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Abstract

In CFD modelling, relaxation methods are widely used in numerical wave tanks (NWTs) for

wave absorption; however, this method can be very expensive as part of the NWT must be

dedicated to a relaxation zone. In this short technical note, a parametric study on the effects

of the relaxation approach on absorbing different types of waves is reported. In addition, a

simple modification to the relaxation method is suggested. The results appear to show that

the modified relaxation approach helps to reduce the length of the relaxation zone by nearly

half whilst retaining good performance in terms of wave absorption.

Keywords: Numerical wave tank, wave absorption, relaxation method, Particle-In-Cell

method

1. Introduction

Numerical wave tanks (NWTs) are widely used in computational fluid dynamics (CFD)

modelling in the coastal and offshore engineering field. Typically, waves are generated at one

end of the NWT and absorbed at the other end so that the desired waves can be produced

within the focus section of the NWT. Numerical techniques for wave absorption may be

categorised as active methods and passive methods; while active methods refer to those

modifying the computational results in a zone or boundary of the NWT, passive methods

represent those implementing a slope in the NWT to resemble physical beaches (Windt et al.,

2018). Typical examples in the active wave absorption category are relaxation methods
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(Jacobsen et al., 2012), static/dynamic boundary methods (Higuera et al., 2013; Armesto

et al., 2014) and numerical beach implementation (Koo and Kim, 2004), and, as mentioned

above, a typical example in the passive wave absorption category is the sloping beach method

(Finnegan and Goggins, 2012). For a comprehensive review of numerical wave absorption

techniques, the reader is referred to Windt et al. (2018).

The relaxation method is one of the most popular wave absorption techniques (Mayer

et al., 1998; Madsen et al., 2003; Engsig-Karup et al., 2006; Fuhrman et al., 2006; Jacobsen

et al., 2012; Kamath et al., 2015; Chen et al., 2018), as it is straightforward and flexi-

ble to implement and also because this method has been successfully implemented in the

waves2Foam toolbox for the open-source CFD library OpenFOAM®(Jacobsen et al., 2012).

The idea being that in a region of the NWT (usually at the downstream end) that is referred

to as relaxation zone, the numerical solution is gradually relaxed by:

φ = ξφcomputed, (1)

where φ represents a fluid quantity (e.g. velocity) and ξ is a relaxation function which is 1

at the interface where the relaxation zone starts and gradually changes to 0 at the end of

the relaxation zone. The performance of the relaxation method thus depends on the length

of the relaxation zone and the variation of the relaxation function, which are very likely to

be interrelated. Engsig-Karup (2006) discussed the form of the relaxation function based on

discontinuous Galerkin methods and suggested that the relaxation function has to fulfill the

conditions that ξ = 1 and ξ′ = ξ′′ = ξ′′′ = ... = 0 at the starting interface of the relaxation

zone. This indicates that an ideal relaxation function should be perfectly flat at the starting

interface. In practice, however, these conditions only need to be fulfilled to a certain degree.

One of the most widely employed relaxation functions is that proposed in Fuhrman et al.

(2006) (see e.g. Jacobsen et al. (2012); Paulsen et al. (2014); Chen et al. (2016a, 2018);

Palm et al. (2016, 2018)):

ξ(xp) = 1 − exp(x3.5r ) − 1

exp(1) − 1
, (2)

where xr = (xp − xstart)/LI , and xp, xstart and LI are a location inside the relaxation

zone, the starting interface of the relaxation zone and the length of the relaxation zone,

respectively. To achieve a cost-effective performance using this relaxation function, a length

of 1 – 4 wavelengths is usually employed for the relaxation zone (see e.g. Chen et al.

(2016a, 2018); Palm et al. (2016, 2018)). Other types of relaxation functions are mostly

based on polynomials of high degree (Mayer et al., 1998; Engsig-Karup et al., 2006; Kamath
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et al., 2015), which have similar profiles to that of Eq. 2. In addition, as a rule of thumb,

a relaxation zone of approximately two wavelengths long is needed for these polynomial

based relaxation functions. Therefore, a disadvantage of the relaxation method for wave

absorption is that a part of the NWT must be dedicated to the relaxation zone. This makes

the relaxation method particularly expensive when the wavelength is large (see e.g. Palm

et al. (2016); Ransley et al. (2017); Chen et al. (2019)).

In this short note, the relaxation function shown in Eq. 2 is further examined and tested

for wave absorption on different types of waves. In addition, based on the examinations a

straightforward technique is proposed to modify conventional relaxation approaches. The

modified relaxation approach appears to reduce the length of the relaxation zone by nearly

half (compared to a normally used length) whilst still maintaining overall good performance

of wave absorption.

The computations presented in this short note employ the Particle-In-Cell (PIC) method

based model proposed in Chen et al. (2016b) (2D version) and Chen et al. (2018) (3D parallel

version). The PIC model utilises both an Eulerian grid and a set of Lagrangian particles to

solve the incompressible Navier-Stokes equations for free-surface flows. The hybrid particle-

grid nature makes the model both efficient (in terms of CPU cost) and flexible when solving

complex physical problems involving large free-surface deformations. The NWT established

within the PIC model can handle wave generation/absorption and wave-structure interaction

(via a Cartesian cut cell method). For full details of the development of the current PIC

method based CFD model, the reader is also referred to Kelly et al. (2015); Chen et al.

(2016a, 2019). In addition, for a review of the development history of the PIC method, the

reader is referred to Harlow (2004); Edwards (2015); Chen (2017).

2. Relaxation approach and a modification

Fig. 1 shows a typical free-surface profile of a regular wave propagating into a relaxation

zone implemented at the downstream end of a 2D NWT. The computation employs the PIC

model that solves the incompressible Newtonian Navier-Stokes equations for free-surface

flows (Chen et al., 2016b; Chen, 2017). The wave has reached a steady state. The length of

the relaxation zone is set to 2.25L (L is the wavelength), and Eq. 1 and Eq. 2 are employed

to dissipate the fluid velocity only (i.e. u = ξucomputed). It can be observed that as the

regular wave propagates into the relaxation zone (starting with xr = 0) the wave height is

gradually reduced as expected. However, it is interesting to note that the majority of the

wave energy is dissipated in the front half of the relaxation zone (0 ≤ xr ≤ 0.5), and in
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Fig. 1: A typical free-surface profile of regular wave propagating into a relaxation zone. The relaxation
function ξ (see Eq. 2) is plotted as the red dashed line.

the back half of the relaxation zone (0.5 < xr ≤ 1.0) the free surface remains almost still.

This may lead us to two conclusions: (1) the wave is mainly absorbed in the flat portion

of the relaxation function (ξ ∼ 1.0), and (2) the steep changing portion of the relaxation

function (i.e. 0.5 < xr ≤ 1.0) is not overly critical and can be removed to reduce the size of

the computational domain and hence the CPU effort expended. To explain the first point,

the details of the numerical simulation are examined. In the case presented here, the non-

dimensional wave period T
√
g/h (T is the wave period, g is the gravitational acceleration

and h is the water depth) is 5.6, and the average time step ∆t
√
g/h is 0.029. So, by the time

the wave has propagated half the relaxation zone length (namely 1.125L), the fluid velocity

has been dissipated 5.6/0.029 × 1.125 ≈ 217 times (note that Eq. 1 is applied at every

time step). Therefore, the corresponding wave energy has been dissipated by an amount of

approximately (ξ217)2. As a rough guide, if ξ is given a constant value 0.9954, which is the

value at the location of a quarter of the relaxation zone length (i.e. xr = 0.25), the wave

energy has been dissipated to nearly 13.5% of its value at the beginning of the relaxation

zone. This explains the first point raised above and suggests that the second point is also

valid.

Based on the above findings, a modified relaxation method for efficient wave absorption

in NWTs is now proposed, which aims to use nearly half the resource of a regular relaxation

method whilst achieving very similar performance. The idea is a simple one: to keep the

flat portion of the relaxation function while removing the steep changing portion as seen in

Fig. 1. Fig. 2 shows a schematic demonstrating the setup of the modified method; recalling

Eq. 2, LI is now referred to as an “imaged” or “input” relaxation zone length, while the

length of the real relaxation zone required in the computational domain is denoted by LR.

Note that within the real relaxation zone, it is still the “imaged” or “input” relaxation length
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Fig. 2: Schematic showing the setup of the modified relaxation method for wave absorption.

LI that is used in the calculation of Eq. 2. In such a way, the real relaxation zone uses only

the most-effective flat portion of the relaxation function and is much shorter than the length

a regular relaxation method has to implement in the computational domain (i.e. LI).

In the following section, the performance of the relaxation approach and the modified

one are tested for wave absorption on different types of waves, considering also the effects of

wave steepness and relaxation zone length. In addition, for the modified relaxation approach,

effects of the ratio between LR and LI are reported.

3. Results and discussions

In this section, parametric studies are conducted to test the performance of the relaxation

method and the modified version for absorbing three different type of waves: regular wave,

solitary wave and focused wave. The computation uses the hybrid Eulerian-Lagrangian PIC

solver developed by Chen et al. (2016b) and Chen et al. (2018), and both 2D and 3D NWTs

are established following the same works according to the test cases under consideration.

As in Section 2, Eq. 1 and Eq. 2 are used to dissipate the fluid velocity carried by the fluid

particles that have entered the relaxation zone.

3.1. Regular wave tests

Fig. 3 shows the setup of a 2D NWT for the regular wave tests. Regular waves are

generated upstream using a piston-type wave paddle and absorbed at the downstream end

of the NWT employing the modified relaxation method. For all of the simulations, kh was

fixed at 1.416, where k represents the wave number and h is the water depth. Three different
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Fig. 3: Schematic showing the setup of the 2D NWT. WG: wave gauge.

wave steepnesses are tested: a) kA = 0.071, b) kA = 0.106, and c) kA = 0.142, representing

an increase in the nonlinearity of the incident waves. A uniform grid is used for all of the

simulations with the grid size being ∆x = ∆z ≈ L/355, where L is the wavelength. The

Courant number is fixed at 0.5. In addition to the wave steepness, three different “imaged”

relaxation zone lengths: a) LI = 1.69L, b) LI = 2.25L and c) LI = 2.82L are tested. The

performance of the modified relaxation method is assessed by the reflection coefficient. Two

wave gauges (WG2 and WG3, see Fig. 3) placed just in front of the relaxation zone are used

for the calculation of the reflection coefficient using the two-point method proposed in Goda

and Suzuki (1976).

3.1.1. Wave steepness

The reflection coefficients run with three different wave steepnesses are given in Table 1.

Note that in these test cases the “imaged” relaxation zone length is LI = 2.25L. The ratio of

the real relaxation zone length LR and the “imaged” relaxation zone length LI ranges from

0.125 to 1.0. Note that when LR/LI = 1.0, the modified relaxation method is equivalent to

the regular relaxation method.

First of all, it can be seen from Table 1 that in general for all of the three wave steepnesses

the reflection coefficient decreases (as expected) from approximately 1.0 to 0.01 as the ratio

LR/LI increases. Then, we focus on the reflection coefficients at the range LR/LI = 0.5 to

1.0. It is seen that for kA = 0.106, the reflection coefficient at LR/LI = 0.5 is almost the

same as that at LR/LI = 1.0. This proves that at this test condition the modified relaxation

method works as efficiently as the regular relaxation method, using however only half the

relaxation zone length. For the sake of clarity, from hereafter we define the ratio LR/LI at

which the modified relaxation method performs the same as the regular relaxation method

as the “optimal ratio”. For example, the optimal ratio for kA = 0.106 is approximately
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Table 1: Reflection coefficients run with different wave steepnesses with LI = 2.25L.

LR/LI
Reflection coefficient

kA=0.071 kA=0.106 kA=0.142
0.1250 0.982 0.979 0.992
0.1875 0.942 0.936 0.921
0.2500 0.845 0.815 0.777
0.3125 0.647 0.599 0.547
0.3750 0.395 0.331 0.276
0.4375 0.165 0.117 0.080
0.5000 0.035 0.012 0.004
0.7500 0.007 0.009 0.015
1.0000 0.007 0.010 0.016

0.5. For kA = 0.071 and 0.142, the stories are slightly different in reference to kA = 0.106.

While for the smaller wave steepness (kA = 0.071) the reflection coefficient at LR/LI = 0.5

is slightly larger than that at LR/LI = 1.0, for the larger wave steepness (kA = 0.142) the

situation reverses. This suggests a shift of the optimal ratio towards a larger number between

0.5 and 0.75 for the smaller wave steepness (kA = 0.071) and a smaller number between

0.4375 and 0.5 for the larger wave steepness (kA = 0.142), respectively. It is interesting to

note that from the range LR/LI = 0.125 to 0.5, the modified relaxation method works the

best for the largest wave steepness case under consideration (the reflection coefficients are

always the smallest compared with the other two in a row), and again the situation reverses

from the range LR/LI = 0.75 to 1.0. For the latter, this is consistent with the findings

from other researchers who employ the regular relaxation method (see e.g. Jacobsen et al.

(2012)), as the modified relaxation method becomes closer to the regular relaxation method.

For the former, the reason is likely that as the same Courant number has been used, the

computational time step of a larger wave steepness case is smaller than that of a smaller

wave steepness case. So, within the same length of the relaxation zone where the relaxation

function is flat and smooth, the incident wave as well as the reflected wave from the end of

the relaxation zone are dissipated many more times in the larger wave steepness case; hence

the smaller reflection coefficient.

3.1.2. “Imaged ” relaxation zone length

The reflection coefficient run with three different “imaged ” relaxation zone lengths are

plotted in Fig. 4(a) as a function of the ratio LR/LI . Note that in these test cases the wave

steepness is fixed at kA = 0.106. It can be seen from Fig. 4(a) that for all of the test cases the

reflection coefficient decreases rapidly until LR/LI = 0.5. The optimal ratio for LI = 2.25L
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Fig. 4: Comparisons for (a) reflection coefficient run with three different “imaged” relaxation zone lengths
with kA = 0.106; (b) snapshots of the free-surface elevations (normalised by the incident wave amplitude) run
using the regular and the modified relaxation methods at the same times with kA = 0.106 and LI = 2.25L.

is approximately 0.5 as discussed in Section 3.1.1. The trend of the reflection coefficients for

LI = 1.69L and 2.82L, however, suggests a slight shift of the optimal ratio towards a larger

value and a smaller value than 0.5, respectively. In addition, as seen from Fig. 4(a) that at

the same ratios LR/LI , larger LI produces smaller reflection coefficient as expected. Also,

it may be worth mentioning that from LR/LI = 0.5 to 1.0, all of the presented reflection

coefficients are within 5%. Fig. 4(b) compares the snapshots of the free-surface elevations

run using the regular and the modified relaxation methods (LR/LI = 0.5) at the same times

for LI = 2.25L. It can be seen that the free-surface elevations are almost identical, which

further confirms the optimal ratio for LI = 2.25L mentioned above.

3.2. Solitary wave tests

In this section, solitary waves are used to test the modified relaxation method. The

computations employ a 2D NWT similar to that used in the regular wave tests. The solitary

wave is generated using a piston-type wave paddle, following the method proposed in Wu

et al. (2016). Three different relative wave heights are tested: a) ε = 0.27, b) ε = 0.33 and

c) ε = 0.40, where ε = a/h, a is the crest height of the generated solitary wave and h is the

water depth. In addition, three different “imaged” relaxation zone lengths are considered

for the ε = 0.40 case: a) LI = 2.03L, b) LI = 3.32L and c) LI = 4.06L, where L is the

horizontal length scale over which the solitary wave has significant elevation. A uniform grid

is used for all of the simulations with the number of grid cells ranging from approximately 13
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to 20 along the wave heights and 700 to 570 across the wave lengths. The Courant number

is fixed at 0.5.

Fig. 5 shows a typical series of snapshots at different times of the solitary wave propa-

gating into a relaxation zone starting from x/L = 0 to x/L = 4.06. The results run with

the regular relaxation method and the modified relaxation method (with LR/LI = 0.5) are

plotted together for comparison. It can be seen from Fig. 5 that the majority of the wave

energy is quickly dissipated in the first half portion of the relaxation zone as seen in the

regular wave tests. Also, it is during this time period that, as seen from t(g/h)1/2 = 47.1,

the main reflected waves are generated due to the existence of the relaxation zone. More

interestingly, it is clearly seen that in this case the modified relaxation method with the

ratio LR/LI = 0.5 produces results almost indistinguishable from those run with the regular

relaxation method. This demonstrates the robustness of the suggested modified relaxation

method for wave absorption.

Fig. 6 further presents the quantitative comparisons for the time histories of the free-

surface elevation extracted at a location just in front of the relaxation zone. Both the results

run with the regular relaxation method and the modified relaxation method are plotted, and

note that for all of the cases with the modified relaxation method, LR/LI = 0.5. Fig. 6(a)

compares the results run with different relative wave heights whilst the relaxation zone

length is fixed at 3.32L. The free-surface elevation η is normalised by the crest wave height

a of the incident solitary wave. It is interesting to see that the relative height of the reflected

wave (around t(g/h)1/2 = 60) is not significantly affected by the relative wave height of the

incident solitary wave. Also, it can be seen that for all cases, the results run with the modified

relaxation method match very well with those run with the regular relaxation method. This

appears to be the same case for the results plotted in Fig. 6(b), which shows the comparison

for the results run with different relaxation zone lengths LI whilst the relative wave height

ε is kept at 0.40. It is nevertheless seen in Fig. 6(b) that in these cases the relative height

of the reflected wave decreases as the relaxation zone length increases, which is consistent

with that found in the regular wave tests.

3.3. Focused wave tests

In this section, the modified relaxation method is applied to the focused wave generation

presented in Chen et al. (2019). As reported in Chen et al. (2019), the focused wave is

generated using the piston-type wave paddle through applying the Pierson-Moskowitz (PM)

spectrum to the NewWave theory. The computations employ the 3D parallel version of the

PIC model to establish the NWT. Despite being 3D, the setup of the NWT is similar to those
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used in the 2D tests, because the generated focused wave is unidirectional (propagating in

the x-direction). The focused wave amplitude is set to 0.269 m and the water depth is fixed

at 2.8 m. Along the x-direction, the distance between the wave paddle and the beginning of

the relaxation zone is 7 m, and as in Chen et al. (2019), where the regular relaxation method

is employed, LI is set to 2Lp, where Lp = 11.27 m is the wavelength corresponding to the

peak frequency of the PM spectrum (fp = 0.356 Hz). Four wave gauges are placed between

the wave paddle and the relaxation zone along the centre line of the NWT in the x-direction

to extract the generated focused wave elevations. In terms of the computation, a uniform

grid size is employed following Chen et al. (2019), which are ∆x = ∆y = ∆z = 0.025 m.

As shown in Chen et al. (2019), this grid size enables the PIC model to well reproduce the

focused wave compared to the measurements of a physical experiment. For full details of the

setup of the NWT, the reader is referred to Chen et al. (2019). Here, the modified relaxation
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method with LR/LI = 0.5 is applied to this test case to demonstrate its performance.

Fig. 7 shows the comparison between the time histories extracted at the targeted focused

location, which is 5.6 m from the wave paddle in the x-direction (correspondingly 1.4 m

from the starting interface of the relaxation zone). Results run with the regular relaxation

method and the modified relaxation method are plotted together for comparison. It can be

seen that when reducing the original relaxation zone length to half and still using the regular

relaxation method, discrepancies occur due to the reflection from the shortened relaxation

zone. However, when reducing the original relaxation zone length to half but using the

modified relaxation method instead, almost no extra wave reflection is produced. It should

be noted that by using the modified relaxation method with half the relaxation zone, the

total CPU time required for this test case has been reduced by approximately 27%.

4. Conclusions

In this short note, the effects of the relaxation approach on absorbing three type of

waves (regular wave, solitary wave and focused wave) with different wave steepnesses and

relaxation zone lengths are reported. In addition, a modification to the relaxation approach

is suggested, based on the finding that the flat portion of the relaxation function is the

most effective part in terms of wave absorption. The idea of the modification thus being
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that the length of the relaxation zone (that a regular relaxation method would use) can

be reduced to keep just the flat portion of the relaxation function. The results show that

the relaxation approach is effective on absorbing various waves in NWTs, given a sufficient

length of the relaxation zone. This however can be computationally very expensive for CFD

modelling especially when the wave length is large (e.g. solitary wave and focused wave).

Furthermore, the results appear that the modified relaxation method tends to cut down the

length of the relaxation zone by nearly 50% whilst still achieving similar performance to

that of the regular relaxation method. In addition, based on the results of the regular wave

tests, this amount increases slightly as the wave steepness increases or the relaxation zone

length (that a regular relaxation method would use) increases. Whilst the results of this

study, regarding the modified relaxation approach, are promising, the authors acknowledge

that further testing is required before definitive conclusions can be drawn.
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