entwicklungsstadien von Dictyostelium

discoideum wurden ergänzend durchgeführt. Diese suggerieren eine regulatorische Funktionen

von tRNA-Modifikationen während der Entwicklung und Zelldi�erenzierung.

Die wohl größte Herausforderung in der tRNA-seq besteht darin, dass stabile Sekundärstruk-

turen und chemische Modifikationen in tRNAs vorhanden sind. Verfügbare RNA-seq Methoden

untersuchen nicht die Gesamtheit der tRNAs, verlieren kurze Fragmente oder zeigen keine

tRNA-Spezifität. Innerhalb dieser Dissertation ergab das Benchmarking von LOTTE-seq, was

die spezifische Auswahl von tRNAs für die Sequenzierung ermöglicht, dass diese Methode die

experimentellen Herausforderungen löst. Ein Vergleich von LOTTE-seq mit anderen tRNA-seq

Methoden demonstrierte, dass der Gehalt an reifen tRNAs in LOTTE-seq am höchsten ist und

von 90% in Spinat bis 100% in D. discoideum reicht.

In einer zusätzlichen Studie addressiert diese Dissertation die Problematik, dass tRNAs

in mehreren Genkopien vorliegen. Diese Genkopien unterliegen einer konzertierten Evolution,

welche die Sequenzen von paralogen Genen e�ektiv identisch hält. Demnach ist es unmöglich,

orthologe von paralogen Genen allein durch ihre Sequenzähnlichkeit zu unterscheiden. Für die

Disambiguierung evolutionärer Beziehungen sind Syntänieinformationen, was die Aufrechter-

haltung releativer genomischer Positionen beschreibt, hilfreich. Dementsprechend wurde ein

Arbeitsablauf für die Identifizierung orthologer Beziehungen von tRNAs implementiert. Dieser

basiert auf der Verwendung von präcomputierten genomweiten multiplen Seqeunzalignment-

blöcken als Anker, um eine syntänische Konservierung von Sequenzintervallen zu ermöglichen.

Syntänische Cluster von konzentierten tRNA-Genen werden anschliessend durch Co-Graph

Editierung weiterverarbeitet, so dass ihre Duplikationshistorien rekonstruierbar sind. Um die

Methodik vorzustellen, wurde die tRNA-Evolution in Primaten und Fruchtfliegen nachgebildet.

Darüber hinaus berichteten Studien über nukleär kodierte mitochondriale Transfer-RNAs

(nm-tRNAs), deren Anwesenheit interessante Fragen über ihrer Funktionalität aufwirft. Im

Rahmen dieser Dissertation wurde eine Annotationsstrategie entwickelt, die die Identifizierung

von unentdeckten nm-tRNAs in Mensch (# 335) und Maus (# 43) ermöglichte. Interessan-

terweise legten weiterführende Analysen dar, dass viele nm-tRNAs eine Überrepräsentation

von Bindungsstellen für Proteine aufweisen, die beim Spleißen interagieren.
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2 Chapter 1. Motivation

Transfer RNAs (tRNAs) are among the most ancient ribonucleic acids (RNAs) in the world.

Research on tRNAs can be traced back to the mid-1950s, when Francis Crick first hypothesized

the existence of tRNAs in his so-called “adapter hypothesis” [1]. Crick proposed that each

amino acid is first attached to its own specific adapter which mediates the translation of the

RNA alphabet into the protein alphabet. The existence of these adapters was discovered by

Hoagland and Zamenick in 1958. They observed in a cell-free rat liver system that a radio

labeled amino acid (14C-leucine) attached to an RNA acceptor was transferred to a microsomal

protein [2, 3]. They concluded that this type of RNA functions as an intermediate carrier of

amino acids in protein synthesis. These findings provided the basis for our later understanding

of the role of tRNAs in protein biosynthesis.

1.1 tRNAs as Keyplayers in Protein Biosynthesis

A deoxyribonucleic acid (DNA) molecule is not just a nucleotide sequence of adenines (As),

cytosines (Cs), guanines (Gs) and thymines (Ts). Instead, DNA is the genetic material of all

organisms on Earth. The genetic information in a genome is mediated by genes. Genes are

specific regions of the DNA sequence encoding for non-coding RNAs (ncRNAs) or proteins.

Beside tRNAs, non-coding RNAs play a key role in regulating di�erent cellular activities, e.g.,

microRNAs (miRNAs) in post-transcriptional gene silencing [4], small nuclear RNAs (snRNAs)

in intron splicing [5] and Y RNAs in regulation of DNA replication and RNA processing [6].

During protein biosynthesis the genetic information flows from DNA to RNA and lastly from

RNA to protein. This directional flow of information is known as the central dogma of molecular

biology [8]. A gene that encodes a protein is expressed in two broad steps (see Fig. 1). In

the first step, the so-called transcription, genes are transcribed by assembling a new sequence

of single-stranded RNA using the coding region of the gene as template. The process of

transcription takes place in the nucleus. In all species, transcription begins with the binding of

RNA polymerase and other transcription factors to a conserved DNA sequence downstream

of the gene referred to as promoter. Activation of the RNA polymerase complex facilitates

transcription initiation followed by elongation of the transcript. During elongation, the DNA

unwinds by disrupting hydrogen bonds between the bases of the opposite DNA strands by the

enzyme helicase. Thus, the RNA polymerase can read a single template strand of the gene
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Figure 1: Scheme of protein biosynthesis. A protein-coding gene is expressed in two steps:
transcription and translation. During transcription, genes are copied into a complementary, antiparallel
messenger RNA (mRNA) strand by the enzyme RNA polymerase. In eukaryotes, transcription takes
place in the nucleus. The mRNA is afterwards exported into the cytoplasm for translation. During
the translational process mRNA binds to ribosomes, where the mRNA is decoded step-wise into the
proteins polypeptide chain. Ribosomes consist of a small subunit, which reads the mRNA, and a large
subunit, which attaches amino acids to synthesize the polypeptide chain. Both subunits consist of
ribosomal RNAs (rRNAs) and ribosomal proteins. The genetic code of the mRNA is given by codons
(nucleotide triplets). For each codon a tRNA charged with a codon specific amino acid binds to the
codon through its complementary anticodon. Thus, the ribosome adds the amino acid of the tRNA
to the polypeptide chain. This figure is modified after Lodish et al. [7].

and adds complementary nucleotides to the growing RNA chain in the 5’-to-3’-direction. The

RNA transcript carries the same information as the non-template strand of the gene except

that the nucleotide uracil replaces nucleotide thymine. In bacteria, the new synthesized RNA

transcripts can act as messenger RNA (mRNA) right away. In contrast, the RNA transcript is

called a precursor mRNA (pre-mRNA) and must undergo processing to become a mature
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mRNA. Both ends of a pre-mRNA are modified by adding a cap and a poly-A-tail to the 5’-

and 3’-end, respectively. The 5’-cap is a methylated guanine nucleotide that protects the

transcript from degradation. It also promotes the binding of the mRNA to the ribosome which

is necessary for the next expression step. The 3’-poly-A-tail consists of about 200 adenine

nucleotides that stabilize the transcript and support the export of the mature mRNA through

nuclear pores into the cytoplasm. Most higher eukaryotes undergo splicing of pre-mRNAs. In

this process, segments of the pre-mRNA (introns) are cut out by the spliceosome and the

remaining segments (exons) are joined together to build the mature mRNA. Splicing does allow

for a process called alternative splicing, in which more than one mRNA can be made from the

same gene. In alternative splicing, splicing positions may be altered for each pre-mRNA, e. g.,

introns can be retained or exons can by skipped or extended. This results in di�erent mature

mRNAs, each of which translates into a protein with a di�erent structure [7]. Once the mature

mRNA is exported and integrated into the cytoplasm, the mRNA is decoded to synthesize a

protein in a process called translation. Here, the mRNA binds to ribosomes, where the mRNA

sequence is step-wise translated into specific series of amino acids with the help of tRNAs. An

mRNA can be translated by its genetic code (see Fig. 2). The genetic code is given by a series

of three consecutive nucleotides (triplets) called codons. tRNAs contain an anticodon which

is complementary to one of the possible mRNA codons and carries an amino acid specified by

the codons. The tRNA is charged with an amino acid tRNA by an aminoacyl-tRNA synthetase.

The complementary binding of codon and anticodon enables the ribosomes to connect the

amino acids carried by the tRNA. After termination, the linear amino acid chain folds into a

tertiary structure and undergoes processing to become a functional protein.

The genetic code is given by 64 possible codons, 61 of which are sense codons that

collectively encode 20 amino acids (see Fig. 2). Translation is initiated by the sense codon

methionine (AUG). The remaining 3 codons are nonsense codons (UAG, UGA, or UAA) which

stop the translation. Not every codon can be matched by a tRNA with an exact complementary

anticodon. This feature is possible because of the wobble rules [10]. The wobble hypothesis

was proposed by Crick in 1966 which postulated that a G-U pair can be functional in the

third position of the codon and inosine in the anticodon can recognize U, C and A. Thus,

di�erent minimal sets of chemically diverse tRNAs which are acetylated by the same amino

acid (isoacceptor tRNAs) cumulatively decode all 61 sense codons. The minimum set of
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Figure 2: The genetic code illustrated as codon wheel. Starting from the four innermost letters
and working to the outermost ring, this illustration shows which codon (three-letter base sequence)
encodes which amino acid. The genetic code shows 20 amino acid to which the 64 possible codons
corresponds. AUG is the start codon and UAG, UGA, or UAA are stop codons for translation during
protein biosynthesis. The figure is taken from [9].

isoacceptor tRNAs is 32 [10], but only a few bacterial and archaeal organisms encode deviating

numbers of tRNAs [11, 12]. Actual numbers of nuclear encoded tRNA genes vary greatly

between organisms. For example, S. pombe contains 171 nuclear tRNAs, encoding for 41

distinct isoacceptor tRNAs. In contrast, the zebrafish D. rerio contain 12,794 tRNA genes

encoding for 55 isoacceptors. The large number of tRNA genes arises because the isoacceptors

are often encoded by an entire gene family. Thus, isoacceptors can be further subdivided into

multiple isodecoder tRNAs that carry the same anticodon but di�er in their sequence outside

the anticodon [13].
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1.2 Outline of the Thesis

This thesis is divided into four major parts. Part I underlines the biological background

that inspired this thesis. Special peculiarities and structural features of di�erent tRNA types

as well as their biological relevance are elucidated in Chapter 2. Chapter 3 describes the

individual processing steps of tRNA biogenesis. Special attention is given to possible chemical

modifications that can alter tRNAs and their biological functions. Chapter 4 provides an

overview of evolutionary events of homologous tRNAs.

Part II expounds on the technical background that is intended to provide a basic under-

standing of the tRNA analysis strategies developed for this thesis. Chapter 5 outlines the basic

steps for the analysis of RNA sequencing (RNA-seq) data with respect to the underlying

challenge of constructing a tRNA sequence library for RNA-seq and the di�culties of tRNA

read mapping. Our developed theory on how to construct evolutionary events of homologous

tRNAs in di�erent species is explained in Chapter 6. This chapter is based on the publications

Velandia-Huerto et al. [376] titled Orthologs, turn-over, and remolding of tRNAs in primates

and fruit flies and Berkemer et al. [377] titled SMORE: Synteny Modulator of Repetitive

Elements.

In Part III, Chapter 7 describes our developed analysis methods in detail. This includes the

tRNA and nm-tRNA annotation methods, a precise tRNA read mapping workflow, strategies

to detect di�erent types of tRNA modifications, and the creation of a synteny map for tRNA

orthology identification.

Part IV shows the application of our developed analysis methods and presents the conclusion

that can be drawn from their results. Our developed best-practice mapping strategy of tRNA

reads is benchmarked in Chapter 8 based on the publication Accurate mapping of tRNA reads

by A. Ho�mann et al. [397]. Chapter 9 based on L. Erber and A. Ho�mann et al. [406] with

the title LOTTE-seq (Long hairpin oligonucleotide-based tRNA high-throughput sequencing):

Specific selection of tRNAs with 3’-CCA end for high-throughput sequencing. In this chapter

our newly developed tRNA-seq method is presented and evaluated on di�erent species of all

domains of life. Our analysis strategies to detect various types of tRNA modifications is applied

to di�erent RNA-seq data in Chapter 10. Included are the results of the following publications

A. Ho�mann et al. [397] titled Accurate mapping of tRNA reads, L. Erber et al. [408] titled
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Dictyostelium discoideum: Unusual occurrence of two active CCA-adding enzymes, L. Erber

and A. Ho�mann et al. [406] with the title LOTTE-seq (Long hairpin oligonucleotide-based

tRNA high-throughput sequencing): Specific selection of tRNAs with 3’-CCA end for high-

throughput sequencing, A. Ho�mann and L. Erber et al. [409] titled Changes of the tRNA

modification pattern during the development of Dictyostelium discoideum, and A. Ho�mann

et al. [410] titled Temperature Dependence of Bacterial tRNA Modifications. In Chapter 11

the results of our synteny-based orthology identification workflow applied to primates and

fruit flies are shown. This chapter is based on the publications Velandia-Huerto et al. [376]

with the title Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies and

Berkemer et al. [377] titled SMORE: Synteny Modulator of Repetitive Elements. Our analyses

on nuclear-encoded mitochondrial-derived tRNAs (nm-tRNAs) are given in Chapter 12. This

chapter based on S. Hoser and A. Ho�mann et al. [411] with the title Intronic tRNAs of

mitochondrial origin regulate constitutive and alternative splicing.

The thesis is concluded in Chapter 13 with respect to their relevance for future research.

The distinct appendices provide supplementary information of the respective studies for the

interested reader, including further results and data overviews.

1.3 Author Contribution and Use of Personal Pronoun

In scientific writing the use of the personal pronoun “we” is common in order to take into

account collective group work, regardless of whether certain parts were contributed by a single

individual. Within this thesis the personal pronoun “we” is used as well, since it is based on

scientific discussions and results of multiple collaborative projects. This does not invalidate

my statement in the Declaration of Independence.

If a chapter is based on a specific publication in which I was involved, this is indicated at

the beginning of the chapter. In this case, the content of the publication is not additionally

quoted in the following chapter text, unless the part of the work was only done by one of my

collaboration partners.
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The last two decades have seen a revolution in genome sequencing resulting in a high amount

of completely or partially sequenced genomes. The number of sequenced organisms range

from 13,378 prokaryotes, to 4,581 viruses and 4,132 eukaryotes [22]. Thus, a large diversity

of coding and non-coding genes have recently been discovered in the three domains of life.

Beside the annotation of bona fide tRNA genes, other tRNA types have been detected. It

has been revealed, that tRNA structures deviating from the canonical tRNA structure are

not a rarity and are ubiquitous in mitochondrial genomes [23]. Another kind of tRNAs

are nuclear-encoded mitochondrial-derived tRNAs (nm-tRNAs) which originated by genomic

integration of mitochondrial DNA. nm-tRNAs are not only pseudogens, as originally assumed,

but there are also indications of their biological relevance [24]. Even the cleaved fragments of

tRNA genes, referred to as tRNA-derived small RNAs (tsRNAs), are dynamic regulators of

biological processes and not simply random tRNA degradation products [25]. The following

chapter highlights the peculiarities and main structural di�erences of the individual tRNA

types mentioned.

2.1 The Highly Conserved Canonical tRNA Structure

Canonical tRNAs have a cloverleaf-like secondary structure which is highly conserved [28]. In

contrast, the sequence can vary greatly between species and single tRNA types. The canonical

cloverleaf structure mainly concerns cytosolic tRNAs and is composed of five domains: (i) the

acceptor stem, (ii) the dihydrouridine arm (D-arm), (iii) the anticodon arm, (iv) the variable

loop (V-loop) and (v) the T�C-arm (T-arm) [27, 29], see Fig. 3A. The acceptor stem is a

7 base pairs (bp) stem made by base pairing the 5’-terminal nucleotides with those of the

3’-end. At the 3’-end of the acceptor stem there is an unpaired nucleotide (tRNA position 73),

the so-called discriminator, followed by the CCA triplet. An exception are all histidine tRNAs

which contain an additional nucleotide (G-1) at the 5’-end and form a mismatch base pair with

the opposite discriminator base [30, 31]. In eukaryotes, G-1 is added post-transcriptionally [32]

by a specific guanyl-transferase [33], whereas G-1 is encoded in bacterial species [30, 34]. The

D-arm consists of a 4 to 6 bp long stem which ends in a loop of 8 to 11 nucleotides (nts)

and takes its name from the modified base dihydrouridine (see Section 3.5) which it often

contains. The anticodon arm is a 5 bp stem whose loop with the size of 7 nts contains the
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Figure 3: Cloverleaf secondary and L-shape tertiary tRNA structure. (A) Canonical cloverleaf
secondary structure of cytosolic transfer RNAs (tRNAs) representing the acceptor stem (blue),
anticodon (grey), anticodon arm (red), dihydrouridine-arm (D-arm; green), T�C-arm (T-arm; yellow),
and variable loop (purple). The discriminator base (orange) on the 3’-end is followed by the CCA
triplet. Base numbering is according to the standard tRNA numbering system (see Section 7.1).
Dashed lines mark tertiary interactions based on structural data [26]. (B) Canonical L-shaped tertiary
structure of cytosolic tRNAs. The L-shape is characterized by the acceptor domain (stacked T-arm
and acceptor stem) and the anticodon domain (stacked D- and anticodon arm). Based on tertiary
interactions, both domains are connected by the elbow region. The color code is according to (A).
Both structures are based on the phenylalanine tRNAs of the reference model S. cerevisiae. The figure
is modified after Lorenz et al. [27].

anticodon triplet. As the name suggests, the variable loop varies widely from 4 to 24 nts.

The T-arm is a 4 to 5 bp stem and a 7 nt long loop containing the sequence T�C where �
is pseudouridine (see Section 3.5), a modified uridine [29]. Together with the 3 nts of two

connector domains (between acceptor stem and D-arm, between D- and anticodon arm), this

results in short tRNA genes of a variable length of approximately 75 to 100 nts.

Because of tertiary interactions, tRNAs fold into an L-shaped three-dimensional struc-

ture [35, 36], see Fig. 3B. The universal structure is formed by two helical domains, the

acceptor and anticodon domain. The T-arm and acceptor stem shape the acceptor domain

while the anticodon domain is composed of the stacked D- and anticodon arm helical presenting

the AC-triplet for codon recognition. Both domains interact by long-range tertiary interactions

in the elbow region [27, 29]. With few exceptions, this architectural scheme is highly conserved
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for tRNAs which tolerate variations in domain length and adaptations in the tertiary interaction

networks [29]. The structural features and their flexibility are essential for recognition and

interaction with other cellular components. Thus, the tRNA dynamics play an important role

for the functionality of a variety of cellular processes, like translation (see Section 1.1) and

tRNA maturation (see Section 3) [29, 37].

2.2 Bizarre mt-tRNAs are Ubiquitous

Beside cytosolic tRNAs, eukaryotic tRNA genes are also present in organelles like chloroplasts

and mitochondria. Mitochondria encode a minimalist set of mitochondrial tRNAs (mt-tRNAs)

to be used in their own mitochondrial translation. For instance, the mammalian mitochondrial

genome (mt-genome) encodes for two ribosomal RNAs (rRNAs), 13 proteins which are

essential subunits in the oxidative phosphorylation process and 22 mt-tRNAs [38, 39]. The 22

di�erent tRNAs are su�cient to translate all 13 mitochondrial proteins which is possible by

the wobble rules [40], see Section 1.1. In higher Metazoa only one mt-tRNA is conserved for

each of the 18 amino acid and only leucine and serine occur twice [41]. There is not always

a complete set of 22 mt-tRNA genes present in each species. In the contrary, the number

varies strongly. In some Metazoa, like the opossum Didelphis virginiana, only one mt-tRNA

gene is lost, whereas some Protozoa, like Trypanosoma brucei, can completely lack mt-tRNA

genes. Thus, cytosolic tRNAs have to be imported to the organelles to allow mitochondrial

translation of all proteins [42]. However, the loss of tRNA genes is not related to phylogeny

and probably occurred during multiple independent events. For example, the genomes of the

two fungi Saccharomyces cerevisiae and Spizellomyces punctatu encode for a set of 22 and 8

mt-tRNAs, respectively [43].

Surprisingly, not all mt-tRNAs share the canonical structural features. Early studies dis-

covered that the D-arm loop is absent in serine mt-tRNAs extracted from bovine hearts [44].

Further analysis revealed other peculiarities in mt-tRNAs. A study of 300 di�erent mammalian

mt-genomes showed that mt-tRNAs mostly exhibit classical features, but also some particular-

ities such as a lower GC content and a large variability in D- and T-loop size. This leads to a

lack of classical tertiary interactions between both domains and to less post-transcriptionally

modified bases (see Section 3.5). D-armless serine mt-tRNAs are also found in every of the
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Figure 4: Example of “bizarre” mt-tRNA 2D structures. Examples of mitochondrial tRNAs
(mt-tRNAs) that di�er from the canonical transfer RNA (tRNA) shape. (A) Secondary structure of
human serine mt-tRNAs lacking the dihydrouridine arm (D-arm). (B) Secondary structure of the
arginine mt-tRNA of the nematode R. culicivorax which lacks the D-arm and shows a replacement
loop instead of the T�C-arm (T-arm). The acceptor stem (blue), anticodon arm (red), variable loop
(purple), T-arm (yellow), and anticodon (grey) are highlighted. The discriminator base (orange) on
the 3’-end is followed by the CCA triplet. The figure is modified after Lorenz et al. [27].

300 analyzed mammalian genomes [29, 45, 46]. An example of a mammalian D-armless serine

mt-tRNAs is shown in Fig. 4A. Even more bizarre are nematodes [47, 48] and arthropods [49]

mt-tRNAs lacking the D- or T-arm or both arms (Fig. 4B). Furthermore, a systematic analysis

of 1,800 metazoan mt-genomes showed that less than 10% of the analyzed mt-tRNAs deviate

from the classic canonical tRNA structure. In deuterostomes, including vertebrates, the

D-domain is missing in all serine mt-tRNAs and infrequently absent in cysteine mt-tRNAs.

Diversity hotspots are found throughout the Ecdysozoa, including Insecta and Nematoda, as

tRNAs lacking one or even both arms seem to be the rule [23]. It is still unclear how “bizarre”

tRNAs fold in a functional tertiary structure as required for translation. Hypothetically, the

stem and arm connected areas gain the flexibility in folding, thus the CCA-end and anticodon

are at the necessary distance [29].
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2.3 nm-tRNAs are More than Molecular Poltergeists

According to the endosymbiotic theory, eukaryotic mitochondria originated from the progressive

transfer of ancient –-proteobacteria DNA into the eukaryotic genome [50]. Thus, mitochondrial

DNA (mt-DNA) of higher organisms are 100 to 300 fold smaller than bacterial genomes but

still carry hallmarks of its bacterial ancestor [51]. The use of N -formylmethionyl (fMet)

tRNA as initiator of protein synthesis is typical for bacteria and the tRNA is also found in

mt-genomes [52]. The integration of fragments of mitochondrial DNA in the nuclear genome

is an ongoing, frequent process. Thus, mammalian genomes harbor a large number of genomic

regions designated as nuclear mitochondrial DNAs (NUMTs). Once integrated, NUMTs evolve

largely without selective constraints since mitochondrial gene expression is so di�erent from

gene expression in the nucleus that NUMTs cannot be specifically expressed by the nuclear

machinery. NUMTs can undergo duplication after genomic integration highlighted by the fact

that old NUMTs are more abundant in the human genome than more recently integrated

fragments [53]. NUMTs exhibit di�erent degrees of homology to their original mitochondrial

fragments as they can be highly rearranged and fragmented [54, 55]. The NUMT content

varies dramatically across species, ranging from 400 kilo base pairs (kbp) in rice to 280 kbp

in human and over 1 kbp in yeast to the NUMT-less mosquitoes Anopheles gambiae [53].

Interspecific variations in terms of germline stability, mitochondria number, frequency of

chromosomal integration, and the dynamics of post-insertion processes can be a cause for the

species-specific variability [55, 56].

Mitochondrial tRNA genes are also incorporated through the genomic mt-DNA integration,

which are referred to as nm-tRNAs. Notably, nm-tRNAs often di�er substantially from their

mitochondrial counterparts. It has been reported that only eight nmt-RNAs are still identical

in sequence to their primordial mt-RNAs in the human genome, while the remaining 489 nm-

tRNA genes show up to 25 mismatches [57]. Despite the sequential mutations, the secondary

structures are not strong altered by identified mutations [58]. At present, the biological function

and relevance of nm-tRNAs is still unknown. Around 20% of known human nm-tRNAs are

located in protein-coding or non-coding RNA transcripts [57]. In mitochondria, mt-tRNAs

are cleaved out from a single polycistronic transcript [24]. It is speculated that a similar

mechanism is used in nm-tRNAs. Nucleases and their interacting factors probably recognize
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nm-tRNAs by their structure to cleave them out of the longer transcript. Since nm-tRNAs are

presumably transcribed as part of other transcripts, they are not only pseudogenes, but more

likely functional [24, 57].

2.4 tRFs are Not Randomly Degraded tRNAs

Beside microRNAs (miRNAs) and small interfering RNA (siRNA), another abundant class of

small non-coding RNAs are derived from tRNAs, called tsRNAs. These molecules result from

enzymatic cleavage of tRNAs and can be divided into tRNA-derived stress induced RNAs

(tiRNAs) and tRNA-derived fragments (tRFs), see Fig. 5. Specific cleavage in or close to

the anticodon loop of mature tRNAs results in 28–36 nts long 5’-tiRNA and 3’-tiRNA halves.

In mammalian cells, angiogenin (ANG), a member of the Ribonuclease A superfamily, is

responsible for the tRNA cleavage [59, 60]. Specifically, the tRNA cleavage is executed under

stress conditions like heat shock [61], phosphate starvation [62], oxidative damage [63], and

under growth conditions [64]. Such tRFs can also originate from pre-tRNAs and mature tRNAs

(see Section 3). There are at least four di�erent types of tRFs known which are classified

by their site of origin: (i) tRF-1 fragments usually originate from the 3’-trailer sequences of

pre-tRNAs by ribonuclease (RNase) Z cleavage and posses poly-U residues at their 3’-end

[59, 65]. (ii) 2-tRFs are typically derived from the internal region of mature tRNAs, including

the anticodon triplet. The length of 2-tRFs varies between 14–33 nts [66]. The responsible

ribonuclease is still unknown. (iii) 3-tRFs are about 18-22 nts long and are cleavage products

of Dicer, ANG or other members of the Ribonuclease A superfamily. Due to the T-loop

cleavage site of mature tRNAs, 3-tRFs contain the CCA terminus [59, 67]. (iv) 5-tRFs are

generated from cleavage in the D-loop of mature tRNAs by Dicer. Depending on their length,

5-tRFs can be further divided into 5a-tRFs (~15 nts), 5b-tRFs (~22 nts), and 5c-tRFs (~30

nts) [59, 65]. However, tRFs are found in di�erent organisms ranging from bacteria to humans,

and vary widely between sex, tissue, and disease status [68–72].

Structural features and post-transcriptional modifications of tRNAs could e�ect the tRF’s

biogenesis. Especially tiRNAs are cleaved from wrongly modified or folded tRNAs. It has

been revealed that oxidative stress conditions disrupt the tRNA folding which in turn favored

the tRNA fragmentation as early pathogenic mechanism [73]. In addition, a reduced 5-
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Figure 5: Di�erent structural types of tsRNAs. tRNA-derived small RNAs (tsRNAs) can be classi-
fied into the longer tRNA-derived stress induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs).
Angiogenin (ANG) cleavage in or near the anticodon loop leaving the 5’-tiRNA and 3’-tiRNA halves.
tRFs can be subdivided into tRF-1, 2-tRFs, 3-tRFs and 5-tRFs. tRF-1 fragments originate from
the 3’-trailer precursor tRNAs by ribonuclease (RNase) Z cleavage, containing poly-U residues at
the 3’-end. 2-tRFs are typically derived from the internal region of transfer RNAs (tRNAs). The
responsible ribonuclease is still unknown. 3-tRFs are generated from Dicer or ANG cleavage at the
T�C-arm (T-arm). 5-tRFs can in turn be subdivided into 5a-tRFs, 5b-tRFs, and 5c-tRFs. 5-tRFs
are cleavage products of the ribonuclease Dicer and originate from the dihydrouridine arm (D-arm).
Except for 1-tRFs, all tsRNAs are fragments of mature tRNAs. The acceptor stem (blue), anticodon
arm (red), variable loop (purple), T-arm (yellow), anticodon (grey), and discriminator base (orange)
are highlighted.

methylcytidine (m5C) modification (see Section 3.5) causes aberrant cleavage of tsRNAs into

tiRNAs, resulting in a repressed protein translation and an activation of stress pathways [74].

tsRNAs are dynamic regulators of biological processes with diverse functions. For example,

tRFs regulate mRNA stability, similar to miRNAs, by directly binding to protein factors of

mRNAs [25]. These molecules are also able to inhibit translation initiation and elongation [75],

are regulators of ribosome biogenesis [76], alter transcriptional cascades in intergenerational

inheritance as paternal epigenetic factor [77], and interact with cytochrome c promoting cell

survival [78]. Further, tRFs and tiRNAs are probably causal factors for human diseases, such as

cancer [79] and infectious disorders [80]. Thus, the widespread occurrence of tsRNAs and their

regulatory significance of biological processes indicate that tsRNAs are not simply randomly

degraded tRNA products [59].
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The life of a tRNA molecule starts with its transcription as precursor tRNA (pre-tRNA)

followed by a species-specific series of maturation events to fulfill its biological function. The

post-transcriptional maturation steps vary in their sequential order from case to case. In general,

5’-leader and 3’-trailer sequences are removed by a set of endo- and exonucleases. Afterwards,

a CCA sequence is enzymatically added at the trimmed 3’-end which then represents the site

of aminoacylation (see Section 1.1). The CCA addition is necessary only in species where

the CCA triplet is not genomically encoded. Introns, which are present in a subset of pre-

tRNAs transcribed from intron-containing genes, are removed by tRNA-splicing endonucleases.

Additionally, nucleosides are modified in di�erent tRNA processing steps, altering nucleotide

properties in di�erent ways. However, tRNA biogenesis occurs at several distinct subcellular

locations which are specific for each processing step [81].

In the following chapter, the individual processing steps of tRNA biogenesis are described

in more detail with focus on tRNA modifications. An overview of all tRNA processing steps

including their particularities and subcellular locations is illustrated in Fig. 6.

3.1 tRNA Transcription

Numerous mammalian organisms have over 400 tRNAs which makes it metabolically meaningful

to coordinate their transcription [12]. The three-dimensional structure of a tRNA enables their

clustering within the nucleolus, although their genomic loci are dispersed in the genome [82].

Transcription of tRNA genes requires a type 2 internal promotor consisting of an A- and

B-box (see Fig. 6). These intragenic boxes encode parts of the dihydrouridine- and T�C-stems

and loops respectively [11], see Section 2.1. The promotor is modulated by upstream sequence

motifs frequently including a TATA element [83]. Initiation of transcription is caused by a

concerted action of transcription factors binding to the tRNA genes which recruit the RNA

polymerase III (Pol III). At first, the transcription factor for polymerase III C (TFIIIC) binds

the promotor, followed by recruitment of the transcription factor for polymerase III B (TFIIIB)

to a ≥50 bp upstream region of the transcription start site. The binding of TFIIIB recruits

Pol III and promotes transcription initiation. A key component of TFIIIB is the TATA-box

binding protein (TBP) that interacts with upstream DNA. TFIIB-related factor 1 (BRF1)

and TFIIB double prime 1 (BDP1) form the last two subunits of TFIIIB [83, 84].
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Figure 6: Cell biology of eukaryotic tRNA biosynthesis. Transcription and maturation of transfer
RNAs (tRNAs) occur at several distinct subcellular locations, whereas tRNAs are dynamically in- and
exported between nucleus, cytoplasm and mitochondria. Transcription of precursor tRNA (pre-tRNA)
genes caused by a concerted action of binding of transcription factors. Transcription factor for
polymerase III C (TFIIIC) binds the A- and B-box promotor which encode parts of the dihydrouridine-
and T�C-arm, respectively. The binding recruits the transcription factor polymerase III B (TFIIIB)
which interact with the ≥50 bp upstream region of the transcription start site. TFIIIB consists
of the three subunits TFIIB-related factor 1 (BRF1), the TFIIB double prime 1 (BDP1) and the
TATA-box binding protein (TBP). The binding of TFIIIB recruits RNA polymerase III (Pol III) for
transcription initiation. Pre-tRNA transcription, as well as the following 5’-leader sequence removal
and first modifications of a few nucleotides take place in the nucleolus. After pre-tRNA export to the
nucleoplasm, the 3’-trailer sequence is removed and replaced by the CCA termini. Existing introns are
then spliced and nucleotides modified as required. Pre-tRNAs are then exported to the cytoplasm of
the cell where additional base modifications may originate. Now the pre-tRNA is maturated and can
fulfill its biological function. Beside the dynamic pre-tRNA tra�cking between nucleus and cytoplasm,
a small fraction of cytosolic tRNAs can be imported into the mitochondria to compensated incomplete
or redundant mitochondrial tRNA sets.
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The 5’-flanking regions of animal tRNA genes are highly divers and lack a common

conserved sequence motif [85]. Thus, a strong and regulated Pol III binding is required [86].

Strikingly, tRNA species which encode for the same anticodon share conserved motifs in their

upstream regions that might reflect coordinated regulation [11, 85]. Pol III interactions are

based on di�erential expression of tRNA isoacceptors also between tissues within an organism

which can vary up to tenfold [11, 87].

The strong interaction of the transcription factor TFIIIB with the 5’-regions of single

subgroups may modulate the tRNA tissue-specific expression, since various animal tissues

di�erentially express multiple isoforms of BDP1 and BRF1. These multiple forms explain

the lack of a uniform signature motif in the 5’-upstream regions of animal tRNA genes. In

contrast, a highly conserved TATA motif followed by a CAA motif in the tRNA upstream

regions was found in plant genomes [85].

Mitochondrial DNA (mt-DNA) is transcribed into single polycystronic RNA, where mito-

chondrial tRNAs (mt-tRNAs, see Section 2.2) are processed by punctuated endonucleolytic

cleavage [88] by mitochondrial RNA polymerase (mtRPOL) [89]. It is still unknown how

nuclear-encoded mitochondrial-derived tRNA (nm-tRNAs, see Section 2.3) are transcribed.

Due to the identification of a sequence motif which strongly resembles the consensus sequence

of B-boxes, the transcription mechanism of nm-tRNAs is speculatively similar to that of nuclear

tRNAs [24].

3.2 5’- and 3’-End Maturation

At both 5’- and 3’-ends, pre-tRNAs contain terminal extensions, the 5’-leader and 3’-trailer

sequence, respectively. Across all kingdoms, the 5’-leader is removed by RNase P, producing a

monophosphate at the 5’-end and a terminal 2’-3’-cis glycol [90, 91]. Only few exceptions

to the requirement for RNase P activity are known for the archaea Nanoarchaeum equitans,

Pyrobaculum aerophilum and for the bacterium Aquifex aeolicus [92]. Randau et al. [93]

provide experimental evidence that the accurate promotor replacement in N. equitans ensures

that the tRNA transcription starts at the first nucleotide of the mature tRNA, producing

leaderless tRNA transcripts.
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While tRNA 5’-processing is almost ubiquitous in all species, tRNA 3’-end cleavage varies

in the three domains of live. The temporal order of the cleavage reactions of the terminal

tRNA extensions has not yet been investigated. Bacteria use a multi-step pathway for the

3’-trailer cleavage (see Fig. 7A). At first, an endonucleolytic cutting process starts at the

tRNA 3’-end and extends downstream [94]. Responsible for the endonucleolytic reaction is

a combination of the two enzymes RNase E and RNase III. RNase III has been found to

recognize double-stranded RNA as substrates, while RNase E cleaves single-stranded AU-rich

sequences [95, 96]. In a second step, the 3’-end is further shortened by an exonucleolytic

reaction before RNase P processes the 5’-end. Finally, a second exonucleolytic trimming

degrades the remaining nucleotides [94, 97]. Depending on the 3’-trailer requirements, the

exonucleolytic cleavage can be catalyzed by a variety of six known exonucleases, namely the

RNases II, BN, D, PH, T, and polynucleotide phosphorylase (PNPase) [97, 98]. CCA terminus

is encoded in most bacterial tRNA 3’-trailers, followed by a series of appended nucleotides.

RNase D specifically cuts right up to the CCA terminus without disrupting it, resulting in

a mature tRNA 3’-end without any further processing steps [99]. RNase BN is specific for

trimming incomplete 3’-trailers or trailers with missing CCA tail [100, 101]. Since the described

processes are based on Escherichia coli data, which is currently the only well-studied bacterial

organism in this context, the 5’- and 3’-end maturation mechanism may di�er in other bacteria.

In contrast, 3’-trailers in eukaryal as well as archaeal organism are primarily removed by

tRNA 3’-endonuclease (RNase Z), see Fig. 7B. The cleavage results in a tRNA ending with a

3’-hydroxy group of the discriminator (see Section 2.1) nucleotide [102–104].

3.3 tRNA 3’-Terminal CCA Addition

In species that do not genomically encode the terminal CCA sequence (Eucarya, Archaea, and

some Bacteria), the CCA triplet is added post-transcriptional to the cleaved tRNA 3’-end by

tRNA nucleotidyl transferase catalysis [105]. Beside that, the tRNA nucleotidyltransferase

restores CCA termini which were degraded by exonucleolytic activities [106, 107]. If the

tRNA nucleotidyl transferases are located in the nucleoplasm, they take part in the 3’-end

processing. If the enzymes are located in the mitochondria or cytoplasm, they take part in the

3’-CCA tail repair [108]. Terminal CCA addition is essential for the functionality of the mature
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Figure 7: 5’- and 3’-end tRNA maturation pathways. Two di�erent pathways exist for 5’-leader
and 3’-trailer processing. (A) In the exonucleolytic pathway, the 5’-leader sequence is cleaved o� by
ribonuclease (RNase) P (purple). The 3’-end maturation consists of multiple steps starting with an
endonucleolytic cut (light blue) at the 3’-end of the transfer RNA (tRNA) followed by exonucleolytic
trimming (light and dark green) reactions. The endonucleolytic cut based on the combined activity of
the enzymes RNase E and RNase III, which are specific for single-stranded AU-rich and double-stranded
RNAs, respectively. Depending on the 3’-trailer requirements, the exonucleolytic cleavage can be
catalyzed by a variety of di�erent enzymes. This pathway occurs in bacterial species where the
CCA terminus is encoded in 3’-trailers of tRNAs. (B) Within the endonucleolytic pathway, the
3’-trailers of the primary transcripts are removed by the tRNA 3’-endonuclease (RNase Z; dark blue).
The 5’-end maturation is similar to the exonucleolytic pathway. The pathway is conserved among
eukaryotes and archaea. The structural features of the tRNAs are color-coded as follow: acceptor
stem (blue), anticodon (grey), anticodon arm (red), dihydrouridine-arm (D-arm; green), discriminator
base (orange), T�C-arm (T-arm; yellow), and variable loop (purple).
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tRNA during protein biosynthesis. The amino acid loaded onto the tRNA by aminoacyl tRNA

synthetases, to form aminoacyl-tRNA, is covalently bonded to the 3’-hydroxyl group on the

CCA tail [109], see Section 1.1.

3.4 Pre-tRNA Splicing

A minority of pre-tRNAs are encoded by intron-containing genes. Introns are spliced to get

functional mature tRNAs [81]. In tRNAs of Eukarya and Archaea, introns are mainly located

3’ to the anticodon and do not interrupt the overall tRNA structure [110]. Unusual types of

tRNA introns are found at 14 positions within the tRNA genes [111]. Introns interrupting

the dihydrouridine (D)-stem (see Section 2.1), for example, were found particularly in

archaeal genomes. Except for tyrosine tRNAs, which generally contain introns, the phylogenic

distribution of introns within particular tRNA genes is not conserved [112]. It could be shown

that tRNA introns generate substrates for particular modification enzymes, e.g., yeast tyrosine

tRNAs produce a pseudouridine (see Section 3.5) in the anticodon loop [113].

In all organisms, tRNA-splicing taken place in di�erent enzymatic steps, starting with the

removal of the intron itself. This step is catalyzed by the tRNA-splicing endonuclease, leaving

a 5’-tRNA half-molecule ending in a 2’-3’-cyclic phosphate, and a 3’-tRNA half-molecule

beginning with a 5’-hydroxyl group [114]. The bulge-helix-bulge (BHB) motif is essential for

splice cite recognition by the tRNA-splicing endonuclease in archaea [111, 115], while eukaryotic

introns do not have clear splicing motifs. Eukaryal enzymes use a measuring mechanism to

determine the positions of the splice sites relative to the conserved pre-tRNA domain (for

details see H. Li et al. [116]). Archaea and most eukaryotes join the tRNA halve-molecules

directly by the 3’-5’-activity of the tRNA ligase [117]. Yeast and plants require two steps,

starting with the 5’-3’-ligation which leaves a 2’-phosphate group at the spliced junction [114].

Finally, a 2’-phosphotransferase catalyzes the binding of the 2’-phosphate group to its cofactor,

nicotinamide adenine dinucleotide (NAD). However, in bacteria, tRNA introns are very rare

self-splicing group I introns which means they accurately and e�ciently excise themselves

from the pre-RNA and ligate the flanking exon sequences in the complete absence of splicing

enzymes [118].
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3.5 Nucleotide Modifications

The highest level of post-transcriptional modifications is found in tRNAs thinking of their

small sizes and low chemical diversity they show. So far, 93 di�erent tRNA modifications

have been identified [119], where mitochondrial tRNA (mt-tRNA) modifications are mostly

of bacterial origin [120]. During tRNA processing, both nuclear and mitochondrial tRNAs

are modified by specific tRNA-modifying enzymes. The nature of nucleoside modifications in

tRNAs varies and can be classified into light or complex alterations. If single tRNA-modifying

enzymes methylate the base or ribose ring of tRNA molecules, these alterations are referred

to as simple modifications. Simple modifications occur most frequently and can be mainly

found at the elbow region (see Section 2.1) of the L-shaped tRNA [27]. In contrast, complex

altered bases, termed hypermodifications, are characterized by radical structural changes and

can involve multiple enzymatic steps [121]. Hypermodifications are mainly located in the

anticodon loop [27]. A collection of almost all annotated tRNA modification including their

symbols and common names are listed in Suppl. Tab. B1.

3.5.1 tRNA Modifications are Highly Distributed Across Kingdoms

Generally, the frequency and composition of tRNA modifications vary across the three domains

of life or even between isoaccepting tRNAs (see Section 1.1) within an organism [122]. In

comparison to archaeal and bacterial species, the highest frequency of modified tRNA molecules

is found in eukaryotes. With up to 23.7% modified residues, green plants show the highest

level of post-transcriptional tRNA modifications, whereas lower modification rates are found

in single-celled eukaryotes (≥16.6%) [27]. As an example, 25 di�erent modifications at

36 positions are found in S. cerevisiae, with an average of 12.6% modifications per tRNA

species [123]. The lowest modification rate is found in Gram-positive bacteria (≥6.6%) [27].

A set of 17 di�erent kinds of modifications (≥18% of all known tRNA modifications)

are spread across all domains of life, representing universal core modifications (see Fig. 8).

These include the well studied modifications 1-methyladenosine (m1A), inosine (I), D,

and pseudouridine (�) [119, 122]. Despite core modifications, ≥62% of all known tRNA

modifications are specific to one domain of life, whereas the remaining 20% overlap between two

domains. Hypermodifications could be isoacceptor specific and are mostly domain specific [27].
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Figure 8: Distribution of tRNA modification across the domains of life. A total of 93 known
transfer RNA (tRNA) modifications are assigned to the three domains of life (Eukarya, Bacteria,
Archaea). The data were collected from the RNA modification database [119]. Some tRNA mod-
ifications overlap between all domains (18%), two domains (20%) or are domain-specific (62%).
Modifications are color-coded referring to the nucleotide they modify: adenine (red), cytosine (blue),
guanine (green), uracil (black). The conventional abbreviations are used for the modifications:
ac – acetyl, acp – aminocarboxypropyl, chm – carboxyhydroxymethyl, cmo – oxyacetic acid, cmnm –
carboxymethylaminomethyl, f – formyl, g – glycinyl, gal – galactosyl, hn – hydroxynorvalylcarbamoyl,
ho – hydroxy, i – isopentenyl, inm – isopentenylaminomethyl, io – cis-hydroxyisopentenyl, m – methyl,
man – mannosyl, mchm – carboxyhydroxymethyl methyl ester, mcm – methoxycarbonylmethyl, mcmo –
oxyacetic acid methyl ester, mnm – methylaminomethyl, mo – methoxy, ncm – carbamoylmethyl, nm –
aminomethyl, r(p) – 5-O-phosphono-b-d-ribofuranosyl, s – thio, se – seleno, t – threonylcarbamoyl,
tm – taurinomethyl.

3.5.2 Nucleotide Modifications are Functionally Diverse

Mainly, tRNA modifications act as checkpoints for tRNA integrity, regulate the protein

translation, modulate the structural stability, and ensure the correct folding of the linear tRNA

molecule. They are further involved in the structural fine-tuning of local elements and are able
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Figure 9: Primary functions of tRNA modifications. An overview of the main functions of tRNA
modifications is illustrated. In summary, transfer tRNA (tRNA) modifications are essential for structural
adaptations, for folding of the linear tRNA molecule, and are involved in the regulation of protein
biosynthesis.

to rapidly adapt tRNAs to environmental changes, such as stress and temperature [27, 124].

An overview of the most important functions of tRNA modifications is depicted in Fig. 9. The

absence of altered bases can cause dramatically pathological consequences and severe diseases,

ranging from respiratory and metabolic defects over myopathies, mitochondrial disorders and

to X-linked intellectual disability (reviewed in Duechler et al. [124]). Post-transcriptional

modifications of tRNAs are crucial to maintain their functionality in the cell.

tRNA Modifications are Crucial for tRNA Structure and Folding

In general, the nucleotides adenine (A), cytosine (C), guanine (G) and uracil (U) allow for

the formation of di�erent base pairs, which can lead to deviations of the typical cloverleaf or

L-shaped formation of tRNAs (see Section 2.1). Such alternative structures are often non-

functional and show a similar level of free energy. They can be triggered, e.g., by a pronounced

nucleotide bias as found in GC-rich thermophilic organisms and some AT-rich mitochondrial
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genomes [125]. Specific tRNA modifications force the tRNA to adopt a certain functional

structure. As an example, in GC-rich thermophilic archaea, the N2,N2-dimethylguanosine

(m22G) modification suppresses the G-C pairing by removal of the hydrogen-bond donor

in the Watson/Crick edge, forcing the modified G residues to built a G-U wobble pair and

additional non-Watson/Crick base pairings [126]. Similarly, unmodified human lysine mt-

tRNAs (see Section 2.2) fold a non-functional rod-like tRNA structure. The presence of m1A

at position 9 prohibits a base pairing between A9 and U64, which disrupts the non-functional

structure and forces the tRNA to adopt the cloverleaf formation [127].

Besides these massive structural rearrangements, tRNA modifications also act as identity

elements [128]. In the nematode Ascaris suum, 90% of the mt-tRNAs lack the entire T-arm

carrying the m1A modification at position 9. In particular, the methylation within the bizarre

methionine and phenylalanine mt-tRNAs (see Section 2.2) leads to a di�erent folding pattern in

the D-arm and the loop region that replaces the T-arm. Here, the distance between CCA-end

and anticodon is a�ected which in turn binds e�cient to the corresponding aminoacyl tRNA

synthetase or interacts with the mitochondrial elongation factor EF-Tu [129].

Modifications, mainly located in the D- and T-loop, are crucial for the stability and flexibility

of the tRNA structure [130]. Especially pseudouridine stabilizes the overall tRNA structure and

increases its rigidity by contributing water-mediated bridging interactions between modified

bases and the RNA backbone [131]. On the other hand, dihydrouridine, which is frequently

found in the D-arm, gives tRNAs local and functionally important flexibility. Here, a saturation

of the C5-C6 bond in the pyrimidine ring of uridine promotes the C2’-endo conformation of

the ribose. This sugar pucker is also relayed to the 5’-adjacent ribose, increasing the local

structural rearrangement [27, 132].

In thermophilic and psychrophilic organisms the structural adjustment of macromolecules

is interpreted as a frequent strategy for thermal adaption. Many of these strategies are not

biomolecule-specific and can be found in tRNA as well [27, 133]. For example, � increases

thermostability in order to protect RNAs from denaturation and degradation [134]. Nuclear

magnetic resonance spectroscopy analysis demonstrated, that the structural rigidity of tRNAs

introduced by �39 modifications result in a up to 5 °C higher melting temperature [135].

Additionally, � at position 55 in the T-loop is contributing to thermal stress tolerance in E. coli.

Another thermostabilizing modification is 5-methyluridine (m5U), which is often further
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modified to 2-thiouridine (s2U). These modifications promote C3’-endo sugar conformation

and tertiary interaction with A58 and by this increase the melting temperature of a tRNA

by 3 °C [136, 137]. It could be demonstrated, that the equilibrium between C2’- and C3’-

endo conformation of dihydrouridine and the upstream located base is strongly temperature

depended. These structural flexibility introduced by dihydrouridine allows the shift to the

C2’-endo sugar conformation as a strategy for cold adaptation [27, 138].

tRNA Modifications Regulate Protein Synthesis

Modifications involved in the regulation of protein biosynthesis (see Section 1.1) are primarily

located at or near the anticodon loop (see Section 2.1) of tRNAs. Wobble base position 34

and the anticodon adjacent position 37 are prominent regulatory sites. Both sites show a

high abundance of hypermodifications to regulate the correct and e�cient codon-anticodon

base pairing [139, 140]. Modifications at position 34 are necessary for tRNA integrity. They

increase the capability of tRNAs to decode multiple synonymous mRNA codons according to

the wobble rules [141]. Meier et al. [142] have reported that histidine tRNAHis
G34 clearly prefers

the codon CAC to the codon CAU, whereas a histidine tRNA with a hypermodified nucleoside

queuosine (Q) in the wobble position has slight preference for the codon CAU. Additional,

modified residues at the tRNA position 34 improve accurate codon reading. For instance,

isoleucine tRNAs with the anticodon UAU or CAU can bind the mRNA corresponding codons

AUA and AUG, which encode for isoleucine and methionine, respectively. Usually, isoleucine

tRNAs have a strong preference for their cognate AUA codon. An increased misreading of

methionine may occur if the isoleucine tRNA is carrying the anticodon CAU. To avoid the

misreading, C34 is modified to lysidine (k2C) restricting the codon recognition to only AUA.

Thus, the amino acid identity is changed from methionine to isoleucine (reviewed in [27]).

The coordination of the concentration of a particularly modified tRNA with the frequency

of its cognate codon in the mRNA introduces an additional level of regulation to fine-tune

translation and influences the translational e�ciency for particular proteins. An example is the

5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification that occurs in the wobble

position of arginine and glutamine tRNAs. The more mcm5s2U modifications occur within the

cell, the stronger is the synthesis activity of DNA damage response proteins [124, 143].
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Post-transcriptional modifications at base 37 help to stabilize codon-anticodon interactions

that contribute to reading frame maintenance [144]. They stabilize tRNA-mRNA interactions

by improving intrastrand stacking within the anticodon loop and interstrand stacking between

codon and anticodon base [145]. In detail, the canonical anticodon is a purine-rich loop

that consists of seven unpaired nucleotides refereed to as U-turn. This unpaired formation is

necessary for stable codon-anticodon interaction with the ribosomal A residue and therefore

for increased translation e�ciency and fidelity. Since the purine-rich sequence is predicted to

have strong favorable base stacking energy, tRNA modifications are necessary to preserve the

U-turn [27, 146]. For instance, the 1-methylguanosine (m1G) modification, which contains

around 75% of bacterial tRNAs and is present in over 95% in all known sequences of proline

tRNAs [147]. The absence of this modification results in a deformation on the opposite side of

the anticodon loop at nucleotide U32, leading to the disruption of interactions with A38. The

lack of U32-A38 inhibits the direct ribosome contact, while the destabilized stem structures

are not able to be recognized by the elongation factor EF-G during translocation [146].

Consequently, the ribosome decodes four rather than three nucleotides, resulting in a +1

frameshifting. Thus, the m1G37 modification helps proline tRNAs to stabilize the tRNAs

anticodon to prevent +1 ribosomal frameshift errors [148]. Similar observations were made

for bacterial phenylalanine tRNAs. The unmodified anticodon stem-loop from phenylalanine

in E. coli forms a trinucleotide loop in solution, due to the base pairing of U32-A38 and

U33-A37. The N6-isopentenyladenosine (i6A) modification at position 37, which is further

modified to 2-methylthio-N6-isopentenyladenosine (ms2i6A), disrupts the non-canonical loop

conformation [145, 149].

Some tRNA nucleoside modifications are changed dynamically by environmental factors

such as stress or nutrition [124]. The modification rearrangements prime the protein synthesis

capacity for the currently most needed proteins. In mammals, oxidative stress increased

the 5-methoxycarbonylmethyl-2’-O-methyluridine (mcm5Um) modification to promote the

expression of selenocysteine containing proteins. Such proteins contribute to detoxification of

reactive oxygen species [150].
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3.5.3 Base Modifications are Not Restricted to tRNAs

Complex and diverse nucleoside modifications are not restricted to tRNAs. Chemical base

modifications in RNAs are a wide-spread phenomenon that a�ects all four nucleotides at

di�erent positions and occurs in all domains of life. Target-specific methylation enzymes

extend to all classes of both coding and non-coding RNAs [151, 152]. The most prevalent

methylations in eukaryotic mRNAs are m1A [153], N6-methyladenosine (m6A) [154, 155],

5-methylcytidine (m5C) [156–158], and 5-hydroxymethylcytidine (hm5C) [159]. In mammalian

mRNAs, m1A is low abundant, with a frequency of 0.015-0.16% of all adenosines, and was

found around start codons to enhances translational e�ciency [153]. The m6A methylations are

highly abundant and enriched near stop codons and in 3’- untranslated regionss (UTRs). They

support tissue-specific regulation and markedly increases throughout brain development [160].

Several other functions have been described for the reversible m6A modification. For example,

they increases translational e�ciency [160], influences the circadian rhythm [161], controls

translation rates in heat shock response [162], and decreases the codon-anticodon binding

during translation [163]. The m5C methylation is primary found in untranslated regions of

mRNAs [164]. Since its occurrence in the 3’-UTR correlates with Argonout binding proteins,

m5C is likely involved in miRNA targeting [124]. Further, m5C can be oxidized to hm5C which

can enhance mRNA translation [159].

Base methylations are also present in other RNAs. A significant fraction of precursor

microRNAs (miRNAs) contain m6A modifications that control the processing of their steady-

state level [165]. Methylation m5C is also present in small amounts in non-coding RNAs. They

are crucial for the processing of vault RNAs (vtRNAs) into microRNA-like small RNAs [74].

A high density of � is found in mRNAs [166, 167]. Site-specific pseudouridylation of

eukaryotic mRNAs naturally occurs in multiple transcripts providing important regulatory

functions [168]. Pseudouridine modifications in human and yeast mRNAs allow a rapid response

to environmental changes [169]. Mostly, they are highly conserved and found in mRNAs

harboring other evolutionary conserved, ancient RNA modifications. Thus, pseudouridine can

be used as an epitranscriptomic marker [166]. In non-coding RNAs, � is one of the most

widespread modifications and is highly conserved among species. These modified residues

are often located in functionally important regions of the major spliceosomal small nuclear
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RNAs (snRNAs) that participate in the intermolecular RNA–RNA or RNA–protein interactions

involved in the function of the spliceosome. � stabilize also the structure of rRNA [131].

A-to-I editing targets several thousands of mRNAs [170]. Here, adenosine deaminase acting

on RNA (ADAR) enzymes converts adenosine in double-stranded regions of transcripts into

inosine [171]. A-to-I editing leads to a unique pattern of amino acid changes characterized by

enriched stop-to-tryptophan, positive-to-neutral, and neutral-to-positive charge changes which

strongly influence the protein function [172]. In miRNAs, A-to-I editing leads to re-targeting

of the mature miRNA [173].

3.6 The Long Cellular Way of tRNA Biogenesis

Transcription and maturation of tRNAs take place at distinct subcellular locations necessitating

the dynamic in- and exported of tRNAs between nucleolus, nucleoplasm, inner nuclear

membrane (INM), cytoplasm, and cytoplasmic surface of mitochondria [81], see Fig. 6. The

subcellular tRNA tra�c di�ers from the much more localized processing events of other RNAs.

In case of mRNA, most of the processing factors are recruited to the transcription site or are

co-transcriptionally functional [174].

Transcription of tRNA genes is located in the nucleolus. The clustering of tRNAs within the

nucleolus is based on the chromosome-condensing complex condensin. Haeusler et al. [175] has

demonstrated that tRNAs are physically associated wit condensin and cells with conditionally

defective condensin subunits fail to cluster tRNA genes in the nucleolus. Since the endonuclease

RNase P is localized in the nucleolus, the 5’-end processing of tRNAs takes place in the

nucleolus as well [176]. Unlike 5’-end maturation, the 3’-processing occurs in the nucleoplasm.

Before the tRNAs are exported to cytoplasm the CCA tail is added [81].

The intracellular location of splicing enzymes di�ers among species, despite their conser-

vation in eukaryotes. Vertebrates splicing enzymes are mainly concentrated in the nucleo-

plasm [177, 178]. In contrast, pre-tRNA splicing in yeast and speculatively also in plants

proceed in the cytoplasma of cells. In yeast, tRNA splicing endonuclease was found to associate

with the mitochondrial surface [179]. In plants, tRNA splicing is not entirely understood

yet. It is hypothesized that eukaryotic cells can tolerate drastic changes in the site of tRNA

splicing [180].
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Subcellular organization of nuclear modification enzymes is followed by an ordered process

for tRNA modification. Both nuclear-encoded and mitochondrial-encoded tRNAs are modified

in the nucleus, cytoplasm, and mitochondria. Modification enzymes in the nucleus have

distinct subnuclear distributions, and can be located in the nucleolus, in the nucleoplasm,

or at the INM. Enzymes which are responsible for m1A58 methylation in yeast occurring on

some tRNA initial transcripts, are located in the nucleus [181]. Intron containing tRNAs are

also modified in the nucleus [182] or mitochondria [183]. Intronless tRNAs are catalyzed by

enzymes that reside in the nucleus and/or cytoplasm [182]. Modification enzymes that are

responsible for modifications in the anticodon loop are located in the cytoplasm [184]. Beside

the dynamic tRNA tra�cking between nucleus and cytoplasm, a small fraction of cytosolic

tRNAs can be imported into mitochondria. In some species, this allows the compensation of

an incomplete or redundant set of mt-tRNAs [185].
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The origin of tRNAs developed before the separation of the three domains of life. Furthermore,

there is clear evidence that all tRNA genes are homologs, i.e., derived from an ancestral

“proto-tRNA” [186] which in turn may have emerged from even smaller components [187].

These are indispensable in all organisms. Since tRNA genes occur in multiple copies throughout

the genome they belong to repetitive elements. Beyond bona fide tRNAs, there is a rich

universe of tRNA-derived repetitive short interspersed nuclear elements (SINEs) [188] and

small RNAs that either directly derive from tRNAs [189, 190] or arose indirectly as exapted

SINEs [191]. Thus, tRNAs and many other classes of small RNA genes, e.g., small nucleolar

RNAs (snoRNAs) [192], behave like mobile genetic elements. As a consequence, the tRNA

repertoire can change rapidly even between closely related genomes [193, 194]. In particular,

duplications of tRNAs, known as gain events, lead to paralogous genes. Gene duplication

can occur in two ways. First, tRNA sequences build so-called tandem duplications by being

copied once or more times into the genome region around the original tRNA. Such tandem

duplications lead to the formation of tRNA clusters. Secondly, the tRNA copy is inserted

between other tRNA genes further away from its original location. In the case of tRNAs

this typically leads to pseudogenization resulting in a non-functional tRNA. Therefore, a

rapid net turnover of tRNA genes at individual loci can be observed sometimes [194–197].

Further mutations in pseudogenes do not cause any detectable similarity with any other tRNA

sequence. Thus, the mutated pseudogene cannot be found in the genomic background any

more which is referred to as loss events. Turnover can be estimated quite accurately by simply

comparing gene copy numbers between species when gain and loss events are rare as in the

case of miRNAs [198]. However, the fraction of conserved tRNA loci quickly decreases with

phylogenetic distance, so that similar tRNA numbers among di�erent mammalian families are

the consequence of compensation between large numbers of gain and loss events [194]. An

overview of evolutionary sequence homology phenomena is depicted in Fig. 10.

In addition to gain and loss of entire tRNA genes, mutations in the anticodon loops may

change the identity of the tRNA. This process is known as tRNA remolding [199]. The modified

anticodon usually corresponds to the same amino acid (isoacceptor remolding), however, in

mitochondrial genomes also alloacceptor remoldings, i.e., a change in the addressed amino acid,

is observed with surprising frequency [200, 201]. In contrast, the nuclear tRNAs of eukaryotes

are largely restricted to isoacceptor remoldings [196, 202], presumably because proper loading
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Loss

Figure 10: Overview of evolutionary events. Ancestral gene duplication of gene A resulting in two
paralogous genes A1 and A2. A speciation event produces the orthologous genes A1 in species 1 and
2, while the orthologous gene A2 of species 2 to species 1 has been lost. All genes A1 and A2 are
homologs since they originate from the same ancestral gene.

of a tRNA depends on a complex system of identifying elements that may even be disjoint from

the anticodon sequence [128]. Surprisingly, even isoacceptor remoldings are rare in Archaea

and Eubacteria [202]. Like the estimation of tRNA gain and loss, a quantitative investigation

of tRNA remolding events also hinges on the correct identification of orthology. Homologous

tRNAs are orthologous if they are inferred to be descended from the same ancestral tRNA

gene separated by a speciation event: when a species diverges into two separate species, the

copies of a single tRNA gene in the two resulting species are said to be orthologs [203].

4.1 tRNA Genes Undergo Concerted Evolution

A larger sequence similarity of members of a repetitive family occur within a species than

between species. This suggests that members of a repetitive family do not evolve independent

of each other. This e�ect leads to homogenization of repetitive elements which is known

as concerted evolution [204]. In case of tRNAs, paralogous genes with the same anti-codon

maintain up to nearly identical sequences over long evolutionary time-scales. Duplicated

genes will not remain subject to concerted evolution forever, but will escape with a roughly

exponentially distributed waiting time and will start to accumulate mutations [205]. High

sequence similarity between paralogs may be maintained by homologous recombination events
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which leads to intergenic conversion. It has been shown already in the 1980s that intergenic

conversion is an important contributing factor [206]. Ectopic gene conversion involves the uni-

directional copy of genetic material from a “donor” sequence to a homologous “acceptor” [205].

Due to the extremely low rates of sequence evolution in tRNAs, gene conversion events

are frequent enough for the information transfer to be e�ectively bidirectional. Hence, the

entire set of nearly identical paralogs is kept coherent throughout evolution. Gene conversion

is also responsible for preventing the divergence of individual copies of the ribosomal RNA

cistron [207] and histone genes [208]. In many cases genes evolving under concerted evolution

are arranged in genomically localized clusters.
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A transcriptome is defined as a complete set of RNA transcripts in a cell. The quantity

of transcript is specific to a particular stage of development or physiological state [209].

Understanding the transcriptome is essential for the interpretation of the functional elements

of the genome and the elucidation of the molecular components of cells and tissues. Thus, the

analysis of the transcriptome is necessary to understand cell development and the pathogenesis

of diseases. While researchers try to understand how the transcriptome shapes biology, various

technologies have been developed for its analysis. Such technologies make it possible to

characterize the fine architecture of the transcriptome, which includes multiple isoforms

of non-coding RNAs, gene fusions, and single nucleotide variants. Quantification of gene

expression changes during developmental stages or under di�erent conditions can be additionally

investigated without prior knowledge [210]. In general, gene expression is the process by

which the genetic blueprint of a gene is translated into functional, biologically active products.

Usually, these gene products are proteins, however, in non-protein-coding genes, e.g., transfer

RNAs (tRNAs), microRNAs (miRNAs) or small nuclear RNAs (snRNAs), the products are

functional RNAs.

Previous transcriptomics studies mainly relied on hybridization-based methods, e.g., north-

ern blotting, real-time reverse transcription- polymerase chain reaction (PCR) and microarry

analysis technologies. In contrast to northern blotting and real-time reverse transcription-PCR,

microarrays can be employed for genomewide profiling. Hybridization-based methods have

several limitations: they require a high amount of RNA material, previous knowledge of the

genome sequence is prerequisite, and cross hybridisation as well as varying background noise

may occur. Cross hybridization occurs when a homologous transcript is hybridized instead of

the queried gene. Comparison of gene expression across di�erent experiments is often di�cult

and may require elaborate normalization methods [209, 210].

The development of high-throughput next-generation sequencing (NGS) technologies

revolutionized RNA analysis. RNA sequencing (RNA-seq) eliminated several challenges posed

by hybridization-based technologies. However, RNA-seq experiments are not only able to

capture the entire transcriptome, but also allow an quantitative measurement of individual

gene expression and the discovery of novel transcribed regions in an unbiased manner [211].

The basic workflow for performing RNA-seq can be divided into library construction,

sequence data generation, and final data analysis. Depending on the RNA species to be inves-
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tigated, a specific experimental design is necessary to obtain biologically relevant information.

This section describes a basic workflow of creating RNA-seq data and their bioinformatic

analysis strategy focused on tRNAs.

5.1 Library Construction

Construction of sample libraries requires di�erent steps (see Fig. 11) starting with the total

RNA isolation from the cell or tissue, and elimination of ribosomal RNA (rRNA). Since over

90% RNA present in human cells is of rRNA, its removal is necessary to obtain information

about the true diversity of the transcriptome present in the remaining RNA pool. Alternatively,

polyadenylated (poly-A) transcripts (see Section 1.1) can be filtered directly to obtain only

messenger RNAs (mRNAs), miRNAs and small nucleolar RNAs (snoRNAs). Poly-A transcripts

can be separated by hybridization of total RNA with oligo (dT) primers covalently attached to

a substrate, typically magnetic beads. The poly-A transcripts can then be isolated by magnetic

separation technology. This sequencing method is commonly known as poly-A-selected RNA-

sequencing (mRNA-seq). To obtain other types of RNAs, such as tRNAs and other non-poly-A

transcripts, ribo-minus RNA sequencing (rmRNA-seq) is used, where highly abundant RNAs

are depleted through hybridization capture followed by magnetic bead separation (for details

see W. Zhao et al. [212] and Cui et al. [213]).

Larger RNA molecules must be fragmented into smaller pieces (200–500 bp) due to the

size limitations of most common sequencing platforms. In the next step, a reverse transcriptase

is added to generate complementary DNA (cDNA) of the desired RNA transcripts. For

this reaction a short primer that is complementary to the 3’-end of the RNA is required to

direct the cDNA synthesis. Subsequent to cDNA synthesis, adapters are ligated to the cDNA,

allowing the interaction with the specific sequencing platform. The cDNA for each experiment

can optionally be indexed with a barcode so that these experiments can be pooled into a

single lane for multiplexed sequencing. Finally, the RNA library is amplified using PCR. Loss

of strand information during RNA amplification can be avoided by chemical labeling or single

molecule sequencing. Another bias that may occur is that many identical sequences can be

retrieved from amplified cDNA libraries. These could be PCR artifacts or a true reflection of

abundant RNA species [195, 211, 214].
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Figure 11: RNA-seq library preparation workflow. First, total RNA is extracted from the cell or
tissue. Ribosomal RNA (rRNA) is then either removed (left) to enrich other RNAs, e.g., non-coding
RNAs (ncRNAs), or polyadenylated (poly-A)-tailed messenger RNA (mRNA) is isolated (right). Larger
RNA molecules are fragmented into smaller pieces, followed by complementary DNA (cDNA) synthesis.
Adapters are added based on the sequencing platform and each experiment is indexed for sample
identification. After subsequent RNA enrichment by polymerase chain reaction (PCR), the library can
be used for sequencing. The figure is modified after Chaitankar et al. [214].

5.2 Challenges in Library Construction for tRNA-seq

Di�erent methods for tRNA quantification have been developed, highlighting the various

challenges arising for high-throughput analysis of the tRNA pool within a cell. Since mature

tRNAs have a short, single-stranded 3’-end and a double-stranded 5’-end (see Section 3),

essential steps in high-throughput tRNA sequencing such as adapter ligation and reverse

transcription are di�cult to perform. Although tRNAs comprise a very small proportion of

total RNA in the cell [215], most approaches require a tRNA-specific enrichment step to filter

out the tremendous background of rRNA in the ligation reaction. Shigematsu et al. [216]

developed the YAMAT-seq method to circumvent these problems. YAMAT-seq allows for
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a selective tRNA amplification without prior enrichment [216] using a specific adapter that

hybridizes to the 3’-CCA end and is then ligated to the 5’- and 3’-ends. However, as adapter

oligonucleotides are simultaneously fused to the tRNA 5’- and 3’-ends, only tRNAs that are fully

reverse transcribed into cDNA are amplified, while prematurely terminated cDNAs, e.g., due

to modifications and/or structural obstacles, are lost. Hence, no information concerning tRNA

fragments or tRNAs carrying a substantial amount of nucleoside modifications (see Section 3.5)

are retrieved in YAMAT-seq. Pang et al. [217] overcame this problem by introducing a two-step

adapter ligation, allowing to recover such cDNA fragments. This approach, however, requires

an extensive purification of tRNA fractions out of a total RNA reparation, and the authors apply

five consecutive high performance liquid chromatography preparation steps of the reaction

intermediates, likely resulting in a considerable loss of valuable tRNA material. Thus, an

urgent need remains for methods that are easy to handle and combine adapter ligation without

prior tRNA isolation. For a comprehensive investigation of the tRNA pool, a method should

also include tRNA-derived cDNA fragments, as they contain valuable information concerning

expression of tRNAs and specific modification positions.

5.3 RNA Sequencing Using Next Generation Sequencing

After library construction, cDNA fragments are sequenced with NGS to obtain short sequences

from one end (single-end) or from both ends (paired-end). Although, paired-end sequences

are preferable for de novo transcript discovery or isoform expression analysis [218, 219]. Most

common used NGS platforms for performing RNA-seq are, e.g., Illumina, Life Technologies,

and Helicos BioSciences [220]. Analysis in this work were performed exclusively on Illumina

platforms, which will be explained in detail. Illumina NGS platform uses a sequence-by-synthesis

system which is able to sequence millions of cDNA fragments in parallel [214].

With Illumina sequencing technology, library fragments are clustered before the actual

sequencing takes place. Cluster generation is performed by passing denatured library fragments

through a flow cell that randomly hybridize on a lawn of complementary Illumina adapter

oligonucleotides (see Fig. 12A). The extension of the flow cell oligonucleotides with the hy-

bridized library fragment as a template results in a newly synthesized strand. A complementary

copy of the newly synthesized strand is then generated through bridge amplification. During
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High-throughput  sequencingHigh-throughput sequencing

Clustering

Figure 12: Illumina sequencing workflow. (A) Cluster generation is performed by random hybridiza-
tion of library fragments to the complementary adapter oligonucleotides of the flow cell. Complementary
adapters are then extended, amplified by bridge amplification polymerase chain reaction, linearized
and denaturated. Bridge amplification is repeated several times to produce clusters of identical copies
of the library fragments. After cleavage of the reverse strands, only the forward strands are retained.
(B) Fragments are primed so that reversible terminator nucleotides can incorporate. Nucleotides are
fluorescently labeled allowing imaging through laser excitation. The label is cleaved o� after imaging
so that the next nucleotide can incorporate. This process is continued until the predefined sequence
length is displayed. The figure is modified from Chaitankar et al. [214].

bridge amplification, the strand bends to hybridize to a complementary oligonucleotide of the

flow cell so that the polymerase can extend the complementary strand. Bridge amplification is

repeated several times to produce clusters of complementary copies of the original fragments.

The reverse orientation strands are then cleaved so that only the forward strands are primed. In
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the subsequent high-throughput sequencing, cluster synthesis is performed by primer extensions

with fluorescently labeled nucleotides (see Fig. 12B). Fluorescently labeled nucleotides are

reversible terminators allowing only one nucleotide base to be incorporated. The clusters on

the flow cell surface are imaged by laser excitation which returns a single color corresponding

to the incorporated nucleotide. After imaging, the fluoresce label is cleaved o� and the next

nucleotide can be incorporated. This process is repeated until the sequence of each fragment

can be determined [214]. The size of the final fragments (typically 50–200 bp) corresponds

directly to the used sequencing reagents, i.g., more chemistry cycles generate longer fragments.

Library fragments that are shorter than the pre-defined length contain adapter sequences in

the final synthesized fragments.

5.4 Data Filtering

Each sequencing technology produces inferred sequences of bases corresponding to the library

fragments, referred to as sequencing reads. In addition, a quality score is associated to each

base estimating the accuracy of the base call. Most sequencing technologies use a so called

Phred quality score that is calculated as follows:

Q = ≠10 · log10p

were p is the probability that the called base is incorrect. The Illumina quality score is

asymptotically identical to the Phred score for low error probabilities, but it is smaller for

higher propabilities [221], given by:

Q = ≠10 · log10
p

1 ≠ p
.

It happens that reads contain parts of the adapter sequences that were synthesized to the

RNA fragments during library construction. Since low-quality and adapter containing reads

can a�ect downstream analysis, they must be discarded and trimmed. Trimming tools such as

Cutadapt, FASTX-Toolkit, SolexaQA-BWA and Trimmomatic process the reads without a

noticeable loss of the covered reference genome [222]. Additional quality criteria such as the

analysis of GC content, overrepresented k-mers, and duplicated reads are calculated in order

to detect PCR artifacts or contaminations. The values are experiment- and organism-specific,

but they should be homogeneous for replicated samples [223].
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Figure 13: Scheme of the read mapping process. Read mapping is a process to align a set of
reads on a reference genome (top). Thus, the location of the reads on the reference genome (middle)
can be investigated. During read mapping, the following edit operations are performed: base matches,
mismatches (R), insertions (I), or deletions (D).

5.5 Read Mapping to the Reference Genome

Each sequencing run produces millions of individual sequence reads that alone provide no

information about the biological context. To get biological meaning from the data, the read

must be aligned to a reference genome to find their approximate origin (see Fig. 13). In case

of NGS data, this sequence alignment is termed as “mapping”. The remainder of this section

explains the fundamentals of sequence alignments. On this basis, the topic of read mapping is

further addressed in more detail.

5.5.1 Overview of Sequence Alignment Methods

A sequence alignment is a rectangular arrangement of two (pairwise) or more (multiple)

sequences so that similar features are ordered in one column to reflect their evolutionary

relationship. The intention is to maximize the sum of similarities by inserting gaps in the

sequences in order to align homologous positions. A specific combination of edit operations

are necessary for the arrangement. When comparing two sequences a and b at position n, edit
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operations can be defined as follows:

match (M) a and b share the same nucleotide,

mismatch (R) a and b have di�erent nucleotides,

insertion (I) b has a extra nucleotide (gap in a), and

deletion (D) a has a extra nucleotide (gap in b).

The minimum number of non-matching operations that are necessary to align two sequences

define the Levenshtein distance, which quantifies the dissimilarity of two sequences [224]. For

example, the Levenshtein distance of two sequences a and b is dedit(a, b) = 6:

edit transcript = M M D M I M M R R D M R

a = A C C G - A U A G C C A

b = A C - G U A U U A - C G

In principle, a sequence alignment enables the annotation of an unknown sequence using

a known sequence as a template, showing the di�erences between the aligned sequences.

Alignments can be used to identify regions of similarity that may be a consequence of functional,

structural, or evolutionary relationships between the sequences [225]. If aligned sequences

share a common ancestor, sequence mismatches can be interpreted as nucleotide substitutions.

Gaps can be assigned as insertion or deletions (indels) introduced in one or both sequences

since the divergence of their most recent common ancestor. Highly conserved sequences or

motifs indicate a similar structural or functional importance as their common ancestor.

Pairwise Sequence Alignments

Based on the length of the compared region of two alignments are either global, local or semi-

global. Global alignments attempt to align every residue in every sequence (see Fig. 14A). All

possible alignments are scored based on the needed changes and an optimal set of alignments is

retained. A popular algorithm to compute optimal global alignments is the Needleman–Wunsch

algorithm [226]. The algorithm is based on dynamic programming that relates the optimal
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Figure 14: Overview of di�erent sequence alignment methods. Pairwise (A) global, (B) local
or (C) semi-global alignments are shown. (A) Global alignments attempt to align every residue in
every sequence (end to end alignment) and may end up with multiple gaps if the sequences di�er in
length. A global alignment contains all letters from both sequences. (B) Local alignments find regions
with high similarity between the two sequences. Thus, only substrings of the sequences are aligned,
which helps to identify regions of similarity within long sequences that are widely divergent. (C) A
Semi-global alignment matches a complete sequence to region of the second sequence. Semi-global
alignments are useful, e.g., when one sequence is much shorter than the other. In that case, the short
sequence should be globally aligned but only a local alignment is desired for the longer sequence.

alignment of two sequences a and b to the optimal alignment of subalignments in a repeated

manner. Subalignments are stored in a matrix D as following:

Di,j := max

Y
____]

____[

Di≠1,j≠1 + ”(ai, bj) (Mis)match,

Di≠1,j + ”(ai, “) Insertion,

Di,j≠1 + ”(“, bj) Deletion,

where an entry Di,j represents the best score for aligning the prefixes a1..i and b1..j . The

initialization score for the empty alignment is given by D0,0 = 0. The cost function ” for edit

operations is typically ”(a, b) < 0 for a ”= b, ”(a, b) > 0 for a = b and ”(ai, “) = ”(“, bj) < 0
and which can be determined specifically based on the study. Global alignments are meaningful

if two sequences are similar in their entirety, but fail to discover local similarities.

A local alignment is a matching of similar regions in two sequences (see Fig. 14B). For

its calculation an adaption of the Needleman–Wunsch algorithm has been first proposed by
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Smith et al. [227]. The dynamic programming Smith–Waterman algorithm identifies the

local subsequences that are most similar based on the similarity score. The extension to the

Needleman-Wunsch algorithm is given by the additional case "0". If the score of an alignment

during dynamic programming is < 0 then Di,j = 0 and the alignment start from the beginning.

A tool specially designed for fast local alignments of biological sequences is BLAST. BLAST

uses a heuristic approach that approximates the Smith–Waterman algorithm. It is used to

compare unknown sequences to a large database of annotated nucleic acid or protein sequences

to determine potential homologous sequence a the query sequence [228]. The BLAST algorithm

divides the query sequence q in short words s of length W that are stored in a list l. Each

word is then locally aligned against the database d to detect their alignment hits t. The

resulting segment pairs (s, t) (seeds) are extended with neighborhood words of l as long as

the score ”(s, t) exceeds the threshold T . T displays the best score for shorter extensions. A

seed is called a high-scoring segment pair (HSP) if it is locally maximal and ”(s, t) is greater

or equal to a given minimum score threshold C. The score of the HSPs cannot be improved

by shortening or extending the seed. Finally, all HSPs are reported. BLAST cannot guarantee

optimal alignments of query and database sequences as Smith–Waterman algorithm does.

However, BLAST is much more e�cient (up to 50 times faster) than the Smith-Waterman

algorithm through the seeding [229].

Hybrid methods of local and global alignments are useful to align short sequences to

larger ones. The length of the reference genome surpasses the NGS reads several orders

of magnitude. A semiglobal alignment is able to map the full read to a local position in

the genome (see Fig. 14C). To this end, the Needleman–Wunsch algorithm is modified as

following: D“,“ = 0, D“,j≠1 = 0 and Di≠1,“ = 0 = ”(ai, “) · |i ≠ 1|. This simple modification

of the initialization of the algorithm allows to shift a along the larger sequence b.

Multiple Sequence Alignments

Alignments of more than two biological sequences are referred to as multiple sequence

alignments (MSAs). They are better suited than pairwise alignments to answer evolutionary

questions, as the likelihood of random similarities decreases as the number of aligned sequences

increases. MSAs are more computationally expensive than pairwise alignments and therefore
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require more sophisticated methods than global optimization. To built up MSAs from pairwise

sequence alignments, heuristic approaches have been developed which utilize basic global or

local dynamic programming algorithms. Commonly, these heuristics are based on progressive

alignment techniques [230], e.g., ClustalW [231] and T-coffee [232]. Progressive alignments

are not guaranteed to be globally optimal. If mistakes are made at any stage of the MSA’s

growth, these mistakes are passed on to the end result. Thus, alignment quality can be di�cult

to evaluate and their true biological significance can be unclear [233].

In a first step, progressive alignments built a so-called guide tree in which the relationships

between the sequences are represented as a tree. MSAs are built in a second step, where the

sequences were sequentially added to the growing MSA according to the guide tree. Calculating

the order of the sequences in the guide tree based on an estimated substitution matrix is

the most essential step of the algorithms [234]. Entries in a substitution matrix describe a

relative rate at which one amino acid mutates into another in the course of evolution. The

scoring model of the substitution matrix assigns gap penalties and substitution costs. Scoring

functions can be rather simple by giving a single penalty score per gaps, or more sophisticated

by introducing higher penalties for gap opening than for gap extensions, or by penalizing certain

substitutions based upon biological probabilities [235]. Frequently used substitution matrices

are the blocks substitution matrix (BLOSUM) [236] and the point accepted mutation (PAM)

matrix [237].

5.5.2 Read Mapping

Once the cDNA sequence reads have been filtered to remove aberrant reads, they are mapped

to the reference genome. Read mapping is computationally the most challenging and expensive

step in the RNA-seq data analysis. The enormous amounts of data generated by NGS requires

specifically designed and fast read mapping tools. Basic alignment tools are not suitable for

read mapping of large data. For example, BLAST would take 43 hours to map 10 million 32

bp reads to the reference genome [238]. In contrast, suitable mapping tools need less than 10

minutes for the same amount of data [211].

In case of tRNAs and other repetitive sequences, mapping tools must also deal with reads

which map to more than one location in the genome. The amount of repetitive sequences in
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higher organisms such as human and mouse could be up to 50% of the genome [211]. This

multiple mapping problem may also occur for short and/or erroneous reads [221]. Typically,

mapping protocols accept only reads with map to one position in the genome (unique best

match) and thus almost completely disregard with the multi-mapping ability of tRNAs reads.

The post-transcriptional maturation of tRNAs (see Section 3) also makes mapping challenging.

While the post-transcriptionally spliced-out introns are encoded in the genome, the CCA-ends

are not. The CCA-tail implies up to three mismatches between query and target within only

76 nucleotides, which often exceeds the thresholds for mapping accuracy. The same happens

for most base modifications which a�ect reverse transcription during cDNA synthesis leading

in an incorrect base inclusion. Some tRNA modifications also cause a stop of the reverse

transcription activity, which may result in an increase of very short reads and thus also of

multiple mapped reads. As a consequence, specialized mapping strategies are required to

analyze tRNAs with respect to both their expression levels and the patterns of chemical

modifications.

With growing interest in detecting tRNA modifications by high-throughput sequencing,

these issues have been addressed by using alterations of the reference sequences. Mainly, only a

consolidated tRNA-transcriptome is applied as reference [239–241]. Other mapping strategies

use the complete native genome extended with mature tRNA sequences [242]. Multiple

mapped reads are typically filtered out resulting in a set of only uniquely mapped reads [239].

Another strategy is to apply a “any-best” mapping strategy where only one position of a

multiple mapped read is retained using a mapping tool like Bowtie with option -k 1 [243].

Choosing the right mapping tool is crucial. The mapping tool should be able to handle the

large rates of di�erences between reads and reference genome, the di�erent read sizes, and it

should report every multiple mapped read. There is a large number of mapping tools, but not

all fulfill the requirements of tRNA read mapping. For example the popular tools BWA [244]

and Bowtie2 [243] typically allow only a few errors per read. Bowtie2 is further not suitable

because it is designed to handle reads longer than 50 bp [221]. Some tools, e.g., TopHat [245],

only report one hit per read, regardless of whether several equally good hits were achieved. In

contrast, segemehl [246] allows higher error rates, is able to handle di�erent read lengths and

report all multiple mapped reads of a comparable good score. In a benchmark study of various

mapping tools, including Bowtie2, segemehl, BWA and others, segemehl had the highest
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sensitivity and the lowest number of false-positive hits [247]. Apart from the high memory

requirements, segemehl is suitable for tRNA read mapping.

The mapping tool segemehl uses enhanced su�x arrays (ESAs) [248] to find the best

local alignments of a read. ESAs are used as index structure for the reference sequence such

that occurrences of read alignments can be found e�ciently without scanning the complete

reference. Su�x arrays [249] store su�xes obtained from su�x trees of the reference sequence

in a lexicographical order. A su�x tree [250] is a rooted tree containing all the su�xes of the

given sequence as keys and their positions in the sequence as values. Su�x trees contain Æ n

paths from the root to their leaves where n is the number of characters of the sequence and

each leaf holds one su�x. ESAs are su�x arrays with additional tables that reproduce the

full functionality of su�x trees preserving the same time complexity. The space requirement

in large scale applications, e.g., whole genome analysis, can drastically be reduced by using

enhanced su�x arrays instead of su�x trees [251]. After indexing the reference sequence, the

algorithm searches for all exact and inexact matches of all su�xes of a read. All matching

su�xes are quantified as so-called seeds when a score-based maximum e-value criterion and a

maximum occurrence threshold are reached. Reads are then mapped to all of the corresponding

seed loci in the reference sequence using Myers’ semi-global bit-vector algorithm [252]. Only

mappings with an accuracy above a minimum threshold are reported. Because exact and

inexact matching positions of the seeds are considered, all multiple mapping loci of a read are

returned [246, 253].

5.6 Annotation of tRNAs

In order to assign the mapped reads to tRNAs, the tRNA genes must be annotated to

maintain their genomic position. The most commonly tool used for predicting tRNA genes is

tRNAscan-SE which is based on heuristic search algorithms [254, 255]. In the initial first-pass

scan, tRNAscan-SE uses the tool Infernal [256] to search for tRNA-like structure and

sequence similarities in the reference sequence. Infernal implements a special case of profile

stochastic context-free grammars called covariance models (CMs) [257, 258]. A CM is similar

to a sequence profile, but combines an RNA secondary structure consensus in addition to the

sequence consensus. Typically, CMs contain a consensus based on sequence and structural
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alignments (or single sequences and structures) generated from a variety of RNAs with specific

characteristics in order to obtain high sensitivity. They capture position-specific information

about how conserved each column of the alignment is, and which residues are likely. In CMs

basepaired positions are considered in relation to each other allowing Infernal together with a

position-specific scoring system to identify also RNA homologous where the secondary structure

is more conserved then their primary sequence. Candidates detected in the first-pass scan are

then rescanned in a second-pass scan of the tRNAscan-SE algorithm. The second-pass scan

also uses Infernal, but with a higher score threshold than the first-pass, to increase selectivity

and alignment accuracy. In the second-pass scan the CMs must only analyse a small fraction

of the total sequence, greatly improving the search speed [254]. tRNAscan-SE uses heuristics

to try to distinguish pseudogenes from true tRNAs, primarily on lack of tRNA-like secondary

structure features and a relatively weak overall score [255]. This is important especially for

many mammalian genomes that are known to have a variety of non-functional tRNAs, like

short interspersed nuclear elements (SINEs) where the internal regions originate from tRNA

and remain highly conserved [188].

Initially, tRNAscan-SE was designed to identify bona fide tRNAs with nearly perfect

accuracy in the genomes of eukaryotes and prokaryotes [255]. This is possible due to the

strong sequence conservation and preservation of a common structural layout in canonical

tRNAs (see Section 2.1). As an additional feature, the tool enables maximal search sensitivity

for low-scoring canonical-like tRNA sequences, but at the expense of runtime. This search

strategy can be applied to bizarre mitochondrial tRNAs (mt-tRNAs) (see Section 2.2), since

structural deviations sometimes lead to the complete absence of entire stem-loops in comparison

to the canonical cloverleaf-like secondary structure.

Other tools such as AWEN [259] and MitFi [23] were explicitely developed to solve the

computational challenging problem to annotate bizarre mt-tRNAs. ARWEN searches for well

conserved anticodon stem structures and subsequent evaluates possible flanking dihydrouridine

(D)- and T�C (T)-stem structures considering base pairing interactions. The evaluation also

provides possible inferences about the existence of an anticodon stem. ARWEN is limited to

the fact that at least three out of four stems of the canonical structure must be present.

In addition, ARWEN buys its increased sensitivity at the expense of a high false detection

rate [259]. MitFi invokes Infernal to search for mt-tRNAs in the mitochondrial genome
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using specialized covariance models for each of the 22 mt-tRNAs and for some of the bizarre

mt-tRNA structures. For all Infernal hits, MitFi attempts to predict an anticodon. The

number and length of interior stems and loops is then evaluated. An advantage compared to

AWEN is that MitFi can recognize structures in which more than one stem is missing. MitFi

is more sensitive than AWEN reaches the same precision as tRNAscan–SE.

Currently, no comprehensive annotation of nuclear-encoded mitochondrial-derived tRNAs

(nm-tRNAs, see Section 2.3) is available. Only a single nm-tRNA annotation strategy was

published [24, 57]. This strategy is based on a BLAST search (see Section 5.5.1) of the known

nuclear and mitochondrial tRNA sequence against the nuclear genome. Hits that match to

interspersed repeats or annotated tRNAs are removed. Consequently, only nm-tRNAs with high

sequence conservation to mt-tRNAs can be annotated this way. Since structural conservation

is not included, nm-tRNAs that have diverged at the sequence level but may have retained

tRNA-like structures are not annotated. Further analysis strategies are necessary to obtain an

almost complete set of nm-tRNAs.

5.7 Detection of tRNA Modifications in RNA-seq Data

Nucleotide modifications (see Section 3.5) may a�ect reverse transcription and thus become

visible in RNA-seq data sets in di�erent ways (see Fig. 15). While several modifications do

not cause any changes in the cDNA, other modifications result in a position-specific increase in

the rate of sequencing errors. It is also possible that a modification blocks the complementary

base-pairing interaction during cDNA synthesis which is visible as an accumulation of read

terminations (RTs) at the position before the modified base [260, 261]. By stopping the

reverse transcriptase it can also lead to a faulty nucleotide incorporation at the read stop [262].

These events constitute the so-called reverse transcription signature which varies with the

modification type and with the used reverse transcriptase.

The 1-methyladenosine (m1A) modification is the most prominent one which is directly

visible as conspicuous accumulation of mismatches in RNA-seq. It has been reported that this

particular modification of adenine (A) is typically interpreted by the sequencer as an A-to-T

(thymine) transversion (purine is changed for a pyrimidine) or an A-to-G (guanine) transition

(purine is changed for another purine) [263].
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reverse transcription stop:
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Figure 15: Di�erent types of reverse transcription signatures. Di�erent types of reverse tran-
scription signatures are shown that arise from specific transfer RNA (tRNA) modifications (red dot)
a�ecting reverse transcriptase during complementary DNA (cDNA) synthesis. While several tRNA
modifications do not cause any changes in the cDNA (A), others become visible after read mapping as
position-specific increase of base misincorporations (R) (B). Other tRNA modifications block reverse
transcription activity and are detectable as an accumulation of apparent read terminations (RTs) (C).
RTs occur one position before the modified base. In some cases an additional mismatch is added to
the RTs.

A-to-I (inosine) editing is also directly visible in RNA-seq data. While a non-edited A pairs

with a T during reverse transcription, I pairs with C (cytosine) so that it can be detected as an

apparent A-to-G mismatch by comparing RNA and DNA sequence [264]. Other modification

such as 1-methylguanosine (m1G), N2-methylguanosine (m2G), N2,N2-dimethylguanosine

(m22G) also show increased error rates in RNA-seq data. It was also reported that modifications,

e.g., m1G, m2G, m22G, 3-methylcytidine (m3C) and m1A lead to premature RTs [242, 265].

An overview of common tRNA modifications and their reverse transcription signatures is given

in Suppl. Tab. B2.

A general problem in using RNA-seq to detect modifications is the need to distinguish

modifications from other sources of disagreement between read and reference sequence.

Usability of reverse transcription-based methods to detect modified nucleotides depends on

several parameters. Pyrimidine and A bonds (C–A and U–A) are very sensitive to nuclease

cleavage and the characteristics of the RNA secondary structure could also lead to RTs. The

presence of RTs does not necessarily indicate a modified residue [262]. Other errors further
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complicate the identification of modifications, e.g., polymerase chain reaction (PCR) errors

accumulate during amplification and incorrect nucleotides are called during the sequencing

step. After read mapping to the reference sequence, these errors are visible as mismatches

or indels (insertions or deletions). Additional mismatches and indels may occur during read

mapping due to alignment errors and the genome sequence itself. Since these errors cannot

be fully controlled when preparing the library, sequencing and read mapping, noise must be

separated from true signals during the modification calling step [266].

To call only true signals and filter noise, general purpose variation callers have been

developed, e.g., bcftools of the samtools suite [267, 268] and GATK [269]. Both tools

are designed to call for genetic variants from next-generation sequencing (NGS) data and

apply probabilistic variant calling methods. However, these tools can also be employed to

identify genomic positions with increased levels of sequence variations. In brief, a probabilistic

algorithm is a combination of a Bayesian model [270] and a Maximum Likelihood approach to

calculate posterior and error probabilities of the variant. Bayes’ formula is applied to calculate

the posterior probability of the genotype at a particular site based on the read data. Usually,

the genotype with the highest posterior probability is chosen. This probability is used as a

measure of confidence. In order to separate true variants from errors, likelihoods of genotypes

can be calculated from the quality values (Phred quality score) of the reads provided by the

sequencing platform, taking into account the expected error rate for each individual read at a

location [271]. Quality scores of all reads at the particular site are rescaled and the genotype

likelihood is calculated directly by the product of the probabilities of the genotype of each read.

Another technique that has successfully been incorporated into error models is per-base quality

recalibration using empirical data [272]. During quality recalibration error rates are calculated

based on prior knowledge about error patterns for each possible nucleotide substitution [273].

A tool specifically developed for the identification of RNA modifications by reverse tran-

scription misincorporation sites is HAMR [261]. HAMR tests for high confidence (quality score

>30, error probability <1/1000) mismatches and for significance by ruling out that the changes

are merely sequencing errors and by excluding genetic variants or editing sites. In addition, the

tool characterizes the identified modification sites based on the entries in the tRNAmodviz

database [119].
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While some modifications directly a�ect reverse transcription activity, other modifications

require a preliminary chemical treatment to become visible (see Suppl. Tab. B2). A chemical

treatment of RNAs converts an originally modified nucleotide to a di�erent form that can

be detected via sequencing. Mainly, the treatments can lead to a conversion of the modified

nucleotides such that they can be processed by the reverse transcriptase. Other treatments

also induce a block of the primer extension by the reverse transcriptase. As result the read-out

of the treated nucleotide is di�erent to that untreated sample. Thus, modifications can be

detected by comparing the treated to the untreated samples. Nevertheless, it is often di�cult

to distinguish modifications, which are directly visible via mismatches, and experimental noise.

This is the case when the frequency of modifications is low or the sequencing coverage is

limited. To overcome this issue specific chemically treated RNA-seq data can also be used.

Various RNA-seq protocols which depends on chemical treatment have been developed

to detect RNA modifications. For example bisulfite sequencing uses a bisulfite treatment

of RNA or DNA before routine sequencing resulting in a specific read-out [274–277]. The

bisulfite treatment converts all cytosine (C) residues to uracil (U), but leaves 5-methylcytidine

(m5C) residues una�ected (see Fig. 16A). Thus, only m5C residues are still readable as C

after sequencing.

Apart from nucleotide transformation, various chemical treatments for modification-specific

generation of RTs are developed. For example, base-pairing properties of pseudouridine (�)

do not di�er from standard uridine which can only be recognized by introducing a chemical

modification. Carbodiimides like 1-cyclohexyl-(2-morpholinoethyl)carbodiimide metho-p-

toluene (CMCT) are used to acylate one of the nitrogen positions of the base which results in

�-CMC adducts that block reverse transcription [166, 169], see Fig. 16B. Extended alkaline

treatment hydrolyses uracil-CMC adducts, while �-CMC remains intact allowing the specific

detection of �. Further, hydrazine-mediated cleavage facilitates reliable identification of m3C

residues [264] depicted in Fig. 16C. The treatment induces a breakage of the RNA backbone

by cleavage of both U and m3C, while unmodified nucleotides do not break. Finally, an

accumulation of apparent RTs can be found for U and m3C. Another example is a sodium

borohydride (NaBH4) treatment which reduces the stability of the saturated pyrimidine ring

found in D. The product of D reduction is an open pyrimidine ring that is no longer able to base

pair with any other nucleotide. The ring cleavage is followed by a breakage of the RNA chain
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Figure 16: Specific chemical treatments for modification detection. (A) Detection of 5-
methylcytidine (m5C) by bisulfite treatment. Addition of bisulfite (HSO3

≠) to RNA leads to
deamination of cytosine to uridine. Based on the resistance of m5C to deamination reactions,
sequencing after bisulfite treatment will reveal m5C residues as cytosine signals. (B) Identification
of pseudouridine (�) by 1-cyclohexyl-(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate
(CMCT) treatment. When RNA is treated with CMCT, the N3 of � is acetylated, resulting in a
�-CMC adduct. Adducts block reverse transcription and become visible in RNA sequencing as read
terminations (RTs). (C) Chemical reaction for 3-methylcytidine (m3C) detection. Hydrazine-mediated
treatment induces a breakage of the RNA backbone by cleavage of both uracils and m3Cs. An
accumulation of apparent RTs is finally found for m3C and uracil.

(see Fig. 17A) which facilitates position determination by reverse transcription [262]. Detection

of 7-methyl-guanosine (m7G) can be additionally achieved by using NaBH4 treatment. m7G

reduction by NaBH4 leads to the formation of a basic site in RNA followed by the cleavage of

the RNA chain by —-elimination as depicted in Fig. 17B.

Instead of inducing read stops, one can also generate the production of complete cDNAs

of modification which shows (low) RTs even in untreated samples. In AlkB-facilitated RNA

methylation sequencing (ARM-seq) [242] and Demethylase-thermostable group II intron RT

tRNA sequencing (DM-tRNA-seq) [265, 278], a treatment by the dealkylating enzyme E. coli

AlkB demethylates m1A, m1G and m3C. Demethylating results in the production of full-length

cDNAs, while the untreated sample shows RTs.
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A

B

7-methyl-guanosine

Figure 17: Sodium borohydride treatments for modification detection. (A) Sodium borohydride
(NaBH4) treatment for dihydrouridine detection. Cleavage of the dihydrouridine ring upon reduction
by NaBH4 is followed by a breakage of the RNA chain which facilitates position determination of
dihydrouridine by reverse transcription. (B) 7-methyl-guanosine modifications are frequently present
in the variable region of tRNAs. Its detection can be achieved by aniline-induced cleavage of the RNA
chain by —-elimination after its reduction by NaBH4.
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The reconstruction of detailed evolutionary histories of gene families is a prerequisite for dating

and understanding innovations, for example see Capra et al. [279] and Holland [280]. It plays an

important role in the emerging field of forward genomics [281]. Of particular importance is the

distinction between orthologs and paralogs [203], see Chapter 4. Orthology detection is usually

based on evolutionary distances that are estimated from sequence similarities, and proceeds

either directly using a “reciprocal best match” approach [282] or indirectly by computing a

gene phylogeny and its reconciliation with the species tree (see Kristensen et al. [283], Dalquen

et al. [284], and Altenho� et al. [285] for reviews). Both approaches make the assumption that

distinct genes evolve essentially independently, so that their evolutionary distance is strongly

correlated and thus can be inferred from sequence similarity. In the case of concerted evolution,

however, this is not possible because the sequences of the family members within each species

are essentially identical [286]. Even paralogs that have escaped concerted evolution carry no

informative signal about the time before their escape.

Consequently, a completely di�erent approach is required. The most reliable alternative

source of information is syntenic conservation, i.e., preservation of relative positions within the

genomic DNA sequence. It was exploited in Rogers et al. [196, 197] to devise a strategy in

which the query tRNA is embedded in intervals of flanking sequences whose size is increased

until a unique BLAST match (see Section 5.5.1) in the target genome is found. In this manner,

an approximation to orthology is obtained. By the time the uniqueness condition is satisfied,

intervals may extend across entire transfer RNA (tRNA) clusters, calling for methods to further

refine the orthology assignments.

In the following section our developed concept for synteny-based orthology identification is

described, which is more systematic than previous studies as explained above. Our concept is

based on Velandia-Huerto et al. [376] titled by Orthologs, turn-over, and remolding of tRNAs

in primates and fruit flies. Their implementation and applications are described in Section 7.4

and Chapter 11, respectively. The biological background about synteny-based tRNA events is

given in Chapter 4.
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6.1 From Synteny to Candidate Orthologs

We consider a set � of species or genomes. Each genome a œ � comprises a discrete set of loci.

Genomic coordinates establish an order relation ª among loci. Since genetic elements have

an intrinsic reading direction the order ª is either the same or the inverse of the coordinate

system. We write ūa for the reverse complement of locus ua on genome a. Note that ua ª va

is equivalent to v̄a ª ūa. Since the reverse complement of a locus is also a valid locus we

arbitrarily choose the orientation.

For a subset of loci we assume that they evolve independently by vertical inheritance and

are not subject to duplication (see Chapter 4) in the set of species under consideration. We

say that two tRNAs ta and tb in genomes a and b, respectively, are 1 : 1 orthologs, if ta is the

only ortholog in genome a of tb in genome b, and vice versa. Therefore we can compute 1 : 1
orthologs of pa in a set of species �p ™ �. We will refer to such a set of orthologous loci

p = {pa|a œ �p} as an anchor. An anchor p may connect all or only a subset �p ™ �. The

orthologs within an anchor are defined to be oriented in the same reading direction. Therefore,

if p and q are anchors with pa ª qa then pb ª qb for all a, b œ �p fl �q. That is, we assume

that anchors preserve synteny including relative reading direction in the set of genomes of

interest. We can therefore write p ª q.

Now we consider a set T of loci of interest; in our case tRNAs. None of the ta œ T gives

rise to an anchor, i.e., we assume that the multiple, nearly identical sequences are present in

the genome. We make two basic, simplifying assumptions:

(S1) There are anchors p and q such that pa ª ta ª qa.

(S2) A pair of anchors can be chosen such that the relative order of homologous loci

is preserved between p and q.

Both assumptions are approximations to reality. Condition (S1) stipulates that the locus ta of

interest is not too close to the end of a contig, sca�old, or chromosome. It will be violated

essentially by incomplete data and flaws in genome assemblies. Condition (S2) is a more

severe restriction. It allows only unduplicated vertical inheritance and tandem duplications of

individual loci. It explicitly rules out genome arrangement between anchors su�ciently close to

the locus of interest and also neglects tandem duplications a�ecting more than a single gene.
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t

p(t) g(t)

species a

species b

Figure 18: Scheme of tight anchors for the loci of interest. Possible anchors (grey) and tight
anchors (purple) for t

a (red bordered circle) into species b are indicated in boxes. The tight anchors
are the anchors closest to t that connect species a and b. By synteny, the only possible orthologs of t

are the two tRNA loci indicated by the white bordered circles.

In essence it forces us to treat a multi-locus tandem duplication as if it was a combination of

unduplicated vertical inheritance combined with the insertion of the second copy of pair.

6.1.1 Determining of Tight Anchors

Condition (S1) allows us to obtain initial candidates for orthology assignments. We assume

that they have a set of homologous elements Ta for each genome a œ �. If p and q are

anchors with pa ª ta ª qa then any tÕ œ Tb with tÕ ª pb or qb ª tÕ cannot be co-ortholog of

ta in genome b.

Practical di�culty is that in general we might not have anchors that cover all species of

interest but only a subset of them. For any “query” locus ta and any species b œ �, b ”= a we

therefore define a pair of tight anchors for ta into b as a pair of anchors pb(ta) := {pa, pb}

and qb(ta) = {qa, qb} such that (i) pa ª ta ª qa and (ii) the pair (pb(ta), qb(ta)) is minimal

in the sense that there is no further anchor u = (ua, ub) with pa ª ua ª ta or ta ª ua ª qa,

see Fig. 18.

Under our assumption (S1), there is a unique pair of tight anchors of ta into b for every

b œ �. In practice, however, there may be exceptions: in the case of genome arrangement or

a fragmented genome assembly the anchor points pb(ta) and qb(ta) may be located on very

far apart or even on di�erent chromosomes, contigs, or sca�olds. Condition (S2), or even a

much weaker locality assumption, implies that only the homologs tÕ œ Tb enclosed by the pair

of tight anchors for ta are possible co-orthologs of ta in genome b.
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The exact nature of the anchors is irrelevant. In a very conservative approach, known

sets of orthologous protein-coding mRNAs can be used. If a more fine-grained resolution is

desired, one can use e.g., blocks of genome-wide multiple sequence alignment (MSA). Since

our method relies on the use of multiple whole-genome alignment blocks, the following section

describes the basic procedure to create such alignments blocks using the MULTIZ software.

Multiple Whole-genome Alignments as Tight Anchors

The task of calculating MSAs of entire genomes is associated with a multitude of new challenges

for alignment methods (see Section 5.5.1) due to extreme long genome sequences which

are highly heterogenous in function and conservation rate. In addition, possible duplication

(repetition of a sequence segment), inversion (reversed sequence segment), and translocation

(sequence segments have been exchanged between distant parts) events have to be considered.

A popular tool for multiple whole-genome alignments is MULTIZ [287]. Before the MULTIZ

software can be used, the whole genome alignment problem have to be splits into a set

individual distinct local alignment blocks. A block is an optimal alignment between two or

more genome sequences. A designated “reference” sequence, is present in each block of a

set referred to as ref-blockset. Each position of the reference sequence appears exactly once

throughout the ref-blockset, averting overlapping regions between blocks. To overcome this

issue, the threaded blockset aligner (TBA) software can be applied. TBA computes the alignment

blocks under the assumption that the matching regions occur in the same order and orientation

in the given sequences. The MULTIZ program dynamically performs the alignment for three

or more sequences (ref-blocks), based on pairwise alignments generated by BLASTZ [278].

One of the biggest di�erences to a conventional alignment program is that MULTIZ is able

to merge two existing MSAs (sets of blocks) into one larger MSA (see Fig. 19) instead of

just aligning individual sequences. The software treated the MSAs as sequences for which a

pairwise alignment is generated algorithmically similar to the progressive methods described in

Section 5.5.1. For a detailed description of the algorithm, see Blanchette et al. [287].
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Figure 19: Merge of aligment ref-blocks by MULTIZ. A human ref-blockset BS based on a pairwise
alignment generated by BLASTZ guided the merge of the human ref-block H and the cat ref-block C

into a new multiple sequence alignment HC. HC contains all sequences from both ref-blocks H and
C. Reference species are written in bold letters.

6.1.2 Candidate Graph Construction

From the sets of homologous loci T a and a collection of anchors on � the candidate graph �c

can be construct as follows. The vertices �c are the annotated homologs, i.e., T =
t

aœ� Ta.

An edge between ta œ Ta and tb œ Tb is inserted if pb(ta) ª tb ª qb(ta), i.e., if tb is located

between the pair of tight anchors from ta into b. In order to accommodate some local inversions

and/or assembly errors one might want to relax this definition and to draw an edge between

ta and every locus t œ Tb so that pb(ta) ª t ª qb(ta) or pb(ta) ª t̄ ª qb(ta). By construction,

the true orthology relation is a sub-graph of �c, see Fig. 20A. Its nodes are the tRNAs and

there is an edge between two tRNAs if they are possibly orthologuous, thus if they are flanked

by the same tight anchors and belong to distinct species.

The graph �c is not su�cient to completely solve the orthology problem because in

general two tRNA loci ta
i and ta

j will not be separated by anchors. The available anchors in

fact may enclose entire tRNA clusters (see Fig. 18). For tRNAs, however, we can clearly

distinguish subgroups by sequence similarity. In particular, tRNAs of di�erent isoacceptor

families (see Section 1.1) and within these, most subgroups with distinct anticodons, exhibit

clearly separate sequences. We therefore can prune the edge set of �c by removing all edges

that connect tRNA loci with clearly distinct sequences. We therefore require that the genetic

distance satisfies dG(ta
i , tb

j) < Á for all edges of the pruned candidate graph, which we denote

by �a, see Fig. 20B. The threshold Á can be chosen as an upper bound on divergence of

genes in phylogenetic range of interest.
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A B C

Figure 20: Step-wise refinement of the candidate graph �c. (A) The graph �c represent the
possible orthology assignments among tRNA loci derived from the synteny anchors. Only genes from
di�erent species can be orthologs, hence no edges connect loci in the same species. (B) Based on
sequence similarity edges are removed between tRNAs from di�erent isoacceptor families. (C) A
modified Needleman-Wunsch alignment algorithm is used to identify order-preserving subgroups. This
step admits local tandem duplications but not duplications of larger subclusters. Species abbreviations:
human, Homo sapiens: Hsa; rhesus macaque, Macaca mulatta: Mmu; gibbon, Nomascus leucogenys:
Nle; chimapanzee, Pan troglodytes: Ptr. tRNA isoacceptor classes abbreviations: alanine: Ala;
lysine: Lys.

6.2 Order Preservation within Clusters

Assumption (S2), stipulates that co-orthologous loci preserve relative order. In the context of

tRNA clusters, this amounts to the assumption that tRNAs within a gene cluster proliferate

by means of single gene tandem duplications or by retroposition-like insertions.

The relationship between clustered tRNAs in two species corresponds to a generalized

version of an alignment problem. In order to see this, it is necessary to consider each tRNA

cluster as an ordered list of tRNAs and tRNA pseudogenes ta
i and tb

j in the two genomes a

and b. For the sake of the argument, it makes sense to first neglect gene duplications and

consider insertion, deletion, and remolding only. In this case the correspondences between

orthologous loci form an order-preserving matching in the induced subgraph of �a restricted

to every pair of species. This amounts to an alignment of the tRNA loci in Ta with those in

Tb with alignment edges allowed only between loci that are connected by an edge in �a.

6.2.1 Modified Needleman-Wunsch Alignment to Account for Duplications

In order to account for local, i.e., order-preserving duplications an alignment model (see Sec-

tion 5.5.1) can be simply extended. In the usual setting of matchings, one locus ta
i can match
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at most a single locus tb
j . Otherwise one of ta

i and tb
j is deleted. This is called a 1 : 1 alignment.

In the simplest extension also 1 : 2 and 2 : 1 matches are allowed, i.e, two positions (ta
i , ta

i+1)
may collectively match a single position tb

j , or vice versa. More generally, p : q matches may

be considered. Such extensions to one-to-many or many-to-many matches lead to a quite

simple modification of the Needleman-Wunsch [226] algorithm.

As stated above, condition (S2) is a restrictive approximation that rules out tandem

duplications of subclusters larger than a single locus as well as any local genome rearrangements.

More inclusive assumptions could be made instead. The full duplication-loss alignment problem

that allows copying of subclusters of arbitrary size is approximable hard [288], but a practicable

dynamic programming heuristic is available [289]. Recently, it was extended further in

OrthoAlign to include also genome rearrangements [290]. In principle these approaches could

be substituted into our workflow.

A simpler model can be used (see Fig. 20C) since it avoids the problem of estimating

weight parameters for complex duplications and rearrangements operations. As an alternative

to alignment-like approaches for disentangling the history of individual loci it may also be

fruitful to consider generalizations of gene order methods.

6.2.2 Estimation of Orthology Graph

The alignment edges predicted by the pairwise generalized alignment algorithm serve our

best estimates for the orthology relation. For 1 : 2 duplications an edge is inserted from

the “original” to both “copies”; in the more general case of p : q duplications, we accept all

edges of the complete bipartite graph corresponding to the p : q duplication. Superimposing

all pairwise alignments yields the estimated orthology graph �o, conceptually shown in the

bottom row of Fig. 21. It contains only edges between tRNAs that can be orthologs according

to their sequence similarity, and all connected components of �o are order preserving since

their edges result from the order-preserving alignment step. By construction �o is a spanning

subgraph of �a, which in turn is a spanning subgraph of the initial candidate graph �c. In

general, �o will consist of many small connected components, each comprising members of a

single tRNA family that locally has expanded and contracted by duplication and loss events.
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Figure 21: Scheme of step-wise orthology identification. Top: Genomic organization of tRNAs
(colored symbols). Possible anchors (grey) and tight anchors (purple) are shown as boxes. Anchors
are defined based on unique sequence alignment blocks. These anchors subdivide the genome into
syntenic clusters forming the connected components of the graph of candidates �c, here shown for
blocks of a genome-wide alignment as delimiters. Each cluster forms a connected component of �c.
Bottom: Pairwise generalized list alignments lead to an estimate of the co-orthology relation for each
group of homologous tRNAs. Each of these estimated graphs is then corrected to the nearest cograph.

6.3 Cographs and Orthology

Recent results in phylogenetic combinatorics [291–296] show that orthology relations are

cographs. There are many equivalent characterizations for this well-studied class. In particular,

G is a cograph if it does not contain a P4, a path on 4 vertices, as an induced subgraph [297].

In particular, complete graphs are cographs. A cograph is associated with a unique cotree,

which corresponds to the (not necessarily fully resolved) gene tree with labels at the interior

vertices that identify speciation and duplication events, respectively [291, 292].

We expect that �o is already a very good approximation to tRNA orthology. Various

sources of noise, however, will introduce violations of the cograph structure. Therefore, the

orthology estimates can be improved further by editing �o to the nearest cograph. This

amounts to inserting and deleting the minimal number of edges so that all P4s are destroyed.

Although the cograph editing problem is nondeterministic polynomial time (NP) hard [298],

this is not a practical problem here. It is not di�cult to see that the connected components

Ci of �o can be edited independently of each other [292]. Empirically, we observe that most

connected components of �o are complete graphs and this already correct cographs.
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From the final, corrected orthology estimates Ĉi it is now straightforward to infer the

evolutionary events. The cographs Ĉi themselves provide direct information on the tandem

duplication events. To this end it su�ces to convert the Ĉi into its equivalent cotree [297],

from which the duplication events can be directly read o�. Deletion events as well as gain

events in which a particular locus was settled can be obtained by assigning each of the Ĉi

to the species tree. A Dollo parsimony (see Farris [299] for algorithmic details) approach

to derive the numbers of gain, losses, and duplications from the co-ortholog groups can be

applied. Here, duplication events identified from the cographs Ĉi can be counted separately

from gains.



Part III

Methodology
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7.1 Annotation of tRNAs

Cytosolic transfer RNAs (tRNAs, see Section 2.1) were annotated with tRNAscan-SE v2.0 [255]

(see Section 5.6) using the default model for eukaryotes or bacteria. For the mitochondrial

tRNA (mt-tRNA, see Section 2.2) annotation the -M option was applied additionally.

The secondary structure predicted from tRNAscan-SE depict only tRNA stem and loop

structures in dot-bracket annotation with missing information about the exact nucleotide

position in the partially present regions. For the unambiguous assignment of each tRNA

position, especially those that are only partially present, nucleotides must be fitted to the

standard tRNA model. The standard tRNA numbering system has been developed by Sprinzl

et al. [300] and is shown in Fig. 22. Apart from a few known exceptions, the standard tRNA is

numbered from 1–76 and depicts nucleotides present in each tRNA structure. Aside from the

partially present positions located at the 5’-end (position 0), in the dihydrouridine (D)-loop

(positions 17a, 20a and 20b), and in the variable loop (V-loop, position 47), a variable arm is

located between nucleotides 45 and 46 obeying the base-pairing rules. The numbering of the

nucleotides in the variable arm positions begins with the letter “e” followed by the numbers 1

to 5 in the loop region. To indicate base-pair formation “e” is followed by 11 to 17 at the

5’-branch and 27 to 21, in the reverse order at the 3’-branch [300].

In order to fit tRNAs to the standard tRNA model, the annotated tRNA sequences were

aligned against the database entries of the tRNAdb database [301] containing the missing

secondary structure notation. BLAST v2.4.0 [228] was used for sequence alignment and only

those tRNA database entries were selected that showed the closest evolutionary similarity to

the annotated tRNAs (see Section 5.5.1). Due to the high evolutionary distance of some

tRNAs to the database entries, the notation of some tRNAs had to be adjusted manually

based on the base pair rules.

7.2 Mapping of tRNA Reads

7.2.1 Data Pre-Processing

To trim adapter sequences and low quality portions of raw reads, di�erent read trimming tools

were applied depending on the underlying next-generation sequencing (NGS) method (see Sec-
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dihydrouridine
arm

Figure 22: Standard tRNA numbering system. Canonical transfer RNA (tRNA) cloverleaf secondary
structure with the standard nucleotide numbering system. Black circles are always present nucleotides
numbered from 1 to 76. Gray circles are not present in each tRNA structure which are at position 0
(5’-end), position 17a, 20a and 20b (dihydrouridine arm), position 47, and a variable arm located
between nucleotides 45 and 46 (variable loop). The numbering of the variable arm starts with the
letter “e” followed by the numbering 1 to 5 in the loop region, by 11 to 17 at the 5’-branch, and 27
to 21, in the reverse order at the 3’-branch. The second digit identifies the base-pair of the variable
stem. Red circles represent the anticodon.

tion 5). In our analyses based on open source ribo-minus RNA sequencing (rmRNA-seq) data,

we used BBDuk from the BBMap toolkit v36.14 [302] with a k-mer size of ten allowing to use

shorter 8-mers at the end of the read and a Hamming distance of one. To pass the determined

quality filter, read quality needed to surpass a Phred score of 25 and achieve a minimal length

of 50 nt and a maximum length of 100 nt after trimming of adapter and low quality bases.

Using our own transfer RNA (tRNA)-enriched RNA sequencing (RNA-seq) data (see

Chapter 9 and Section 10.3), BBDuk resulted in insu�ciently trimmed reads which probably
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occurred due to our custom primer structure. Thus, after testing of di�erent trimming tools,

the straightforward tool Cutadapt v1.16 [303] produced comparatively good results. Here, a

quality cuto� of 25 is also defined and a maximum error rate of 0.15 allowed. As the used

reverse transcriptase reacts sensitively to tRNA modifications, the reads can be very short.

To capture these short reads as well, reads of 8 to 95 nts length after trimming of adapter

and low quality bases were selected. FASTQC v0.11.4 [304] was applied for standard pre- and

post-trimming quality control for all samples.

7.2.2 tRNA Library Preparation and Genome Pre-Processing

Two di�erent tRNA libraries were generated from the annotated tRNA genes, with the omission

of pseudo-tRNA genes, in order to create precursor tRNAs (pre-tRNAs) and mature tRNA

sequences (see Chapter 3). For the pre-tRNA library, 3’- and 5’-genomic flanking regions were

extracted from the genome with BEDTools v2.25.0 [305] and added to the corresponding

tRNA sequence in order to simulate the elongated 5’-leader and 3’-trailer sequences. The

mature tRNA library was created by appending 3’-CCA tails to the tRNA genes. Intronic

sequences were removed from both libraries.

Based on the multiple copies of tRNA genes with many identical and nearly identical tRNA

genes (see Section 4), tRNAs of the same type were clustered according to identity thresholds

of 97%, 98%, and 100%. A consensus sequence for each cluster was constructed. We applied

usearch, v9.2.64, [306] which is a centroid-based greedy algorithm (for algorithmic details

see Edgar [306]), for the tRNA clustering.

All annotated tRNA genes, including pseudo-genes and sequence regions identical to

annotated tRNAs, were masked in the native reference genome applying BEDTools v2.25.0.

The pre-tRNA sequences were appended as additional “chromosomes” to the tRNA-masked

genome which is now referred to as artificial genome.

7.2.3 Read Mapping and Filtering

To permit error-tolerant mapping and keeping track of “all best” alignments, reads were aligned

to the artificial genome using segemehl v0.2.0-418 (see Section 5.5.2) requesting a minimal

accuracy of 80% (allowing up to 20 mismatches for a 100 nt long read). Anticipating a high
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density of modification-induced mismatches and short reads due to the nature of tRNA or read

terminations induced from the reverse transcriptase, we opted for a reduced mapping sensitivity

at the expense of longer computation time: we allowed a maximum of 3 mismatches in the

seed regions, increased the e-value cut-o� to 500 for seed extension, and considered at most

1000 mappings per seed. Reads that do not map the concatenated pre-tRNA chromosomes

of the artificial genome or reads which map to the remaining tRNA masked genome were

filtered out, respectively. Reads of possible pre-tRNA origin were selected by identifying reads

which partly align to the flanking regions of the pre-tRNA chromosomes, tolerating the CCA

overhang of mature tRNA reads.

The remaining reads were mapped in a subsequent step against all mature tRNA sequences.

In another variation not all tRNAs were added, but only clusters of more or less similar (97%,

98%, and 100%) sequences were used as reference sequences. Those two methods were called

unclustered and clustered, respectively. segemehl was again used for the mapping with the

same custom parameter settings as in the first mapping step, except for 85% mapping accuracy.

These settings lead to best results and accurately map reads while preserving modifications.

In the first mapping step, which acts as a filter to remove reads that do not map within

the defined boundaries of mature tRNAs, the reduced accuracy is required to keep the false

negative rate low. Finally, reads with mismatches in the CCA tail were filtered out, since there

can also be possible pre-tRNA sequences. An additional filter step was applied for RNA-seq

data which exhibits specific enrichment and selection of tRNA sequences (see Chapter 9 and

Section 10.3). Here, depending on the adapter ligation protocol, the tRNA sequences are

sequenced beginning either from the 5’- or, in our case, from the 3’-end. Thus, reads which

do not map to the 3’-end or the CCA tail are discarded to further minimize false hits. Finally,

to analyze the true origin of the mapped reads, we applied three di�erent read filter strategies:

all were all score-optimal alignments of a read were considered,

phased a middle-ground strategy that allows also multiple mapping reads only if they

show exactly the same misincorporation pattern for all alignment positions and

unique only uniquely mapped reads were retained, i.e., those that have a unique score-

optimal alignment to the reference genome.
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7.3 Detection of Modification Sites in tRNAs

7.3.1 Identification of Significant Base Misincorporation Sites

For the detection of tRNA modification (see Section 3.5) which are directly visible as accu-

mulation of nucleotide mismatches in mapped reads it is important to distinguish random

sequencing errors and mapping artifacts from true misincorporation sites (see Section 5.7).

For this purpose we applied three di�erent modification site calling approaches after read

mapping (see Section 7.2):

(i) our ad hoc Pfropfen variant caller [397],

(ii) GATK’s UnifiedGenotyper v3.6-0-g89b7209 [269],

(iii) bcftools with the mpileup and call option v1.8 [268].

We tested our custom Perl implementation Pfropfen because we expected that random

incorporated bases would produce sequencing patterns that are systematically di�erent from

those produced by single nucleotide polymorphisms in large cohorts of individuals. There is no

reason to assume that variation calling algorithms expecting polymorphism data as input would

perform particularly well with sequencing errors introduced by chemical modifications. Therefore

we aimed to call modification sites exhibiting more errors than expected for several substitution

events. To this end, we independently tested for each site whether for a given substitution it

occurred more often than expected by chance. The background distribution of the misincorpo-

rations is assumed to resemble a binomial distribution. The p-values obtained in this manner

are merged over all replicates, using Fisher’s method, resulting in a merged p-value for each site

which was corrected for multiple testing [307]. The implementation of Pfropfen can be found

at https://github.com/fabou-uobaf/Helferlein/blob/master/Pfropfen. Pfropfen

was applied with the following parameters: -delta 0.5 -cov 4 -qual 20 -pval 0.01 -noterm

-indel -windsor 1 . These settings translate as follows:

-delta only sites with an overall substitution rate below 0.5 are considered for the

background rate determination,

-cov only sites covered by at least 4 reads are considered for modification calling,

https://github.com/fabou-uobaf/Helferlein/blob/master/Pfropfen
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-qual only bases with quality score above 20 are considered,

-noterm premature read termination events are not considered,

-indel inserts and deletions are not considered,

-windsor the highest and lowest p-values are removed before Fisher’s method is applied,

-pval only sites with a multiple testing corrected p-value below 0.01 are reported.

To apply GATK’s UnifiedGenotyper variant caller, we realigned all mapped reads with

GATK’s IndelRealigner which minimizes the number of mismatching bases, especially around

indels, across all reads. We adjusted the minimum Phred-scaled confidence threshold at which

variants should be called to 50, in order to reduce false positive calls.

Applying bcftools we used at first the mpileup command to generate genotype likelihoods

and read coverage at each genomic position. In a second step we used the call command with

the -m option for rare-variant calling. Variants under the Phred-scaled confidence threshold of

20 were filtered out. We used di�erent threshold values for both variant callers, as these need

to be adapted to tool specifics. For each tool, we considered only called modification sites

with a coverage of more than 10 reads.

7.3.2 Detection of Modification Sites by Read Terminations

Identification of chemical tRNA modifications which are not visible by reverse transcriptase

signatures requires the use of RNA-seq data based on protocols that include chemical treatments

leading to specific modifications (see Section 5.7). These RNA-seq protocol make use of

chemically generated read terminations (RTs) and misincorporation signatures produced by

reverse transcriptases so that they yield a specific read-out in the subsequent sequencing in

comparison to an untreated library. Here, the technical implementation of the post-mapping

(see Section 7.2 for the mapping procedure) analysis is explained addressing the profiling of

modified sites in treated RNA-seq data.
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Library Normalization

For direct comparisons of the control and treated libraries, the raw data are scaled library- and

replica-wise. Library-wise normalization was performed by scaling the number of mapped reads

for each tRNA position to the number of reads of the whole sample. We weighted each multiply

mapped read by division through the number of loci it maps to. Thus, multiply mapped reads

are not weighted stronger than uniquely mapped reads. For replica-wise normalization, the

mean of the replicas for each tRNA and position was calculated.

Determining Significant Modification Sites

To di�erentially quantify e�ect sizes in read termination coverage between treatment and

control, we used the fold change (FC) as measure. FC is defined as the ratio between the

two conditions. For each tRNA and position n the FC is calculated by the equation:

FCn = RT +
n+1

RT ≠
n+1“ + –

,

were RT + and RT ≠ representing the number of read terminations of the treated and untreated

library, respectively. In case of modified tRNAs the reverse transcription terminates one position

before the modified nucleotide. Thus, the number of RTs was counted at tRNA position n + 1,

since the reverse transcription is 3’- to 5’-directed based on the 3’-adapter ligation of the

used library preparation protocols. For inter-sample normalization, the untreated library is

scaled according to the library size of the treated sample with the total number of mapped

reads per tRNA’s cluster as scaling factor given by “ =
q

Reads+
clust /

q
Reads≠

clust. Some

tRNA positions do not show read terminations within one or both conditions. Zero values

in both conditions result in an infinite logarithmic FC, although no e�ect is present. In the

other case, a zero value in the control leads to the undefined division by zero. To solve those

zero-frequency problems, a pseudocount of – = 1 is added to make all counts strictly positive.

In another measurement we applied the Poisson distribution to determine statistically

significant di�erences in treatment compared to the negative control [308] as follows:

P (x Ø k) = P⁄(k) = 1 ≠
3

⁄k

k! e≠⁄

4
,
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where e is the Euler’s number, k = RT +
n+1 +–, and ⁄ = RT ≠

n+1“. We implemented a separate

maximum likelihood estimator of ⁄ from the mean of the cluster’s RTs of the untreated sample.

This tRNA cluster-wise estimation of ⁄ reduces the influence of outliers. Outliers may be

also caused by strong or weakly expressed modifications. Thus, we considered that the RT

expression is tRNA cluster-specific. Since we expect an enrichment of RTs only in the treated

sample, we used the RT expression of the negative control for ⁄.

To decrease the false discovery rate (FDR; see Section 7.6) we adjust the p-values received

by the Poisson distribution by applying the Benjamini-Hochberg procedure [309]. To this

purpose, all p-values were sorted in ascending order and ranked, such that the smallest

p-value had rank one. Each individual p-value was classified if it was smaller than the

Benjamini-Hochberg critical value, calculated by:

pi Æ i

m
Q,

where i is the rank, m is the total number of test events, and Q is the FDR of 0.05. All tRNA

positions showing a p-value lower than 0.01 were accepted as significantly enriched RT sites

in the treated sample.

7.4 Creation of a Synteny Map for tRNA Orthology Identification

A key step in the reconstruction of the evolutionary history of tRNA genes is the creation of

a synteny map. The synteny map harbors information about syntenic tRNA gene clusters

which are subdivided by genomic anchors (see Chapter 6 for the technical background). To

this end, we annotate tRNA genes (see Section 7.1) and used multiple sequence alignments

(MSAs, see Section 5.5.1) created by the MULTIZ pipeline [287] (see Section 6.1.1) to define

tight anchors following the approach described in Section 6.1. We emphasize that MSAs in

general do not correctly align multi-copy genes since well conserved multi-copy elements are

often used for the generation of anchors for the MSA itself. This creates artifacts because

the initial alignment step by construction cannot distinguish between the individual copies

of a family of loci that is subject to concerted evolution. The MULTIZ pipeline allows the

same sequence to appear in more than one alignment block. This is the case in particular for

duplicated genome regions. In order to remove all such ambiguities, we filtered the set of



84 Chapter 7. Bioinformatic Analysis

alignment blocks in the following manner: alignment blocks were first converted to a sorted

BED format describing position of each alignment block within a corresponding genome. For

each annotated tRNA, the 5’- and 3’-adjacent alignment blocks without overlaps with any

tRNA gene or other alignment block were identified.

Although the construction of synteny map is rather conceptually simple, practical issues

arise from less than perfect genome assemblies. tRNA genes that could not be placed in an

unambiguous genomic context because no anchor or only a one-sided anchor was available

were excluded from the analysis of tRNA clusters. These tRNAs were included in detecting

remolding events since the analysis was mainly based on alignments.

7.5 Analyses Concerning nm-tRNAs

7.5.1 Search for Genomic Loci of nm-tRNA Genes

We applied two di�erent annotation tools for the detection of nuclear-encoded mitochondrial-

derived tRNAs (nm-tRNAs) located in nuclear genomes (see Section 2.3). First, we used the

tRNA annotation tool tRNAscan-SE v2.0 (see Section 5.6) in a modified manner, applying the

integrated mitochondrial tRNAs (mt-tRNAs) search mode (-M option) not to mitochondrial

genomes, but to nuclear sequences. Regardless of whether the default (20 bits) or a very

low (0–20 bits) cuto� score was used for filtering hits, same results were returned. The

second search strategy was to apply the Infernal v1.1.2 [256] software as search engine with

specific covariance models (CMs) for each of the 22 mt-tRNA families taken from MiTFi [23],

see Section 5.6. All Infernal hits were retained to help to find nm-tRNAs which are not

well conserved. For each nm-tRNA annotation strategy, we used nuclear mitochondrial DNA

(NUMT) sequences obtained from Telonis et al. [24] (NUMT-based approach) or the entire

nuclear genome (genome-based approach) as reference. Since we ran Infernal separately

for each of the 22 CMs, we sometimes found the same nm-tRNA for di�erent CMs with

comparable scores. To define the primordial mt-tRNA for each nm-tRNA, we used synteny

information (see Section 4) provided by NUMTs, since the exact mitochondrial origin of each

NUMT is known. For nm-tRNAs annotated outside of NUMTs, the nm-tRNA hit with the

highest score was retained.
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To determine the transcriptional origin, e.g., protein-coding, non-coding, pseudogenic,

and exonic, we assigned transcript annotations to the nm-tRNAs. We defined nm-tRNAs

as intergenic if they could not be assigned to an annotated transcript. nm-tRNAs that

are located in introns of any kind of transcripts are also called nuclear-encoded intronic

mitochondrial-derived tRNAs (nim-tRNAs).

7.5.2 Measurement of Evolutionary Conservation

We compared the NUMTs to the extant human mitochondrial genome sequence to test for

evolutionary conservation. The observed sequence divergence is in this case a sum of two

independent e�ects: (i) the evolution of the NUMT since its insertion and (ii) the evolution of

the mitochondrial genome (mt-genome) since the insertion event. We expect that the selection

pressure on the mt-genome has remained neutral over time t0 because its functionality has

been preserved. Since tRNAs are among the most stringently conserved genetic elements,

the mitochondrial substitution rate of mt-tRNAs is smaller than the substitution rate of the

mitochondrial proteins. We, therefore, expect that the evolutionary distance dt between

nm-tRNA and mt-tRNA is dt = (sn + st)t0, while for the NUMTs we have dp = (sn + sp)t0,

where sn is the neutral substitution rate in the mt-genome. The substitution rates for nm-

tRNAs and NUMTs are given by st and sp, respectively. Outliers of this linear regression

with unexpectedly large values dp ≠ dt are then identified as the nm-tRNAs that have evolved

slower than expected, i.e., those that have become subject to stabilizing selection after their

insertion into the nuclear genome. Thus, the di�erence dp ≠ dt is expected to be a linear

function of t0. An schematic overview of the model is illustrated in Fig. 23A.

Since we are not able to calculate substitution rates and t0, we linearly transformed the

model with sn + sp. The linear transformation leads to a model (see Fig. 23B) enabling

nm-tRNAs to be obtained as outliers that are subject to a stronger selection pressure relative to

NUMTs. Therefore, we can use the sequence divergence as measurement for the evolutionary

sequence conservation. We computed the sequence divergences (Hamming distance) dt and

dp by dividing its edit distance (see Section 5.5.1) to the primordial mitochondrial sequence

by its length. The edit distances were obtained by mapping (see Section 5.5.2) the sequences

to the mitochondrial genome. For this purpose, we used segemehl v0.2.0-418 [246] with a
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Figure 23: Model for evolutionary conservation measurement. (A) Linear model of dp ≠ dt of t0.
The evolutionary distance between nuclear mitochondrial DNAs (NUMTs) and mitochondrial proteins
dp can be calculated by dp = (sn +sp)t0, where sn is the neutral substitution rate in the mitochondrial
genome and sp is the substitution rate of the NUMTs. Accordingly, the evolutionary distance between
nuclear-encoded mitochondrial-derived tRNAs (nm-tRNAs) and mitochondrial transfer RNAs (mt-
tRNAs) is dt = (sn + st)t0, where st is the substitution rate of nm-tRNAs. A linear transformation
of this model with st + sp results in (B), a liner model of dp ≠ dt of dp. Outliers in the linear
regression indicate nm-tRNAs which are subject to stronger or lower selective pressure in relation to
the remaining NUMT sequences.

low accuracy of 50% and searched for seeds with two di�erences, to allow mapping of strongly

degraded sequences. We calculated the Cook’s distance [310] for the outlier test which was

performed in R v3.6.0 using the stats package [311]. In general, Cook’s distance shows

the influence of each observation on the fitted response values. An observation with Cook’s

distance larger than three times the mean Cook’s distance might be an outlier. Each element

in the Cook’s distance C is the normalized change of the fitted response values due to the

deletion of an observation. The Cook’s distance of observation i is:

Ci =

nq
j=1

(ŷj ≠ ŷj(i))2

pMSE
,

where ŷj is the jth fitted response value, ŷj(i) is the jth fitted response value, where the

fit does not include observation i, MSE is the mean squared error, and p is the number of

coe�cients in the regression model. We have only considered NUMT sequences which are

longer than 50 nucleotides (nts) to avoid overestimating shorter sequences.

In another measurement we assigned phylogenetic p-value (PhyloP) scores to each sequence

which has been predicted from multiple genome alignments of mammals. PhyloP scores are

available from UCSC [312] and can be used to detect nucleotide substitution rates that are

faster or slower than expected under neutral drift in genomic sequences of di�erent species.
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7.5.3 Determining Protein Binding Sites of nim-tRNAs

To investigate the potential regulatory role of nim-tRNAs by interaction with RNA-binding

proteins (RBPs), we intersected their genomic loci with a list of experimentally validated RBP

binding sites. The latter is available at the GENCODE project, which hosts a repository for

BED files containing binding sites of a large set of RBPs derived from eCLIP experiments. By

applying the BEDtools suite v2.29.0 [305] we intersected genomic coordinates of nim-tRNAs

with RBP binding sites on the same strand to derive a list of overlaps. RBPs that bound

to each type of nim-tRNA were then annotated according to their biological function with

information derived from the GeneCards database [313]. We calculated the expected coverage

of RBP per nucleotide intron from intersections of the eCLIP dataset with intron annotations

(ENSEMBL biomart, hg38, version 98 [314]) for each RBP in the collection. By comparing

this to the RBP coverage of binding sites in nim-tRNAs we calculated the relative enrichment

of RBP binding events in nim-tRNAs over background.

7.6 Performance Evaluation of Di�erent Analysis

To determine the sensitivity and specificity of di�erent analysis strategies we counted all true

positives (TPs), false positives (FPs), true negatives (TNs) and false negatives (FNs). All

performances are expressed as:

(i) true positive rate (TPR), also called sensitivity, with TPR = TP

TP + FN
,

(ii) false negative rate (FNR) with FNR = FN

FN + TP
,

(iii) true negative rate (TNR), also called specificity, with TNR = TN

TN + FP
, and

(iv) false discovery rate (FDR) with FDR = FP

FP + TP
.

Mapping of tRNA Reads

To develop a best-practice analysis strategy to map tRNA reads to the reference genome

(see Chapter 5) we used simulated data to test di�erent strategies and handle the associated

di�culties which may arise. Therefore, we simulated three replicas of human single-end
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50 bp RNA-seq reads using the RNASeqReadSimulator [315]. The reads for each tRNA were

generated with a similar expression strength and contain random sequencing errors with an

overall error rate of 0.5%. Five percent of the simulated reads come from the pre-tRNA

sequences and 95% from mature tRNAs. Modification sites were randomly chosen with a rate

of 5% of all nucleotides from the mature tRNA library. Subsequently, the bases at chosen

positions were altered within the simulated reads, following a random substitution matrix

which was determined by the immediate neighboring nucleotide [316].

In addition to determining the modification pattern randomly for each genomic tRNA

locus, we prepared a second test in which tRNAs with identical sequences also have identical

modified positions. This set is of course easier to handle in the computational analysis. It

is not clear at present whether the biological reality is closer to the random modifications

scenario, where mature tRNAs with identical sequence are treated di�erently by the enzymatic

modification machinery depending on their genomic origin, or to the identical modifications

scenario, in which modification patterns depend on the mature sequence only. A careful

analysis of modification patterns should be able to shed light on this question. In total our

simulations consider 2,324 modified sites in the random modification scenario and 3,001

modified sites in the identical modification model. To determine the sensitivity and specificity

of the di�erent analysis steps of the simulated data we compared the predicted variation with

our simulated modification sites.

Specific Enrichment and Selection of tRNA Sequences

To compare the specificity of di�erent RNA-seq methods with our newly developed long

hairpin oligonucleotide-based tRNA high-throughput sequencing (LOTTE-seq) method, the

number of uniquely mapped tRNA reads showing a 3’-CCA, -CC, -C , or no 3’-CCA-end was

counted. Multiply mapped reads were counted as fraction of their number of hits or filtered

to obtain uniquely mapped counts.

Comparison of Modification Callers

When comparing di�erent tools for the identification of candidate modification sites, we

visually examined all identified sites. We distinguished between hits due to mapping artifacts or
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misinterpreted reverse transcriptase signatures (counted as FPs) and the remaining potentially

true sites (counted as TPs). In order to assign candidate sites to known modifications we

used the tRNA modification information stored in the tRNAmodviz database [119]. Since the

database does not contain all human tRNAs, we classified the candidate sites according to its

overlap with the known modified positions of the contained human tRNA subset.

Annotation of nm-tRNAs in Nuclear Genomes

For each NUMT, the mitochondrial origin is traceable, so we are able to reconstruct the

number, types, and order of mt-tRNA copies within each NUMT. Thus, we used this synteny

information (see Chapter 4) to validate our obtained hits from the di�erent analysis strategies.

We count each hit as TP if the hit is located inside a NUMT following the occurrence and

order of the given synteny information (see Section 4). Some NUMTs were copied from

mitochondrial sequences which lack mt-tRNAs. Thus, we counted hits within such NUMTs

as FPs. Hits obtained outside from NUMTs were also counted as FPs, because we have to

assume that the underlying NUMT annotation is complete.
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To the best of our knowledge the consequences of di�erent mapping strategies for the

detection of transfer RNA (tRNA) modifications have not been investigated systematically

(see Section 5.5). To close this gap, in this contribution we aim to evaluate the performance

of di�erent mapping strategies with the help of simulated RNA sequencing (RNA-seq) reads.

These observations performed a best-practice workflow that uses modified genomic reference

sequences to accommodate CCA tails (see section 3.3) and a reduced set of tRNA sequences

that represent groups of very similar paralogs (see Section 4).

In the following chapter the development and benchmark of the best-practice mapping

strategy of tRNA reads is shown. The methodical implementation is described in Sections

7.1 and 7.2 which include tRNA annotation and read mapping, respectively. The method

used to call variations is specified in the Section 7.3.1 and the performance evaluation using

simulated reads is described in Section 7.6. The technical background is given in Chapter 5.

This chapter is based on A. Ho�mann et al. [397] titled Accurate Mapping of tRNA Reads.

8.1 Best-Practice Mapping Strategy

The detection of modified RNA nucleotides from RNA-seq data by means of patterns of

base misincorporation requires that each next-generation sequencing (NGS) read is precisely

assigned to its true genomic origin. This is of course a non-trivial task for NGS applications in

general. This problem is even more di�cult for tRNA modification calling due to the large

number of modifications, and thus misincorporation sites in tRNAs and their multi-copy nature

with many identical and nearly identical tRNA genes. This makes it virtually impossible to

determine with certainty the exact genomic origin of any particular tRNA read. We therefore

resorted to simulated RNA-seq data to establish a best-practice mapping strategy because the

known ground truth allows us to evaluate the e�ect of di�erent analysis steps on the sensitivity

and specificity of RNA modification site calling. We identified three critical problems for the

successful RNA modification site detection:

(i) The backend of the pipeline needs to discriminate between sites with a significant

base misincorporation pattern indicative of a modification site and sites with

spurious di�erences between the NGS read and the reference genome due

to sequencing or mapping errors. To solve this problem, we use the GATK
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framework. In addition, we devised a more naïve approach to check for sites with

a significantly higher misincorporation rate for all alternative bases compared to

a transcriptome-wide binomial background error model.

(ii) The most di�cult challenge are the ambiguities in determining the true origin

of many NGS reads. To address this issue, we used the three di�erent filter

strategies in the read alignment step: all, unique, and phased.

(iii) The unusual processing of tRNAs with added CCA tails and the coexistence

of tRNA genes with and without introns producing the same mature product

requires adjustments to the reference against which the RNA-seq data are

mapped. To address this issue, we evaluated di�erent more or less modified

reference genomes and tested all combinations with above described strategies

for read filtering and modification site calling and evaluated its performance.

Our baseline, the starting point of our workflow development, was the most straightforward

approach: reads were mapped against the unaltered human reference genome using the

all, phased, or unique filtering rule. Modifications were called as statistically significant

misincorporation sites without further processing (see Fig. 24). All those approaches resulted

in a reduced true positive rate (TPR) (all : 0.82, phased : 0.53, unique: 0.25), in an increased

false negative rate (FNR) (all : 0.18, phased : 0.47, unique: 0.75) and in a very high false

discovery rate (FDR) (all : 0.44, phased : 0.42, unique: 0.43) for the simulated reads containing

identical modifications.

To get a handle on the complexity of the transcriptome in general and the tRNA transcrip-

tome in particular, we masked all tRNA loci in the human reference genome and subsequently

appended customized tRNA sequences as extra “chromosomes”. Most importantly, we at-

tempted to distinguish NGS reads derived from immature tRNA precursors and those that are

produced from mature tRNAs (see Section 3). To this end we attached the reference sequences

of the tRNA precursor (with flanking regions but without CCA tails and without introns) to the

masked genome and parceled out reads mapping at least partially to the flanking sequences or

introns. Detailed investigations of mapped reads from human esophagus muscularis mucosae

tissue with the IGV [317, 318] confirms that the exclusion of pre-tRNA reads after the first
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Figure 24: Evaluation of the straightforward approach. Absolute numbers of true positive (blue),
false positive (red), and false negative (dark red) modification calls obtained for simulated reads
containing identical modification (l.h.s.) and random modification sites (r.h.s.) in transfer RNAs
(tRNAs) with the same sequence arising from distinct loci. In the most straightforward approach,
the simulated reads were mapped against the native human reference genome. Additional significant
misincorporation sites on all, only phased, and on only uniquely mapped reads were called using
GATK’s UnifiedGenotyper. The all mapped reads option shows the highest sensitivity, but also the
highest false discovery rate. The best balance between true positive calls and errors is shown for the
uniquely mapped reads filtering method for both simulated data sets.

mapping step is helpful to reduce false positive (FP) hits originating from modified pre-tRNA

reads (see Suppl. Fig. A1). This pre-tRNA cleaning step is more e�cient than softclipping of

fragments on the read ends, due to pre-tRNA reads spanning the whole tRNA. Soft clipping,

on the other hand, could lead to the retention of the pre-tRNA read that is mapped to the

reference and only the overhanging sequence is being cut o�. The outfiltered pre-tRNA reads

can be used for modification calling of tRNA precursors or be discarded. The remaining reads

were mapped in a subsequent step against all mature tRNA sequences. In another variation

not all tRNAs were added, but only clusters of more or less similar tRNA sequences were used

as reference sequences. Those two methods ere called unclustered and clustered, respectively.

The di�erences between clustered and unclustered reference tRNA sequences are only a

minor factor when multiply mapped reads are allowed. The clustered tRNA reference genome

in which tRNA sequences are clustered with a 100% sequence identity performs much better in

the case of uniquely mapped reads. For simulated reads with identical modifications using only

reads that uniquely map to tRNA clusters, a TPR of 0.85 is achieved. Using reads mapping
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Figure 25: Comparison of read filtering strategies. Absolute numbers of true positive (TP, blue),
false positive (FP, red), and false negative (FN, dark red) modification calls from the simulated datasets
as well as the false discovery rate (FDR) of (A) identical modifications or (B) random modification

sites. For the unclustered as well as the clustered method, the results of the called significant
misincorporation sites using the GATK’s UnifiedGenotyper for the di�erent read filter strategies (all,
phased, and unique) are shown, respectively. Regarding di�erent read filter strategies, the unique reads
showing the best balance between the detected TPs and the errors (FPs, FNs). Using unique filtered
reads, the clustered method is more sensitive and shows less errors, especially FNs, in comparison to
the unclustered method

uniquely to unclustered tRNA results in TPR of only 0.25 (see Fig. 25). Correspondingly,

the FNR is increasing, but the FDR remain comparable. This shows that using only uniquely

mapped reads against a clustered tRNA reference genome collapsed into a single representative

outperforms all alternative approaches tested here, provided specificity is the main concern.
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Figure 26: Comparison of clustering methods. Absolute numbers of counted true positives (blue),
false positives (red), and false negatives (dark red) by analyzing simulated reads containing (A)
identical modification or (B) random modification sites. Significant misincorporation sites for uniquely
mapped reads were called using GATK’s UnifiedGenotyper. The statistical calling results for clustering
with the di�erent identity thresholds of 97%, 98%, and 100% are shown. In comparison to that, the
numbers for the unclustered method are visualized. All examined thresholds exhibited a very similar
(although smaller) true positive rate but were much less specific compared to the clustering with
100% identity in terms of the false positive rate. Indeed, the unclustered method shows only a few
false positives, but a really low sensitivity.

Since clustering identical tRNA together seems to be a worthwhile strategy, we wondered

if allowing also non-identical tRNAs to be represented in the same cluster could improve the

performance even further. We hypothesized that reducing several very similar sequences to a

single consensus would reduce the di�culty of read mapping, and the accumulation of reads

for very similar tRNA sequences could improve the signal-to-noise ratio in the modification

detection step – at least in the identical modifications scenario. We therefore allowed one up

to three mismatches (100%, 98%, and 97% sequence similarity) between tRNA sequences

assigned to the same cluster. Empirically, however, we did not observe an improvement: All

examined thresholds exhibited a very similar (although smaller) TPR but were much less

specific compared to the clustering with 100% identity in terms of the FDR, see Fig. 26.

After the read mapping procedure, alignments can be filtered with respect to the number

of loci they map to. The e�ect of filtering on performance in general is as expected: sensitivity

decreases and specificity increases from all, over phased, to uniquely mapped reads. The

choice of filtering strategy seems to be the best way for the user to tweak the trade-o� between
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sensitivity and specificity. At least for the simulated data, using only uniquely mapped reads

seems to yield the best balance between FPs and false negatives (FNs). The FDR drops from

0.16 (all) to 0.02 (unique), while the TPR only drops from 0.91 (all) to 0.85 (unique) for the

clustered method (see Fig. 25).

We defined the optimal alignment(s) as the one(s) with the minimal edit distance between

read and reference sequence. Base misincorporations in the reads and similarities can cause

incorrect alignments whenever a misincorporation is compensated by a di�erence in an

alternative reference location. Such cases cannot be recognized by filtering strategies. In

the simulated data, ≥1% of the uniquely mapped reads do not map to the correct position

(see Suppl. Fig. A2). The applied mapping tool segemehl can also report suboptimal

alignments. Using this feature shows that the correct alignment scored only a single mismatch

worse that incorrect one in these cases. Conversely, correct optimal alignments have incorrect

suboptimal alternatives that di�er by a single mismatch in many cases. Thus the performance

of the mapping cannot be improved by either including suboptimal read alignments or by

requiring a large score gap between best and next-best alignment.

The di�erent filter strategies (all, phased, and unique) produce consistent patterns of

misaligned reads for both real and simulated data. This can ultimately lead to incorrect calls

of modification sites (see Suppl. Figs. A3 and A4). In both data sets the unique filtering

strategy appears to be the best-practice to reduce the calling of false positive misincorporations

caused by multiply mapped reads. Furthermore, we observed that tRNAs that vary only in

one or a few individual nucleotides may already show di�erent modifications even within the

same sample. We conclude that tRNA modification patterns depend on the mature sequence.

This suggests that our simulated data scenario containing identical modifications for identical

sequences fits better to the biological reality than the random modification scenario.

We compared the two di�erent modification site calling approaches: GATK’s UnifiedGeno-

typer and our ad hoc Pfropfen approach. We observed that Pfropfen seems to be more

sensitive at the expense of reduced specificity (see Suppl. Figs. A5 and A6). It seems

that UnifiedGenotyper’s more sophisticated handling of mapping artifacts outweighs the

benefit of applying a statistical model that reflects the expected counts from a random

misincorporation process. Nevertheless, the slightly increased FDR indicates that there is still

room for improvement of the calling procedure by tailoring it to the underlying processes.
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Figure 27: Scheme of the best-practice workflow for accurate mapping of tRNA reads. The
top part describes the construction of the masked and artificial genome. The middle section refers to
the mapping and filtering steps and the bottom layer shows the final uniquely filtered reads. The
output reads can be used for, e.g., modification site detection.

In conclusion, we propose a best-practice workflow to detect tRNA modification sites in

RNA-seq data depicted in Fig. 27: tRNA genes are annotated by tRNAscan-SE, masked in

the reference genome and subsequently supplemented by tRNA sequences. In a first step pre-

tRNAs were added and reads displaying specific precursor hallmarks are separated. In a second

step sequences representing identical tRNA sequences are added. Only uniquely mapped reads

are used for the follow up modification site calling using GATK’s UnifiedGenotyper. Using

our simulated data and a tRNA specific mapping to handle the high density of modification

induced mismatches at the reads we received a FDR of 0.02, a TPR of 0.85, and a true

negative rate (TNR) > 0.99 for the identical modifications scenario.

8.2 Discussion

The general problem of determining the genomic origin of transcript fragments deriving from

multi-copy or repetitive regions did only recently get the deserved attention [319]. In this

respect, tRNAs are, due to their well defined boundaries, a special case. Nevertheless, the

lessons learned can be generalized to some degree. Given that clustering of very similar tRNAs,
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as long as they are not identical, leads to a decrease in modification calling performance,

it becomes evident that clustering-based approaches are not suitable for more divergent

classes of multi-copy elements such as Alu-repeats [320]. For the mere purpose of transcript

quantification di�erent probabilistic approaches were presented to assign reads to the most

likely origin [321, 322]. Those are unfortunately not suitable for nucleotide variants, and in

this sense also modification calling. An exciting proposed strategy could be to dynamically

update the reference sequence based on already seen variants [323]. Such a strategy could be

used to layaway from discriminable regions into indistinguishable by using the co-occurrence

of modification site, if such occur densely enough.

For the moment the best available strategy to analyze tRNA-seq data consists of collapsing

identical sequences together to reduce the search space and use only uniquely mapped reads.

This strategy however can only be advised for relatively short RNA families, such as microRNAs

(miRNAs) or tRNAs, due to their well defined boundaries and their convenient gene length to

read length relationship. If the reference sequences to be clustered are much longer than the

produced RNA-seq reads, a local clustering has to be applied, since di�erences at the far distant

beginning can not be used to discriminate reads mapping to the very end of the region. In this

thesis we surmised that our phased read filter, where we allowed reads to be multiple mapped

but only if displaying identical misincorporation patterns, could potentially come up to such a

local clustering strategy. Unfortunately, it did not live up to our expectations. Although, using

phased reads performs half way between using all reads and only uniquely mapped reads in

the native reference genome approach with respect to sensitivity and specificity (see Fig. 24),

it does not reach the same quality of modification site calling than applying a pre-clustering

of identical reference genome sequences (see Fig. 25). Nevertheless, it seems to be a viable

option for research questions where a global clustering is not possible and sensitivity is of more

interest than specificity.
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8.3 Data Sources and Workflow Availability

An implementation of the best-practice workflow is available as bash script and as Galaxy

workflow at https://github.com/AnneHoffmann/tRNA-read-mapping, respectively. For

the workflow application to real data strand-specific small RNA-seq data from rRNA-depleted

total RNA > 200 nucleotides in size were obtained from the Encode project [324, 325].

Here the RNA-seq data of human esophagus muscularis mucosa tissue (female 51 years:

GEO:GSE88169, female 53 years: GEO:GSE88236, male 37 years: GEO:GSE88128) were used.

https://github.com/AnneHoffmann/tRNA-read-mapping
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Currently available tRNA-seq methods such as YAMAT-seq [216] and tRNA-seq described in

Pang et al. [217] do not sample the entire tRNA pool or lack specificity for tRNAs (see Sec-

tion 5.2), since these are mainly designed for the detection of specific tRNA modifications.

A disadvantage of such methods is that only full-length tRNAs are analyzed, while tRNA

fragments or incomplete cDNAs due to reverse transcription stops at modified nucleosides

(see Section 5.7) are lost. In this chapter the benchmark of a highly tRNA-specific RNA-seq

method for an e�cient and comprehensive analysis of tRNAs is demonstrated. We could point

out that LOTTE-seq combines the benefits of existing methods and is able to handle various

challenges arising for high-throughput analysis of the tRNAs (see Section 5.2 for the technical

background).

The remainder of this chapter based on L. Eber and A. Ho�mann et al. [406] with the

title LOTTE-seq (Long hairpin oligonucleotide-based tRNA high-throughput sequencing):

Specific selection of tRNAs with 3’-CCA end for high-throughput sequencing. The laboratory

implementation of LOTTE-seq has been carried out by L. Erber. Beside my contribution to

the experimental design of LOTTE-seq, I mainly performed the data analyses described below.

9.1 LOTTE-seq Works for Species from All Domains of Life

In the LOTTE-seq protocol, a hairpin-shaped specific 3’-adapter is first ligated to mature

tRNAs without previous purification. Thus, total RNA can be used without prior laborious and

possibly bias-introducing tRNA enrichment, where usually a considerable amount of material

is lost. A second adapter is ligated to the resulting cDNA 3’-ends. The adapter ligation to the

cDNA 3’-end and not to the 5’-end leads to a considerable increase in sequence reads of the

tRNA pool. Further, this specific cDNA 3’-end adapter ligation allows the amplification of

both full-length as well as shorter cDNA fragments which results from read terminations (RTs)

at nucleoside modifications (for more details see Erber et al. [406]). A schematic overview of

the LOTTE-seq workflow is shown in Fig. 28.

To evaluate the performance of LOTTE-seq, the method has been conducted for represen-

tatives from each domain of life. In detail, LOTTE-seq has been performed for HEK293T cells

(human), Spinacia oleracea (plant), Saccharomyces cerevisiae (fungi), Dictyostelium discoideum

(Amoeba), Escherichia coli (Gram-negative bacteria), and Geobacillus stearothermophilus
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Figure 28: Schematic workflow of the LOTTE-seq procedure. (A) A DNA hairpin-oligonucleotide
(green) with a 3’-TGGN overhang hybridizes to the complementary tRNA 3’-CCA end (tRNA in
blue). T4 DNA ligase fuses the 3’-end of the CCA terminus to the phosphorylated 5’-end of the
adapter. (B) The tRNA is reverse transcribed with parts of the hairpin oligonucleotide serving as
primer binding site. Secondary structure and modified bases can lead to premature RTs and partial
cDNA (yellow). (C) Using T4 RNA ligase I, a 5’-phosphorylated and 3’-blocked second adapter (red)
is fused to the 3’-end of the cDNA, leading to the generation of cDNA product with adapters on both
sides (red and green). (D) This product is amplified with indexed primers binding to the adapter
overhang sequences. (E) The cDNA library consisting of full-length as well as prematurely terminated
tRNA sequences is analyzed by high-throughput sequencing.

(Gram-positive bacteria) in two independent experiments. The samples were analyzed on an

Illumina MiSeq device. Additionally, to compare LOTTE-seq with other RNA-seq methods, a

standard sRNA TruSeq approach (5’- and 3’-adapter ligation followed by reverse transcription)
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and an optimized sRNA TruSeq protocol (3’-adapter ligation followed by cDNA synthesis

and subsequent cDNA adapter ligation) have been conducted for each of the six species (for

details see E. Erber and A. Ho�mann et al. [406]). Annotation of tRNAs was performed

as described in Section 7.1. For S. cerevisiae, only 16 of 24 mt-tRNAs could be annotated

via tRNAscan-SE. Missing mt-tRNAs were added from the YeastMine database [326]. The

number of annotated tRNAs for each species is listed in Suppl. Tab. B3. Our RNA-seq data

analysis was prepared on the basis of the best-practice workflow for accurate mapping of tRNA

reads [397] (see Chapter 8). Finally, the performance evaluation was implemented as outlined

in Section 7.6.

In all investigations, LOTTE-seq shows the highest content of tRNAs in general with

an average of 97%. In contrast, the average tRNA content in the optimized TruSeq sRNA

method is 81%, while the average is only 6% in the standard Illumina TruSeq sRNA method.

An overview of the comparisons is depicted in Fig. 29 and the exact numbers are given in

Suppl. Tab. B4. Further, LOTTE-seq specifically selects the highest amount of tRNAs with

a 3’-CCA end in all six species (human: >55%; plant: >75%; fungi: >97%; Amoeba: >98%;

Gram-negative bacteria: >98%; Gram-positive bacteria: >97%). In the optimized TruSeq

sRNA procedure, the tRNA content with 3’-CCA end range from about 78% (Gram-negative

bacteria) to less than 30% (human). The lowest amount of reads corresponding to tRNAs

with 3’-CCA end is found in the standard Illumina TruSeq sRNA procedure with a range from

< 10% (plant) to < 1% (human). In addition, we received a high amount of reads mapped

to tRNAs as well as other genomic regions. Without exceptions, the ambiguous reads are very

short in length and carry the 3’-CCA end of the tRNA which may result from read terminations

during cDNA synthesis. In this case, the true origin of such reads cannot be determined

unambiguously. The highest amount of ambiguous tRNA reads is found in both eukaryotic

mulitcellular organisms (human: <38%; plant: <16%) using LOTTE-seq. In both unicellular

eukaryotic organisms (fungi, amoeba) the ambiguous tRNA content is less than 2%, while in

bacterial species the amount is close to zero.

In a further investigation we compared the tRNA content of our LOTTE-seq data to

published tRNA-seq approaches described by Shigematsu et al. [216] (YAMAT-seq) and Pang

et al. [217], see Tab. 1. A direct comparison to the data of Pang et al. [217] is not feasible,

since neither the fraction of tRNA reads nor the fraction of tRNA reads with 3’-CCA end was
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Figure 29: Comparison of LOTTE-seq to other RNA-seq methods. The tRNA content of LOTTE-
seq compared to the optimized TruSeq sRNA protocol as well as to the standard Illumina TruSeq
sRNA procedure is shown concerning tRNA content and 3’-CCA end. The percentage of tRNAs with
a 3’-CCA end (light blue), with 3’-ends other than a CCA (dark blue) and non-tRNA reads (grey) are
depicted for the individual organisms. The percentage of reads mapped to tRNAs as well as other
genomic regions (ambiguous tRNAs) are highlighted in red. Two replicates of MiSeq-based sequence
analyses of each species were investigated for each RNA-seq method. In all investigations, LOTTE-seq
shows the highest content of tRNAs with CCA end.
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reported. We, therefore, used sequencing data on D. discoideum and G. stearothermophilus

that was generated by a procedure highly similar to the Pang approach [327]. Instead of HPLC

separation, the tRNA-containing small RNA fraction was isolated by high salt precipitation

as described in Cathala et al. [328] and Eichinger et al. [329]. The subsequent steps were

identical to the Pang strategy. Compared to the published tRNA-seq methods, LOTTE-seq

shows the highest amount of specific tRNA reads as well as tRNA reads carrying a 3’-CCA

terminal end. While YAMAT-seq and LOTTE-seq show similarly high values for tRNA reads,

adapter ligation by T4 DNA ligase is more selective for nick sealing in CCA sequence hybrids

than truncated T4 RNA ligase used in YAMAT-seq. Due to the lack of CCA-specific adapter

ligation, the Pang-like approach shows the lowest amount of tRNA reads and 3’-CCA end

ligation, illustrating the importance of e�cient separation of the tRNA fraction from other

transcripts in the preparation procedure.

Taken together, LOTTE-seq is a highly robust and versatile approach that combines the

pros of two - also very valuable - alternative procedures, while avoiding their cons. Combined

with unique molecular identifiers, LOTTE-seq is a useful method to investigate the tRNA

pools of di�erent sources in a fast, convenient and reliable way.

Table 1: tRNA-specific reads in tRNA-seq methods. The average number of sequences mapped
to tRNA genes and their proportion of reads carrying a 3’-CCA triplet sequence are shown for di�erent
tRNA-seq methods. Here, we compared our LOTTE-seq approach to YAMAT-seq [216] and a
procedure closely related to Pang et al. [217]. For both criteria, LOTTE-seq shows the highest
amount of specific tRNA sequences. Species abbreviations: D. discoideum: Ddi; E. coli : Eco;
G. stearothermophilus: Gst; human HEK293T cells: Hsa; S. cerevisiae: Sce; S. oleracea: Sol.

tRNA-seq % tRNA % tRNA with 3’-CCA Species

LOTTE-seq 97.0 99.4 Ddi, Eco, Gst Hsa Sce, Sol

YAMAT-seq 96.8 93.7 Hsa

Pang-like tRNA-seq 56.6 42 Ddi, Gst
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9.2 Discussion

In recent years, the investigation of tRNAs or tRNA pools and their correlation to translation

e�cacy and regulation, stress conditions, and diseases developed into an important area of

research [330–335]. There are many indications that tRNA abundance is associated with

certain diseases [336–338]. However, the special features of tRNA molecules make library

preparation quite complicated and error-prone, and standard Illumina approaches are not very

practical for their analysis. This can be seen in Fig. 29 where we compared LOTTE-seq with a

standard sRNA TruSeq approach and an optimized sRNA TruSeq protocol. A reason for these

di�culties is the high amount of modified bases [141, 339, 340] as well as stable secondary

and tertiary structures of tRNAs [341, 342]. In comparison to both TruSeq sRNA procedures,

LOTTE-seq shows the highest amount of tRNA reads and selects more specific tRNAs with

a 3’-CCA end, including prematurely terminated cDNA fragments that represent the tRNA

3’-part. Reads from non-tRNA sequences were found at a very low abundance with an average

value of 3%. tRNA sequences lacking the mature CCA end were found only in 0.6% of the all

reads, indicating the high selectivity of our LOTTE-seq approach.

Compared to the procedures described by Shigematsu et al. [216] and Pang et al. [217] in

terms of specificity, LOTTE-seq shows a selectivity for tRNAs similar to YAMAT-seq [216],

see Tab. 1. However, the use of T4 DNA ligase leads to an increased specificity for complete

CCA ends (only 0.6% non-CCA ends), while T4 RNA ligase 2 that was used in YAMAT-seq also

accepts unpaired single-stranded 3’-ends, leading to 6.3% non-CCA ends. A direct comparison

of the tRNA pool composition identified by YAMAT-seq and LOTTE-seq, however, is not

reasonable, as Shigematsu et al. [216] used breast cancer cell lines (BT-474, SK-BR-3, MCF-7)

in their analysis, while we used human embryonic kidney cells (HEK293T). There is growing

evidence that the cellular tRNA pool composition is not stable, but is actively adjusted to

individual growing conditions or cell type requirements, resulting in specific tRNA pools in

di�erent cells or organs [330, 331, 338, 343]. As a result, these cell-type-specific di�erences

render a direct comparison of the data obtained by YAMAT and LOTTE-seq impossible. Thus,

a direct comparison to the data of Pang et al. [217] is not feasible, since no tRNA fraction

information has been reported. We, therefore, compared our data to tRNA-seq data which are

highly similar to that approach [327]. While the Pang-like tRNA-seq procedure also led to a
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considerable amount of tRNA reads (56.5%), the number of non-tRNA reads is much higher

compared to YAMAT or LOTTE-seq. Furthermore, the use of T4 RNA ligase in the Pang-like

tRNA-seq procedure leads in to 42% of sequences ending with sequences other than CCA.

This is a further indication that CCA-specific 3’-adapters are highly selective. A combination

of the CCA-specific 3’-adapters with T4 DNA ligation reaction in LOTTE-seq result in the

highest number of reads with mature tRNA 3’-ends.

When analyzing our samples, we were faced with the problem of accurate mapping of tRNA

reads as described by A. Ho�mann et al. [397]. Especially multicellular eukaryotic organisms

show a high amount of tRNA genes, i.g., we annotated 732 and 2111 tRNAs in human and

spinach, respectively. Their isodecoders only di�er in a few nucleotides [12, 301, 344–346].

This complicates the allocation of reads to the corresponding gene. To this end, we applied

the best-practice workflow for the accurate mapping of tRNA reads as discussed in Chapter 8.

Since the specific cDNA 3’-end adapter ligation allows the amplification of both full-length as

well as shorter cDNA fragments, which is caused by RTs at nucleoside modifications, a high

amount of very short reads is available in the tRNA samples. When performing LOTTE-seq for

di�erent organisms, we found that the amount of full-length tRNA reads di�ered dramatically

between species. Higher amounts were obtained for bacterial samples. This might be due to

a less complex pattern of base modifications in these organisms [27, 347]. In contrast, the

relative amount of full-length tRNA was smaller in human and plant samples, where tRNAs

are usually modified to a greater extent. In higher organisms in particular, short reads map to

genomic regions in addition to tRNAs, since a large number of tRNA-like structures occur,

e.g., tRNA-derived fragments (tRFs) [65]. Determining the true origin of these short reads is

an error-prone task. Therefore, we considered these ambiguous reads separately, as it cannot

be excluded that they do not originate from tRNAs.

9.3 Data Sources and Availability

Genomes of D. discoideum (assembly dicty 2.7), E. coli (strain K-12 substr. MG1655),

G. stearothermophilus (strain ATCC 12980), H. sapiens (assembly hg38), S. oleracea (assembly

KY768855.1), and S. cerevisiae (strain BY4741) were downloaded from NCBI, release 90 [22].

All investigated RNA-seq data are available at NCBI BioProject: PRJNA541863.
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Chemically modified nucleotides are ubiquitous in RNA and DNA sequences. They are

incorporated post-transcriptionally at the nucleobase and/or the sugar unit (see Section 3.5).

The intensive analysis of high-throughput experiments has led to a rapid increase of the

knowledge of modifications in RNAs in particular. Transfer RNAs (tRNAs) are a hotspot

with modifications contributing to the formation of the functional three-dimensional structure.

Nevertheless, little systematic attention has been focused on the research of chemically modified

residues in tRNAs. Some modified nucleotides leave specific signatures in RNA sequencing

(RNA-seq) data which originated from the reverse transcriptase during complementary DNA

(cDNA) synthesis (see Section 5.7). In this chapter we introduce a combination of specialized

deep sequencing approaches and sophisticated bioinformatic methods enabling sensitive and

precise detection of signatures generated by chemically modified nucleotides in tRNAs.

For an accurate detection and quantification of modified tRNA residues at the transcriptome

level using RNA-seq data the reads have to be first precisely mapped to the reference genome.

For this purpose we applied our newly developed best-practice workflow for accurate mapping

of the short tRNA reads prior to each analysis described in this chapter. The mapping workflow

is discussed in Chapter 8 and the tRNA annotation method is explained in Section 7.1.

In the remainder of this chapter Section 10.1.1 is based on A. Ho�mann et al. [397] with

the title Accurate Mapping of tRNA Reads. Section 10.2 refers to the publication of L. Erber

and A. Ho�mann et al. [406] titled LOTTE-seq (Long hairpin oligonucleotide-based tRNA

high-throughput sequencing): Specific selection of tRNAs with 3’-CCA end for high-throughput

sequencing. Section 10.2.1 is based on the publications of A. Ho�mann and L. Erber et al. [409]

titled Changes of the tRNA modification pattern during the development of Dictyostelium

discoideum and Erber et al. [408] titled Dictyostelium discoideum: Unusual occurrence of two

active CCA-adding enzymes. The performance and results from the publication A. Ho�mann

et al. [410] with the title Temperature Dependence of Bacterial tRNA Modifications are

pointed out in Section 10.3.

10.1 Detecting tRNA Modifications by Base Misincorporations

In the simplest case tRNA modifications a�ect reverse transcription during cDNA synthesis

leading to a visible position-specific increase of misincorporations in RNA-seq data (see Sec-



Chapter 10. Detection of Chemical tRNA Modifications 113

tion 5.7). Our first starting point when calling tRNA modifications via base-calling errors

was to find a suitable modification caller. For this purpose we evaluated three di�erent

tools, namely bcftools [267, 268], GATK [269], and HAMR [261]. The technical background

of these tools is discussed in Section 5.7 and their implementation is described in Section

7.3.1. Both bcftools and GATK are well established for germline short variant discovery from

whole genome and exome sequencing data. We expected that the tools could also be used

for our purpose to identify genomic positions with increased levels of sequence mismatches.

HAMR, on the other side, is directly designed for RNA modification discovery. For performance

evaluation (described in Section 7.6) of the three di�erent tools we used ribo-minus RNA

sequencing (rmRNA-seq) data (see Section 5.1) generated from human cerebellum. In short,

all detected modification sites were visually examined to exclude possible hits calling due to

mapping artifacts or wrongly interpreted reverse transcriptase signatures. True candidate sites

were characterized according to known human tRNA modifications stored in the tRNAmodviz

database [119]. Since only 26 of 754 human tRNA sequences are included in tRNAmodviz

and the databases derive their modification information from di�erent tRNA-seq experiments

performed under di�erent conditions, a tRNA-specific validation for all human tRNAs is not

possible. Thus, we generally characterized called modifications as true sites if they overlap with

known modified positions of the tRNAmodviz tRNA reference set (position-specific validation).

Surprisingly, our performance evaluation revealed that the tools produced very di�erent

results. The total numbers of called true positive (TP) and false positive (FP) sites for each

tool are listed in Tab. 2. Not only the number of called modifications sites but also the

amount of modified tRNAs varies greatly between the applied tools. With GATK we found 428

candidate modifications at 14 di�erent tRNA positions and in 294 tRNAs. Among these 14

positions, 11 coincided perfectly with a known modified position as listed in the tRNAmodviz

database. In contrast, we detected only 373 candidate modification sites in 276 di�erent tRNAs

using bcftools. These modification sites relate to 12 tRNA positions, 9 of which match the

database entries. Using HAMR, we were able to detect only 110 candidate modification sites in

106 di�erent tRNAs and at 6 tRNA positions. Out of these 6 positions 5 can be assigned to

known ones.
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Table 2: Comparison of three tools used for tRNA modification discovery. Overview of true
transfer RNA (tRNA) modifications (black) and false positive called sites (red) for each of the three
tools GATK, bcftools, and HAMR are shown. For each tool, the number of tRNAs that display a
significant base misincorporation rate at the a�ected positions are given. Known human tRNA
modifications listed in the tRNAmodviz database are assigned by position. Callings were performed on
ribo-minus RNA sequencing data generated from human cerebellum tissue. The number of discovered
tRNA modifications varies greatly between the three tools. GATK is the only tool that calls false
positive sites (15%). HAMR finds very few candidate sites. Most suitable for tRNA modification calling
seems to be bcftools which is moderately less sensitive than GATK but does not detect false positive
sites. Abbreviations of the first column: AC – anticodon; ACC – acceptor; D – dihydrouridine; T –
T�C; V – variable. Nucleobase abbreviations: A – adenine; C – cytosine; G – guanine; T – thymine.

Area Position Alteration GATK bcftools HAMR Modification

5’-ACC-stem 1 GæT 8 0 0 -

6 TæA 2 0 0 -

6 GæC 12 0 0 m2G

7 GæT 1 0 0 -

- 9 Aæ(C|G|T) 19 10 18 m1A

GæT 35 19 5 m1G

5’-D-stem 10 GæT 2 0 0 -

12 AæC 1 0 0 -

D-loop 16 AæG 1 0 0 -

20 TæG 1 0 0 D

3’-D-stem 23 AæC 11 6 0 unknown

- 26 GæT 31 48 22 m2G, m22G

5’-AC-stem 31 AæG 10 10 0 unknown

AC-loop 32 CæT 6 6 1 Cm, m3C

34 AæG 38 38 0 I

37 Aæ(G|T) 21 23 0 t6A, i6A, m1I

GæT 32 12 0 m1G, o2yW

V-region 2e Cæ(A|T) 4 4 0 m3C

5’-T-stem 49 AæT 1 1 1 unknown

T-loop 56 CæT 1 0 0 -

Continued on next page
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Table 2 – continued from previous page

Area Position Alteration GATK bcftools HAMR Modification

57 AæT 20 0 0 -

58 Aæ(G|T) 207 196 63 m1A

60 CæT 19 0 0 -

3’-T-stem 64 GæA 1 0 0 -

TæA 1 0 0 -

65 CæA 1 0 0 -

GæC 1 0 0 -

3’-ACC-stem 66 CæA 1 0 0 -

68 GæC 1 0 0 -

69 CæT 1 0 0 -

TæA 1 0 0 -

The overlap of called modification sites also varies considerably between the tools as

depicted in Fig. 30. Only 72 candidate sites, which match the tRNAmodviz database entries,

were found by all three tools. In addition, GATK and bcftools overlap at 231 modification

sites with the tRNAmodviz database, while their overlap with HAMR is very small due to

the small number of TPs called by HAMR. However, the numbers of modification sites

found by only one tool are very high. In detail, GATK and bcftools called 76 and 45 sites,

respectively, which overlap to the modified positions of the database entries but not with the

results of the other tool. This suggests that none of the three tools is sensitive enough to

find all TPs. A direct comparison of the modification patterns of the 26 sequences stored

in the tRNAmodviz database with the results of the three tools confirmed this assumption

(tRNA-specific validation; see Fig. 30). 18 of 41 modified sites detectable by accumulations

of base misincorporations for the tRNAmodviz tRNA reference set cannot be found with any

applied tools. It is possible that these modifications do not occur in our dataset given that

the database is based on RNA-seq experiments created under di�erent conditions.
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HAMR
Σ 110

GATK
Σ 428

bcftools
Σ  37345

(4)
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Figure 30: Overlap of called and known modification sites. Venn diagram illustrating the overlap
between called candidate modification sites in human cerebellum obtained from the tools GATK

(lightblue), bcftools (blue) and HAMR (darkblue) with known modifications of human transfer RNAs
(tRNAs) stored in the tRNAmodviz database (red). True candidate sites were called based on
accumulations of sequencing errors produced by the modified nucleotide during complementary DNA
synthesis. An overlap to the tRNAmodviz database was counted (numbers without brackets) if the
called true modification site is known in at least one human tRNA of the database (position-specific
validation). The overlap of called true sites between the three tools is very low (# 72). Most similar
in their modification calling specifications are GATK and bcftools, as they have an overlap of 231
true sites. Numbers in brackets show the overlap of the called true modification sites of the 26
tRNA sequences which serve as a reference set for human tRNA modifications in the tRNAmodviz
database (tRNA-specific validation). These 26 tRNAs show 66 modified sites which are detectable by
accumulations of base-misincorporations in RNA sequencing data. Only 41 of the 66 modified sites
were included in the counting, as we received coverage of more than 10 reads only for these sites.
GATK and bcftools achieved the greatest overlap (# 16) with these 41 sites.

In our analysis, GATK already identifies candidate sites with a base misincorporation rate

of > 10%, while the smallest rate of bcftools is 18% (see Fig. 31). We are not able to

reduce this minimum prediction of the base misincorporation rate of bcftools by parameter

adjustments. Since tRNAs can also be weakly modified [119], a higher false negative rate

(FNR) results for bcftools than for GATK. However, the low base misincorporation rate

predicted by GATK leads to increased detection of FPs (see Tab. 2). The tool is vulnerable to

call mapping artifacts incorrectly as true candidate sites. In total, these FP hits amount to

15%. Read coverage does not seem to have a big influence on the sensitivity of GATK and

bcftools, since true candidate sites with a low read coverage were also recognized. It is still

unclear why sites showing high modification rates and read coverage are not always found by
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Figure 31: Performance of GATK and bcftools. Each true candidate modification site called by
GATK (blue circles) or bcftools (red triangles) is illustrated regarding base misincorporation rate and
read coverage. Overlapping symbols indicate that these candidate sites were detected by both tools.
In comparison to bedtools, GATK also finds true candidate sites with a base misincorporation rate of
less than 18%. Read coverage does not show a strong e�ect on the sensitivity of both tools, since
even true candidate sites with low coverage were detected.

both tools. In summary, even though GATK called the most true candidate modification sites,

it is the only tool that additionally called FPs. Since HAMR is not as sensitive as the other two

tools, it is also not suitable for our analyses. bcftools is only slightly less sensitive and does

not call any FPs compared to GATK, so we decided to use bcftools for our further analysis.

10.1.1 Tissue-specific Modifications in Human tRNAs

A recent study based on liquid chromatography-mass spectrometry quantification demonstrated

that the relative abundance of nucleotide modifications in tRNAs varies substantially between

di�erent tissues in mouse and pig [348]. Thus, we were interested in determining whether

such di�erences are also detectable in rmRNA-seq data of six human tissues (cerebellum,
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diencephalon, ovary, skeletal muscle, esophagus muscularis mucosae, and testis) and if so,

whether there are also qualitative di�erences in the sense that di�erent locations are modified.

The answer to both questions is a�rmative. We observe seven positions (9, 26, 32, 34,

37, 49 and 58) which are frequently modified in all six tissues. In contrast 15 positions

are modified in a tissue-specific manner, 7 of which being present in more than one tissue.

Candidate sites of ten modified positions coincided perfectly with known modifications which

is illustrated in Fig. 32A and listed in detail in Suppl. Tab. B5. In all six tissues we detected

the well known 1-methyladenosine (m1A) modification at positions 9 and 58 indicated by

an A-to-(C|G|T) substitution. At the anticodon adjacent position 37 we noticed a further

mismatch pattern of adenines (As) which can be assigned to 1-methylinosine (m1I), N6-

threonylcarbamoyladenosine (t6A), and N6-isopentenyladenosine (i6A). In almost all reads

modified tRNA sites at position 34 of all six tissues show a A-to-G transition which is typically for

inosine (I). Additionally, we observed increased error rates in all tissues for the methylguanosine

modifications 1-methylguanosine (m1G) at position 9 as well as N2-methylguanosine (m2G)

and N2,N2-dimethylguanosine (m22G) at position 26. The occurrence of other observed

guanosine modifications vary between tissues. For example, m2G at position 6 is only present in

ovary, testis, and esophagus muscularis mucosae tissues. Whereas m1G and peroxywybutosine

(o2yW) is not present in diencephalon and skeletal muscle. We recognize the methylguanosine

modifications by a G-to-C transversion or a G-to-T transition. Modified methylcytosines

show specific mismatch patterns of 2’-O-methylcytidine (Cm) and 3-methylcytidine (m3C)

modifications at position 32 in each tissue. Cm is only modified at position 61 in diencephalon,

whereas m3C at position 2e is modified in all tissues except for testis.

However, the number of modified single tRNA genes varies according to human tissue

(see Fig. 32B). Only 91 tRNAs are modified in each tissue, 38 of which have the same

modification pattern. The highest amount of 155 identically modified tRNAs is observed for

the tissues cerebellum and esophagus muscularis mucosae. In comparison, diencephalon and

testis contain only 55 identically modified tRNAs. An example of a tissue-specific modification

pattern is given in Fig. 32C. At this example, the alanine tRNAAla
AGC is modified at positions

34 and 37 in each tissue, while positions 26 and 58 are not. These data strengthen the

assumption that tRNAs are modified in a tissue-specific manner.
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Figure 32: Summary of tissue-specific modification patterns in human tRNAs. (A) Overview of
transfer RNA (tRNA) positions which are modified in each of the investigated tissues (red) or in
at least one tissue (purple). The six investigated human tissues are cerebellum (C), diencephalon
(D), ovary (O), skeletal muscle (S), esophagus muscularis mucosae (E), and testis (T). Known
modifications of human (black) or other species (gray) listed in the tRNAmodviz database are assigned
to the modified positions. In total, seven positions are modified in each tissue and 15 positions are
modified in at least one tissue. (B) Overlapping numbers of modified tRNAs per human tissue. The
matrix displays numbers of identical modified tRNAs (red) and tRNAs which are modified in di�erent
manners (blue) between tissues. In each tissue the same 91 tRNAs are modified, only 38 of which are
identically modified. This strengthens the assumption that tRNAs are modified in a tissue-specific
manner. An example of a tissue-specific modification pattern is given in (C). Here, the pattern of an
alanine tRNA (tRNAAla

AGC) is shown. In each tissue, the position 34 and 37 in the anticodon arm are
modified. Position 58 in T�C-arm is modified in each tissue except for skeletal muscle. Position 25 is
modified only in the gonads (testis, ovary).
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10.2 Read Terminations Provide Indications for Modification

Profiling

Since base modifications can cause read terminations (RTs) during cDNA synthesis, it is

highly likely that accumulations of apparent RTs represent such base modifications. A high

sequencing depth is required to be able to determine tRNA modification from accumulations

of RTs. On average, in the rmRNA-seq data used in Section 10.1, we could only assign

0.95% of all reads to tRNAs leading in a low tRNA read coverage. For a su�ciently high

read coverage it is necessary to use tRNA-specific RNA-seq data. Thus, we compared reverse

transcription patterns of human HEK293T cells from long hairpin oligonucleotide-based tRNA

high-throughput sequencing (LOTTE-seq) and optimized sRNA TruSeq data (see Chapter 9).

Regarding the fraction of RTs over all tRNA reads in both tRNA-specific RNA-seq methods,

we obtained strong peaks (> 0.10) at tRNA positions 9, 20a, 26, 32, 34, 37, 2e, 4e, and

58 (see Fig. 33). However, the patterns di�er in their intensity. Except for tRNA position

20a LOTTE-seq always finds the strongest peaks. Di�erences in the intensity of RT fractions

can be explained by the number of tRNA reads specifically selected by both methods. On

average over the two human replicates, LOTTE-seq finds 95.8% tRNA reads, while sRNA

optimized TruSeq only contains 56.4% tRNA reads (see Suppl. Tab. B4). However, both

tRNA-specific methods are suitable for the identification of tRNA modifications by RTs, as

both display apparent RT patterns.

Several experimental approaches exist that use an induced RT stops to specifically in-

vestigate the presence of individual types of modifications. For example, ARM-seq [242] as

well as DM-seq [265] compare untreated with enzymatically demethylated samples to identify

certain base methylations in transcriptome data (see Section 5.7). With these methods they

are able to assign RT accumulation to m1A (positions 9 and 58), m1G (positions 9, 37),

m22G (position 26), i6A (position 37), and to m3C (position 34) modifications. Our observed

RT patterns perfectly correlate with the outcome of these studies. Additionally, we found

significant base misinorporations for the apparent RT accumulations at distinct positions

applying bcftools (see Section 7.3.1). Allocation of mismatch patterns to specific modifica-

tions (see Suppl. Tab. B2) is consistent with the results of the RT signals (see Fig. 33). At

position 2e we further received reverse transcription signatures which can be assigned to m3C.
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Figure 33: Fraction of read terminations identified in LOTTE-seq and optimized TruSeq data.
Fraction of read terminations (RTs) over all transfer RNAs (tRNAs; y-axis) are shown for each tRNA
position (x-axis). RT fractions are calculated from human LOTTE-seq (red) and optimized TruSeq
(blue) data. The secondary structure of tRNAs is given in dot-bracket notation (bottom). Only
positions of tRNAs that display peaks (> 0.10) are denoted. Despite tRNA positions 20a and 4e we
observed a position-specific increase in the rate of sequencing errors for each peak. These positions
are highlighted in red at the x-axis. Modifications that can be classified based on the individual
mismatch pattern (see Suppl. Tab. B2) and the tRNAmodviz database [119] are specified as well as
the number of tRNAs displaying this modification in each RNA-seq method. Positions 20a and 4e are
represented by highly conserved uridine residues. Here we assume dihydrouridine modifications as
they are not visible as conspicuous accumulations of mismatches but show high fractions of RTs. At
position 44 we observed that adenine-to-guanine transitions exhibited RTs, but no modification is
known at this position for human tRNAs. Both methods produced modification-specific RT signatures
demonstrating that tRNA-enrichted RNA-seq data can be used for the identification of certain base
modifications. However, the highest fractions of RTs are observed for Lotte-seq data (positions 26,
32, 34, and 2e), while the remaining pattern is quite similar to the optimized TruSeq method.

We found accumulation of RT fractions where we could not observe any mismatch patterns.

Since RTs at positions 4e and 20a arise exclusively from uridines, a possible dihydrouridine

modification can be assumed at this position. Usually, dihydrouridine (D) modifications cannot

be identified by mismatch pattern rather than by RT signals or specific chemical treatments

of the sequencing library. We recommend the use of chemical treatments for detection of D
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modifications, since the signal we received is very weak and other well known modified sites of

D (16, 17, 20, and 47) do not show strong RT signals.

The classification of reverse transcription signals requires prior knowledge. For example,

we observed adenine-to-guanine transitions at position 44. However, there is no strong peak at

this position indicating that the modification is either very weak or does not cause RTs. Since

adenine alteration can show di�erent types of modifications and no appropriate modification is

published in human tRNAs at this position, an exact classification is practically impossible. It is

reported that Cm and I modifications do not produce RTs during cDNA synthesis. Nevertheless,

we observed a strong peak at position 34, where only Cm and I match the base misincorporation

pattern. Still, it is unclear whether there is any other kind of modification at this position that

is not listed in the tRNAmodviz database, or whether any other influences generate RTs at

the position, e.g., secondary structure peculiarities.

10.2.1 tRNA Modifications Vary During the D. discoideum Life Cycle

A recent study demonstrates that gene expression of several methylated tRNA genes di�er

significantly in Oryza sativa (rice) and Arabidopsis thaliana (thale cress) between di�erent

stages of development [349]. Therefore, we are interested in whether variations in the

intensities of RTs for specific modifications occur at di�erent developmental stages using

tRNA-enriched RNA-seq data. Since tRNA modifications for Dictyostelium discoideum have

not been investigated yet, we used this well-studied model organism for our analysis.

D. discoideum is a slime mold that belongs to amoeba. When starving (0 hours), the slime

mold is able to undergo a complex development to produce di�erentiated cells of spores and

stalks depicted in Suppl. Fig. A7. Simultaneously, the organism changes from an unicellular to

a multicellular organism. Development of D. discoideum is characterized by a highly regulated

program of altered protein expression leading to complex formation of a new organism [350].

When the cells run out of su�cient nutrients, cyclic AMP (cAMP) signal release initiates a

stream of surrounding cells to a central domain. Streaming leads to a multicellular aggregation

(6 hours after starvation) and continues until a multicellular organism with the shape of a

mound is formed (16 hours after starvation). A migrating slug then forms, which can move

through the soil. When the culminant is formed (20 hours after starvation), cells begin to
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di�erentiate into pre-stalk and pre-spore cells. Eventually, the fruiting body consists of stalk

cells, which are intended to die, and spore cells, which are released under optimal growth

conditions. A new unicellular amoeba then develops again through the spore cells (24 hours

after starvation) [350, 351].

Cells of five di�erent developmental stages (0 hours, 6 hours, 16 hours, 20 hours and 24

hours after starvation; see Suppl. Fig. A7) of D. discoideum were prepared [408] following

the LOTTE-seq protocol (see Chapter 9). After read mapping, we obtained a high amount of

tRNA reads in the samples (on average 98%) using LOTTE-seq data.

In order to gain an insight into the modification pattern of D. discoideum during its devel-

opment, we identified candidate modification sites by accumulations of base misincorporations

(see Suppl. Tab. B6) and apparent RT signals (see Fig. 34). We classified the detected

modification sites according to our collection of modification-specific reverse transcription

signals (see Suppl. Tab. B2). In addition, we used modification information of any species

stored in the tRNAmodviz database for the classification of the tRNA modifications, since

no data are available regarding tRNA modifications in the slime mold. In each investigated

developmental stage, the same nine tRNA positions (9, 20, 26, 32, 34, 37, 47, 58, and

68) show base misincorporations as illustrated in Fig. 35. Despite positions 32 and 34,

strong peaks (>0.10) of RT fractions occur. Base alterations at positions 9, 34, and 58

can clearly be assigned to m1G, I, and m1A, respectively, as no other tRNA modifications

are known for these modified nucleotides. No unambiguous classification is possible for the

other tRNA modifications, as several modifications are known in other species for the same

altered nucleotides. Modified cytosines at tRNA positions 20, 32, 34 may be either m3C or

Cm displaying the same reverse transcription profile. The same applies to modified guanine

residues which could probably be m2G and m22G modifications (position 26) or m1G and o2yW

(position 37). It is also indistinguishable whether modified adenines (A37) refer to t6A, i6A, or

m1I modifications. Since only RTs are reported for i6A [352] and we observed a strong signal

of RTs at position A37, tRNA genes showing RTs can be classified as i6A. This can also be

assigned to the identified adenine-to-guanine alterations at position 68 were no modification is

reported in the tRNAmodviz database. Base alterations showing strong RT accumulations can

be classified to i6A or m1A, while tRNA gene mapping without RTs could be an indication of I,

m1I, or t6A. Typically, modified uridines cannot be detected by analyzing base misincorporation
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Figure 34: Comparison of read termination fractions during the life cycle of D. discoideum.
(A) Fraction of read terminations (RTs) over all transfer RNAs (tRNAs) (y-axis) are shown for each
tRNA position (x-axis). RT fractions are calculated for di�erent developmental stages (0h, 6h, 16h,
20h, and 24h) of the life cycle of D. discoideum. Positions of tRNAs that display peaks (> 0.10) are
highlighted in black, and peaks that also show base-calling errors are highlighted in red on the x-axis.
The secondary structure of tRNAs is given in dot-bracket notation (bottom). (B) Relative fraction
of RTs for each developmental stage is given in percentages. The color-coding is according to (A).
Generally, most RTs occur at time of 6h. At position 34, the highest relative proportion of RTs is
observed from the starting point of developmental morphogenesis (0h). At 20h, the highest number
of RTs (60%) is detected at tRNA position 68 while for 16h no RTs can be found. However, as only
one tRNA is modified at each developmental stage at this position, the amount of RTs is very small
and therefore no peak can be seen. Variations in the life cycle are a result from the strengths of RTs.
This indicates di�erent modification levels at individual positions for the investigated point in time.

sites, but by RT accumulations. However, we observed thymine-to-cytosine transitions and

thymine-to-adenine transversions at positions 20 and 47. We assume that such base changes

indicate D modifications, as uridines at position 20 are usually modified as D in several species.

This can be confirmed as we achieved strong peaks of RT fractions at both tRNA positions
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Figure 35: Modification pattern of Dictyostelium discoideum. At each investigated developmental
stage (0h, 6h, 16h, 20h, and 24h after starvation) of the life cycle of D. discoideum the same transfer
RNA (tRNA) positions are modified (red circles). Modifications are detected by base-calling errors.
Since tRNA modifications have not been investiged yet for D. discoideum, known modifications (black
arrows) of other species from the tRNAmodviz database [119] served as indicators for modification
classification. Typically, uridine modifications cannot be detected by the analysis of base-calling errors.
However, we observed thymine-to-cytosine transitions or thymine-to-adenine transversions at positions
20 and 47 (gray arrows). We assumed that such base changes indicate D modifications since uridines
at position 20 are usually modified to D. At position 68 no tRNA modification is known in other species
(gray arrow). The observed mismatch pattern (adenine-to-guanine) may be an indication of a possible I,
m1A, t6A, m1I, or i6A modification at this position. Abbreviations: A – adenine; C – cytosine; Cm – 2’-
O-methylcytidine; D – dihydrouridine; G – guanine; I – inosine; i6A – N

6-isopentenyladenosine; o2yW
– peroxywybutosine; T – thymine; t6A – N

6-threonylcarbamoyladenosine; m1A – 1-methyladenosine;
m1G – 1-methylguanosine; m1I – 1-methylinosine; m2G – N

2-methylguanosine; m2
2G – N

2,N2-
dimethylguanosine; m3C – 3-methylcytidine.

(U20, U47). Additionally, strong peaks can be recognized at tRNA positions 18, 45, 46, and

64. At these positions are no modifications known. For the classification of these candidate

sites we recommend the use of chemically treated RNA-seq data.
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The di�erent time points vary in the number of modified tRNAs at certain positions

(see Suppl. Tab. B6). In particular, 6h after starvation the life cycle of the slime mold di�ers

strongly from the remaining investigated developmental stages by an increased or largely

reduced number of modified tRNAs at the positions 20, 26, and 37. Time points 0h and 16h

after starvation show a significant increase in the occurrence of modified tRNAs at position 9.

The number of modified tRNAs at starvation increased compared to the other stages. However,

the same amount of altered tRNA genes occurs at positions 32, 34, 58, and 68.

Normally, one would assume that the intensity of RTs correlates with the number of

modified tRNAs. We cannot confirm these assumptions with our observations. Although, the

number of modified tRNAs at four positions 6h after starvation is much lower compared to

the other investigated time points, this time point usually displays the highest fraction of RTs

(see Fig. 34B). For example, the starvation (0h) and mound formation (16h after starvation)

stages of the development of D. discoideum show the highest amount of modified tRNA bases

at position 9. At this tRNA position, however, RT fractions are nearly 4 times higher at 6h

compared to 0h and 16h. Thus, the number of modified tRNAs does not necessarily provide

a conclusion about the levels of modifications. Single tRNAs can be strongly modified and

expressed at certain points in time, resulting in an increase in the relative fraction of reads

over all tRNAs, but still only few tRNAs are modified in total.

Although the same tRNA positions are modified at all investigated stages of the life cycle of

D. discoideum, they di�er in the number of modified tRNA genes and their relative fraction of

RTs. These results suggest that the chemical modification of distinct tRNA genes is regulated

according to the stage of development. Thus, a potential function of the tRNA modification

in the development of the slime mold can be expected.

10.3 Profiling tRNA Modifications in Treatment-Based Procedures

Dihydrouridine (D), pseudouridine (�) and 7-methyl-guanosine (m7G) modifications slightly

a�ect reverse transcription during cDNA synthesis (see Section 5.7). Base pairing properties of

D and � modifications lead to being recognized as standard uridines resulting in no detectable

misincorporation sites. Strong D modifications can lead to accumulations of position-specific

RTs, however, the signals are often weak and can only be identified in few modified residues as
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we saw from our previous analyses (see Section 10.2). In contrast, � and m7G modifications

do not result in apparent RT signals in untreated samples.

To detect D, �, and m7G modification in tRNAs systematically, C. Lorenz developed RNA

treatments designed to convert these modifications so that they yield a specific read-out in

the subsequent sequencing step using tRNA-enriched pools. For the specific enrichment of

tRNAs, they isolated and separated tRNAs by high salt precipitation of RNAs with higher

molecular weight. The quality of the isolated tRNA pools was investigated on a BioAnalyzer

device and on high-resolution denaturing polyacrylamide gels with subsequent staining. After

quality assessment, the RNA pools were used for chemical treatment of the individual base

modifications. They were able to establish chemical detection procedures for � (detection

by 1-cyclohexyl-(2-morpholinoethyl)carbodiimide metho-p-toluene (CMCT) treatment) and

dihydrouridine (D) (detection by sodium borohydride (NaBH4) treatment) as described in

Section 5.7. NaBH4 treatment enables also the detection of m7G methylations. In all cases,

untreated samples were produced to identify the modified positions by an increase occurrence

of apparent RT accumulations compared to the untreated samples. Three biological replicates

were prepared for each treatment as well as for the corresponding negative control for the

bacterium Bacillus subtilis and submitted to Illumina sequencing. A detailed description of

the library preparation protocol is given in A. Ho�mann and C. Lorenz et al. [410] and in the

thesis of C. Lorenz [353].

Our task was to develop an evaluation strategy that sensitively and precisely recognizes D,

m7G, and � sites in our treatment-based RNA-seq samples. The technical implementation

of this post-mapping analysis strategy is described in detail in Section 7.3.2. In brief, for

the direct comparison of the RT expression of the treated libraries and the negative control,

the mapped reads are scaled sample- and replica-wise to the same size. Normalization is

necessary to ensure that di�erences in library size do not a�ect the following down-stream

analysis which prevents for inflated false positives in expression measures of RTs. For the

profiling of modified sites we applied di�erent statistical measurements. On one hand, we

calculated the fold change (FC) for each tRNA and position. Using the FC we are able to

test the null hypothesis which states that the logarithmic FC between two conditions for a

gene’s expression is zero. A zero value indicates modified sites which are not a�ected by the

chemical treatment [354]. Thus, the greater the FC, the stronger is the e�ect of the treated
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condition at the particular site. On the other hand, for each tRNA site we determined the

statistical significance of the di�erent expression intensities of RTs between both conditions

using a Poisson distribution. We decided to use this distribution since in RNA-seq data each

read is sampled independently and consistently from a pool of reads. Therefore, reads can

be modeled as a random sampling process. Under this assumption the number of reads

coming from a gene follows a binomial distribution and can be approximately described by a

Poisson distribution [308, 355]. The fundamental property of the Poisson distribution is that

its variance is equal to the mean, which is not generally given in RNA-seq data, especially

for highly expressed genes. This so called overdispersion problem can be solved by using

a generalized linear model framework. A linear model framework is commonly known as a

“quasi-likelihood” approach, with Poisson-like assumptions or a negative binomial model. These

distributions allow the calculation of an extra dispersion parameter that adjusts the variance

independently from the mean [356, 357]. In our case, we do not address multiplicity problems,

but rather use the RT counts as a single parameter for statistical regressions. We do not

expect high variability, since our analysis focuses only on single tRNAs and not on whole

genomic samples. Thus, the Poisson distribution fits well for our purpose. Poisson’s regression

estimations provide a specific p-value for each tRNA position that describes the probability

of enriched RTs occurring in the treatment. In fact, sometimes small p-values happen by

chance for multiple tests, which could lead to an incorrect rejection of the null hypothesis.

To decrease the false discovery rate we adjust the p-values applying the Benjamini-Hochberg

procedure [309].

10.3.1 Parameter Adjustments to Correct Background Noise

Considering all sites which display a statistically significant increase of RT expression in the

treated samples (p-value < 0.01, log2(FC) Ø 0.01), a large number of hits is obtained. In

both, the NaBH4 (see Fig. 36) and the CMCT (see Fig. 37) treatment, highly-enriched

RT sites cannot be distinguished from the background noise by analyzing only sites with a

significant increase. Since reverse transcriptase can not only terminate at modified sites but

can also react very sensitively to structural peculiarities or other modifications, RTs can occur

beside D, m7G, and �. A background noise may originate because the reverse transcriptase
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Figure 36: Significant candidate sites in the NaBH4 treatment. All transfer RNA (tRNA) residues
of Bacillus subtilis showing a significantly (p-value < 0.01) enriched amount of read terminations
(RTs) in the sodium borohydride (NaBH4) treatment in comparison to the untreated control sample
are highlighted. Significant candidate sites of uridine are shown in color-coded (from blue to red) dots
according to the logarithmic fold change (FC). Significantly enriched non-uridine sites are displayed
in gray big dots and the corresponding nucleobases are abbreviated by: A – adenine; C – cytosine;
G – guanine. tRNA sites that are not significantly enriched in terms of RT coverage are presented in
small gray dots. NaBH4 treatment should result in an increase of RTs at dihydrouridine (D; tRNA
positions 17, 20, 20a, and 47) and 7-methyl-guanosine (m7G; tRNA position 46) modifications. Using
a minimal FC cuto� a huge amount of candidate sites is obtained. Modifications that should be visible
through the treatment cannot be distinguished from background noise. A specific parameterization is
necessary to reduce the background noise. Beside the logarithmic FC, the percentage number (%RTs)
as well as the total number of RTs (#RTs) per site are suitable parameters for this purpose.

does not always terminate with the same probability and intensity, which leads to other sites

producing significant di�erences in RT expression. Therefore, it is important to distinguish

biological variability from such noise. This is possible by considering di�erent parameters and

adjusting them according to treatment and species.
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Figure 37: Significant candidate sites in the CMCT treatment. Transfer RNA (tRNA) residues
of Bacillus subtilis which show a significant (p-value < 0.01) increase of read terminations (RTs)
in the 1-cyclohexyl-(2-morpholinoethyl)carbodiimide metho-p-toluene (CMCT) treatment compared
to the untreated control sample are highlighted. Significant candidate sites of uridine are shown
in color-coded (from blue to red) dots according to the logarithmic fold change (FC). Significantly
enriched non-uridine sites are displayed in gray big dots and the corresponding nucleobases are
abbreviated by: A – adenine; C – cytosine; G – guanine. tRNA sites that are not significantly enriched
in terms of RT coverage are presented in small gray dots. CMCT treatment should result in an
increased amount of RTs at pseudouridine (�) modifications frequently found in the bacterium at
positions 31, 32, 39, and 55. Using a minimal FC cuto� a huge amount of candidate sites is retained.
Modifications that should be visible through the treatment cannot be distinguished from background
noise. In order to reduce the noise, a specific parameterization is necessary. Beside the logarithmic
FC, the percentage number (%RTs) as well as the total number of RTs (#RTs) per site are suitable
parameters for this purpose.

Parameter and cuto� selection should not result in a large reduction of TP hits, but should

reduce FPs. For a systematic determination of cuto�s in the Bacillus subtilis samples, we

classified each hit according to TPs and FPs. Hits matching the tRNA positions of D (U17,

U20, U20a, and U47), m7G (G46), and � (U31, U32, U39, and U55), which are already
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annotated in the tRNAmodviz database, were declared as TPs.

Low-enriched sites can be filtered by a selected log2 FC cuto�, as treatments only cause

a high accumulation of RTs at the specific modifications. It has to be considered, that not

each modifications lead to a strong accumulation of RTs. Especially, low modifications may

produce few RTs whose presence remains undetected by high FC cuto�s, even if they were

enriched by the treatment. A suitable cuto� for the logarithmic FC seems to be 1 for the

NaBH4 and 2 for the CMCT treatment, while higher values lead to a strong decrease of TP

hits as shown in Fig. 38A. Thus, only a 2-fold and a 4-fold enrichment of the NaBH4 and

CMCT treatments, respectively, were considered.

Highly enriched signals can also occur when a low RT coverage is present relative to

the total number of reads at this position. In both treatments these signals are particularly

frequent at the T�C-arm (T-arm; 3’-end) of the tRNAs. We assume that treatment-based RT

sites have a higher ratio of RT reads to non-RT reads at the corresponding position compared

to noise signals. Thus, we filtered hits by the percentage of RTs at the respective position.

While a cuto� of 1% already results in a low reduction of TPs in the NaBH4 treatment, the

number of TPs decreases by 4% in CMCT treatment (see Fig. 38B). The selection of the

cuto� should not be too stringent, since the highest read coverage occurs in the 5’-range

of the tRNAs due to the 3’-to-5’-directed activity of the reverse transcription in the used

library preparation protocol. Since these non-RT reads mainly decrease only by modifications

in 3’-direction of the tRNA, a high percentage of non-RT reads occur. Therefore, we consider

a cuto� of 1% (NaBH4 treatment) and 3% (CMCT treatment) as suitable for this parameter.

The selected parameter cuto�s leads to a strong reduction of FPs at the T-arm of the tRNAs.

In particular, 66% in the NaBH4 and 76% in the CMCT treatment can be filtered out.

tRNA positions with generally low read coverage may result in significant signals even from

a few RTs. This is often the case in the 3’-range (D-arm and 5’-acceptor stem) of tRNAs. In

addition, we recognized that the used reverse transcriptase increasingly incorporates erroneous

bases in the 3’-range and terminates prematurely. This results in a lower read frequency in the

3’-regions. Such noise can be filtered out by the minimum number of RTs per position. Based

on the distribution of TPs and FPs at di�erent cuto� values (see Fig. 38C), we set the cuto�

for the NaBH4 and CMCT treatment to 100 and 175 RT counts per site, respectively.
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Figure 38: Parameter settings to reduce background noise. Numbers of true positives (known
modifications sites in the tRNAmodviz database) and false positives (potential background noise)
using di�erent parameter cuto�s are displayed for the sodium borohydride (NaBH4; left side) and the
1-cyclohexyl-(2-morpholinoethyl)carbodiimide metho-p-toluene (CMCT; right side) treatment. Cuto�s
were defined for (A) the logarithmic fold change log2(FC), (B) the percentages of read terminations
(RTs) per site and (C) the total number of RTs per site. The chosen cuto�s (dashed horizontal lines)
should balance the minimum loss of TPs and the maximum noise reduction.

Using the defined parameter settings we can reduce 76% noise in the NaBH4 treatment

and 88% in CMCT treatment. In contrast, 87/98 (89%) truly modified sites remain in the

NaBH4 treatment and 43/48 (90%) TPs in the CMCT treatment. These parameter settings

provide a good balance between preserving TPs and reducing FPs. As a result, we can now
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Figure 39: Filtered candidate sites in the NaBH4 treatment. The following parameter adjustments
are used to reduce background noise and filter out not strongly enriched RT sites: logarithmic fold
change (log2(FC)) Ø 1; percentage number of RTs (%RTs) per site Ø 1; total number of RTs (#RTs)
per site Ø 100; p-value < 0.01. All transfer RNA (tRNA) residues of Bacillus subtilis which surpass
the parameter cuto�s in the sodium borohydride (NaBH4) treatment in comparison to the untreated
control sample are highlighted. Candidate sites of uridines are shown in color-coded (from blue to red)
dots according the logarithmic fold change. Non-uridine sites are displayed in gray big dots and the
corresponding nucleobases are abbreviated by: A – adenine; C – cytosine; G – guanine. tRNA sites
which were filtered out showing not significantly enriched RT coverage are presented in small gray
dots. NaBH4 treatment should results in an increase of RTs at dihydrouridine (D; tRNA positions
17, 20, 20a, and 47) and 7-methyl-guanosin (m7G; tRNA position 46) modifications. At precisely
these sites we achieved highly enriched RT sites: D17 (#19), D20 (#20), D20a (#13), D47 (#21),
and m7G (#11). This results indicate that our analysis is sensitive for detecting both D and m7G
modifications.

more clearly separate TP sites from the background noise in both NaBH4 (see Fig. 39) and

CMCT treatment (see Fig. 40).
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Figure 40: Filtered candidate sites in the CMCT treatment. The following parameter adjustments
are used to reduce background noise and filter out not strongly enriched RT sites: logarithmic fold
change (log2(FC)) Ø 1; percentage number of RTs (%RTs) per site Ø 3; total number of RTs (#RTs)
per site Ø 175; p-value < 0.01. Transfer RNA (tRNA) residues of Bacillus subtilis when they surpass
the parameter cuto�s in the 1-cyclohexyl-(2-morpholinoethyl)carbodiimide metho-p-toluene (CMCT)
treatment are highlighted. Candidate sites of uridine are shown in color-coded (from blue to red)
dots according to the logarithmic fold change. Non-uridine sites are displayed in gray big dots and
the corresponding nucleobases are abbreviated by: A – adenine; C – cytosine; G – guanine. tRNA
sites which were filtered out showing not significantly enriched RT coverage are presented in small
gray dots. CMCT treatment should result in an increase of RTs of pseudouridine (�) modifications
which are frequently found at positions 31,32, 39, and 55. At precisely these known � sites from the
bacterium, we achieved highly enriched RT sites: �31 (#2), �32 (#1), �39 (#19), and �55 (#26).
These results indicate that our analysis is sensitive for detecting � modifications.

10.4 Discussion

Detecting tRNA modifications has become a very timely topic in current research. Coupled with

new detection methods, new insights have been gained into the function of RNA modifications

in the regulation of RNA stability [27, 133], of protein biosynthesis [139, 140, 143, 145], and
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of immunity [124]. The combination of reverse transcription-based methods and RNA-seq

has emerged as a powerful instrument for the profiling of RNA modifications. Early studies

of tRNA sequencing data showed that tRNA modifications in plants are readily detectable

by a position-specific increase in the rate of sequencing errors [358, 359]. Later analyses

demonstrated that the profiles of sequencing errors are at least approximately reproducible

between experiments [261, 263]. It has been proven challenging to call modifications from

next-generation sequencing (NGS) data since reads are not only erroneous (with error rates of

around 0.1-10% in various sequencing technologies), but result from a complex error process

that depends on the properties of the instrument, the preceding mapping tools, the genome

itself [266], and from the used reverse transcriptase. To reduce errors during the read mapping

step, we applied the best-practice workflow for the accurate mapping of tRNA reads described

in Chapter 8. For a sensitive and accurate profiling of tRNA modifications the choice of a

suitable modification caller, which is able to divide errors from true modifications, is crucial.

Our benchmark of the appropriate callers GATK [269], bcftools [267, 268], and HAMR [261]

revealed that the tools vary strongly in their true positive rate (TPR; sensitivity) and false

discovery rate (FDR) as listed in Tab. 2. We received the same number of modified tRNAs for

only one tRNA position in all three investigated tools. Although HAMR was developed directly

for transcriptome-wide discovery of tRNA modifications with single nucleotide resolution, it

displays the lowest sensitivity in our benchmark. In contrast, the general purpose variant caller

GATK shows the highest sensitivity closely followed by bcftools. The biggest drawback of

GATK is that it achieves high but still imperfect accuracy, since more than 15% of all found sites

could be classified as FPs by visual inspection of the mapping patterns. Similar inaccuracies

could be found when using GATK for single-nucleotide polymorphism (SNP) calling [360]. The

di�erent accuracies could be explained by their implemented algorithmic features when calling

modifications, e.g., required misincorporation rate and read coverage (see Fig. 31). Our

attempt to adjust the cuto�s of bcftools via its parameter settings in order to detect weaker

modifications remained unsuccessful. No tool was sensitive enough to detect all modifications

since the number of true modification sites found by only one of the tools was very high

(see Fig 30). Since bcftools is only slightly less sensitive and does not call any false positive

candidate sites compared to GATK, we recommend to use bcftools for tRNA modification

calling based on misincorporation sites.
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We did not consider other tools based on data-adaptive methods in our benchmark. Such

tools, e.g. haarz from the segemehl suite [266], are designed for general RNA-seq data which

cannot be used for tRNAs without further modifications. In contrast to the variant callers

GATK and bcftools, haarz particularly recognized expanded polymerase chain reaction (PCR)

artifacts as an overabundance of reads with the same start and stop positions. However, tRNAs

do not allow much variation in the positioning of read starts and ends. Reverse transcription

stops lead to sharp changes in coverage and hence to many reads with the same end position.

This often supports the presence of a chemical tRNA modification rather than an indication

of an PCR artifact. Therefore, a data-adaptive method needs to be aware of the peculiar

patterns produced by short, heavily structured transcripts.

By applying our analysis strategy to open–source rmRNA-seq data of six di�erent human

tissues (cerebellum, diencephalon, ovary, skeletal muscle, esophagus muscularis mucosae, and

testis) we find compelling evidence for tissue-specific di�erences of tRNA modification patterns.

However, a functional explanation remains elusive. At this point we can only note that

neither the developmental stage (cerebellum, diencephalon, skeletal muscle from fetal sources

and testis, ovary, esophagus muscularis mucosae from adult sources) nor the tissue turnover

rate [361] seem to be a convincing cause for the di�erences. It is well known that tRNA

expression patterns vary up to 10-fold between di�erent tissues. However, testis and ovary show

distinct tRNA modification patterns but very similar tRNA expression patterns relative to brain

tissue samples [362]. This makes it very unlikely that our reported modification di�erences are

an artifact resulting from ascertainment biases caused, e.g., by di�erent sensitivities for the

detection of varying modification patterns. On the other hand, some biological explanations

for expression di�erences might also account for tissue-specific modifications. One hypothesis

postulates that modifications may be introduced to reduce misfolding and the subsequent

degradation and/or dysfunctioning of tRNAs [363]. Di�erences in the modification patterns

may influence the relative abundance of functional tRNA and favor the expression of messenger

RNA (mRNA) with a suitably adapted codon bias [364]. It is also conceivable, however, that

the tissue-specific modification patterns are the result of di�erent expression levels of specific

modification enzymes that have evolved for reasons unrelated to tRNA biology.

It is important to note in this context that by no means all chemical modifications

are visible in untreated RNA-seq data due to the accumulation of misincorporation rates
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produced by the reverse transcription during cDNA synthesis. Some base modifications lead to

reverse transcription terminations and become detectable as apparent accumulations of RTs

by sequencing techniques [262, 335]. Since a high tRNA read coverage allows quantitative

statements about accumulations of RTs, we used tRNA-enriched RNA-seq data for our analyses,

e.g., LOTTE-seq and optimized sRNA TruSeq data. The analysis of the tRNA sequence

reads identified a series of accumulations of RT signals resulting from reverse transcription

termination at specific modified base positions. However, gradations are recognizable in both

tRNA-enriched RNA-seq data. The number of modified tRNAs and the relative fraction of

RTs are considerably increased in human LOTTE-seq data compared to the optimized sRNA

TruSeq reads illustrated in Fig. 33. The specific protocol of LOTTE-seq, in which a two-stage

adapter ligature procedure has been implemented, enables the capture of a much higher

number of (partial) cDNA fragments resulting from premature RT termination. While this

deceases the number of reads spanning certain modifications, the corresponding pileup of RTs

in LOTTE-seq is an excellent indicator for these base modifications.

Our analysis of base-specific RT signals in combination with the corresponding base

misincorporation pattern allows the unambiguous classification of several tRNA methylations

in human tRNAs, e.g., m1A, m1G, m22G, i6A, and m3C. Our observed RT patterns perfectly

correlate with the outcome of previews studies [242, 265, 365]. The investigated tRNA-enriched

data appear su�cient to display the listed tRNA modifications due to their e�ect on RT

incorporation. Other modifications, i.e., t6A, I, o2yW, and Cm can only be classified by

their base misincorporation sites and/or by the use of specific chemical treatments. For D

modifications, which usually show no altered Watson–Crick face in the sequencing reads, we

only observed weak RT signals. Therefore, profiling of D modifications via RTs is unsuitable

and we recommend to apply a chemical treatment for their detection. In general, for the

classification of tRNA modification we used the obtained reverse transcription signals. For this

purpose, we expanded and improved knowledge about modification-specific reverse transcription

signals of previous studies [119, 241, 242, 261–263, 265, 365] based on our observations. This

allows an easier classification of tRNA modification patterns by analyzing reverse transcription-

based RNA-seq data. Our improved collection of common tRNA modifications and how

they become visible in sequencing data is given in Suppl. Tab. B2. Since some reverse

transcriptase signals also fit to several modification types, an unambiguous assignment without
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prior knowledge is challenging. Therefore, we incorporated the information stored in the

tRNAmodviz database [119] for classifying the modification patterns. The database contains

information on tRNA modifications collected from various scientific literature and tRNA-seq

experiments. Since many tRNA modifications for single tRNAs and species are not well

investigated or not included in the database, e.g., D. discoideum, a stringent classification is

not possible for all retained signals using untreated RNA-seq data (see Fig. 35). Therefore, it

cannot be excluded that we have misclassified some tRNA modifications or assigned RTs as true

modifications, e.g., resulting from robust secondary structures. In order to be able to classify

the modifications unambiguously, specific chemical treated RNA-seq data are imperative. Since

most treatments can only display a single modification type, it is very cost-intensive to cover

a wide range of di�erent types of modifications.

When analyzing time dependent reverse transcription signals in tRNA genes during the

development of D. discoideum, we always observed modified sites at the same tRNA positions

as illustrated in Fig. 35. However, the numbers of modified tRNAs and RT signal intensities

vary drastically between the investigated developmental stages (see Fig. 34). Of the 12

detected types of tRNA modification, only five are modified within the same tRNAs (see Suppl.

Tab. B6). The identification of positions modified in the same tRNAs in all investigated

samples indicates the applicability of our LOTTE-seq data and that the found di�erences in

the life cycle of D. discoideum are probably not artifacts. Interestingly, modified tRNAs during

multicellular aggregation (6 hours after starvation) of the slime mold development display the

highest relative fraction of RTs for almost all modified positions. Nevertheless, the number of

modified tRNAs is often lower at these positions compared to the other stages. Some tRNAs

are probably more strongly modified leading to these increased RT fraction sites during cell

aggregation. A possible biological interpretation of the developmental-specific modification

patterns is given in the thesis of L. Erber.

Since only D-modified tRNA residues show weak fractions of RT signals in untreated

samples, specific chemical treatments are necessary for their visibility in mapped RNA-seq

reads. To this end we developed a treatment-based RNA-seq method and an analysis strategy

allowing the systematic profiling of D, m7G (NaBH4 treatment), and � (CMCT treatment)

modifications in the transcriptome with single-nucleotide resolution. Based on our statistical

quantification of the data, we detected a variety of RT sites which are significantly enriched



Chapter 10. Detection of Chemical tRNA Modifications 139

(p-value < 0.01) in the treated samples compared to the negative control. Classifying the

significantly enriched RT sites as modified sites is not trivial. A great challenge was that the

treatments are performed for up to two di�erent modifications. In contrast to gene expression

analysis, where statistical robustness and performance can be increased by aggregating reads

from an entire gene, measurements of tRNA modifications comprise only single nucleotides [260].

Another challenge was the separation of background noise from the true modified sites which is

often the case in comparable analyses (see Fig. 36 and 37). Enriched RT sites corresponding

to background noise can be due to RNA structure, reverse transcription error rate, complex

processing of the RNA, genomic misalignments of sequencing reads and, technical errors of the

sequencing platform. Specific parameter cuto�s can be used to reduce the background noise

as shown in Fig. 38. We assume that the modified sites are considerably more enriched due

to the treatment than signals from the background noise. The use of a specially adapted FC

cuto� is, therefore, suitable. Other background noise which occurs from low RT read coverage,

primarily located at the 5’-ACC-stem and the 3’-region of the tRNAs, can be filtered out by

only considering sites showing an absolute number and percentage of RTs at the respective

position over a determined threshold. The adjustment of these parameters cuto�s allows to

reduce 76% background noise in the NaBH4 treatment (see Fig. 39) and 88% noise in CMCT

treatment (see Fig. 40). However, it should be noted that this filtering strategy of background

noise leads to a reduction of TP sites (Æ 11%). We were not able to completely reduce

the background noise without accepting an increased false negative rate by more stringent

parameter settings.

10.5 Data Sources

Strand-specific rmRNA-seq data were obtained from the Encode project [324, 325] for Sec-

tion 10.1. The ENCODE data sets were chosen to represent three di�erent organs: brain,

muscle and gonades of Homo sapiens. For each organ two di�erent tissues were considered.

Biosamples showing approximately the same age were used as replicas. The tissues cere-

bellum (female 19 weeks and female 37 weeks: GEO:GSE78291) and diencephalon (female

20 weeks and male 22 weeks: GEO:GSE78292) were selected for brain, esophagus muscularis

mucosa (female 51 years: GEO:GSE88169, female 53 years: GEO:GSE88236, male 37 years:



140 Chapter 10. Detection of Chemical tRNA Modifications

GEO:GSE88128) and skeletal muscle (female 19 weeks and male 22 weeks: GEO:GSE78300) for

muscle organ as well as testis (male 54 years: GEO:GSE88414, male 37 years: GEO:GSE88124)

and ovary (female 51 year: GEO:GSE87965) for gonade.

Genomes of D. discoideum (assembly dicty 2.7), H. sapiens (assembly hg38) and B. subtilis

(strain NCIB 6310) were downloaded from NCBI, release 90 [22]. Numbers of annotated tRNA

genes for each genome are given in Suppl. Tab. B3.
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Gene families evolving under concerted evolution are not amenable to classical phylogenetic

analyses since paralogs maintain identical, species-specific sequences, precluding the estima-

tion of correct gene trees from sequence di�erences. This leaves conservation of syntenic

arrangements with respect to “anchor elements” that are not subject to concerted evolution

(see Chapter 4) as the only viable source of phylogenetic information. However, our newly

developed, purely synteny-based workflow is quite capable of solving this problem.

Our workflow distinguish orthologs and paralogs in transfer RNA (tRNA) families that

are subject to concerted evolution in a more systematic than previous studies [196, 197].

The workflow based on the use of uniquely aligned adjacent sequence elements as anchors

to establish syntenic conservation of sequence intervals. In practice, anchors and intervals

can be extracted from genome-wide multiple sequence alignments (MSAs) (see Section 5.5.1

and Section 6.1.1). To this end a so-called synteny map was implemented which harbors

information about syntenic tRNA gene clusters which are subdivided by the genomic anchors

(for the methodical implementation see Section 7.4). Syntenic clusters of concertedly evolving

genes of di�erent families were then subdivided by list alignments, leading to usually small

clusters of candidate co-orthologs as described in Chapter 6. On the basis of recent advances

in phylogenetic combinatorics, these candidate clusters were further processed by cograph

editing to recover their duplication histories. The workflow can be conceptualized as step-wise

refinement of a graph of homologous genes.

This chapter is based on Velandia-Huerto et al. [376] titled by Orthologs, turn-over, and

remolding of tRNAs in primates and fruit flies. In a further work, the described workflow was

refined to a fully automatized pipeline (SMORE) and is published in Berkemer et al. [377] with

the title SMORE: Synteny Modulator Of Repetitive Elements. I Implemented the creation of

synteny maps as described in Section 7.4. Subsequent steps of the workflow were implemented

by S. J. Berkemer based on the concept described in Section 6. For further details of the

implementation and discussion of the workflow see the dissertation of S. J. Berkemer [366].

In this chapter, the biological applications of the workflow is given to revisit the evolution of

tRNAs in primates, as an example for a phylogenetically very narrow range, and in fruit flies,

as an example for a phylogenetically already very diverse system.
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11.1 Evolution of Primate tRNAs

Starting from the primate MULTIZ alignments [287] (see Section 6.1.1) we obtained 1665

connected components of the candidate graph �c, including 961 singletons. In 168 connected

components, tRNAs of only a single species were found. 536 connected components formed

non-trivial graphs showing the orthology relation between tRNAs in distinct species. Almost

all of the connected components of the estimated orthology graph �o were already cographs.

Only 3 of the 536 graphs had a non-cograph structure. This appears to be related to

pseudogenization of parts of the cluster, which causes some of the pairwise distances of the

pseudogenized tRNAs to drop below the threshold value for orthology assignment.

The connected components based on the MULTIZ MSA blocks are typically small and show

very few tandem duplications. This may be caused by the choice of one particular copy of

duplicated sequence flanking a tRNA in the MULTIZ pipeline. The corresponding gain and loss

events are mapped to the primate phylogeny in Fig. 41. To investigate this e�ect we therefore

joined connected components of the MULTIZ-based �c that share boundary MSA blocks. This

reduced the number of synteny regions by about a third to 1079 connected components

and about halved the number of singleton from 961 to 482. Still, we found 64 components

comprising tRNAs of only a single species. Of 533 non-trivial connected components only 2 did

not have cograph structure. The main e�ect joining adjacent synteny groups, i.e., considering

larger syntenic groups in the initial step, is that events are assigned to evolutionary more

ancient events. This is a consequence of reconstructing larger clusters as the ancestral state,

so that more deletions from these clusters are inferred instead of evolutionary more recent

events of seeding novel clusters.

Of the cographs, 327 were subsets of adjacent vertices (cliques) and thus did not contain

duplication events. The remaining 206 include duplication events that increased the total

number of tRNAs by 66. In addition, 60 duplications were detected in the connected

components containing only tRNAs of the same species.

In summary, we observe that between about a third and a half of the tRNAs in extant

primate genomes have been syntenically conserved since the last common ancestor of human

and macaque. The seeding of new tRNA locations, on the other hand, is clearly an ongoing

process. A surprisingly large number of loci is gained and lost in a lineage-specific manner.
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Figure 41: Gain, loss, and duplications of tRNAs in primates. Gain, loss, and duplications of
transfer RNAs (tRNAs) in primates computed from the most fine-grained synteny definition based
on individual multiple sequence alignment (MSA) blocks (A) and by joining adjacent blocks (B).
Gain and duplication events were assigned to the edge leading to the last common ancestor of all
observed co-orthologs, except for groups that contained only a macaque and a human or a chimpanzee
tRNA; in these cases we assigned two lineage-specific gains. Green numbers refer to the total number
of tRNAs detected by tRNAscan-SE; green numbers in parentheses count the pseudogenes found
in the set of all tRNAs. Blue numbers refer to the total gain, i.e., the sum of event seeding new
connected components and duplication events with a connected component. The number of identified
local duplication events is given in parentheses in blue. The red numbers indicate the loss events
on the corresponding branch. Species abbreviations: human, Homo sapiens: Hsa; chimapanzee,
Pan troglodytes: Ptr; gorilla, Gorilla gorilla gorilla: Ggo; orangutan, Pongo abelii : Pab; gibbon,
Nomascus leucogenys: Nle; rhesus macaque, Macaca mulatta: Mmu.

This e�ect can be attributed to the rapid formation and erasure of pseudogenized copies.

Errors in the genome assembly and the genome-wide sequence alignments will lead to false

negatives in the synteny assessment and thus to unrecognized orthologies.

11.2 Evolution of tRNAs in Drosophilids

Fruit flies cover evolutionary distances comparable to the entire vertebrate phylum [367].

Nevertheless the synteny-based method of ortholog identification remains applicable since

the much smaller genomes still provide a su�cient density of anchors with unique sequences.

Based on the MULTIZ alignments provided through the UCSC genome browser we identified

1889 connected components including 1235 singletons. 375 connected components contained

tRNAs of just one species. The remaining 280 connected components were graphs showing

the orthology relations between tRNAs of distinct species. Out of these, 275 graphs have a
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cograph structure and in only 5 cases the graph structure had to be edited to get the closest

possible cograph structure. Analogously, for the primate case, clusters were then joined such

that two clusters sharing the same border became one cluster. This reduced the number of

connected components by about 40% to 1042, of which 722 did not have any edges. 602 of

these graphs were singleton tRNAs and in the remaining 110 only tRNAs of the same species

were found. All the 320 non-trivial graphs were cographs. Out of these, 190 cographs were

cliques. In the remaining 130 graphs, 205 duplicated tRNAs could be detected. Additionally,

349 duplications were detected in the graphs containing tRNAs of the same species.

As in the case of primate tRNAs, a substantial fraction of tRNAs can be traced back to

the drosophilid ancestor and has been syntenically conserved since then (see Fig. 42 for the

joined MSA and Suppl. Fig. A8 for the individual MSA-based approach). The seeding of new

loci that subsequently are conserved in most species is again an ongoing process, accompanied

by a relatively small rate of losses. As in the case of primates, the overwhelming part of the

turnover is lineage-specific and involves nearly half of the extant tRNA complement.

Due to the di�erent genome version used in [197] and the UCSC MULTIZ alignments only

about 90% of the tRNA genes can be related unambiguously between the two data set. Thus,

a comparison of the coordinates systems was not possible for Drosophila willistoni, Drosophila

sechellia, and Drosophila persimilis. In the remaining species we were able to establish 1 : 2
correspondences for 2196 tRNAs. In the case where tRNAs could not be matched, 1 : 1 the

Liftover tool [312] and sequence similarity information were used to identify the most likely

corresponding tRNA sequences. The remaining 216 tRNAs of Rogers et al. [197] could not be

unambiguously assigned to 246 tRNAs appearing in our tRNA data. For the total of 2196

tRNAs, we identified 796 pairwise orthology relations with the MULTIZ-anchored approach.

The orthology map of Rogers et al. [197] restricted to the same tRNAs comprises 5493 edges,

644 of which coincide with our much more restrictive orthology assignments. When clusters

are joined, we increased the number of co-orthologs, thus increasing the number of ortholog

pairs to 1808 of which 1061 coincide with the 1 : 1 assignments of Rogers et al. [197]. Since

the BLAST-regions (see Section 5.5.1) used in Rogers et al. [197] often correspond to very

distant anchors, their orthology assignments are much more inclusive.
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Figure 42: Gain, loss, and duplications of tRNAs in drosophilids. Gain, loss, and duplications
of transfer RNAs (tRNAs) in drosophilids computed based on synteny definitions given by joined
adjacent multiple sequence alignment (MSA) blocks. Gain and duplication events were assigned to
the edge leading to the last common ancestor of all observed co-orthologs, except for groups that
contained only one tRNA sequence of two species; in these cases we assigned two lineage-specific
gains. Green numbers refer to the total number of tRNAs detected by tRNAscan-SE; green numbers
in parentheses count the pseudogenes found in the set of all tRNAs. Blue numbers refer to the
total gain, i.e., the sum of event seeding new connected components and duplication events with
a connected component. The number of identified local duplication events is given in parentheses
in blue. The red numbers indicate the loss events on the corresponding branch. Species abbrevi-
ations: Drosophila simulans: Dsim; Drosophila sechellia: Dsec; Drosophila melanogaster : Dmel;
Drosophila yakuba: Dyak; Drosophila erecta: Dere; Drosophila ananassae: Dana; Drosophila pseu-

doobscura: Dpse; Drosophila persimilis: Dper; Drosophila willistoni : Dwil; Drosophila mojavensis:
Dmoj; Drosophila virilis: Dvir; Drosophila grimshawi : Dgri.

11.3 Numerous tRNA Remolding Events Occur

Numerous remolding events summarized in Fig. 43 were detected in both, primates and

drosophilids. The remolding events identified here are largely congruent with those reported in

Rogers et al. [197] for fruit flies and Rogers et al. [196] in primates, see Tab. 3. A detailed

overview of all identified remolding events and their comparison to the named previous work
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Figure 43: Remolding events in primates and drosophilids. Remolding events in primates
(A) (summary statistics only) and drosophilids (B) (a�ected isoacceptor classes). Isoacceptor
remoldings are shown in dark blue, alloacceptor remoldings are given in red. Details of all an-
ticodon changes are given in Suppl. Figs. B7 and B8. The tRNAs isoacceptor classes are indi-
cated by their 1-letter codes: A (alanine); C (cysteine); G (glycine); H (histidine); I (isoleucine);
K (lysine); L (leucine); M (methionine); N (asparagine); P (proline); R (arginine); S (ser-
ine); T (threonine); U (selenocystein); Y (tyrosine). Species abbreviations: S Drosophila sim-

ulans: Dsim; Drosophila sechellia: Dsec; Drosophila melanogaster : Dmel; Drosophila yakuba:
Dyak; Drosophila erecta: Dere; Drosophila ananassae: Dana; Drosophila pseudoobscura: Dpse;
Drosophila persimilis: Dper; Drosophila willistoni : Dwil; Drosophila mojavensis: Dmoj; Drosophila vir-

ilis: Dvir; Drosophila grimshawi : Dgri; human, Homo sapiens: Hsa; chimapanzee, Pan troglodytes:
Ptr; gorilla, Gorilla gorilla: Ggo; orangutan, Pongo abelii : Pab; gibbon, Nomascus leucogenys: Nle;
rhesus macaque, Macaca mulatta: Mmu.

are provided in Suppl. Tab. B7 and B8 for primates and fruit flies, respectively. Our method

is somewhat more sensitive and predicts significantly more tRNA remolding events. The

overwhelming majority of events maps to the terminal branches of the phylogenetic trees. This

concerns in particular almost all alloacceptor remoldings. Most likely, most or all of these

“terminal” remolding events lead to non-functional tRNAs and already constitute pseudogenes.

Despite the much greater phylogenetic depth of the drosophilid clade [367], we observe fewer

remolding events. This may be explained at least in part by the larger total number of tRNAs

in the primate genomes. Most of the detected remolding events occur close to the leaves of the

phylogenetic tree. In principle they might be artifacts deriving from sequencing errors. While
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we cannot strictly rule out this interpretation, we deem it unlikely. First, the observed number

of events would be unusually high: for primates we observe in total 73 remolding events at

the leaves of the tree, in a sample of 1985 tRNAs. Within the three anticodon positions this

would amount to a sequencing error rate of about 0.012, compared to an expected error rate

in assembled contigs of π 10≠4/nt [368]. For drosophilids we observed 14 remoldings in

3348 tRNAs, amounting to a substitution rate of ¥ 0.0014. This also cannot be explained by

sequencing errors. Second, we recover between 85% and 95% of the results in [196, 197] and

detected additional putative remolding events although in part di�erent genome assemblies

were used. A much more plausible explanation therefore is that most remoldings a�ect tRNA

function so that remolded tRNAs are unlikely to survive longterm and are rapidly pseudogenized

and removed from the genome.

Interestingly, a small set of remoldings of threonine (Thr) tRNAs was observed multiple

times in primates, namely tRNAThr
AGT which was changed to tRNAThr

CGT and tRNAThr
TGT.

Surprisingly, we identified one alloacceptor remolding whose descendants persisted in primate

genomes since the common ancestor of human and rhesus. An ancestral cysteine (Cys)

tRNACys
GCA gave rise to a remolded tRNATyr

GTA whose sequence is still nearly identical to the

Cys-decoding ancestor, see Fig. 44. While we have no direct evidence that this tRNATyr
GTA is

a functional tRNA, its evolutionary conservation is at least suggestive of some functional role.

Table 3: Comparison of remolding events with previous studies. All annotated tRNA remolding
events of primates (A) and fruit flies (B) were compared to the previous studies of Rogers et al. [197]
and Rogers et al. [196], respectively. Remolding events were grouped corresponding to their annotation
origin: found in our and the previous studies (common), only in the previous studies (Rogers et al.),
and only in our study (novel).

(A) Primates Common Rogers (2014) Novel

Isoacceptor remolding 9 0 9

Alloacceptor remolding 17 3 17

(B) Drosophilids Common Rogers (2010) Novel

Isoacceptor remolding 7 1 5

Alloacceptor remolding 4 1 3
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#STOCKHOLM 1.0
Mmu_chr3_Tyr_GTA  GGGGGTATAGCTCAGGGCtAGAGCTtTTTGACTGTAGAGCAAGAGGtCCCTGGTTCAAATCCAGGTTCTCACT
Ggo_chr7_Tyr_GTA  TGGGGTATAGCTCAGGGCtAGAGCTtTTTGACTGTAGAGCAAGAGGtCCCTGGTTCAAATCCAGGTTCTCCCT
Hsa_chr7_Tyr_GTA  GGGGGTATAGCTCAGGGCtAGAGCTtTTTGACTGTAGAGCAAGAGGtCCCTGGTTCAAATCCAGGTTCTCCCT
Ptr_chr7_Tyr_GTA  GGGGGTATAGCTCAGGGCtAGAGCTtTTTGACTGTAGAGCAAGAGGtCCCTGGTTCAAATCCAGGTTCTCCCT
Pab_chr7_Tyr_GTA  GGGGGTATAACTCAGGGGTAGAGC-ATTTGACTGTAGATCAAGAGGtCTCTGGTTCAAATCCAGGTGCCCCTT
Mmu_chr3_Cys_GCA  GGGGGTATAGCTCAGGGGTAGAGC-ATTTGACTGCAGATCAAGAGGtCCCTGGTTCAAATCCAAGTGCCCCCT
Pab_chr7_Cys_GCA  GGGGGTATAGCTCAAGGGTAGAGC-ATTTGACTGCAGATCAAGAGGtCCCTGGTTCAAATCCAGGTGCCCCCT
Ggo_chr7_Cys_GCA  GGGGGTATAGCTCAGGGAtAGAAC-ATTTGACTGCAGATCAAGAGGtCTCTGGTTCAAATCCAGGTGCCCCCT
Hsa_chr7_Cys_GCA  GGGGGTATAGCTCAGGGGTAGAGC-ATTTGACTGCAGATCAAGAGGtCTCTGGTTCAAATCCAGGTGCCCCCT
Ptr_chr7_Cys_GCA  GGGGGTATAGCTCAGGGGTAGAGC-ATTTGACTGCAGATCAAGAGGtCTCTGGTTCAAATCCAGGTGCCCCCT
#=GC SS_cons      (((((.(..((((.......))))-.((((...XXX...)))).....(((((.......)))))).))))).
//

Figure 44: Example alignment of a tRNA remolding event. Alignment of transfer RNAs (tRNAs)
deriving from the cysteine (Cys) tRNACys

GCA to the tyrosine (Tyr) tRNATyr
GTA remolding event

predating the last common ancestor of human and rhesus. Descendants of both tRNAs have survived
in all investigated genomes except gibbon. The secondary structure is given in dot-bracket notation.
Species abbreviations: chimapanzee, Pan troglodytes: Ptr; gibbon, Nomascus leucogenys: Nle;
gorilla, Gorilla gorilla gorilla: Ggo; human, Homo sapiens: Hsa; orangutan, Pongo abelii : Pab; rhesus
macaque, Macaca mulatta: Mmu.

11.4 Intron-Containing tRNAs are Genomically Clustered

Some tRNAs contain short introns. Introns are removed by a dedicated enzymatic machinery

which is not only fundamentally di�erent from spliceosomal splicing but also di�ers between

Archaea and Eukarya [369]. Nevertheless, most tRNA introns are located in the “canonical

position”, one nucleotide 3’ to the anticodon [180]. We use tRNAs as an independent test

for orthology assignment. We expect that either all or none of the members of a groups of

(co-)orthologous tRNAs have an intron. This is indeed the case: In primates, there are 87

clusters of predicted orthologs in which all members carry an intron. In all other clusters

none of the tRNAs has an intron. In drosophilids we found 49 clusters containing tRNAs with

introns. All but a single one comprise tRNAs with introns only. The only exception is a leucine

(Leu) tRNA cluster, namely tRNALeu
CAA, that also include single tRNALeu

CAG sequences from

the highly diverging Drosophila grimshawi. It remains unclear whether this case constitutes a

true change in intron structure, or whether the D. grimshawi tRNA is a false positive ortholog

assignment. Despite a possible concerted evolution e�ect we observe that tRNA introns

typically exhibit multiple substitutions and some insertions and deletions. In a small number

of clusters of orthologous tRNAs in drosophilids we observe a considerably variation in intron

length; in the extreme case introns have lengths between 21 and 52 nucleotides. This may

not be unusual given that the phylogenetic depth of the drosophilids exceeds that of the

mammalian radiation [367].
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11.5 Discussion

Gene families that are subject to mechanisms of concerted evolution cannot be studied with

traditional phylogenetic methods because concerted evolution rapidly erases all information

about their evolutionary relationships from the sequences of paralogs. We investigated how

synteny information can be harnessed in a systematic manner for this purpose. We demonstrated

that synteny in principle provides the necessary information as long as syntenically conserved

sequence blocks are long enough to contain unique sequences that can be used as anchors. While

it may seem desirable to use a full-fledged sequence-based model such as OrthoAlign [290]

to track genome evolution in detail, such approaches do not scale to genome-wide surveys

because of the computational e�orts required. We reason that a step-wise workflow that first

localizes the problem to individual gene clusters is a good compromise. These still can be

prohibitively large, in particular in mammalian genomes. We therefore opted for a strategy

that uses synteny information as much as possible.

A surprising observation is that a large part of the inferred gain and loss of tRNAs is

species-specific (see Figs. 41 and 42). While this observation may be partially confounded by

residual noise in the synteny assignments, it can be explained by a rapid copying of tRNAs

followed by rapid pseudogenization. The tRNA model implemented in tRNAscan-SE [255] is

very specific and distinguishes very stringently between tRNAs and tRNA pseudogenes that

may di�er by only a few point mutations from their functional ancestors. Reconstruction gain

and loss events are largely consistent between the three levels of stringency in the definition of

synteny, with most of the di�erences concentrated to the species-specific gains and losses.

Remolding events are observed predominantly at shallow phylogenetic depth (see Fig. 43),

indicating that most of them occur in pseudogenes. In contrast, remoldings that persist over

large phylogenetic distances are rare and almost never change the isoacceptor class. Only a

single deep alloacceptor remolding was observed. While it is unlikely that the remolded tRNA is

functional in translation, it is well conceivable that the gene serves one of the recently described

secondary functions of a tRNA, as a source for microRNA (miRNA)-like small RNAs [25, 65],

as sponge [370], or as a genomic insulator element influencing chromatin organization [371].
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11.6 Data Sources and Workflow Availability

The following genomes and assemblies were used for primates: G. gorilla (assembly gorGor3),

H. sapiens (assembly hg38), M. mulatta (assembly rheMac3), N. leucogenys (assembly

nomLeu3), P. abelii (assembly ponAbe2), and P. troglodytes (assembly panTro4) as well as for

drosophilids: D. ananassae (assembly droAna3), D erecta (assembly droEre2), D. grimshawi

(assembly droGri2), D. mojavensis (assembly droMoj3), D. melanogaster (assembly dm6),

D. persimilis (assembly droPer1), D. pseudoobscura (assembly droPse3), D. simulans (assembly

droSim1), D. sechellia (assembly droSec1), D. virilis (assembly droVir3), D. willistoni (assembly

droWil2), and D. yakuba (assembly droYak3). For the MULTIZ alignments we used the multiple

genome-wide alignments of 19 mammalian (16 primate) genomes with human (assembly hg38)

and the multiple genome-wide alignments of 26 insects with D. melanogaster (assembly

dm6). All genomes and both MULTIZ alignments were downloaded from the UCSC genome

browser [312]. Numbers of annotated tRNA genes for each species are given in Suppl. Tab. B3.

The SMORE pipeline is freely available from https://github.com/AnneHoffmann/Smore.

https://github.com/AnneHoffmann/Smore
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The biological relevance of nuclear-encoded mitochondrial-derived tRNAs (nm-tRNAs) is still

unknown, indicating that they have been poorly investigated so far. However, their presence

raises intriguing questions about their possible functionality. Only one nm-tRNA annotation

strategy (see Section 5.6) has been published [24, 57]. In this perspective, the following

chapter includes our systematic method to annotate nm-tRNAs that enables to detect them

even if their are strongly degraded. In addition, we observed evidence that nm-tRNAs serve as

binding sites for RNA-binding proteins (RBPs).

This chapter is based on S. Hoser and A. Ho�mann et al. [411] titled Intronic tRNAs of

mitochondrial origin regulate constitutive and alternative splicing. The biological background

can be found in Section 2.3 and the technical background is given in Section 5.6. The

methodological implementation is described in Section 7.5.1 and the performance evaluation

is specified in Section 7.6.

12.1 Many Unidentified nm-tRNAs are Present in Nuclear Genomes

To scan, in particular, the mouse and human genomes for nm-tRNAs, we tested di�erent

combinations of annotation tools and strategies. Although tRNAscan-SE is not intended to

annotate nm-tRNAs, we applied the integrated mt-tRNA search mode not to mitochondrial

genomes (mt-genomes), but to nuclear sequences. In another approach we used the covariance

models (CMs) from MiTFi. These CMs contain information on aberrant mitochondrial tRNAs

(mt-tRNAs) in addition to the normal mt-tRNA sequence and structure consensus which

can help to detect nm-tRNAs exposed to high selection pressure. We used Infernal as

search engine for the CMs from MiTFi. For each nm-tRNA annotation strategy, we tested

two di�erent approaches, which we term NUMT-based and genome-based approach. In the

NUMT-based approach we only used the nuclear mitochondrial DNA (NUMT) sequences as

reference. In the genome-based approach, however, the entire nuclear genome was applied.

All methods yielded very di�erent results. With the NUMT-based approach for the human

genome, we received 775 hits from Infernal and 726 hits from tRNAscan-SE. In contrast, the

genome-based approach provides a large variance. Here we got only 367 hits from Infernal,

whereas tRNAscan-SE scored about 2.65 times more hits (977 hits). We found very similar

relations in the analysis of the mouse genome. We got 105 hits from Infernal and 79 hits
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from tRNAscan-SE within the NUMT-based approach. The hits from the genome-based

approach vary from 75 (Infernal) to 246 (tRNAscan-SE). In general, we assume that all

hits located in NUMTs are nm-tRNAs. It cannot be excluded that the NUMT annotation is

incomplete on the basis that NUMTs are probably not very conserved. Thus, hits outside of

NUMTs, which do not overlap with known tRNA annotations, are potential nm-tRNAs. Since

we cannot clearly identify these hits as nm-tRNAs and cannot rule out that they are other

types of unannotated tRNAs, we refer to them as mt-tRNA-lookalikes.

The performance evaluation is based on synteny information given by each NUMT, as the

primordial origin of each NUMT is traceable (see Tab. 4). Within the NUMT-based approach,

Infernal found 2% more nm-tRNAs in human than tRNAscan-SE resulting in a true positive

rate (TPR) of 0.91. Despite the lower sensitivity of tRNAscan-SE, the tool counts only 29

false positives (FPs) compared to the 68 FP hits of Infernal. The di�erence is even stronger

in the NUMT-based approach for mouse, where Infernal found 13% more nm-tRNAs, but

also 11% more FPs compared to tRNAscan-SE. tRNAscan-SE shows the highest sensitivity in

the genome-based approach with a TPR of 0.88 and 0.72 in human and mouse, respectively.

Infernal delivers much less true positives (TPs) in both species and is therefore not suitable

for this method. In both species, the number of FPs annotated by tRNAscan-SE is less than

1% if only hits within NUMTs are considered. However, tRNAscan-SE finds over 4 times more

mt-tRNA-lookalikes when applying the genome-based approach compared to Infernal. In

order to obtain as many true nm-tRNAs as possible, we used the results of both tools in our

subsequent analysis. Taken together all tested annotation strategies, we identified 355 novel

nm-tRNAs in human (total 731) and 43 in mouse (total 92). Compared to Telonis et al. [57],

we identified 45% more human nm-tRNAs. In mouse, the predicted nm-tRNAs in Telonis

et al. [24] show a low TPR of 0.47, while our TPRs range from 0.72 to 0.85. These previous

studies only found a comparatively low number of hits (497 in human and 53 in mouse), which

explains the reduced sensitivity and the smaller false discovery rate (FDR). In summary, our

method is much more sensitive compared to the previous studies allowing the identification of

a high number of novel nm-tRNAs in human and mouse.
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Table 4: Performance evaluation of di�erent nm-tRNA annotation strategies. Absolute counts of
true positives (TPs), false positives (FPs) and false negatives (FNs) of annotated nuclear mitochondrial
tRNA (nm-tRNAs) of (A) H. sapiens and (B) M. musculus are given for the NUMT-based and
genome-based approach for single tools and their combination. The true positive rate (TPR), false
discovery rate (FDR) and false negative rate (FNR) is given as well. Counts were calculated based on
synteny information given by the mitochondrial origin of the nuclear mitochondrial DNAs (NUMTs).
The same validation was carried out with data already published by Telonis et al. [24, 57]. mt-tRNA-
lookalikes are marked in blue and are classified as potential FPs. In each approach, tRNAscan-SE

shows the best balance between TPR and FDR. Although Infernal got the highest count for TPs in
the NUMT-based approach, the tool shows a reduced sensitivity in the genome-based approach. A
combination of both increases the TPR, at the expense of FPs. Compared to currently published
data, our implemented methods found > 1.8 times more TPs.

Method Tool TPs FPs FNs TPR FDR FNR

(A) H. sapiens

NUMT-based Infernal 707 68 72 0.91 0.09 0.09

NUMT-based tRNAscan-SE 697 29 82 0.89 0.04 0.11

NUMT-based both 726 95 53 0.93 0.12 0.07

genome-based Infernal 300 5+62 479 0.39 0.02 (0.18) 0.61

genome-based tRNAscan-SE 689 7+281 90 0.88 0.01 (0.29) 0.12

genome-based both 689 12+315 90 0.88 0.02 (0.32) 0.12

Telonis (2014) BLAST 376 0 +121 403 0.48 0 (0.24) 0.52

(B) M. musculus

NUMT-based Infernal 88 17 17 0.84 0.16 0.16

NUMT-based tRNAscan-SE 75 4 27 0.71 0.05 0.29

NUMT-based both 89 17 16 0.85 0.16 0.15

genome-based Infernal 33 2 +40 72 0.31 0.06 (0.56) 0.69

genome-based tRNAscan-SE 76 3 +167 29 0.72 0.04 (0.69) 0.28

genome-based both 76 4 +199 29 0.72 0.05 (0.72) 0.28

Telonis (2015) BLAST 49 0 +4 56 0.47 0 (0.08) 0.53

37% of our detected nm-tRNAs in human and 39% in mouse are part of an annotated

transcript (protein-coding genes, non-coding genes, long non-coding RNAs (lncRNAs),

pseudogenes, intergenic, or exonic). Previous computational studies have also demonstrated
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the presence of nm-tRNAs within introns of nuclear protein-coding genes in humans [57]

and also in the mouse and opossum genomes [372]. nm-tRNAs located in introns of known

transcripts are termed nuclear-encoded intronic mitochondrial-derived tRNAs (nim-tRNAs).

We identified a total of 273 human nim-tRNAs in the introns of 76 di�erent host genes,

of which 30 were protein-coding, 28 were constituted of long intergenic non-coding RNAs

(lincRNAs), 13 were non-coding RNAs (ncRNAs) and 5 were pseudogenes. The JAK2 (#18)

and the DYNC2H1 (# 14) genes as well as the LINC00630 (# 13) lincRNA and the GUSB

pseudogene 6 (# 13) contain the highest accumulation of human nim-tRNAs. In total 121 of

the identified human nim-tRNAs are novel. In mouse, 14 of our annotated 36 nim-tRNAs,

which are located in 12 di�erent host genes (9 in protein-coding genes and 3 in lncRNAs), are

novel. The Myo3a (# 7) gene and the Cep295-201 (# 5) intron harbor the largest amount

of nim-tRNAs. However, nim-tRNAs are not present in any homologous transcripts of the

others species.

12.2 Are nm-tRNAs Target Sites for RNA-Binding Proteins?

We observed that the overwhelming majority of human nm-tRNAs show evidence of negative

selection in their host genomes, since their evolutionary conservation in mammals measured by

phylogenetic p-value (PhyloP) scores is very low. While we found that PyloP scores are slightly

enhanced in nm-tRNAs compared to the surrounding NUMT sequences (see Fig. 45), the

selection pressure is not strong enough to identify nm-tRNAs under strong negative selection.

As we received higher evolutionary conservation for a few nm-tRNA fragments, we interpret

these as possible binding sites that have emerged from the inserted mt-tRNA sequences.

We found that binding sites of 31 proteins, which have a function in splicing or play other

regulatory roles (see Suppl. Tab. B9), overlap with nim-tRNAs. Of these proteins, DHX30,

G3BP1, and NSUN2 have a more than 2-fold enriched binding site coverage in nim-tRNAs.

However, testing the conservation of (parts of) a NUMT is not trivial. While it is simple

in principle to use conservation measures such as the PyloP score computed for genome-wide

alignments, one has to take into account that NUMTs, due to their quasi-repetitive nature,

may have an incurred problem in genome assemblies and/or may be misaligned. We, therefore,

used a complementary approach to measure evolutionary conservation of nm-tRNAs and
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Figure 45: Conservation densities of nm-tRNAs and NUMTs. Densities of conservation are
shown for nuclear-encoded mitochondrial-derived tRNAs (nm-tRNAs) and the surrounding nuclear
mitochondrial DNA (NUMT) sequences. Conservation is measured by phylogenetic p-values (PhyloP)
where (A) displays the density of PhyloP scores for each single nucleotide of the sequences and (B)
the normalized scores (sum of PhyloP scores per sequence divided by sequence length). PhyloP scores
were taken from multiple genome alignments of 29 mammalian genomes to human. Although most
nm-tRNAs are not subject to negative selection, the PhyloP scores in nm-tRNAs are slightly enhanced
compared to the surrounding NUMT sequences. A higher density for larger PhyloP values can be seen
in (A) which suggests that a few short nm-tRNA fragments are more conserved than the remaining
nm-tRNA sequences.
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Figure 46: Evolutionary conserved nm-tRNAs. Outliers of nuclear-encoded mitochondrial-derived
tRNAs (nm-tRNAs) are shown above the red line. These outliers are subject to a stronger stabilizing
selection after their insertion into the nuclear genome relative to nuclear mitochondrial DNAs (NUMTs).
We defined all observations with Cook’s distance larger than three times the mean Cook’s distance as
outliers. The majority (25 of 36) of the more extreme outliers are intronic.

NUMTs in human. Within this approach we identified about a dozen nm-tRNAs that appear to

have evolved significantly slower than the adjacent NUMT sequences (see Fig. 46). It is also

interesting to note that nim-tRNAs are represent the majority of the more extreme outliers.

Finally, we found computational evidence that nm-tRNAs and nim-tRNAs are a source for

functional binding sites. As expected in such a scenario, most nm-tRNAs and nim-tRNAs have

not attained functional significance because they are simply not in a useful genomic context

or there is no selective advantage to be gained from a nm-tRNA or nim-tRNA-derived binding

site at the position of the insertion.



160 Chapter 12. nm-tRNAs: Could They be Functional?

12.3 Discussion

A great advantage of our nm-tRNA annotation strategy is that we considered synteny infor-

mation, which can be determined from the mitochondrial origin of the NUMTs. Thus, false

positive hits can be discarded to obtain the most accurate set of true positive nm-tRNAs.

However, this method depends strongly on the accuracy of the annotated NUMTs. The best

methodology for locating NUMTs in nuclear genomes has not been carefully examined yet.

The established NUMT annotation methods show strong di�erences in the length and number

of NUMT sequences [56, 373, 374]. The loss of highly selective pressure and the resulting

low conservation of the NUMT sequences make annotations di�cult. In our analysis we used

the NUMT annotation from Tsuji et al. [373] as it is the only one that takes into account

the low identity when aligning older NUMTs to mtDNA. However, we also found inaccuracies

here. For example, we found a highly conserved nm-tRNA-like sequence outside of the NUMT

boundaries of the human catenin–ß–like 1 (CTNNBL1) gene. However, the high conservation

of the nm-tRNA sequence suggests that the NUMT sequence was annotated too short due to

the strong degradation. Such inaccuracies in the NUMT annotation may increase the false

negative hits within our analysis.

Within our analysis we applied two di�erent tools (tRNAscan-SE and Infernal). We

got the best TPRs in the NUMT-based method using Infernal. The disadvantage of

Infernal is that the results always show the highest FDRs. This method is useful when

synteny information are available and FPs can be filtered out. Thus a large set of nm-tRNAs

can be obtained. If no synteny information is available, only tRNAscan-SE should be used,

since Infernal delivered very small numbers of TPs. This can be explained by the di�erent

scoring systems of the tools. While tRNAscan-SE is able to detect hits for complete genome

sequences sensitively, Infernal seems to be designed for shorter sequences. The majority

of the recovered nm-tRNAs in the genome-based approach using tRNAscan-SE also follows

the genomic distribution of NUMTs, which is in favor of the method. Overall, tRNAscan-SE

shows the best balance between TPs and FPs in each approach. Of course it is also possible

to combine each tool and approach, which slightly increases the TPR but also the FDR.

A global analysis of mitochondrial-derived tRNA sequences within the human genome

yielded a total of 726 loci of which 273 are located in introns of 76 di�erent host genes. The
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uneven distribution is explained by the fact that nim-tRNAs, like their mitochondrial sources,

are often arranged in clusters within NUMTs. As a group, neither nim-tRNAs nor nm-tRNAs

in general are under detectable stabilizing selection, suggesting that they usually have not

acquired new functions after their insertion in the nuclear genome. However, there are a

few nm-tRNAs whose evolutionary rates appear retarded (see Fig. 46). These are preferably

nim-tRNAs. As most nm-tRNAs are not under negative selection is consistent with the fact

that they are non-processed and in general do not have a function as an independent ncRNA.

They rather function as evolutionary raw material for binding sites, which only acquire a

detectable function if the NUMTs are inserted at a suitable site. The association with introns

and the over-representation of binding sites for DHX30, G3BP1, and NSUN2 in nim-tRNAs

suggests that nim-tRNA can acquire a function in the regulation of splicing provided the

NUMT is inserted in fortuitous intronic locations.

12.4 Data Sources and Availability

Mitochondrial and nuclear genomes of Homo sapiens (assembly hg38) and Mus musculus

(assembly mm10) were downloaded from NCBI, release 90 [22]. The annotation of NUMTs

were obtained from Tsuji et al. [373] for the older assemblies mm9 and hg19. The NUMT

coordinates were converted to the latest genome assemblies mm10 and hg38 for mouse

and human, respectively, applying the UCSC Liftover utility [312]. PhyloP scores of the

multiple alignments of 29 mammalian genomes to hg38 were also downloaded from UCSC.

Transcript annotations were obtained from Ensemble release 96 [314]. RBP interaction sites

were downloaded from the ENCODE [324, 325] eCLIP repository. A complete list of our

annotated nm-tRNAs and nim-tRNAs of mouse and human can be found in S. Hoser and

A. Ho�mann et al. [411].
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Since 1950, when the central dogma of molecular biology [8] has been proposed, the manifold

involvement of RNAs in protein synthesis has been widely recognized. Fundamental research

has revealed the importance of di�erent types of RNA for these processes. Especially transfer

RNAs (tRNAs) represents the physical linkage between the genetic code and the amino acid

sequence of proteins during translation [2, 7]. Even though tRNAs are one of the oldest

molecules discovered in all areas of life, they are still intriguing study objects. Recent advances

in the biology of tRNAs suggest that these classical non-coding housekeeping RNAs are key

components of the small RNA-mediated gene regulatory system beyond translation [81]. As

such, their functionality is linked to the presence of various tRNA base modifications, to tRNA

sequence variants known as isoacceptors and isodecoders, and to the versatility of protein

binding partners. This complexity o�ers a large repertoire of tRNA species that fulfill various

functions in cellular homeostasis and in adapting cellular functions to changing environments.

It is likely that the origin of these functions dates back to the fundamental role of RNAs in

early evolution [375]. A strong impulse for these discoveries originates from the advances of

RNA sequencing (RNA-seq) methods which enables the profiling of the transcriptome using

deep sequencing technologies [209].

Sequencing of tRNA is challenging both experimentally and computationally. With respect

to data analysis, the challenges include to overcome reverse transcription errors introduced

by chemically modified nucleotides. Furthermore, it is intricate to map the reads to the true

genomic tRNA origin, given their multiple identical and almost identical genomic loci. In order

to overcome these pitfalls, we developed an innovative mapping strategy to accurately align

short tRNA reads which identifies and solves mapping artifacts resulting from simpler mapping

schemes. The workflow is discussed and evaluated on simulated and human RNA-seq data

(see Chapter 8). In brief, the reads are mapped against a modified target genome in which

known tRNA loci are masked and instead intronless tRNA precursor sequences are appended

as artificial “chromosomes”. In a first pass, reads displaying specific precursor hallmarks are

filtered out. In the second pass, the mature tRNA reads are mapped against mature tRNA

sequence cluster which assemble identical tRNAs helping to overcome the multi-copy nature of

tRNA genes. Thus, uniquely mapped high confident tRNA reads can be used for downstream

analyses. Since we adjusted the mapping parameters in each step individually, our pipeline is

able to handle the high density of modification induced mismatches in the alignment which even
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enables to reliably identify many of the chemical tRNA modifications. Using simulated data,

the false discovery rate (FDR) to call tRNA modifications by base misincorporations is small

as 2%. Although the method was developed specifically for tRNAs, in our pilot study (data

not shown in this thesis) [397], we were able to recover some of the previously reported [376]

modification and editing sites of microRNAs (miRNAs). In further work, with the method

being applicable also to miRNA data, it becomes feasible to investigate modification patterns

and their evolution also in other multi-copy RNA families with nearly identical paralogs, e.g.,

small nucleolar RNAs (snoRNAs) and small nuclear RNAs (snRNAs).

Standard RNA-seq methods such as ribo-minus RNA sequencing (rmRNA-seq) or total

RNA-seq only capture a relatively low amount of tRNA sequences [213]. For example, rmRNA-

seq contains only ≥0.9% short ncRNAs, while other non-tRNA transcripts are mainly long

non-coding RNAs (lncRNAs) (≥81.8%), mRNA-like RNAs (≥8.8%) and snoRNAs (≥2.9%).

The amount of non-tRNA reads may lead to a falsification of the tRNA analysis results,

especially when calling modified nucleosides or quantifying expression. Current tRNA-seq

methods only cover full-length tRNA reads, while tRNA fragments or incomplete cDNAs are

lost due to reverse transcription terminations at modified nucleosides. Therefore, as depicted in

Chapter 9, we cooperated on benchmarking and improving long hairpin oligonucleotide-based

tRNA high-throughput sequencing (LOTTE-seq), a method for e�cient capturing of tRNAs for

deep sequencing analysis. Our benchmark exhibited that LOTTE-seq combines the advantages

of other valuable approaches [216, 217], while avoiding their disadvantages. The usage of

a DNA hairpin adapter that specifically hybridizes to the tRNA 3’-CCA end ensures that

exclusively mature tRNA transcripts are investigated. In the reaction catalyzed by T4 DNA

ligase [362] only full-length CCA ends are accepted for ligation. tRNAs with partial or lacking

CCA ends are e�ciently excluded, as T4 DNA ligase does not tolerate single-stranded nucleic

acids or double strands that carry a gap in the hybrid region between the CCA end and

adapter overhang. The benchmark of LOTTE-seq with other tRNA-specific RNA-seq methods

demonstrated that the content of tRNAs with CCA end is highest in LOTTE-seq data, ranging

from 90% in S. oleracea to 100% in D. discoideum. LOTTE-seq renders the analysis of tRNA

pools or individual transcripts including some modification more e�cient and accurate. It

is worth noting that the additional use of di�erent chemical treatments should expand the

range of modifications that are detectable by LOTTE-seq data. A combination of LOTTE-seq
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data with methods that apply enzymatic treatment of specific modifications (ARM-seq [242],

AlkAniline-seq [365], and DM-tRNA-seq [240, 265]) is a promising strategy for studying the

variety of tRNA modifications. Such combinations would dramatically increase the number

of reliable tRNA reads and thus facilitates the accurate identification of position-specific

modifications which only become detectable by chemical treatments. We assume that this will

not only improves the statistical relevance of tRNA expression data but also sets the stage to

implementing tRNAs as powerful biomarker to detect various cellular states.

Mature tRNAs contain by far the highest density of chemically modified nucleotides of all

known nucleic acids. These impact structure and function, and even contribute to regulation

of translation. Nevertheless, they have received little systematic attention. In Chapter 10

we focused on the sensitive and precise detection of tRNA modifications in di�erent kinds

of RNA-seq data. After application of our “accurate mapping of tRNA reads” workflow, we

used the mapped reads to call RNA–DNA di�erences, that are indicative of chemical tRNA

modifications. In the simplest case, tRNA modifications a�ect the reverse transcriptase during

cDNA synthesis leading to a position-specific increase in the rate of sequencing errors in their

mapping profile. In order to find a suitable and freely available tool to call tRNA modification

by mismatch patterns, we evaluated three tools (HAMR, GATK, and bcftools) that seemed

to be qualified for our analyses. Surprisingly, the number of called modifications sites varies

greatly between the tools, so does the amount of sites profiled by one tool alone. In conclusion,

none of the three tools is sensitive enough to reliable call tRNA modifications. However,

bcftools currently seems to be the best available tool for tRNA modification calling. It does

not call any false positive candidate sites and it is only slightly less sensitive than GATK, and it

found significantly more modifications than HAMR. In further work, our short benchmark should

systematically be expanded in order to get detailed conclusions about individual error sources

and to determine the limits of detectability of tRNA modifications. Simulated tRNA reads can

be used for this purpose. The simulated reads should be modified according to di�erent models

of nucleotide modification distribution and abundance. This should essentially follow the

suggestions of Tserovski et al. [316], who discovered that misincorporation signatures depend

on the neighboring sequence context. Such a benchmark allows to adjust the parameters of

the investigated tools to maximize the accuracy of modification calls. For our benchmark

we used rmRNA-seq data. Only less than 1% of all reads in rmRNA-seq data mapped to
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tRNAs [213] which increases the probability of detecting false positives (FPs) due to the low

tRNA read coverage. Therefore, further benchmarking should also consider di�erent types of

tRNA-enriched RNA-seq data, e.g., YAMAT-seq [216] or LOTTE-seq.

By applying our analysis strategy to detect tRNA modifications by accumulations of base-

calling to generic human small rmRNA-seq data showed that the resulting called modification

sites can distinguish between very similar tRNAs. Furthermore, we could show that the vast

amount of publicly available small RNA-seq data is a hitherto mostly untapped resource

to examine the modification status of tRNAs. Thus, we used the data to discover that

there are surprising di�erences in the modification patterns between human tissues. While

most tRNA positions are frequently modified in each of the investigated tissues (cerebellum,

diencephalon, skeletal muscle, testis, ovary, and esophagus muscularis mucosae), there exist

drastic deviations at several modified tRNA residues. It has been well known that di�erences

in tRNA modification can be associated with human diseases, e.g., mitochondrial dysfunctions,

metabolic defects, neurological disorders, and cancer [377]. However, our results demonstrate

that variation in modification patterns are not at all limited to dysfunction or immortalized cell

lines but appear naturally in healthy tissues. This novel observation certainly deserves closer

inspection in future work. In particular, it will be interesting to see if tissue specific di�erences

are evolutionary conserved, which would suggest that they are directly related to functional

di�erences between tissues. The detection of modifications due to their misjudgment can also

be applied to other multi-copy RNA families, including miRNAs, snoRNAs, and snRNAs. This

allows the investigation of specific modification patterns and their evolution in di�erent types

of RNAs.

Moreover, some tRNA modifications become visible as accumulations of read termination

(RT) fragments in the mapping profile. RT fragments results from specific modified nucleosides

that terminate the reverse transcriptase during complementary DNA (cDNA) synthesis. Using

RNA-seq data such as LOTTE-Seq, which contain a high read coverage of RT fragments,

we were able to identify strong RT signals at specific modified bases. The combination of

mapping patterns, of mismatch incorporations, and RTs are good indicators to classify most

tRNA modifications. Thus, we expanded and improved the current knowledge [119, 241, 242,

261–263, 265, 365] of reverse transcription signals for common modification types. However,

we recognized that a unambiguous classification of tRNA modifications merely on the basis of
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their reverse transcription signals is not always possible. As such 1-methylguanosine (m1G),

N2-methylguanosine (m2G), and N2,N2-dimethylguanosine (m22G) show the same mapping

profiles. An exact classification is only possible by incorporating a priori knowledge about

the position of the specific modifications. For this purpose we used the information from the

tRNAmodviz [119] database. However, it is problematic for less studied organism such as

Dictyostelium discoideum, where no or little is known about tRNA modification sites. In ongoing

work, our modification signature collection could be extended for easier classification of tRNA

modifications in less investigated species. This extension should include context-sensitive reverse

transcription signatures for specific tRNA modifications, since misincorporation signatures

depend on the neighboring sequence context [316]. In addition, a possible context-dependent

correlation of reverse transcription terminations during cDNA synthesis is an interesting topic

for future research. Furthermore, in another pilot study (data not shown in this thesis) we

observed di�erences in the reverse transcription signatures applying di�erent types of reverse

transcriptions (TGIRT and SuperScript III). This discovery certainly deserves closer inspection

in future work. In particular, a systematic analysis of the accuracy and reproducibility of the

modification dependent reverse transcription signatures and their dependency on the use of

di�erent commercially available types of reverse transcriptases should be investigated. This

analysis will shed light on the usability and reliability of modification identification by reverse

transcription-based misincorporations depending on the nature of the reverse transcription

enzyme and the sequence context in the templating tRNA. Additionally, since our benchmark

of variant callers showed that they are still far from perfect, an implementation of a improved

modification caller should be part of future research directions. Beside base-calling errors,

HAMR di�erentiates between di�erent classes of modifications by the knowledge taken from

the tRNAmodviz database [119]. A novel modification caller should consider the specific

reverse transcription signatures of our improved collection and their context specificity, as

well as signatures generated by several reverse transcription enzymes. Since these patterns

will depend on the experimental conditions, the algorithm could follow the basic idea of the

haarz variation caller [266] of the segemehl suit. The haarz algorithm estimates the relevant

parameters from the data current set using the assumption that the vast majority of the

covered sites is unmodified and hence can be used to parametrize the background model.
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Already in 1984, Schachner et al. [378] provided evidence that tRNAs were modified

in a development-specific manner in D. discoideum. The analysis of reverse transcription

signals obtained from LOTTE-seq data designed for di�erent developmental stages of slime

mold revealed that the same tRNA positions are modified in each stage. However, at certain

time points there are strong di�erences in the number of modified tRNAs and in the relative

abundance of RTs. This findings indicates a potential regulatory function of tRNA modifications

in the life cycle of the slime mold. The functional explanation is discussed in the thesis of

L. Erber (in preparation).

In another study, we developed an innovative analysis strategy for sensitive detection of

tRNA modifications in treated RNA-seq data. These RNA-seq data has been constructed

to convert a specific read-out in the mapping profiles by introducing RTs at dihydrouridine

(D) and 7-methyl-guanosine (m7G), or pseudouridine (�) modifications in Bacillus subtilis.

We used data from the bacterium given that its tRNA modifications are well-studied which

allowed us to roughly validate and adjust our methodology. After sample normalization,

we scanned for RT sites that are significantly enriched in the mapping profile compared to

the untreated control sample according the Poisson distribution. Most challenging was to

distinguish true modification sites from the background noise. Background noise frequently

occur since the reverse transcription is also reacts sensitive to structural peculiarities or to

other modifications which are not specifically enriched by the treatment. Complex processing

of RNA, genomic misalignments of sequencing reads, and technical errors of the sequencing

platform contribute to background noise. Thus, we filtered out sites under a determined

fold change (FC) threshold, since we assumed that the modified sites of D, m7G, and � are

considerably higher enriched due to the treatment than signals from the background noise or

other modifications. We discarded background noise that occurs from low RT read coverage,

primarily at the 5’-ACC-stem and the 3’-region of the tRNAs, by considering only sites with an

absolute number and percentage of RTs above a certain threshold. Adjusting these parameters

cuto�s allows us to reduce over 76% background noise, while only less than 11% of truly

modified sites got lost. However, further strategies are necessary to reduce the sources of noise.

For example, � occur at specific sequence and/or structural motifs [166, 167, 169]. Filtering

potential � sites an the basis of such motifs can help to reduce background noise [260]. It

is also possible that the reverse transcriptase used (SuperScript IV) reacts very sensitivity
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to sequence and secondary structure peculiarities of tRNAs causing an increased RT rate at

unmodified sites compared to other enzymes. In general, the reverse transcriptase terminates

one position before the treated tRNA residue. However, we observed sometimes that the

SuperScript IV reverse transcriptase terminates directly at the modification or up to two

residues after it. For example, the reverse transcriptase always produced significant and highly

enriched accumulations of RTs one position before and directly at the m7G46 modification

only if the tRNA does not contain a variable loop. As this concerns two neighboring guanines,

it is very di�cult to clearly allocate the modification to the true site when no prior knowledge

is available. Additional experiments based on other reverse transcriptases should be generated

in further work to determine a suitable reverse transcriptase which does not produce such

kinds of artifacts. A great advantage of our analysis strategy is that we also take background

noise into account which is caused by non-uridine sites in order to reduced the FDR. This

enables us to consider the full spectrum of background noise, rather than ignoring the noise of

non-uridine sites, as is common in certain studies [166, 167, 169, 379].

Since we demonstrated that our analysis strategy allows the identification of most modified

sites of �, D, and, m7G, our analysis should be expanded to other species in further work.

D and � modifications are well known to a�ect the flexibility of tRNA structures as an

adaptation to the environmental temperatures [27, 133], similar to the e�ect of many chemical

modifications in proteins [134, 135]. Thus, ongoing work should investigate the di�erences

in modification patterns of � and D in di�erent psychrophilic, mesophilic, and thermophilic

representatives at their corresponding minimal, optimal, and maximal growth temperatures.

In Chapter 11 we introduce a synteny-based framework to distinguish orthologs and paralogs

in tRNA gene families. As most tRNAs are typically present as multi-copy genes, the members

of the individual tRNA families evolve under concerted or rapid birth-death evolution. Thus,

paralogous copies maintain almost identical sequences over long evolutionary time-scales. To

a good approximation these are functionally equivalent. Thus, selective pressure on individual

tRNA copies is low. Such tRNA genes are evolutionary unstable and can easily mutate

into pseudogenes and get lost. This leads to a rapid turnover of tRNAs and often large

di�erences in the tRNA complements of closely related species. Since tRNA paralogs can

not be distinguished by their sequence, common methods cannot not be used to establish

tRNA gene orthology. However, synteny which describes the maintenance of relative genomic
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positions can be considered to disambiguate evolutionary relationships of tRNA genes. Within

our framework we studied on the one hand whether pre-computed genome-wide alignment

blocks can e�ciently be used as syntenic conserved anchors for this purpose. On the other

hand, we showed that on the basis of sequence-based synteny data it is possible to approximate

the history of gene clusters that cannot be resolved further. To this end we combined an

alignment-like approximation to multi-species synteny with recent advances in phylogenetic

combinatorics [291, 292] that relate orthology with cographs.

An additional outcome of this thesis is to highlight the technical problems and di�culties

associated with an accurate and quantitative analysis of the evolution of multi-copy genes. Not

surprisingly, the quality of the available data sources play a critical role. While the annotation

of tRNA genes and pseudogenes does not seem to pose much of a problem, there are several

issues limiting genome-wide multiple sequence alignments. On the one hand, coverage of

alignable sequences can be a problem. In addition, with increasing phylogenetic distances, the

fraction of aligned DNA decreases, hence conserved sequence anchors will become sparser,

making the synteny approach less accurate. Even more problematic is the question whether

aligned sequence blocks are really unique and thus are suitable as anchors. The di�erences

in the results obtained with di�erent anchor types indicate that genome-wide alignments

provide far from perfect synteny anchors. Several factors seem to be critical. Most importantly,

currently available multiple sequence alignment (MSA) pipelines do not explicitly filter for

unique sequences before computing alignment chains [287]. Therefore, highly conserved

paralogous sequences may lead to spurious anchors, which in turn lead to false correspondences

between homologous tRNAs. The concept of uniquely mappable sequence intervals [380, 381],

originally developed for high-throughput screening data analysis, probably could be adapted

to the construction of genome-wide MSAs which provide more accurate anchor sets. This

issue of ambiguities in MSAs needs to be addressed in future work as the development of new

genome-wide alignment pipelines goes far beyond the scope of this work.

To showcase the framework, we reconstructed the evolution of tRNAs of human and six

primates as well es of twelve drosophilids. We found that a large fraction of the tRNAs are

recent copies. This proliferation is probably compensated by rapid pseudogenization, since we

identified a large number of tRNA remolding events concentrated at the tips of the phylogeny.

The developed workflow is applicable not only to tRNAs but also to other gene families evolving



172 Chapter 13. Conclusion and Outlook

under concerted evolution or birth-death evolution showing patterns of rapid duplications

and losses. This encompasses several families of ncRNAs, as well as rapidly evolving gene

families such as olfactory receptors or the Krüppel-associated box domain zinc finger protein

(KRAB-ZNF) family in primate genes [286, 382]. As described in Berkemer et al. [377] we

demonstrated that our workflow is also applicable for gene families like Y RNAs.

The natural transfer of DNA from mitochondria to the nucleus generates nuclear mitochon-

drial DNAs (NUMTs) and is an ongoing evolutionary process, as genome sequences attest [56].

Through the transposition of mitochondrial fragments, sequence copies of mitochondrial

tRNAs (mt-tRNAs), referred to as nuclear-encoded mitochondrial-derived tRNAs (nm-tRNAs),

have been integrated in the genomes of most eukaryotic organisms as parts of NUMTs [383].

Previously, nm-tRNAs have not been thoroughly investigated. Just one approach for the

annotation of nm-tRNAs has been developed [24, 57] and merely speculations about their

function have been made. As depicted in Chapter 12, we developed and compared di�erent

nm-tRNA annotation strategies that are much more sensitive (human: true positive rate (TPR)

> 0.88; mouse: TPR > 0.71) and systematic than the published one (human: TPR 0.48;

mouse: TPR 0.47). Finally, we identified 335 and 43 novel nm-tRNAs in human and mouse,

respectively. To evaluate our performance we made use of synteny information which was

determined from the primordial mitochondrial origin of the NUMTs. One benefit of considering

synteny information is that we are able to filter FPs from our final set of nm-tRNAs. The most

successful strategy was to limit the annotation range to published NUMT [373] sequences. In

another approach we used whole genomic sequences for nm-tRNA annotation. Therewith, we

found a high amount of hits outside of NUMT boundaries. Since hits outside from NUMTs can

not be clearly assigned as nm-tRNAs we defined such hits as mt-tRNA-lookalikes. However, it

cannot be ruled out that mt-tRNA-lookalikes are nm-tRNAs as we recognized that NUMT

annotation is far from accurate. As the accuracy of our analysis strongly depends on a precise

NUMT annotation, further work has to focus on improving NUMT annotation. Most NUMT

sequences appear to be too shortly annotated, probably caused by their lowly conserved 5’-

and 3’-ends. Therefore, NUMTs could be improved by reconsidering flanking regions which

would contain adjacent mt-tRNA-lookalikes.

Finally, we found computational evidence that nm-tRNAs contain many functional binding

sites for RNA-binding proteins (RBPs). Interestingly, intronic nm-tRNAs comprise an over-
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representation of binding sites for splicing associated RBPs suggesting that nm-tRNA can

acquire a function in the regulation of splicing given that the NUMT is inserted in a fortuitous

intronic locations. As expected in such a scenario, most nm-tRNAs have not attained functional

significance because they are simply not in a useful genomic context or there is no selective

advantage gained from a nm-tRNA-derived binding site at the position of the insertion.

In summary, this thesis overcome hurdles in tRNA analysis and facilitated insights into

novel aspects of tRNA biology on the basis of the combination of specialized deep sequencing

approaches and sophisticated bioinformatic methods. This includes the systematic profiling

and characterization of tRNA modifications in a trancriptome-wide scale which have not

been detected using standard methods so far. The accurate mapping of tRNA reads and the

optimization of tRNA-specific RNA-seq protocol was the basic prerequisite to make tRNA

modifications clearly recognizable in RNA-seq data. Furthermore, conclusions about the

evolution and biological relevance of individual tRNAs were made. Additionally, computational

evidence of a novel potential function of nm-tRNAs in splicing was found suggesting that

nm-tRNAs are more than molecular poltergeists.
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Figure A1: Genomic view of pre-tRNA filtering. Genomic view showing mapped reads from
esophagus muscularis mucosae tissue to the glutamine (Glu) transfer RNA (tRNA) chr1.tRNAGlu

TTC

after read mapping to the artificial genome. Unfiltered mapped reads (top) and precursor tRNA
(pre-tRNA) filtered reads (bottom) are displayed. The pre-tRNAs mapping to the 5’-leader (residues
1-50) and 3’-trailer (residues 126-175) sequence introduce an additional error at position 69 at the
tRNA (residue 51-125). Mismatches caused by mapping pre-tRNAs will be erroneously called as
modification site. The exclusion of pre-tRNA reads therefore helps to reduce false positive hits.
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Figure A2: Incorrect alignment rates of suboptimal alignments. Uniquely mapped reads are, by
definition, reads which map only to one location with the optimal alignment score. In the same line,
multiply mapped reads are reads which map to more than one location with the same optimal score.
The alignment score is measured as the edit distance between the reference genome and the read
sequence. In addition, suboptimal read alignments can be used for variant calling. Given the high
number of expected base misincorporations the true mapping location could also be amongst one of
the suboptimally aligned positions. For the simulated reads used in this study it can be shown that
doing so quickly increases the number of erroneously considered reads. If only optimal alignment
positions of uniquely mapped reads are considered, ≥1% of the trusted alignments are mapped to
the wrong position, and thus potentially produce wrong misincorporation patterns. If also multiple
optimally aligned reads are allowed this number increases to ≥27% and ≥30%, for all and phased

reads, respectively. If suboptimal read alignments are also included up to one mismatch worse than
the optimal alignment, already ≥54% of the considered read alignment locations are misguided. This
observation can be explained by the distribution of suboptimal alignment scores (see insert plot).
Even though all reads whose optimal alignment did not correspond with the correct alignment had
their true alignment only one mismatch away (insert, lower panel). The majority of reads whose
optimal alignment was the correct one, had also the next suboptimal alignment only one mismatch
away (insert, upper panel). So allowing for suboptimal read alignments up to one mismatch worse
than the optimal alignment would rescue many correct alignments but for the cost of allowing two
magnitude more wrong reads to be considered in the follow-up analysis.
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Figure A3: Genomic view of the di�erent filtering strategies using human RNA-seq data.
Genomic view displaying mapped reads from the human tissue esophagus muscularis mucosae to one
of the glutamine (Glu) transfer tRNA (tRNA) tRNAGlu

TTC clusters. The di�erent read filter strategies
(top) unique, (middle) phased and (bottom) all are shown. Misaligned reads can ultimately lead
to wrong modification site calling, like at the positions 19, 34, 63, 64, and 66 for all mapped reads.
Using unique filtered reads seems to be the most e�cient method to reduce the misincorporation
calling from false positives and false negatives caused by multiply mapped reads.
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Figure A4: Genomic view of the di�erent filtering strategies using simulated data. Genomic
view displaying mapped reads from the simulated data containing identical modifications to one of
the alanine (Ala) transfer RNA (tRNA) tRNAAla

AGC clusters. The di�erent read filter strategies (top)
unique, (middle) phased and (bottom) all are shown. Misaligned reads can ultimately lead to wrong
modification site calling, like at the positions 50 and 60 from phased filtered reads and the positions
47, 50 and 60 by all mapped reads. The position 42 will not be called in comparison to the two
other filtering steps. Using unique filtered reads seems to be the most e�cient method to reduce the
misincorporation calling from false positives and false negatives caused by multiply mapped reads.
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Figure A5: Evaluation of the Pfropfen variation caller. Absolute numbers of counted true positives
(TPs; blue), false positives (FPs; red) and false negatives (FNs; dark red) by analysing simulated
reads containing (A) identical modification or (B) random modification sites. For the unclustered

(r.h.s.) as well as the clustered method (l.h.s.), the results of the di�erent read filter strategies (all,
phased, unique) are shown, respectively. Significant misincorporation sites for each filtering step were
called using Pfropfen. For both simulated data sets, the ratio between the true positive rate and the
false positive rate is balanced in favor of the uniquely mapped reads. The unique filtered reads are
much more sensitive in regard to the clustered method, then the unclustered method.
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Figure A6: Comparison of two di�erent modification caller. Overlap of the (purple) simulated
transfer RNA (tRNA) modifications with the called modification sites resulting from the best-practice
tRNA read mapping method using (green) GATK’s UnifiedGenotyper and Pfropfen (yellow). The
analysis of the simulated reads containing identical modification sites is shown in (A), in which 2,530
(84,3%) of the 3,001 generated modification sites were detected using both variation callers. Im
comparison to that, in the analysis of the simulated reads containing random modifications (B) 1,455
(62,6%) modifications of the simulated 2,324 sites were detected overlapping both caller methods.
The UnifiedGenotyper detected much less true positives than the custom ad hoc method, but also
shows a reduced set on false positives. Thus, Pfropfen seems to be more sensitive at the expense of
reduced specificity.
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Figure A7: Life cycle of Dictyostelium discoideum. Developmental morphogenesis of D. discoideum

starting from a single and vegetative amoebae (0h). Aggregation of the single amoebae is mediated
by the chemotaxis of cells to form a multicellular aggregate (6h after starvation). During this process,
multicellular aggregate streams toward a central domain or aggregation center. Aggregation results in
the formation of a mound (multicellular organism, 12h after starvation). Mound forms then a tipped
mound (14h after starvation). The tip extends and forms a finger which might fall over to form a
phototactic migrating slug (16h after starvation) or begins culuminations (20h after starvation) to
form a fruiting body. Finally, the fruiting body contains a sorus of spores on top of a stalk which
germinate following dispersal, renewing the cycle (24h after starvation). For our analysis described in
Section 10.2.1 we used cells from 0h, 6h, 16h, 20h and 24h after starvation. The figure is modified
from Chisholm et al. [351].
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Figure A8: Gain, loss, and duplications of tRNAs in drosophilids. Gain, loss, and duplications of
transfer RNAs (tRNAs) in drosophilids computed from the most fine-grained synteny definition based
on individual multiple sequence alignment (MSA) blocks. Gain and duplication events were assigned
to the edge leading to the last common ancestor of all observed co-orthologs, except for groups that
contained only one tRNA sequence of two species; in these cases we assigned two lineage-specific
gains. Green numbers refer to the total number of tRNAs detected by tRNAscan-SE; green numbers in
parentheses count the pseudogenes found in the set of all tRNAs. Blue numbers refer to the total gain,
i.e., the sum of event seeding new connected components and duplication events with a connected
component. The number of identified local duplication events is given in parentheses in blue. The
red numbers indicate the loss events on the corresponding branch. Species abbreviations: Drosophila

simulans: Dsim; Drosophila sechellia: Dsec; Drosophila melanogaster : Dmel; Drosophila yakuba:
Dyak; Drosophila erecta: Dere; Drosophila ananassae: Dana; Drosophila pseudoobscura: Dpse;
Drosophila persimilis: Dper; Drosophila willistoni : Dwil; Drosophila mojavensis: Dmoj; Drosophila

virilis: Dvir; Drosophila grimshawi : Dgri.
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Table B1: Overview of tRNA modifications. Collection of all 93 annotated transfer RNA (tRNA)
modifications. Their symbols and common names are listed. The data are collected from the
tRNAmodviz database [119].

Abbreviation Common name

ac4C N4-acetylcytidine

ac4Cm N4-acetyl-2’-O-methylcytidine

ac6A N6-acetyladenosine

acp3U 3-(3-amino-3-carboxypropyl)uridine

Am 2’-O-methyladenosine

Ar(p) 2’-O-ribosyladenosine (phosphate)

C+ agmatidine

chm5U 5-(carboxyhydroxymethyl)uridine

Cm 2’-O-methylcytidine

cmnm5s2U 5-carboxymethylaminomethyl-2-thiouridine

cmnm5U 5-carboxymethylaminomethyluridine

cmnm5Um 5-carboxymethylaminomethyl-2’-O-methyluridine

cmo5U uridine 5-oxyacetic acid

D dihydrouridine

f5C 5-formylcytidine

f5Cm 5-formyl-2’-O-methylcytidine

G+ archaeosine

g6A N6-glycinylcarbamoyladenosine

galQ galactosyl-queuosine

Gm 2’-O-methylguanosine

Gr(p) 2’-O-ribosylguanosine (phosphate)

hn6A N6-hydroxynorvalylcarbamoyladenosine

ho5U 5-hydroxyuridine

I inosine

i6A N6-isopentenyladenosine

Continued on next page
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Table B1 – continued from previous page

Abbreviation Common name

imG wyosine

imG-14 4-demethylwyosine

imG2 isowyosine

inm5s2U 5-(isopentenylaminomethyl)-2-thiouridine

inm5U 5-(isopentenylaminomethyl)uridine

inm5Um 5-(isopentenylaminomethyl)-2’-O-methyluridine

io6A N6-(cis-hydroxyisopentenyl)adenosine

k2C lysidine

m1A 1-methyladenosine

m1Am 1,2’-O-dimethyladenosine

m1G 1-methylguanosine

m1Gm 1,2’-O-dimethylguanosine

m1I 1-methylinosine

m1Im 1,2’-O-dimethylinosine

m1� 1-methylpseudouridine

m2,7Gm N2,7,2’-O-trimethylguanosine

m22G N2,N2-dimethylguanosine

m22Gm N2,N2,2’-O-trimethylguanosine

m2A 2-methyladenosine

m2G N2-methylguanosine

m2Gm N2,2’-O-dimethylguanosine

m3C 3-methylcytidine

m42Cm N4,N2,2’-O-trimethylcytidine

m5C 5-methylcytidine

m5Cm 5,2’-O-dimethylcytidine

m5s2U 5-methyl-2-thiouridine

Continued on next page
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Table B1 – continued from previous page

Abbreviation Common name

m5U 5-methyluridine

m5Um 5,2’-O-dimethyluridine

m6A N6-methyladenosine

m6t6A N6-methyl-N6-threonylcarbamoyladenosine

m7G 7-methylguanosine

manQ mannosyl-queuosine

mchm5U 5-(carboxyhydroxymethyl)uridine methyl ester

mcm5s2U 5-methoxycarbonylmethyl-2-thiouridine

mcm5U 5-methoxycarbonylmethyluridine

mcm5Um 5-methoxycarbonylmethyl-2’-O-methyluridine

mcmo5U uridine 5-oxyacetic acid methyl ester

mimG methylwyosine

mnm5s2U 5-methylaminomethyl-2-thiouridine

mnm5se2U 5-methylaminomethyl-2-selenouridine

mnm5U 5-methylaminomethyluridine

mo5U 5-methoxyuridine

ms2hn6A 2-methylthio-N6-hydroxynorvalyl carbamoyladenosine

ms2i6A 2-methylthio-N6-isopentenyladenosine

ms2io6A 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine

ms2m6A 2-methylthio-N6-methyladenosine

ms2t6A 2-methylthio-N6-threonyl carbamoyladenosine

ncm5U 5-carbamoylmethyluridine

ncm5Um 5-carbamoylmethyl-2’-O-methyluridine

nm5s2U 5-aminomethyl-2-thiouridine

o2yW peroxywybutosine

OHyW hydroxywybutosine

Continued on next page
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Table B1 – continued from previous page

Abbreviation Common name

OHyW* undermodified hydroxywybutosine

oQ epoxyqueuosine

preQ0 7-cyano-7-deazaguanosine

preQ1 7-aminomethyl-7-deazaguanosine

Q queuosine

s2C 2-thiocytidine

s2U 2-thiouridine

s2Um 2-thio-2’-O-methyluridine

s4U 4-thiouridine

t6A N6-threonylcarbamoyladenosine

fim5s2U 5-taurinomethyl-2-thiouridine

fim5U 5-taurinomethyluridine

Um 2’-O-methyluridine

� pseudouridine

�m 2’-O-methylpseudouridine

yW wybutosine

Table B2: Mapping signatures of common tRNA modifications. Chemical transfer RNA (tRNA)
modifications and their possible detection by analyzing RNA sequencing (RNA-seq) data are listed.
Modifications become visible in RNA-seq data as accumulation of base-calling errors, read terminations
(RTs), and/or by chemically treated RNA-seq data. Typically, thymine modifications cannot be
detected by analyzing base-calling errors. However, we observed thymine-to-cytosine transitions or
thymine-to-adenine transversions at single tRNA positions which are known sites for dihydrouridine
modifications. Common names of modification abbreviations are listed in Suppl. Tab. B1. Nulceobase
abbreviations: A – adenine; C – cytosine; G – guanine; T – thymine.

Modification Alteration RTs Treatment

Am - - +

m1A Aæ(C|G|T) + -

I AæG - +

Continued on next page
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Table B2 – continued from previous page

Modification Alteration RTs Chemical Treatment

m1G Gæ(A|C|T) + -

m2G Gæ(A|C|T) + -

m22G Gæ(A|C|T) + -

m7G - - +

Um - - +

m5U - - +

D Tæ(A|C|G)? + +

� - - +

m1� - - +

Cm Cæ(A|T) + +

m3C Cæ(A|G|T) + +

m5C - - +

i6A A æ(G|T) + -

m1I AæG - +

o2yW Gæ(A|C|T) - -

t6A Aæ(C|G|T) + -

ms2i6A Aæ(C|G|T) + -

Table B3: Number of annotated tRNA genes per species. The number of annotated cytosolic,
pseudo or mitochondrial transfer RNAs (tRNAs) are listed for each species.

Species # cytosolic # pseudo # mitochondrial

tRNAs tRNAs tRNAs

Dictyostelium discoideum 403 4 18

Drosophila ananassae 304 165 –

Drosophila erecta 281 3 –

Drosophila grimshawi 258 1 –

Drosophila melanogaster 291 4 –

Continued on next page
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Table B3 – continued from previous page

Species # cytosolic # pseudo # mitochondrial

tRNAs tRNAs tRNAs

Drosophila mojavensis 261 3 –

Drosophila persimilis 297 1 –

Drosophila pseudoobscura 293 1 –

Drosophila sechellia 296 13 –

Drosophila simulans 264 3 –

Drosophila virilis 267 2 –

Drosophila willistoni 291 166 –

Drosophila yakuba 324 51 –

Escherichia coli 88 1 –

Geobacillus stearothermophilus 62 1 –

Gorilla gorilla gorilla 431 87 –

Homo sapiens 732 98 22

Macaca mulatta 463 115 –

Nomascus leucogenys 441 119 –

Pan troglodytes 531 108 –

Pongo abelii 543 118 –

Saccharomyces cerevisiae 189 1 18

Spinacia oleracea 2111 450 24
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Table B4: Comparison of LOTTE-seq with common tRNA-seq methods. Transfer RNA (tRNA)
content of the long hairpin oligonucleotide based tRNA high-throughput sequencing (LOTTE-seq)
method compared with the optimized TruSeq sRNA protocol as well as with the standard Illumina
TruSeq sRNA procedure is listed. In particular, the number of reads mapped to tRNAs with a
3’-CCA-end, with 3’-ends other than a CCA (such as partial CCA-ends or tRNAs without a CCA-end)
and non-tRNA reads are given in percentage for six di�erent species. Additionally, the percentage of
reads mapped to tRNAs as well as other genomic regions (ambiguous tRNAs) are listed. In this case,
the true origin of the read is indeterminable. Two replicates (rep) of MiSeq-based sequence analyses
of each species were investigated for each RNA-seq method. In all investigations, LOTTE-seq shows
the highest amount of CCA-containing tRNA reads. Species abbreviations: Dictyostelium discoideum:
Ddi; Escherichia coli : Eco; Geobacillus stearothermophilus: Gst; Homo sapiens: Hsa; Saccharomyces

cerevisiae: Sce; Spinacia oleracea: Sol.

Species Method Rep. tRNAs tRNAs Ambiguous Other

3’-CCA end other 3’-end tRNAs RNAs

Ddi LOTTE-seq 1 99.23 0.10 0.34 0.33

Ddi LOTTE-seq 2 98.77 0.26 0.39 0.57

Ddi opt. TruSeq 1 73.32 22.95 1.07 2.65

Ddi opt. TruSeq 2 74.93 21.03 1.01 3.03

Ddi TruSeq 1 3.60 0.80 0.14 95.47

Ddi TruSeq 2 3.14 1.22 0.00 95.64

Eco LOTTE-seq 1 99.12 0.25 0.02 0.61

Eco LOTTE-seq 2 98.04 0.35 0.03 1.58

Eco opt. TruSeq 1 77.61 8.55 0.00 13.84

Eco opt. TruSeq 2 79.31 9.84 0.01 10.83

Eco TruSeq 1 5.37 0.41 0.19 94.03

Eco TruSeq 2 5.92 0.28 0.00 93.80

Gst LOTTE-seq 1 97.77 0.31 0.02 1.90

Gst LOTTE-seq 2 97.60 0.22 0.04 2.13

Gst opt. TruSeq 1 74.28 11.66 0.03 14.03

Gst opt. TruSeq 2 72.48 13.90 0.09 13.53

Gst TruSeq 1 4.34 0.83 0.07 94.76

Gst TruSeq 2 1.81 0.34 0.00 97.85

Hsa LOTTE-seq 1 55.83 2.08 37.18 4.90

Continued on next page
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Table B4 – continued from previous page

Species Method Rep. tRNAs tRNAs Ambiguous Other

3’-CCA end other 3’-end tRNAs RNAs

Hsa LOTTE-seq 2 60.43 2.27 33.79 3.50

Hsa opt. TruSeq 1 28.76 3.43 22.38 45.43

Hsa opt. TruSeq 2 29.09 2.28 26.83 41.81

Hsa TruSeq 1 0.23 0.21 1.46 98.10

Hsa TruSeq 2 0.92 0.11 1.91 97.07

Sce LOTTE-seq 1 98.44 0.18 0.29 1.08

Sce LOTTE-seq 2 97.65 0.25 1.50 0.61

Sce opt. TruSeq 1 53.12 15.58 1.11 30.18

Sce opt. TruSeq 2 41.40 43.45 1.06 14.09

Sce TruSeq 1 2.11 3.72 0.51 93.66

Sce TruSeq 2 3.03 4.59 0.61 91.76

Sol LOTTE-seq 1 75.50 0.25 15.77 8.48

Sol LOTTE-seq 2 81.20 0.36 8.55 9.88

Sol opt. TruSeq 1 65.87 5.20 14.95 13.98

Sol opt. TruSeq 2 63.16 4.96 13.09 18.79

Sol TruSeq 1 9.09 1.15 1.97 87.80

Sol TruSeq 2 6.45 3.23 0.00 90.32
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Table B5: Tissue-specific di�erences regarding the number of modified tRNAs in human. Num-
ber of modified human transfer RNAs (tRNAs) in the six investigated tissues (cerebellum (C),
diencephalon (D), ovary (O), skeletal muscle (S), esophagus muscularis mucosae (E), and testis (T))
are listed. The tRNA modifications are detected by accumulations base-calling errors. The same
number of modified tRNAs is identified only at position 49 for each tissue. The number of modified
tRNAs varies greatly at the other positions between tissues. Only seven positions are frequently
modified in each tissue. Abbreviations: A – adenine; AC – anticodon; ACC – acceptor; C – cytosine;
D – dihydrouridine; G – guanine; T – thymine V – variable.

Area Position Alteration # O # T # C # D # E # S

5’-ACC-stem 6 Gæ(C|T) 12 12 - - 14 -

TæA - - - - 1 -

variable region 9 Aæ(C|G|T) 21 22 10 8 21 5

Gæ(A|T) 19 13 19 26 30 25

5’-D-stem 10 GæA - - - 1 1 -

D-loop 18 TæC - 3 - - - -

19 Cæ(A|T) - - - - 11 -

3’-D-stem 22 GæT - - - - - 5

23 AæC - - 6 - - 9

24 Aæ(C|T) - - 6 - -

25 Cæ(A) 2 2 - - 2 -

variable region 26 Gæ(A|C|T) 35 66 31 14 95 9

5’-AC-stem 31 CæT - - - - 1 -

AæG - - 10 - -

AC-loop 32 Cæ(A|T) 6 7 6 4 10 6

34 AæG 18 20 38 30 40 38

37 Aæ(G|T) 5 2 23 23 27 23

GæT 19 19 12 - 8 -

V-region 12e GæC 1 - - - 1 1

2e Cæ(A|G|T) 10 8 4 2 12 -

5’-T�C-stem 49 AæT 1 1 1 1 1 1

52 GæC - - - - 1 -

Continued on next page



Appendix B. Additional Tables 197

Table B5 – continued from previous page

Area Position Alteration # O # T # C # D # E # S

T�C-loop 57 TæC - 1 - - - -

58 Aæ(G|T) 175 171 196 119 244 115

3’-T�C-stem 61 CæA - - - 1 - -

65 GæT - 1 - 13 - -

Table B6: Di�erences regarding the number of modified tRNAs during the life cycle of Dic-

tyostelium discoideum. Numbers of modified transfer RNAs (tRNAs) during the developmental
stages (0h, 6h, 16h, 20h, and 24h after starvation) of Dictyostelium discoideum are listed. The
modifications were identified based on the interpretation of base-calling errors. At each stage of
development, the same tRNA positions are modified, but vary greatly in the number of modified
tRNAs. Only individual modifications at positions 34, 37 and 68 show the same number of modified
tRNAs at each investigated developmental stage. Modified tRNAs at 6h after starvation varies most
from the other stages. Abbreviations: A – adenine; AC – anticodon; C – cytosine; D – dihydrouridine;
G – guanine; T – thymine; V – variable.

Area Position Alteration # Oh # 6h # 16h # 20h # 24h

- 9 Gæ(C|T) 71 47 74 36 38

D-loop 20 TæC 4 62 15 - -

Cæ(A|T) 35 2 35 35 35

- 26 Gæ(A|T) 248 205 248 247 248

AC-loop 32 CæT 61 61 61 61 61

34 AæG 91 91 91 91 91

CæT 1 1 1 1 1

37 AæT 23 15 23 23 23

Gæ(A|C|T) 53 39 53 52 47

V-region 47 Tæ(A|C) 42 26 26 24 23

T�C-loop 58 Aæ(C|G|T) 401 400 401 401 401

3’-T�C-stem 68 AæG 1 1 1 1 1
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Table B7: Remolding events in primates in detail. All annotated transfer RNA (tRNA) isoacceptor
and alloacceptor events and the primates in which they were found are listed in detail. Remolding
events were grouped corresponding to their annotation origin: found in both our and the previous
study [197] (common), only in the previous study (Rogers (2014)) and only in our study (novel). Our
method is more sensitive and predicts more tRNA remolding events. The conventional 3-letter code
is used as abbreviation for each tRNA type: Ala – alanine; Arg – arginine; Asn – asparagine; Asp –
aspartic acid; Cys – cysteine; Gln – glutamine; Glu – glutamic acid; Gly – glycine; His – histidine;
Ile – isoleucine; Leu – leucine; Lys – lysine; Met – methionine; Phe – phenylalanine; Pro – proline;
Thr – threonine; Trp – tryptophan; Tyr – tyrosine; Ser – serine; Val – valine. Species abbreviations:
human, Homo sapiens: Hsa; chimapanzee, Pan troglodytes: Ptr; gorilla, Gorilla gorilla gorilla: Ggo;
orangutan, Pongo abelii : Pab; gibbon, Nomascus leucogenys: Nle; rhesus macaque, Macaca mulatta:
Mmu. Nulceobase abbreviations: A – adenine; C – cytosine; G – guanine; T – thymine.

Remolding event Species Source

Isoacceptor

Ala(GGCæAGC) Ggo common

Ala(TGCæCGC) Ggo, Hsa, Pab, common

Ala(AGCæCGC) Ptr novel

Ala(TGCæAGC) Nle, Mmu novel

Asn(ATTæGTT) Ggo, Nle common

Cys(ACAæGCA) Ggo, Nle common

Glu(TTCæCTC) Pab common

Gly(TCCæCCC) Nle common

Leu(CAAæCAG) Hsa common

Leu(CAGæTAG) Mmu novel

Pro(AGGæGGG) Nle novel

Pro(TTGæCTG) Mmu novel

Ser(TGAæAGA) all common

Thr(CGTæTGT) Mmu, Pab, Ptr common

Thr(AGTæCGT) Mmu, Pab, Ptr novel

Thr(AGTæTGT) Mmu, Nle, Pab novel

Ptr

Val(AACæTAC) Ptr novel

Continued on next page
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Table B7 – continued from previous page

Remolding event Species Source

Val(CACæTAC) Nle novel

Alloacceptor

Ala(AGC)æGly(TCC) Pab novel

Arg(TCG)æSeC(TCA) Ggo, Hsa, Pab, novel

Ptr

Arg(GCG)æCys(GCA) – Rogers (2014)

Arg(GCG)æHis(GTG) Ptr common

Arg(CCG)æGly(CCC) Pab common

Asp(GTC)æAsn(GTT) Pab novel

Cys(GCA)æHis(GTG) Pab novel

Gln(TTG)æArg(TCG) Mmu common

Gln(TTG)æGlu(TTC) Pab novel

Gln(CTG)æGlu(CTC) Mmu novel

Gln(TTG)æPro(TGG) Mmu novel

Gln(TTG)æSeC(TCA) Ggo novel

Glu(TTC)æGly(TCC) Hsa, Mmu common

Glu(TTC)æLys(TTT) Ptr, Ggo common

Glu(CTC)æAla(TGC) – Rogers (2014)

His(GTG)æGln(TTG) Mmu novel

IIe(GAT)æPhe(GAA) Nle common

Ile(AAT)æSer(ACT) Ptr novel

Leu(CAA)æSer(CGA) Ptr common

Leu(CAA)æMet(CAT) Ggo common

Lys(CTT)æAsn(GTT) Mmu, Pab common

Lys(CTT)æArg(CCT) Mmu novel

Met(CAT)æThr(CGT) Hsa novel

Continued on next page
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Table B7 – continued from previous page

Remolding event Species Source

Met(CAT)æIle(TAT) Ggo novel

Phe(GAA)æSer(GCA) Ggo novel

Phe(GAA)æSer(GCA) Mmu novel

SeC(TCA)æCys(GCA) – Rogers (2014)

Ser(AGA)æCys(GCA) Pab common

Ser(ACT)æIle(AAT) Hsa common

Thr(CGT)æMet(CAT) Hsa common

Thr(TGT)æIle(TAT) Mmu novel

Tyr(GTA)æCys(GCA) all (deleted in Nle) common

Val(TAC)æIle(TAT) Ptr, Ggo common

Val(AAC)æAla(AGC) Hsa common

Val(TAC)æLeu(TAA) Ptr common

Val(AAC)æIle(AAT) Nle novel

Val(CAC)æGly(CCC) Ptr common
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Table B8: Remolding events in drosophilids in detail. All annotated transfer RNA (tRNA)
isoacceptor and alloacceptor events and the drosophilids in which they were found are listed in detail.
Remolding events were grouped corresponding to their annotation origin: found in both our and the
previous studies [196] (common), only in the previous studies (Rogers (2010)) and only in our study
(novel). Our method is more sensitive and predicts more tRNA remolding events. The conventional
3-letter code is used as abbreviation for each tRNA type: Ala – alanine; Arg – arginine; Asn –
asparagine; Asp – aspartic acid; Cys – cysteine; Gln – glutamine; Gly – glycine; His – histidine; Ile
– isoleucine; Leu – leucine; Lys – lysine; Met – methionine; Pro – proline; Thr – threonine; Tyr –
tyrosine; Ser – serine. Species abbreviations: Drosophila simulans: Dsim; Drosophila sechellia: Dsec;
Drosophila melanogaster : Dmel; Drosophila yakuba: Dyak; Drosophila erecta: Dere; Drosophila

ananassae: Dana; Drosophila pseudoobscura: Dpse; Drosophila persimilis: Dper; Drosophila willistoni :
Dwil; Drosophila mojavensis: Dmoj; Drosophila virilis: Dvir; Drosophila grimshawi : Dgri. Nulceobase
abbreviations: A – adenine; C – cytosine; G – guanine; T – thymine.

Remolding event Species Source

Isoacceptor

Ala(AGCæTGC) all novel

Arg(ACGæTCG) Dgri common

Arg(CCTæTCT) Dsec common

Arg(TCGæTCT) Dsim, Dsec, Dmel, common

Dyak, Dere, Dpse,

Dper, Dana

Arg(TCGæCCG) Dwil novel

Cys(GCAæACA) Dana, Dere common

Cys(GCAæACA) – Rogers (2010)

Gly(GCCæCCC) Dsim, Dsec, Dmel, common

Dyak, Dere, Dpse,

Dper, Dana, Dwil

Ile(AATæGAT) Dgri novel

Leu(AAGæTAG) all novel

Lys(CTTæTTT) Dyak novel

Pro(AGGæCGC) all common

Pro(AGGæTGG) all common

Ser(TGAæAGA) all common

Continued on next page
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Table B8 – continued from previous page

Remolding event Species Source

Alloacceptor

Asn(GTT)æLys(TTT) Dana common

Asn(GTT)æThr(GGT) Dper novel

Asp(GTC)æAsn(GTT) – Rogers (2010)

Lys(CTT)æMet(CAT) Dsec common

Met(CAT)æLeu(CAA) Dmoj novel

Met(CAT)æThr(CGT) Dsim common

Ser(GCT)æAsn(GTT) Dana novel

Tyr(GTA)æHis(GTG) Dsec common

Table B9: Protein binding sites of nim-tRNAs. The relative enrichments over expected nu-
cleotide coverage of RNA-binding protein (RBP) binding events in human nuclear-encoded intronic
mitochondrial-derived transfer RNAs (nim-tRNAs) over background are listed. For the background we
calculated the expected coverage of RBP binding sites per nucleotide in all human introns. The 31
RBPs with overlapping nim-tRNAs have a splicing function or other regulatory roles.

Cellline RBP RBP sites Intron RBP sites Fold

in introns coverage in nim-tRNAs enrichment

HepG2 DDX52 192756 0.0041284 1 0.2699093

HepG2 DDX6 36663 0.0007853 1 1.4190501

HepG2 DHX30 95293 0.0020409 4 2.18385956

HepG2 DROSHA 386995 0.0082885 2 0.2688750

HepG2 EIF3D 321832 0.0068929 1 0.1616578

HepG2 FASTKD2 120719 0.0025855 1 0.4309731

HepG2 G3BP1 24087 0.0005159 1 2.1599466

HepG2 HLTF 270375 0.0057908 1 0.1924240

HepG2 HNRNPA1 590724 0.0126519 1 0.0880727

HepG2 HNRNPC 880024 0.0188489 2 0.1182391

HepG2 HNRNPL 571862 0.0122479 2 0.1819552

Continued on next page
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Table B9 – continued from previous page

Cellline RBP RBP sites Intron RBP sites Fold

in introns coverage in nim-tRNAs enrichment

HepG2 HNRNPU 384074 0.0082259 1 0.1354600

HepG2 QKI 294484 0.0063071 4 0.7066820

HepG2 RBM22 169577 0.0036319 1 0.3068024

HepG2 RBM5 230897 0.0049452 1 0.2253240

HepG2 UCHL5 201213 0.0043095 1 0.2585650

HepG2 ZC3H11A 326633 0.0069957 1 0.1592817

K562 CSTF2T 215118 0.0046073 1 0.2418516

K562 EXOSC5 163787 0.0035079 2 0.6352962

K562 FASTKD2 55225 0.0011828 1 0.9420848

K562 HLTF 157472 0.0033727 2 0.6607731

K562 HNRNPL 527655 0.0113011 2 0.1971994

K562 HNRNPU 706052 0.0151219 1 0.0736867

K562 ILF3 351169 0.0075212 1 0.1481526

K562 KHDRBS1 509365 0.010909 4 0.4085607

K562 NSUN2 19825 0.0004246 1 2.6242942

K562 PUS1 26788 0.0005737 1 1.9421619

K562 QKI 77069 0.0016506 1 0.6750656

K562 SAFB2 383009 0.0082031 2 0.2716732

K562 TAF15 184423 0.0039499 1 0.2821049

K562 ZC3H11A 99807 0.0021376 1 0.5212724
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List of Abbreviations

� pseudouridine

A adenine

ADAR adenosine deaminase acting on RNA

ANG angiogenin

ARM-seq AlkB-facilitated RNA methylation sequencing

BDP1 TFIIB double prime 1

BLOSUM blocks substitution matrix

bp base pairs

BRF1 TFIIB-related factor 1

C cytosine

cAMP cyclic AMP

cDNA complementary DNA

CM covariance model

Cm 2’-O-methylcytidine

CMCT 1-cyclohexyl-(2-morpholinoethyl)carbodiimide

metho-p-toluene
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CTNNBL1 catenin–ß–like 1

Cys cysteine

D dihydrouridine

D-arm dihydrouridine arm

DM-tRNA-seq Demethylase-thermostable group II intron RT

tRNA sequencing

DNA deoxyribonucleic acid

dT oligo

ESA enhanced su�x array

FC fold change

FDR false discovery rate

fMet N -formylmethionyl

FN false negative

FNR false negative rate

FP false positive

G guanine

hm5C 5-hydroxymethylcytidine

HSP high-scoring segment pair

I inosine

i6A N6-isopentenyladenosine

indel insertion or deletion

INM inner nuclear membrane



List of Abbreviations 207
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kbp kilo base pairs

KRAB-ZNF Krüppel-associated box domain zinc finger protein

Leu leucine

lincRNA long intergenic non-coding RNA

lncRNA long non-coding RNA

LOTTE-seq long hairpin oligonucleotide-based tRNA high-

throughput sequencing

m1A 1-methyladenosine

m1G 1-methylguanosine

m1I 1-methylinosine

m22G N2,N2-dimethylguanosine

m2G N2-methylguanosine

m3C 3-methylcytidine

m5C 5-methylcytidine

m5U 5-methyluridine

m6A N6-methyladenosine

m7G 7-methyl-guanosine

mcm5s2U 5-methoxycarbonylmethyl-2-thiouridine

mcm5Um 5-methoxycarbonylmethyl-2’-O-methyluridine

miRNA microRNA

mRNA messenger RNA

mRNA-seq poly-A-selected RNA-sequencing

ms2i6A 2-methylthio-N6-isopentenyladenosine

MSA multiple sequence alignment
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mt-genome mitochondrial genome

mt-tRNA mitochondrial tRNA

mtRPOL mitochondrial RNA polymerase
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NAD nicotinamide adenine dinucleotide

ncRNA non-coding RNA

NGS next-generation sequencing

nim-tRNA nuclear-encoded intronic mitochondrial-derived

tRNA
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NP nondeterministic polynomial time

nt nucleotide

NUMT nuclear mitochondrial DNA

o2yW peroxywybutosine

PAM point accepted mutation
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PhyloP phylogenetic p-value

PNPase polynucleotide phosphorylase

Pol III RNA polymerase III

poly-A polyadenylated

pre-mRNA precursor mRNA

pre-tRNA precursor tRNA
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RBP RNA-binding protein

rmRNA-seq ribo-minus RNA sequencing

RNA ribonucleic acid

RNA-seq RNA sequencing

RNase ribonuclease

RNase Z tRNA 3’-endonuclease

rRNA ribosomal RNA

RT read termination

s2U 2-thiouridine

SINE short interspersed nuclear element

siRNA small interfering RNA

snoRNA small nucleolar RNA

SNP single-nucleotide polymorphism

snRNA small nuclear RNA

T thymine

t6A N6-threonylcarbamoyladenosine

T-arm T�C-arm

TBP TATA-box binding protein

TFIIIB transcription factor for polymerase III B

TFIIIC transcription factor for polymerase III C

Thr threonine

tiRNA tRNA-derived stress induced RNA

TN true negative

TNR true negative rate
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TP true positive

TPR true positive rate

tRF tRNA-derived fragment

tRNA transfer RNA

tsRNA tRNA-derived small RNA
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UTR untranslated regions

V-loop variable loop

vtRNA vault RNA
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