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Abstract 33 

Pathogens that invade the human host are confronted by a multitude of defence mechanisms 34 

aimed at preventing colonization, dissemination and proliferation. The most frequent 35 

outcome of this interaction is microbial elimination, in which the complement system plays a 36 

major role.  Complement, an essential feature of the innate immune machinery, rapidly 37 

identifies and marks pathogens for efficient removal. Consequently, this creates a selective 38 

pressure for microbes to evolve strategies to combat complement, permitting host 39 

colonization and access to resources. All successful pathogens have developed mechanisms 40 

to resist complement activity which are intimately aligned with their capacity to cause disease. 41 

In this review, we describe the successful methods various pathogens use to evade 42 

complement activation, shut down inflammatory signalling through complement, circumvent 43 

opsonisation and override terminal pathway lysis. This review summarizes how pathogens 44 

undermine innate immunity: ‘The Hijackers Guide to Complement’. 45 
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1. Introduction  66 

The complement system represents a sophisticated, evolutionarily conserved pathway 67 

composed of over 50 fluid-phase and membrane-bound components. Complement is an 68 

essential part of innate immunity and works in concert with phagocytes to survey, label and 69 

destroy microbial intruders (Berends et al., 2014; Merle et al., 2015). Additionally, 70 

complement is central in coordinating inflammation, immune surveillance and recycling and 71 

eliminating cellular debris, thereby maintaining homeostasis (Markiewski and Lambris, 2007; 72 

Ricklin et al., 2010). Finally, complement interacts with the adaptive immune system; 73 

interaction of C3 fragments with B-cells lowers their activation threshold, and C3 and C5 74 

fragments modulate intracellular metabolic reprogramming of T cells to influence 75 

downstream immune signalling pathways (Elvington et al., 2016; Killick et al., 2018).  76 

Complement can be activated by three different routes, the classical (CP), lectin (LP) and 77 

alternative (AP) pathways (Figure 1, left side and middle top), each with distinct initiating 78 

mechanisms which enable recognition of diverse structures (Berends et al., 2014; Merle et al., 79 

2015). The CP is governed by the recognition of pre-bound immunoglobulins (Ig), IgG and IgM 80 

or specific pathogen associated molecular patterns (PAMPs) by C1q (Merle et al., 2015; Noris 81 

and Remuzzi, 2013). Binding of C1q (C1q, C1r and C1s exist as a complex called the C1 complex) 82 

to its ligands results in a conformational change which initiates auto-activation of 83 

accompanying serine protease, C1r, which cleaves and activates neighbouring serine protease 84 

C1s. Activated C1s targets C4 generating C4a and C4b. The function of C4a is a poorly 85 

understood, however C4b reacts with amino and hydroxyl groups on surfaces via the exposed 86 

thioester domain (Law and Dodds, 1997). C2 now interacts with C4b, and is cleaved by C1s to 87 

generate C2a and C2b. The larger C2a fragment interacts with C4b to form the CP C3 88 

convertase, C4b2a (Merle et al., 2015; Noris and Remuzzi, 2013).  89 

LP activation is initiated when mannose-binding lectin (MBL), ficolins (ficolin-1, -2 or -3) or 90 

collectin-11 interacts with select carbohydrate moieties displayed on microbes. Similar to C1q, 91 

these recognition molecules are complexed with homologous proteases, termed MBL-92 

associated serine proteases (MASPs). MASPs become activated following interaction of LP 93 

initiators with microbial surfaces. MASP-2 specifically cleaves C4, while both MASP-1 and 94 

MASP-2 are responsible for C2 cleavage, generating a C3 convertase identical to the CP 95 

(Garred et al., 2016; Merle et al., 2015). 96 
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Activation of the AP results from the spontaneous hydrolysis of a labile thioester bond 97 

present in the C3 molecule, generating a biologically active conformation termed C3(H2O) 98 

(Harboe and Mollnes, 2008; Merle et al., 2015; Noris and Remuzzi, 2013). Hydrolysis of C3 to 99 

C3(H2O) can be accelerated via interactions between C3 and biotic and artificial interfaces 100 

(Nilsson and Nilsson Ekdahl, 2012). The exposed thioester domain of C3(H2O) permits binding 101 

of Factor B (FB), resulting in the formation of an efficient substrate for the serine protease 102 

Factor D (FD) which cleaves FB into Ba and Bb, generating the fluid-phase C3 convertase, 103 

C3(H2O)Bb (Bexborn et al., 2008). C3(H2O)Bb can cleave C3 into C3a and C3b, allowing C3b to 104 

bind covalently to surfaces containing exposed hydroxyl groups including microbial surfaces  105 

(Sahu et al., 1994).  106 

All complement pathways converge at the level of C3 convertase formation, efficiently 107 

processing C3 into C3a and C3b (Figure 1, centre). Deposition of C3b triggers the AP positive 108 

feedback loop, thus enabling the AP to amplify C3b deposited by the CP and LP (Lachmann, 109 

2009). Analogous to C3(H2O), deposited C3b interacts with FB, is processed by FD, forming AP 110 

C3 convertase, C3bBb. Importantly, any deposited C3b may interact with FB and FD resulting 111 

in amplification of surface bound AP C3 convertase and C3b deposition. While C3a is an 112 

important inflammatory mediator, iC3b (generated by C3b cleavage) is the central opsonin. 113 

Opsonisation of pathogens with C3 cleavage fragments is an efficient method to label 114 

microbes for phagocyte-mediated uptake and subsequent destruction. The only known 115 

positive regulator of complement, properdin, prolongs the life of AP C3 convertases by 116 

stabilizing the interaction between C3b and FB. Properdin may also provide a platform for 117 

C3bBb surface assembly (Hourcade, 2006).  118 

Continued C3b deposition on the microbial surfaces promotes a change in convertase 119 

function from cleaving C3 to preferentially cleaving C5, via the assembly of the CP/LP 120 

C4b2aC3b and AP C3bBbC3b C5 convertases (Merle et al., 2015; Noris and Remuzzi, 2013). 121 

Cleavage of C5 generates C5a, a potent anaphylatoxin and C5b, an integral membrane attack 122 

complex (MAC) component. C5b interacts with multiple complement proteins in a step wise 123 

manner. Formation of C5b-7 permits interaction with cell membranes, while incorporation of 124 

C8 promotes insertion into the lipid bilayer. Lastly, the inclusion of multiple C9 molecules 125 

results in the formation of a tubular MAC pore which can lyse susceptible cells such as gram-126 

negative bacteria (Bayly-Jones et al., 2017; Ricklin et al., 2010). Recent work has demonstrated 127 
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that bacterial killing by MAC requires local, C5 convertase-mediated assembly of C5b-6 to 128 

permit efficient insertion of MAC into bacterial membranes (Heesterbeek et al., 2019). 129 

Several host soluble or cell-surface attached complement inhibitors limit the destructive 130 

effects of complement on ‘self’ surfaces (Merle et al., 2015; Noris and Remuzzi, 2013; Zipfel 131 

and Skerka, 2009). Membrane-bound regulators include decay-accelerating factor 132 

(DAF/CD55), membrane cofactor protein (MCP/CD46), complement C3b/C4b receptor 1 133 

(CR1/CD35) and CD59. With the exception of CD59, all these regulators contain complement 134 

control protein (CCP) domains which interact with their specific ligands. The primary targets 135 

of most complement regulators are C3b, C4b or C3 convertases; CD59 limits C9 polymerization 136 

(Noris and Remuzzi, 2013; Zipfel and Skerka, 2009).  137 

Soluble negative regulators in plasma also dampen complement activity. C4b-binding 138 

protein (C4BP) limits the function of C4b and is a potent inhibitor of both the CP and LP. C4BP 139 

acts as a cofactor for FI mediated cleavage of surface-bound and soluble C4b and also hastens 140 

the natural decay of C3 convertases (D. Ermert and Blom, 2016).  The master regulators of the 141 

AP are Factor H (FH) and Factor H-like protein 1 (FHL-1), an alternatively spliced transcript of 142 

FH (Ferreira et al., 2010). These regulators serve as cofactors for C3b cleavage by FI, compete 143 

with FB for interaction with C3b and promote C3bBb dissociation. Another soluble regulator, 144 

C1 inhibitor (C1-INH), functions as a serine protease inhibitor targeting and inactivating C1r, 145 

C1s, MASP-1 and MASP-2 and therefore disrupting both CP and LP activity (Davis et al., 2010).  146 

Two plasma proteins, clusterin and vitronectin, reduce ‘innocent bystander’ lysis of host 147 

cells by MAC (Preissner, 1991; Tschopp et al., 1993). Additionally, the membrane bound 148 

regulator CD59, interacts with both C5b-8 and C5b-9 to prevent MAC penetration into the lipid 149 

bilayer (Huang et al., 2006). Importantly, CD59 does not bind to circulating C8 or C9 but 150 

specifically to the MAC/perforin (MACPF) domain of each protein upon complex formation 151 

(Wickham et al., 2011).  152 

While several new functions have been attributed to complement over the past twenty 153 

years, the ‘basic’ anti-pathogen role of complement remains critical for human health, 154 

highlighted by the heightened risk of certain infections in patients with complement 155 

deficiencies (J. E. Figueroa and Densen, 1991; Ram et al., 2010). Infectious diseases represent 156 

one of the most serious threats to global human health, a problem amplified by the increasing 157 

rate of antibiotic resistance and a concomitant stagnation in antibiotic and vaccine 158 

development. Accordingly, there is an urgent need to develop therapeutic interventions to 159 
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combat infection. This requires a greater understanding of the complex interplay between 160 

host and pathogen. The purpose of this review is to provide an update of essential 161 

complement evasion strategies used by some of the important human pathogens, which could 162 

provide new avenues to target pathogens. 163 

 164 

1.1 Importance of complement against infection – observations in complement deficient 165 

individuals  166 

Complement deficiencies may be inherited or acquired. Acquired complement defects may 167 

occur following acute infections or may accompany chronic disease states such as cirrhosis or 168 

protein-losing nephropathies. Acquired complement deficiencies also result from therapeutic 169 

blockade of the complement cascade as with the drug eculizumab (C5 inhibitor) and will be 170 

encountered more frequently in the near future as an increasing number of therapeutic 171 

complement inhibitors enter clinical trials  (Ricklin and Lambris, 2016; Ricklin et al., 2018)). 172 

Congenital deficiencies in the complement system are rare and are diagnosed when 173 

individuals present with certain autoimmune diseases or recurrent bacterial infections (Ram 174 

et al., 2010; Ricklin and Lambris, 2016).  175 

Individuals with defects of components of the CP are predisposed to autoimmune disorders 176 

(systemic lupus), which presents at an early age (Barilla-LaBarca and Atkinson, 2003; Lintner 177 

et al., 2016; Ricklin and Lambris, 2016). These individuals have a relatively low frequency of 178 

infection (20%), attributable to a functional AP. Infections in this population are often caused 179 

by encapsulated bacteria such as Streptococcus pneumoniae and Haemophilus influenzae, 180 

which involve the sinuses, respiratory tract, blood or meninges  (J. E. Figueroa and Densen, 181 

1991; Ram et al., 2010). Individuals with deficiencies of FD and properdin are predisposed to 182 

meningococcal disease (Biesma et al., 2001; Fijen et al., 1999b; Mathew and Overturf, 2006; 183 

Sprong et al., 2006). A single family with FB deficiency has been described; the index case 184 

suffered recurrent episodes of invasive pneumococcal infection and an episode of 185 

meningococcal disease (Slade et al., 2013). Consistent with its central role in the complement 186 

cascade, persons with C3 deficiency contract pneumococcal and meningococcal infections at 187 

an early age (J. E. Figueroa and Densen, 1991). Persons with deficiencies in terminal 188 

complement proteins exclusively suffer from 7,000-10,000-fold higher rates of recurrent 189 

invasive meningococcal disease than their complement-sufficient counterparts (J. Figueroa et 190 

al., 1993; J. E. Figueroa and Densen, 1991; Fijen et al., 1999a; Lewis and Ram, 2014). A 191 
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relatively mild course and lower mortality characterize meningococcal infections in terminal 192 

complement deficient persons (J. E. Figueroa and Densen, 1991). MAC insertion into gram-193 

negative membranes results in lipopolysaccharide (LPS; endotoxin) release (O'Hara et al., 194 

2001; Tesh et al., 1986); the amount of complement activation correlates with endotoxin 195 

release and disease severity (Brandtzaeg et al., 1989). Conversely, lack of the ability to 196 

effectively form the MAC pore limits the amount of endotoxin released (Lehner et al., 1992) 197 

and consequently such individuals enjoy a lower mortality per meningococcal disease episode. 198 

Eculizumab use is also associated with a ~2000-fold higher risk of invasive meningococcal 199 

infection; most reported cases were caused by unencapsulated (non-groupable) isolates 200 

(McNamara et al., 2017). Eculizumab treatment has also been associated with several cases 201 

of disseminated gonococcal infection (Crew et al., 2018) and infections caused by otherwise 202 

non-pathogenic commensal Neisseria species (Crew et al., 2019). Collectively, these 203 

epidemiologic observations highlight the key role for complement in combating infections and 204 

in particular, invasive Neisserial infections.  205 

 206 

2. Manipulation of AP 207 

2.1 Targeting properdin 208 

Properdin, the only positive regulator of complement, functions primarily to stabilize the AP 209 

C3 convertase, C3bBb. In the absence of properdin, C3bBb dissociates quickly (T1/2 »90 sec), 210 

which is increased 5- to 10-fold when properdin associates with C3bBb (reviewed in (Kemper 211 

and Hourcade, 2008)). A stable and active C3b convertase increases opsonisation of 212 

pathogens. As a result, certain bacterial species have evolved strategies to interrupt this 213 

stabilising function. LPS are integral components of the gram-negative cell membrane, are 214 

crucial for membrane stability and serve as a physical barrier from environmental factors. LPS 215 

is a negatively charged molecule composed of hydrophobic lipid A anchored in the membrane, 216 

which is linked to a hydrophilic inner oligosaccharide core. Several gram-negative pathogens 217 

possess glycan extensions organized in repeating units beyond the inner oligosaccharide core 218 

called the O-antigen (Steimle et al., 2016). In certain bacterial species, LPS has been suggested 219 

to prevent properdin binding to the bacterial surface. Isogenic LPS mutants of either the O-220 

antigen or core oligosaccharide in Escherichia coli K12 display enhanced levels of both 221 

properdin and C3b deposition compared to wild type, however the exact mechanism of how 222 

LPS thwarts properdin binding is not fully understood (Spitzer et al., 2007).  223 



 8 

Another strategy employed by bacteria is the direct degradation of properdin. 224 

Streptococcus pyogenes expresses a secreted virulence factor called Streptococcus pyogenes 225 

exotoxin B (SpeB). This cysteine protease SpeB directly cleaves and inactivates properdin (Tsao 226 

et al., 2006), and several other complement proteins (Laabei and Ermert, 2019) and is 227 

discussed below.  228 

 229 

2.2 Blocking AP convertase 230 

Staphylococcus aureus, a master of complement evasion, uses a wide variety of different 231 

complement evasion strategies including potent secreted anti-convertase molecules 232 

(reviewed in (Lambris et al., 2008)). Staphylococcal complement inhibitors (SCIN, SCIN-B/C), 233 

arrest both CP/LP and AP C3 convertases in a non-functional conformation (Jongerius et al., 234 

2007; Rooijakkers et al., 2005). AP C3 convertase inhibition has been better characterized, 235 

where SCIN binds to both C3b/iC3b and Bb, forming a bridge between C3b and Bb, locking Bb 236 

into a non-active state (Rooijakkers et al., 2009). Extracellular fibrinogen binding protein (Efb) 237 

and homologue of the C-terminus of Efb, Extracellular complement binding protein (Ecb), 238 

specifically stabilise the C3bB proconvertase on the bacterial surface via interaction with C3b. 239 

Efb/Ecb binding to C3b enhances FB-C3b contact which prevents FB cleavage by FD. In 240 

addition, Ecb/Efb also effectively block C5 convertase activity through interaction with C3d 241 

(Hammel et al., 2007a; Hammel et al., 2007b; Jongerius et al., 2010; Lee et al., 2004).  242 

 243 

2.3 Acquisition of FH 244 

FH binds to deposited C3b and select glycosaminoglycans (GAG; e.g., heparin sulfate, heparin 245 

dermatan- or chondroitin sulfate A) simultaneously on host cells through domains 19 and 20, 246 

respectively (Figure 2). This enables domains 1-4, which contains the complement inhibitory 247 

region of FH, available to bind to C3b (Gordon et al., 1995) and exert decay accelerating 248 

activity and FI cofactor activity. “Self/non-self discrimination” is crucial for sparing the host 249 

from unwanted complement activation and is mediated mainly through domains 19-20 250 

(Pangburn, 2002). Another GAG binding region exists within a region spanned by domain 6 251 

and 7; impaired binding of this region as seen with the 402H variant of FH domain 7 to 252 

malondialdehyde, a lipid peroxidation product, within the eye may promote the formation of 253 

drusen that is characteristic of the dry form of age-related macular degeneration (Weismann 254 

et al., 2011).   255 
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Interestingly, many microbes that have co-evolved with their hosts have developed the 256 

ability to bind to FH in a similar manner as their hosts. Therefore, it is not surprising that most 257 

microbes that bind FH do so through domains 6-7 and/or 19-20 (Figure 2; Suppl Table 1). 258 

Microbial proteins may form a tripartite interaction with FH domains 19-20 and C3b, similar 259 

to that between host glycosaminoglycans, C3b and the C-terminus of FH (Meri et al., 2013). 260 

Neisseria gonorrhoeae sialylated lipooligosaccharide (LOS) and outer membrane porin protein 261 

together mediate a stable interaction with the C-terminus of FH (Madico et al., 2007). Species 262 

selective binding of FH (as well as C4BP) might be one of the key reasons for a host specificity. 263 

Bacteria such as nontypeable H. influenzae (NTHi), N. meningitidis, N. gonorrhoeae or 264 

S. pyogenes cause natural infection only in humans and also preferentially bind human Factor 265 

H (D. Ermert et al., 2015; Granoff et al., 2009; Langereis et al., 2014; Ngampasutadol et al., 266 

2008; Schneider et al., 2009). By contrast, Borrelia burgdorferi strains that infect diverse 267 

species are capable of recruiting FH from all their hosts (Hart et al., 2018). In addition to direct 268 

complement inhibition, FH can bind to the lipid A part of LPS of E. coli TG1 (Tan et al., 2011). 269 

Bacteria-bound FH can compete with C1q for binding thus interfering not only with the AP, 270 

but also CP. 271 

Members of the FH family, such as Factor H like protein (FHL) and - related proteins (FHR) 272 

also contribute to complement activation and regulation on microbial surfaces. FHL-1 contains 273 

the CCP domains 1-4 and can inhibit complement deposition. In contrast, the FHR proteins all 274 

lack the first 4 domains of FH and therefore lack FI cofactor activity. Thus, binding of FHR 275 

proteins to microbes – as an example, the FHR3 - N. meningitidis interaction (Caesar et al., 276 

2014) - interferes with binding of FH/FHL-1 and serves to activate complement (reviewed in 277 

(Jozsi, 2017)). It is conceivable that FHR-1, which contains three C-terminal domains that are 278 

almost identical to FH domains 18-20 may also compete with binding of FH domains 19 and 279 

20 to microbes. We speculate that the FHR family of proteins may have evolved to counteract 280 

the ability to microbes to steal FH from the host and evade complement.  281 

 282 

2.4 Binding C3 and recruiting FI  283 

The Herpes simplex virus type 1 (HSV-1) glycoprotein (gC1) is essential in resisting complement 284 

attack (Harris et al., 1990; J. Lubinski et al., 1999; J. M. Lubinski et al., 1998). gC1 interacts 285 

directly with C3 and C3 activation products, C3b, iC3b and C3c (Harris et al., 1990; Kostavasili 286 

et al., 1997). gC1 binds a distinct epitope on C3b blocking its interaction with properdin and 287 
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thus accelerating the decay of the AP convertase (Kostavasili et al., 1997; J. M. Lubinski et al., 288 

1998). 289 

Vaccinia, variola and monkey pox viruses all produce complement inhibitory proteins that 290 

possess CCP modules called vaccinia complement control protein (VCP), smallpox inhibitor of 291 

complement enzymes (SPICE) and monkeypox inhibitor of complement enzymes (MOPICE), 292 

respectively (Dunlop et al., 2003; Kotwal, 2000; Liszewski et al., 2006; Mullick et al., 2003). 293 

While all three proteins possess variable levels of FI cofactor activity for C3b and C4b, only 294 

VCP and SPICE, but not MOPICE possess decay-accelerating activity (Liszewski et al., 2006). A 295 

virulent strain of the Nipah virus possesses FI-like activity, which can cleave C3b in the 296 

presence of the cofactors, FH or CR1 (Johnson et al., 2015). A less virulent Nipah virus strain 297 

lacked this ability, which points to a role for complement inactivation in pathogenesis of this 298 

virus.  299 

The human specific respiratory tract pathogen, Moraxella catarrhalis, has evolved multiple 300 

mechanisms to resist-complement mediated lysis, the majority of which rely on the expression 301 

of two membrane autotransporters, ubiquitous surface protein A (UspA1) and UspA2 (de Vries 302 

et al., 2009). A unique evasive strategy displayed by M. catarrhalis involves direct interaction 303 

between UspA2 and non-activated C3, resulting in neutralisation of C3 and inhibition of all 304 

complement pathways (Nordstrom et al., 2005).    305 

S. aureus actively recruit FI to the bacterial surface, limiting  C3 convertase formation and 306 

significantly diminishes phagocytosis (Hair et al., 2008). This mechanism is mediated through 307 

the expression of the multifunctional cell wall protein, clumping factor A (ClfA). ClfA is 308 

composed of a N-terminal ligand binding A region, followed by a serine-aspartate repeat 309 

domain and a C-terminal region that permits covalent anchorage to the peptidoglycan (Foster 310 

et al., 2014). FI interacts with the A domain. Furthermore it was noted that a recombinant 311 

fragment of ClfA that consisted mostly of the A domain  exhibited cofactor activity for FI and 312 

enhanced cleavage of C3b to iC3b in the absence of known cofactors (Hair et al., 2008). 313 

Therefore, these data suggest that ClfA both recruits and localizes FI to the staphylococcal 314 

surface while simultaneously augmenting FI mediated cleavage of deposited C3b.  315 

 316 

3. Evasive strategies directed at CP & LP 317 

3.1 Disrupting Ab binding 318 
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Binding of the C1q component of the C1 complex to surface-bound IgM or IgG initiates CP 319 

activation. Efficient IgG-C1q complement activation relies on optimal antigen epitope 320 

distribution, which permits the formation of ordered IgG Fc hexamers, thereby providing a 321 

platform for high avidity Fc-gC1q interaction (Diebolder et al., 2014).  322 

Because Ab-complement interactions on microbial surfaces are critical for their clearance, 323 

many human pathogens have evolved mechanisms to disrupt this interaction. One of the first 324 

bacterial immune evasion mechanisms described was the immunoglobulin binding protein, 325 

protein A, of S. aureus (Sjodahl, 1977). Protein A is a cell-wall anchored protein composed of 326 

five N-terminal triple-helical bundle domains which interact with several ligands including IgG 327 

(Foster et al., 2014; Moks et al., 1986). Specifically, protein A captures the Fcg domain of 328 

human and multiple mammalian IgGs. Crucially, protein A is highly expressed on the 329 

staphylococcal surface and results in coating of the bacterium by IgG in an ‘upside down’  330 

orientation (DeDent et al., 2007), which prevents the Fc region of IgG from engaging C1q or 331 

Fc receptors on professional phagocytes thereby impeding both, CP activation and 332 

phagocytosis.  333 

Several bacteria and fungi express surface polysaccharide capsules. Capsules confer many 334 

benefits to the microbe including preventing desiccation and resisting innate and adaptive 335 

immune responses. Polysaccharide capsules are hydrated, highly variable homo- or 336 

heteropolymeric structures composed of repeating monosaccharides linked by glycosidic 337 

bonds, which can extend for up to 400 nm from the bacterial surface (Roberts, 1996). This 338 

variability gives rise to many distinct capsule serotypes – as an example, there are over 90 339 

different capsular types (serotypes) of S. pneumoniae – which poses a moving target for the 340 

immune system. In a classic case of molecular mimicry, capsules composed of α2-8-linked 341 

homopolymers of N-acetylneuraminic acid elaborated by Neisseria meningitidis serogroup B 342 

and E. coli K1 are identical to human neural cell adhesion molecule (NCAM) and therefore 343 

poorly immunogenic (Roberts et al., 1989). Additionally, N. meningitidis capsule prevents 344 

engagement of C1q by antibodies directed against surface protein, which results in decreased 345 

C4b deposition (S. Agarwal et al., 2014). Capsule also impedes the  AP-mediated C3b 346 

deposition by masking microbial targets for C3b (Roberts, 1996). Capsule may also prevent 347 

any C3b deposited on the membrane from binding to complement receptors on phagocytes. 348 

Alternatively, pathogens can modify their capsular polysaccharide content to evade 349 

complement. As an example, certain Klebsiella pneumoniae serotypes that lack mannobiose 350 
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and rhamnobiose and avoid recognition by the LP tend to be more virulent than their 351 

counterparts that express these two sugars (Sahly et al., 2009).   352 

Capsule works in concert with other outer membrane molecules such as LPS to resist innate 353 

immunity. Because LPS is surface exposed it is readily recognized by antibodies. LPS can 354 

undergo structural changes; the presence of O-antigenic repeats results in the ‘smooth LPS’ 355 

phenotype while loss of O-antigen expression results in a ‘rough LPS’ phenotype (Steimle et 356 

al., 2016). In general, rough LPS strains are more susceptible to the bactericidal activity of 357 

complement than smooth LPS strains. In K. pneumoniae, elongated O-antigen limits C1q 358 

binding and subsequent C3b deposition; any deposited C3b is too far from the membrane to 359 

permit bactericidal MAC insertion into the lipid bilayer (Merino et al., 1992). Certain bacterial 360 

species lack the O-antigen and express lipooligosaccharide (LOS), which can be modified to 361 

evade complement. N. gonorrhoeae LOS contains a lacto-N-neotetraose (LNnT) moiety (also 362 

a host mimic (Mandrell and Apicella, 1993) which can be sialylated by an enzyme called LOS 363 

sialyltransferase (Gilbert et al., 1996). Sialyation of gonococci enables bacterial survival in 364 

serum (Smith et al., 1995). LOS sialylation interferes with all three pathways of complement. 365 

First, bacteria with sialylated LOS bind less IgG present in normal human serum (Gulati et al., 366 

2015) or specific antibodies, such as anti-porin antibodies (Elkins et al., 1992). Second, MBL 367 

interaction with gonococci is decreased following sialyation (Devyatyarova-Johnson et al., 368 

2000; Gulati et al., 2002). Finally, LOS sialyation represses AP activation (Ram et al., 2018; Ram 369 

et al., 1998); enhanced FH binding is restricted to sialic acid α2-3-linked to LNnT LOS (Ram et 370 

al., 1998).   371 

 372 

3.2 Inhibition of C1 / C4 373 

Targeting the C1 complex is an efficient method of disrupting CP activation. Recently a novel 374 

mechanism of CP evasion was shown for the Lyme disease spirochete, Borrelia burgdorferi 375 

(Garcia et al., 2016). B. burgdorferi utilises a surface expressed lipoprotein, BBK32, to capture 376 

C1 with high affinity. Specifically, BBK32 binds to C1r non-covalently in a calcium-dependent 377 

manner and prevents autoactivation and cleavage of C1s, thus maintaining C1 in its inactive 378 

proenzyme state. S. aureus also targets the interaction of C1q with the initiating serine 379 

proteases to prevent CP induction. To achieve this, S. aureus expresses a surface protein called 380 

collagen binding protein (Cna) (Kang et al., 2013), which interacts specifically with the 381 

collagenous domain of C1q and prevents its interaction with C1r. Moreover, Cna actively 382 
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displaces C1r2C1s2 from the C1 complex and also prevents C1 from interacting with IgM coated 383 

surfaces.  384 

CP/LP evasion may also occur through the recruitment of C1-INH. C1-INH is a multi-385 

functional acute-phase protein belonging to the superfamily of serine protease inhibitors 386 

(Serpins). This molecule contains a C-terminal protease recognition region or ‘reactive loop’ 387 

which mimics target proteases cleavage sites. Cleavage at the specific substrate site by target 388 

proteases triggers a conformational rearrangement in which C1-INH and the protease 389 

becomes irreversibly locked through covalent bonds blocking the protease active site (‘suicide 390 

inhibition’) (Davis et al., 2010). Complement specific targets of C1-INH include C1r, C1s, MASP-391 

1 and MASP-2. Bordetella pertussis, the causative agent of whooping cough, employs a surface 392 

expressed autotransporter, Virulence associated gene 8 (Vag8), to bind C1-INH via its serpin 393 

domain, which enhances complement resistance (Marr et al., 2011). A secreted form of the 394 

passenger domain of Vag8 (the same domain that binds C1-INH) also prevents serum killing 395 

of pertussis (Hovingh et al., 2017). Mechanistically, recombinant passenger domain Vag8 or 396 

full-length secreted Vag8 binds C1-INH and prevents it from interacting with C1r, C1s and 397 

MASP-2 in solution. Loss of C1-INH function results in cleavage and consumption of C4 and C2 398 

in solution (i.e., away from the bacterial surface), which represses normal CP/LP activity on 399 

the bacterial surface (Hovingh et al., 2017).  400 

NS1 is a secreted glycoprotein expressed by several members of the Flaviviridae family of 401 

RNA viruses, including the dengue, West Nile and yellow fever viruses. In a novel strategy, 402 

soluble NS1 derived from these pathogens target the CP and LP by directly binding C4 and C1s, 403 

which results in enhanced cleavage of C4 to C4b in solution and therefore depletes the supply 404 

of C4 and prevents complement activation on the viral surface (Avirutnan et al., 2010).   405 

 406 

3.3 Blockade of CP/LP convertase  407 

Targeting CP/LP C3 convertase formation efficiently limits complement activity. Extracellular 408 

adherence protein (Eap) is one of a number of soluble S. aureus complement C3 convertase 409 

inhibitors (Thammavongsa et al., 2015). Eap is a multi-functional  60-72 kDa protein; different 410 

isoforms, consisting of four to six 110 amino acid repeats, exist (Hussain et al., 2001). Eap 411 

exhibits potent CP/LP C3 convertase inhibition activity, leading to reduced C3b deposition on 412 

the bacterial surface, thus inhibiting opsonophagocytic killing by neutrophils (Woehl et al., 413 

2014). Eap domains 3 and 4 (Eap3-4) bind C4b with nanomolar affinity, which effectively 414 
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prevents subsequent C4b interaction with either full length C2 or C2b. Structural analysis 415 

revealed that Eap34 targets the a’ and g chains of C4b and highlighted seven key lysine 416 

residues required for C4b binding and complement inhibition (Woehl et al., 2017). It is worth 417 

noting that although Eap interacts with C4b at a site similar to C4BP, it neither interferes with 418 

the inhibitory activity of C4BP nor displays intrinsic cofactor activity for FI-mediated C4b 419 

degradation.  420 

The Schistosoma parasite has evolved a novel mechanism to limit the formation of CP/LP 421 

C3 convertase using a surface expressed protein called complement C2 receptor inhibitor 422 

trispanning (CRIT). CRIT contains a 27 residue N-terminal extracellular domain (ed1) which 423 

houses a specific segment of 11-amino acids (H17-Y27) termed CRIT-H17, which shares 55% 424 

identity and 73% similarity with the C4 b-chain (Inal and Schifferli, 2002). Based on its 425 

structural similarity with the C4 β-chain as revealed by antibody cross-reactivity and peptide 426 

inhibition studies, CRIT-ed1 was postulated to function as a C4-like peptide which could 427 

interact with C2 and prevent complement activation. Indeed, both ed1 and H17 CRIT peptides 428 

were observed to interact specifically with the C2a fragment. Finally, CRIT-ed1 prevented C1s 429 

mediated degradation of CRIT-ed1 bound C2 thus demonstrating its role as a decoy C2 430 

receptor that competes with C4b for C2 and prevents cleavage of C2 by C1s. Subsequently, 431 

CRIT-H17 was reported to also interact with FB and interfere with its cleavage by FD (Hui et 432 

al., 2006). Interestingly, a human homologue of CRIT with CP inhibiting properties has also 433 

been described (Inal et al., 2005), which raises the possibility of gene transfer from host to the 434 

parasite.  435 

 436 

3.4 Recruitment of C4BP 437 

C4BP is a 500 kDa plasma glycoprotein and is the major soluble inhibitor of the CP/LP. It is 438 

composed of seven identical 75 kDa a-chains and one 40 kDa b-chain consisting of 8 and 3 439 

CCP domains respectively (Figure 3A) (D. Ermert and Blom, 2016). C4BP performs its inhibitory 440 

activity through binding and controlling the function of activated C4b and C3b (Figure 3B). This 441 

inhibitory function is localised to the a-chain CCP1-3 domains which interacts electrostatically 442 

with C4b through a cluster of positively charged amino acids at the CCP1 and CCP2 interface 443 

(Blom et al., 1999). C4BP, like other soluble regulators, is highly abundant in plasma.  444 

Consequently, to survive complement destruction, microbes have evolved to recruit and use 445 

negative regulators like C4BP to combat complement. 446 
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Several microbes bind C4BP (Suppl Table 2) (reviewed in (Avirutnan et al., 2011; D. Ermert 447 

and Blom, 2016; Luo et al., 2011; Meri et al., 2004; Shayakhmetov et al., 2005; Vogl et al., 448 

2008). Similar to binding FH, binding of C4BP inhibits complement at relatively early stages of 449 

the cascade and therefore effectively stalls complement activation prior to excessive 450 

downstream amplification. Although the binding sites on C4BP for different pathogens span 451 

nearly every CCP domain there is a strong predilection to target domains 1-2 and 7-8 (Figure 452 

3B; Suppl Table 2).  453 

S. pyogenes, a human specific pathogen, recruits C4BP through surface expressed M-454 

proteins. M proteins are dimeric a-helical coiled coils which possess an extracellular 455 

hypervariable N-terminal region (HVR) (Ghosh, 2011). Despite this variability the HVR interacts 456 

exclusively with CCP1-2 of C4BP in the overwhelming majority of M-types tested (Persson et 457 

al., 2006), indicating conservation of this key function through evolution. Despite overlapping 458 

binding sites for M proteins and C4b on C4BP (Blom et al., 2000), the heptameric structure of 459 

C4BP permits S. pyogenes to bind the C4BP through some of its a-chain ‘arms’, while others 460 

are free to interact with C4b/C3b and perform cofactor and decay-accelerating activity 461 

functions.  Another surface expressed member of the M-protein family, called protein H, also 462 

binds C4BP (D. Ermert et al., 2013). Protein H is expressed in approximately 30% of the highly 463 

virulent M1 strains (D. Ermert et al., 2018) and is encoded adjacent to M protein, suggesting 464 

it arose by gene duplication. Protein H binds multiple ligands including IgG (Akesson et al., 465 

1990), and similar to protein A on S. aureus, binding occurs through the Fc region rendering 466 

IgG functionally effete (i.e., unable to activate complement or engage FcR). Interestingly, C4BP 467 

binding mediated through protein H was enhanced in the presence of human IgG (Hu-IgG), 468 

specifically through interaction with the Hu-IgG Fc domains. Interaction of Hu-IgG Fc with 469 

protein H results in a stable, dimeric form of protein H which translates to more C4BP binding 470 

sites (David Ermert et al., 2019). Crucially, enhanced C4BP binding mediated through protein 471 

H – Hu-IgG Fc interaction diminished complement activation, impeded bacterial killing by 472 

neutrophils and enhanced lethality of S. pyogenes in a murine model that incorporated Hu-473 

IgG and human C4BP (D. Ermert et al., 2018).  474 

Nonclassical cell surface associated proteins (also referred to as ‘moonlighting proteins’) 475 

are also involved in recruiting C4BP to the microbial surface. S. pneumoniae uses the glycolytic 476 

enzyme enolase as an additional C4BP binding protein, interacting with both CCP1/2 and CCP8 477 
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of C4BP (V. Agarwal et al., 2012). C4BP recruited to the pneumococcal surface via enolase 478 

retains its cofactor activity, promoting FI-mediated C4b degradation.  479 

 480 

4. Preventing cleavage of C5, chemotaxis and MAC assembly 481 

C5 convertase-mediated cleavage of C5 generates C5a, a powerful chemoattractant and C5b, 482 

the initiator of the MAC. C5a is a potent anaphylatoxin, which alerts inflammatory cells to the 483 

presence of pathogens, recruits immune cells to the site of infection and activates phagocytic 484 

cells to secrete reactive oxidants and microbicidal enzymes, all critical for innate defence (Guo 485 

and Ward, 2005). As a consequence, bacteria have developed strategies to deal with this 486 

onslaught. 487 

S. aureus secretes a molecule, staphylococcal superantigen-like 7 (SSL-7) protein, which 488 

binds C5 with nanomolar affinity and prevents C5 interaction with either CP/LP or AP C5 489 

convertases (Bestebroer et al., 2010; Langley et al., 2005). Additionally, SSL-7 binds avidly to 490 

monomeric IgA1 and IgA2 and blocks their interaction with FcaRI, thus disrupting FcaRI – 491 

mediated phagocytosis (Langley et al., 2005). SSL-7 repressed both phagocyte production of 492 

reactive oxygen species and phagocytosis of S. aureus in a human whole blood model. 493 

Interestingly, SSL-7 inhibition of C5-C5 convertase binding and phagocytosis is enhanced in 494 

the presence of IgA – it is thought that IgA may participate in steric hindrance of C5 cleavage 495 

(Bestebroer et al., 2010).  496 

Certain major human pathogens have evolved distinct strategies to interfere with 497 

leukocyte migration to infection sites. Chemotaxis inhibitory protein of S aureus (CHIPS) is a 498 

secreted molecule which interrupts C5a and formylated peptide mediated neutrophil 499 

recruitment (de Haas et al., 2004). CHIPS binds avidly to both the formyl peptide and C5a 500 

transmembrane G-protein coupled receptors expressed on the neutrophil surface, 501 

diminishing chemotaxis and promoting infection.  S. pyogenes uses two proteins to counteract 502 

C5a-dependent recruitment and activation of professional phagocytes. Glyceraldehyde-3-503 

phosphate dehydrogenase (GAPDH) is a glycolytic enzyme, but moonlights as a complement 504 

evasin. GAPDH has been observed on the bacterial surface where it binds and sequesters C5a 505 

(Terao et al., 2006). In addition, anchored to the streptococcal cell wall is the classical C5a 506 

peptidase, ScpA, a subtilisin-like serine protease which efficiently cleaves C5a at its C-terminus 507 

to inactivate its chemotactic function (Cleary et al., 1992) and promotes bacterial 508 
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dissemination in murine models of infection (Ji et al., 1996). It is proposed that both GAPDH 509 

and C5a are necessary for efficient cleavage of surface bound C5a (Terao et al., 2006).  510 

Only a few instances of pathogen-encoded terminal pathway inhibitors have been 511 

reported. B. burgdorferi possess two such surface-expressed evasins; CspA (Hallstrom et al., 512 

2013) and a CD59-like protein (Pausa et al., 2003). Molecular analysis revealed that CspA binds 513 

both C7 and C9 in a manner similar to that of the host vitronectin (Vn) (Hallstrom et al., 2013). 514 

Although CspA binds C7 it does not interfere with interaction of C7 with C5b-6. Instead CspA 515 

binds both C7 and C9 simultaneously. Binding of C7 and C9 are localised to a 107-residue 516 

region within the CspA protein, which can inhibit ZnCl2-induced C9 polymerisation. 517 

Additionally, transforming serum-sensitive Borrelia garinii with a plasmid-containing CspA 518 

enhanced serum resistance and blocked MAC assembly at the level of C7 (Hallstrom et al., 519 

2013). These data suggested that CspA interferes with both MAC insertion into the plasma 520 

membrane and polymerisation at the C9 stage. Of note, CspA is also referred to as 521 

complement regulator-acquiring surface protein-1 (CRASP-1) because it binds FH (Kraiczy and 522 

Stevenson, 2013). A recent study showed that a CspA mutant that lacked the ability to bind 523 

FH but retained the capacity to bind to C7 and C9, did not protect bacteria from lysis and failed 524 

to survive in mice or ticks (Hart et al., 2018). These data suggest that inhibition of MAC 525 

formation alone by CspA, in the absence of FH binding, is insufficient for serum resistance and 526 

pathogenesis.  527 

A unique mechanism of terminal complement component extrusion by Salmonella 528 

minnesota was described by Joiner et al, where incorporation of C8 and C9 into the MAC 529 

complex results in extrusion of the entire C5b-9 complex from the bacterial membrane (Joiner 530 

et al., 1982a; Joiner et al., 1982b). 531 

Vn is a glycoprotein that is present in abundant amounts in plasma and numerous other 532 

tissues. The presence of Vn in diverse anatomical regions highlights its importance in many 533 

biological processes including cell migration, adhesion, tissue repair and regulation of the MAC 534 

formation (Preissner and Seiffert, 1998). Vn is composed of an N-terminal somatomedin-B 535 

domain, a cell receptor RGD binding motif, four haemopexin-like binding motifs and three 536 

heparin binding domain (HBD) (Preissner and Seiffert, 1998; Singh et al., 2010). Vn targets two 537 

distinct steps of the MAC assembly. It binds to the membrane binding site of C5b-7 and 538 

prevents its insertion into membranes (Milis et al., 1993). Second, regions localised to the 539 

HBDs of Vn bind C9 and prevent C9 polymerisation (Milis et al., 1993). Analogous to microbial 540 



 18 

recruitment of FH and C4BP, several pathogens have evolved to acquire and localise Vn to 541 

their surface thereby inhibiting MAC formation (Suppl Table 3). Haemophilus influenzae type 542 

B (Hib) utilises a highly conserved non-pilus trimeric autotransporter, Haemophilus surface 543 

fibrils (Hsf) to capture Vn (Hallstrom et al., 2006). The N-terminal HBD of Hsf interacts with 544 

Vn. Hsf interacts with Vn via two distinct binding pockets Hsf 608-1351 and Hsf 1536-2414 potentially 545 

permitting one Hsf molecule to interact with two Vn molecules (Hallstrom et al., 2006). 546 

Deletion of hsf results in significant killing of Hib in serum bactericidal assays.  547 

It is important to note that Vn is a key component of the extracellular matrix (ECM). 548 

Microbial interaction with exposed ECM proteins including Vn contributes to adherence, 549 

which is a prerequisite for infection. Numerous papers have highlighted bacterial interaction 550 

with Vn in the context of adherence and the reader is referred to an excellent review by Singh 551 

and colleagues (Singh et al., 2010)).  552 

 553 

5. Proteolytic cleavage 554 

Neutralisation of complement proteins via degradation represents another method of 555 

complement evasion. Two mechanisms result in proteolytic cleavage of complement proteins: 556 

1) Direct, via pathogen expressed enzymes and 2) acquisition and/or activation of host 557 

plasminogen for indirect, plasmin-mediated complement degradation. 558 

 559 

5.1 Direct attack on complement components 560 

Bacterial proteases fall into several categories based on mechanism of action, structure and  561 

function and play essential roles in bacterial physiology and pathogenesis (Culp and Wright, 562 

2017). Interestingly, microbial proteases from these different categories degrade complement 563 

proteins with overlapping specificity (Suppl Table 4) highlighting a strong selective pressure 564 

for protease-mediated complement degradation. Unsurprisingly, the favoured complement 565 

target is C3, which will be the focus of this section. However, proteolytic degradation of IgG, 566 

C1q, properdin, C2, C4, C5, C5a and MAC components have all been described (Suppl Table 4).   567 

S. aureus secretes four proteases all of which target and degrade C3 and other complement 568 

proteins. One of these proteases, the zinc-dependent metalloprotease, aureolysin (Aur), 569 

targets C3 at a specific site that is only two amino acids C-terminal to the C3 convertase site, 570 

resulting in release of active C3a and C3b (Laarman et al., 2011). Under physiological 571 

conditions, Aur mediated cleavage of C3 works in conjunction with host regulators, FH and FI, 572 
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resulting in proteolytic inactivation of C3b. Crucially, secreted proteases degrade C3 in 573 

solution, away from the bacterial surface, and thus prevent C3 convertase formation and C3b 574 

deposition on bacteria. Gelatinase E protease (GelE) secreted by E. faecalis also cleaves C3 in 575 

a convertase-like fashion, leading to fluid-phase C3 consumption (Park et al., 2008). In contrast 576 

to Aur, GelE can also cleave surface-bound iC3b, which would limit engagement of CR3 on 577 

phagocytes. A highly efficient mechanism of C3 degradation is provided by the S. pyogenes 578 

cysteine protease, SpeB. SpeB is a chromosomally encoded genetically conserved virulence 579 

factor that is expressed by the vast majority of S. pyogenes clinical isolates (Olsen et al., 2015). 580 

Central to the complement inhibitory property of SpeB is its broad substrate specificity, 581 

permitting efficient cleavage of a large array of complement and innate immune mediators 582 

(Nelson et al., 2011). SpeB rapidly degrades the α and β chains of C3 and C3b at multiple sites 583 

(Terao et al., 2008). This rapid cleavage prevents C3b binding to the bacterial surface and 584 

impairs phagocytosis. The role of omptin proteases elaborated by Salmonella and Shigella in 585 

cleaving C3b and facilitating intracellular survival of bacteria is discussed below.   586 

It is important to note that the substrates for bacterial proteases are not restricted to 587 

complement. Many if not all of the enzymes listed in Suppl Table 4 degrade a wide spectrum 588 

of innate immune factors such as antimicrobial peptides, chemokines, cytokines and related 589 

receptors and protease activated receptors (Potempa and Pike, 2009). However, regardless of 590 

the selective pressure driving protease evolution, their broad use by bacteria in avoiding 591 

complement detection is evident and represents a powerful mechanism of complement 592 

evasion.  593 

 594 

5.2 Plasminogen binding/activation proteins  595 

The host inflammatory response to infection results in the activation of multiple innate 596 

immune pathways that often ‘cross-talk’ to restrict, entrap and eliminate microbial 597 

pathogens. A recurring mechanism pathogens use is to manipulate the fibrinolytic system, 598 

specifically targeting plasminogen (PLG) activation (Bhattacharya et al., 2012; Potempa and 599 

Pike, 2009).  PLG is a liver-derived glycoprotein present as an inactive proenzyme in human 600 

serum. The conversion of PLG to plasmin (Pm) is essential for the resolution of fibrin clots and 601 

is mediated by host activators urokinase-type plasminogen activator (uPA) or tissue-type 602 

plasminogen activator (tPA) (Bhattacharya et al., 2012). Plasmin is a serine protease with 603 

relatively low substrate specificity. In addition to its primary substrate fibrinogen, plasmin 604 
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cleaves a variety of extracellular matrix proteins and the complement components C3b and 605 

C5 (Bhattacharya et al., 2012). Further, PLG itself serves as a complement inhibitor; in the 606 

presence of FH, PLG enhances FI mediated C3b inactivation (Barthel et al., 2012). Therefore, 607 

hijacking the proteolytic activity of plasmin(ogen) benefits the pathogen and is achieved either 608 

by 1) recruiting plasminogen to the bacterial surface, which becomes activated by host 609 

plasminogen activators (Figure 4, right side) or 2) expression of bacterial proteins which 610 

cleaves PLG to the active form, Pm (Figure 4, left side). Acinetobacter baumannii is a Gram-611 

negative, multidrug-resistant and complement-resistant human pathogen. A recent study 612 

showed that A. baumannii recruits PLG using translation elongation factor Tuf, whereby host 613 

uPA then cleaves surface bound PLG to Pm, which in turn cleaves C3b (Koenigs et al., 2015). 614 

This works adds to the growing list of glycolytic and metabolic enzymes and chaperones with 615 

moonlighting activities that play important roles in complement evasion and virulence.  616 

Bacteria-derived PLG activators that work in a similar fashion to host plasminogen 617 

activators may also aid in usurping PLG. These proteins have been described thus far only in 618 

gram-negative pathogens and belong to a family of outer membrane aspartyl proteases 619 

known as Omptins (Suppl Table 4). Salmonella enterica expresses one such protease, PgtE, 620 

which modulates Pm activity by both processing PLG and inhibiting the Pm inhibitor, α2-621 

antiplasmin (Lahteenmaki et al., 2005). Although PgtE can cleave purified complement 622 

proteins (C3b, C4b and C5), enhanced cleavage is observed in the presence of PLG (Ramu et 623 

al., 2007), underscoring the anti-complement activity performed by plasmin(ogen) hijacking.  624 

 625 

6. Intracellular pathogens and complement  626 

The intracellular environment has classically been considered a safe haven for pathogens from 627 

detection by host complement. During their journey to gain intracellular access, pathogens 628 

must survive the extracellular milieu where they encounter antibodies and complement. Well-629 

characterised intracellular pathogen detection techniques typically rely on the recognition of 630 

PAMPs by Toll-like receptors and nucleic acid receptors located in the cytosol (Kawai and 631 

Akira, 2008). However, accumulating evidence indicates that antibodies and complement 632 

components deposited on pathogens are carried inside the host cell upon invasion / 633 

internalisation, triggering antimicrobial pathways and thus representing a novel method of 634 

immune surveillance (Figure 5) (McEwan et al., 2013; Sorbara et al., 2018; Tam et al., 2014). 635 
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The role of complement in promoting autophagy-mediated restriction of pathogens in non-636 

immune cells was recently examined. C3 – specifically the C3d domain – interacts with 637 

ATG16L1, a cytosolic protein essential for organisation of the autophagy machinery (Sorbara 638 

et al., 2018). Opsonisation of the intracellular pathogens, Listeria monocytogenes and Shigella 639 

flexneri with C5-depleted human serum prior to incubation with cells resulted in enhanced 640 

targeting of bacteria by autophagy proteins ATG16L1 or LC3 compared to bacteria not coated 641 

with C3. Furthermore, growth restriction of L. monocytogenes was enhanced in a C3-642 

dependent fashion and was reversed in ATG16L1 deficient cells. In vivo, C3-deficient mice had 643 

a higher L. monocytogenes mucosal burden using an intra-gastric infection model compared 644 

to wild-type mice. Importantly, treatment of C3-deficient mice with rapamycin, an inducer of 645 

autophagy, accelerated bacterial killing. Taken together these results indicate that pathogen-646 

bound C3 associates with ATG16L1 to promote autophagy-dependent restriction of L. 647 

monocytogenes. Unsurprisingly, certain pathogens have thwarted C3-mediated autophagy 648 

restriction. Two intracellular pathogens, S. flexneri and S. typhimurium, utilise surface 649 

expressed omptin proteases to rapidly cleave C3 to limit autophagy and promote intracellular 650 

survival (Figure 5A) (Sorbara et al., 2018).  651 

Intracellular sensing of C3 deposited on human viruses induces immune signalling and 652 

activation of degradation pathways independent of autophagy (Tam et al., 2014). Infection of 653 

human embryonic kidney (HEK) 293T cells with non-enveloped viruses stimulated nuclear 654 

factor kB (NF-kB) expression only when the infecting virus was pre-opsonised with serum. C3 655 

mediated NF-kB and subsequent pro-inflammatory cytokine production was dependent on 656 

C3-coated viral particles reaching the cytosol, suggesting that C3 functioned as a damage-657 

associated molecular pattern (DAMP) to stimulate innate immune responses (Figure 5B). 658 

Critically, inhibition of mitochondrial antiviral signalling (MAVS) disrupted C3-mediated 659 

immune activation. MAVS induction leads to the reorganisation of downstream molecules 660 

that culminates in dimerization and activation of interferon regulatory factor 3 (IRF3) and 661 

expression of antiviral interferons (Seth et al., 2005). In addition, C3 labelling of virions 662 

activated intracellular valosin-containing protein (VCP) and proteasome dependent pathways 663 

restricting viral infection (Tam et al., 2014).  664 

The evolution of pathogen-specific counter measures to mitigate intracellular complement 665 

driven viral restriction underlines the importance of this antiviral response. Human 666 

rhinoviruses (HRVs), the most common cause of upper respiratory tract infections, employ a 667 
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cystolic 3C protease predicted to impair C3 mediated intracellular immunity. Recombinant 668 

HRV 3C protease cleaves C3 specifically deposited on viral particles (Tam et al., 2014). 669 

Expression of HRV 3C protease within HEK 293T cells prior to C3 opsonised viral infection 670 

significantly reduced NF-kB expression. Additionally, infection of HEK 293T cells with serum 671 

opsonised HRV resulted in rapid cleavage of intracellular C3. In contrast, serum opsonised 672 

adenovirus (AdV), which does not express 3C proteases, left C3 intact and rendered the C3-673 

coated virus susceptible to intracellular sensing. 674 

Importantly, intracellular detection of humoral components is not restricted to 675 

complement. Intracellular immune responses are also activated following intracellular sensing 676 

of antibody-coated pathogens by the IgG receptor, tripartite motif-containing 21 (TRIM21) 677 

(Mallery et al., 2010). Antibody-coated AdV is rapidly bound by TRIM21 which specifically 678 

recognises the Fc domain. TRIM21 displays E3 ubiquitin ligase activity and targets the virus for 679 

degradation via the proteasomal pathway (Mallery et al., 2010). Certain pathogens employ 680 

proteases which can degrade IgG or bind IgG via the Fc portion masking recognition. It is 681 

tempting to speculate whether these evasion mechanisms are also involved in subverting Ab 682 

mediated intracellular immunity. 683 

 684 

7. Exploitation of complement facilitates microbial entry of host cells 685 

Complement receptors and regulators decorate a diverse range of immune and non-immune 686 

cells and are fundamental in mediating immune complex clearance, phagocytosis and 687 

complement regulation (Holers, 2014; Merle et al., 2015; Noris and Remuzzi, 2013). Pathogens 688 

have evolved to hijack these abundant cell surface proteins, namely complement receptors, 689 

CD35/CR1, CD21/CR2 and CD11b/CD18/CR3 and complement regulators CD55/DAF and 690 

CD46/MCP, in order to enter host cells, escaping immune detection and enhancing survival.  691 

An excellent example of microbial manipulation of complement receptors is highlighted by 692 

Plasmodium falciparum, the causative agent of malaria. P. falciparum is an obligate 693 

intracellular parasite, which survives within the human host by invading erythrocytes in a 694 

complex, multistep process (Schmidt et al., 2015). Central to invasion is the expression of 695 

parasite reticulocyte-binding like proteins, one of which, PfRh4, directly targets CR1 (Tham et 696 

al., 2010). PfRh4 specifically binds the N -terminal CCP1-3 region of CR1 (Tham et al., 2011), 697 

normally reserved for C3b/C4b binding and accelerating decay of both CP and AP C3 and C5 698 

convertases (Holers, 2014). Parasite binding of CR1 did not affect C3b/C4b binding nor 699 
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cofactor activity but did inhibit decay accelerating activity. Parasitic invasion of erythrocytes 700 

occurs rapidly, with a transient interaction between parasite and CR1, suggesting a minimal 701 

impact on complement regulation. Instead, by targeting an essential region on CR1, the 702 

parasite may take advantage of a highly conserved structure as a means of entry (Tham et al., 703 

2011).  704 

Other obligate intracellular pathogens have evolved a non-specialised approach, 705 

permitting deposition of complement fragments and relying on this opsonisation as a means 706 

of promoting host cell entry. Here interaction of covalently attached C3 activation products 707 

with CR1/CR3 facilitate pathogen entry, as described for important human pathogens, 708 

Mycobacterium tuberculosis (Schorey et al., 1997), Leishmania spp (Da Silva et al., 1989) and 709 

human immunodeficiency virus (Bajtay et al., 2004). The reader is directed to excellent 710 

reviews which provide an in-depth analysis of the pathogenic exploitation of complement 711 

receptors and regulators  (Cattaneo, 2004; Fernandez et al., 2019; Lindahl et al., 2000). 712 

 713 

8. Discussion and outlook  714 

The success of pathogens requires an ability to colonise their hosts, extract nutrients to 715 

proliferate and dampen or resist immune responses associated with their removal (Figure 6A). 716 

The importance of complement evasion for microbial pathogenicity is evident from the 717 

numerous, independently evolved strategies outlined in this review, indicating that this is a 718 

conserved requirement for infection (Figure 6B).  719 

Technological advances have made it possible to examine and unravel the biochemical and 720 

structural features governing microbial complement inhibition. The next essential step is to 721 

use this information to develop therapeutic avenues to disrupt these evasive mechanisms. 722 

Understanding the role of individual evasins during infection will facilitate the rational design 723 

of therapeutic intervention strategies. These could be based on a number of approaches 724 

including the development of monoclonal neutralising antibodies raised against specific 725 

evasins and small molecule inhibitors designed to disrupt evasin function. Microbial proteins 726 

that bind complement inhibitors may prove to be effective antigens for vaccines; 727 

meningococcal factor H binding protein (FHbp) is one such example (Perez et al., 2018; 728 

Rappuoli et al., 2018). Elucidating the basis of human FH-FHbp interactions proved useful in 729 

designing FHbp molecules that did not bind human FH, which further augmented bactericidal 730 

antibody responses (Beernink et al., 2011; Granoff et al., 2016). Such a strategy could be 731 
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employed to design vaccines that incorporate microbial proteins that bind human 732 

complement inhibitors in order to cripple critical pathogen immune evasion mechanisms. In 733 

addition, fusion proteins designed to interfere with essential evasion mechanisms are being 734 

developed which efficiently re-sensitizes bacteria to complement (Blom et al., 2017; Ram et 735 

al., 2016). Alternatively, augmenting immune responses by enhancing the immunogenicity of 736 

target antigens is being explored. Here bacterial complement activators are used as molecular 737 

adjuvants opsonising antigens, facilitating increased humoral immune responses (Yang et al., 738 

2018). These approaches offer novel methods for controlling infection and help address the 739 

problem of antimicrobial resistance that threatens human health globally.  740 

Bacterial whole genome sequencing has revolutionised our understanding of pathogen 741 

biology (Didelot et al., 2012; Laabei et al., 2014). The abundant genomic data can be used to 742 

mine and characterise novel complement evasins. Alternatively, this genetic data has the 743 

potential to be used in functional genomic approaches (Laabei and Massey, 2016) aimed at 744 

unravelling how complement evasins are regulated at the genetic level, offering more targets 745 

for intervention and providing a greater understanding of pathogen virulence. 746 

 The role of complement as solely an extracellular feature in pathogen immune surveillance 747 

has been challenged. Intracellular recognition of C3 labelled bacteria and viruses results in the 748 

activation of signalling and degradative pathways and offer an insight into how host cells deal 749 

with microbial invasion. In addition to a novel intracellular recycling pathway for C3 (Elvington 750 

et al., 2017), a new ‘form’ of C3 can be transcribed from an alternative start codon that results 751 

in C3 being retained in the cytosol (King et al., 2019); these data have firmly established C3 as 752 

a major player in intracellular processes (Hess and Kemper, 2016; Liszewski et al., 2013). What 753 

role does intracellular C3 play in sensing pathogens, what other ligands are required for 754 

activation of immune signalling cascades and have pathogens evolved mechanisms to 755 

circumvent these systems within the harsh intracellular environment? At the genetic level, 756 

what are the microbial regulatory elements governing complement evasion? Are complement 757 

evasins constitutively expressed or induced under specific microenvironmental or stressful 758 

conditions?  Moreover, in relation to the apparent redundancy of complement evasins 759 

observed in certain pathogens, is the expression of subsets of complement evasins infection 760 

specific?  761 

There is a lot to learn about how pathogens and complement interact and a more intensive 762 

scrutiny of the above questions may provide therapeutic targets to universally repress 763 
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evasion. Disruption of essential microbial complement evasive strategies will give our immune 764 

system a significant boost in fighting infection and impose less selective pressure for the 765 

development of resistance than conventional antimicrobial approaches. 766 
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 1302 
 1303 
Figure Legends 1304 
 1305 
Figure 1: Activated complement cascade on a surface. Schematic representation of the 1306 
complement cascade. Complement can be activated by three independent pathways: Classical 1307 
pathway (CP) through IgG’s; Lectin Pathway (LP) via carbohydrates (both on the left side) or 1308 
Alternative Pathway (AP) through spontaneous tick-over and probing of surfaces (upper part 1309 
in the middle). All pathways converge at the level of C3 convertases leading to the 1310 
opsonisation of the target (middle of scheme) and progressing via C5 convertases to the 1311 
terminal pathway which results in the generation of the membrane attack complex (MAC). 1312 
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Complement inhibition by host molecules (soluble and surface bound) is highlighted by red 1313 
lines. 1314 
 1315 
Figure 2: Factor H: structure and binding sites for virulence factors of human pathogens. 1316 
Schematic representation of the soluble complement inhibitor of the AP, Factor H (FH). FH is 1317 
composed of 20 CCP domains. FH binds to host cell surfaces, specifically to 1318 
glycosaminoglycans (GAG) via domains 6-7 and 19-20. C3b binding is mediated through 1319 
domains 19-20 and 1-4.  CCP1-4 also mediates the complement regulatory function (domains 1320 
highlighted in green). Pathogens bind to all CCP domains of FH, with a strong affinity for 1321 
domains 5-7 and 19-20. The bars behind the pathogens name indicate the different CCP 1322 
domains which are targeted by that pathogen. 1323 
 1324 
Figure 3: C4b-binding protein: structure and binding sites for virulence factors of human 1325 
pathogens. (A) Schematic representation of the soluble complement inhibitor of the CP and 1326 
LP, C4b-binding protein (C4BP). C4BP is composed of 7 a-chains and one b-chain (a7b1), but 1327 
can also be found in a a7b0 configuration, lacking the b-chain. (B) Each a-chain consists of 8 1328 
CCP domains. CCP1-3 mediate the complement regulatory function (domains highlighted in 1329 
green). Beside binding C4b (CCP1-3) and C3b (CCP1-4), pathogens do also bind to different 1330 
CCP domains, indicated by the bars after the pathogens name. 1331 
 1332 
Figure 4: Plasminogen activation on pathogens protects from complement activation. 1333 
Plasminogen (PLG) can be bound and directly activated by different surface virulence factors 1334 
and (e.g. omptins; left side). Omptins can also enhance plasmin activity by degrading a2-1335 
antiplasmin, a host plasmin inhibitor. Other bacterial plasminogen receptors only bind 1336 
plasminogen, which then becomes activated by host serum factors, such as tPA or uPA (right 1337 
side). Both cases result in a cleavage of C4b, C3b and C5, which inactivates complement and 1338 
prevents opsonisation and anaphylatoxin release. 1339 
Figure 5: Intracellular complement and clearance of pathogens. Before invading a cell, 1340 
bacteria are exposed to complement and eventually opsonised (A). As soon as those bacteria 1341 
invade cells and reach the cytoplasm, ATG16L1 recognizes C3b and induces autophagy, which 1342 
leads to the destruction of the pathogen (exemplary shown for Listeria as blue bacteria). 1343 
However, if C3b is degraded, ATG16L1 does not recognize C3b and bacteria evade autophagy 1344 
thus being able to replicate (shown here for Shigella in orange). Similarly, non-enveloped 1345 
viruses are recognized and can be opsonised before entering the cell (B). Once in the cytosol, 1346 
MAVS recognize C3b deposition on the virus and induce translation of genes such as IRF, NFkb 1347 
and AP-1. 1348 
 1349 
Figure 6: Summary of how pathogens evade complement. (A) Increased complement 1350 
activation always leads to a decreased microbial survival due to selective pressure. For 1351 
pathogens to survive, efficient complement evasive strategies are necessary. (B) Pathogens 1352 
release soluble virulence factors, such as inhibitors, proteases or other factors that directly 1353 
degrade complement or activate it in a place remote from the pathogen (left side of scheme). 1354 
Inhibition of complement can also be caused by recruiting different host serum factors which 1355 
interfere with complement activation due to protease activity or regulatory domains (right 1356 
side of scheme). In both cases, complement is inhibited on different stages, since nearly all 1357 
complement proteins can be targeted. This prevents complement recognition, opsonisation, 1358 
immune activation and MAC deposition (top part of scheme). 1359 
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