
Thursby et al CandiMeth  

p1 
 

CandiMeth: Powerful yet simple visualization and quantification 

of DNA methylation at candidate genes 

 

Sara-Jayne Thursby1, Darin K. Lobo1,4, Kristina Pentieva2, Shu-Dong Zhang3, Rachelle E. 

Irwin1, Colum P. Walsh1,* 

1Genomic Medicine, 2Nutrition Innovation Centre for Food & Health (NICHE) and 

3Stratified Medicine Research Groups, School of Biomedical Sciences, Ulster University, 

1 Cromore Road, Coleraine, BT52 1SA UK 

4Current Address: Republic Polytechnic, 9 Woodlands Ave 9, Singapore 738964 

Sara-Jayne Thursby, Thursby-SJ@ulster.ac.uk 

Darin Kris Lobo, darin.lobo@gmail.com  

Kristina Pentieva, k.pentieva@ulster.ac.uk  

Shu-Dong Zhang, sd.zhang@ulster.ac.uk  

Rachelle Irwin, r.irwin@ulster.ac.uk 

Colum Patrick Walsh, cp.walsh@ulster.ac.uk  

*corresponding author: +44 28 7012 4484 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/327082332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Thursby-SJ@ulster.ac.uk
mailto:darin.lobo@gmail.com
mailto:k.pentieva@ulster.ac.uk
mailto:sd.zhang@ulster.ac.uk
mailto:r.irwin@ulster.ac.uk
mailto:cp.walsh@ulster.ac.uk


Thursby et al CandiMeth  

p2 
 

Abstract 

Background: DNA methylation microarrays are widely used in clinical epigenetics and are 

often processed using R packages like ChAMP or RnBeads by trained bioinformaticians. 

However, looking at specific genes requires bespoke coding which wet-lab biologists or 

clinicians are not trained for. This leads to high demands on bioinformaticians, who in turn 

may lack insight into the specific biological problem. We therefore wished to develop a tool 

for mapping and quantification of methylation differences at candidate genomic features of 

interest, without using coding, to bridge this gap.  

Findings: We generated the workflow CandiMeth (CANDIdate METHylation) in the web-

based environment Galaxy. CandiMeth takes as input any table listing differences in 

methylation generated by either of the popular R-based packages above and maps these to the 

human genome. A simple interface then allows the user to query the data using lists of gene 

names. CandiMeth generates 1)Tracks in the popular UCSC genome browser with an 

intuitive visual indicator of where differences in methylation occur between samples, or 

groups of samples 2) Tables containing quantitative data on the candidate regions, allowing 

interpretation of significance. In addition to genes and promoters, CandiMeth can analyse 

methylation differences at LINEs and SINEs. Cross-comparison to other open-resource 

genomic data at UCSC facilitates interpretation of the biological significance of the data and 

the design of wet lab assays to further explore methylation changes and their consequences 

for the candidate genes.  

Conclusions: CandiMeth (RRID:SCR_017974; Biotools:CandiMeth) allows rapid, 

quantitative analysis of methylation at user-specified features without the need for coding and 

is freely available, with extensive guidance, at https://github.com/sjthursby/CandiMeth  

Keywords: Galaxy, Methylation, Workflow, DNA methylation, arrays, epigenetics, EWAS 
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Introduction: 

Epigenetics can be defined as stable, and most often heritable, changes to the chromatin 

which do not alter the DNA sequence itself but still impact gene expression and/or are 

required to maintain genomic stability [1]. These modifications consist of reversible marks 

such as cytosine DNA methylation or histone modifications, each critical to gene expression 

regulation, imprinting, X-inactivation and many other processes from mammalian gestation 

to later life [1].  

Cytosine DNA methylation is the most common and thoroughly investigated of these 

epigenetic alterations. It is characterised by the addition of a methyl group to a cytosine 

residue, many of which are located within so-called CpG islands (CGI)  close to gene 

promoters [3]. High levels of DNA methylation at promoters aids in the stable long-term 

repression of the cognisant genes, such as can be seen on the inactive X chromosome in 

mammals [4]. Methylation at control elements such as insulators or enhancers can also help 

regulate regional gene expression, with multiple examples being seen among imprinted genes 

[5] or gene clusters such as the protocadherins [6]. High levels of methylation are seen on 

selfish DNA elements such as endogenous retroviruses, where it plays an important role in 

their suppression [7] as well as at inert regions of the genome like pericentromeric repeats 

[8]. More recently, methylation through the body of the gene has been recognised as 

contributing to maintaining gene transcription levels at highly-expressed genes [9,10]. As 

well as showing such developmental programming, DNA methylation is susceptible to 

environmental influence, with inputs such as diet [11, 12] and exposure to pollutants like 

cigarette smoke [13] having clear and reproducible effects on methylation levels, sparking 

great interest in analysis at a population level, particularly in humans [14].  

Advances in sequencing technology have allowed us to quantify and analyse methylation via 

whole genome bisulphite sequencing at approximately a 28 million CpG resolution [15]. 
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While this technique remains the gold standard for whole genome methylation assessment, it 

can be very expensive, and when there are hundreds of samples to be tested and analysed 

prohibitively so, and quantifying small differences reproducibly between multiple samples is 

also challenging. An alternative technology known as a microarray, which predates the era of 

whole genome bisulphite sequencing, is often a popular solution for such cases, where a 

lower CpG resolution is satisfactory, but where greater inter-sample reproducibility is 

required [16]. A popular choice here is the Illumina Infinium Methylation BeadChip array 

[17], which currently covers 850,000 CpG sites across the human genome, including 99% of 

RefSeq genes and large numbers of enhancers and other features. This can help elucidate the 

effects of an intervention across hundreds of samples in a cost effective manner. There are 

many packages across multiple computational languages to analyse the outputs from these 

arrays such as RnBeads [18] or ChAMP [19] but these pipelines operate in the statistical 

programming environment R, and require some coding. Additionally, the output file formats 

can be overwhelming and difficult to investigate further without experience in data analytics 

and bioinformatics. This situation is exasperated by the typically higher number of samples in 

epidemiological or intervention studies where such arrays are commonly used. 

To help solve this predicament, we developed a Galaxy workflow known as CandiMeth, 

which takes the main output from such methylation analysis pipelines and pairs this with a 

list of features that the user may wish to investigate. The workflow first generates tracks 

showing both absolute methylation levels in samples and differences in methylation between 

samples. These can be viewed via the UCSC genome browser and overlaid with other 

available tracks such as CpG island, enhancers, ChIP data etc. to allow data exploration and 

more intuitive analysis. This also facilitates the design of assays to cover specific CGs using 

Blat. The workflow can then help confirm any patterns observed by quantifying data across 

the identified regions or features e.g. methylation differences at specific sets of genes 
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between cases and controls. It also has a bespoke analysis allowing estimation of methylation 

differences at repetitive sequences by leveraging the RepeatMasker tracks at UCSC. The 

workflow removes the need for further analysis in R and increases reproducibility by using an 

automated process, but in a more user-friendly manner. 

Methods 

CandiMeth (RRID:SCR_017974; Biotools:CandiMeth) is designed to work downstream of 

DNA methylation analysis pipelines in R. It was developed initially using RnBeads as 

reference, but has been subsequently successfully run with ChAMP and other packages (see 

below). ChAMP (RRID: SCR_012891) [20] and RnBeads (RRID: SCR_010958) [17,20] are 

end-to-end pipelines in R which can take raw data files such as IDATs and bam files from 

microarray readers or sequencers and process these to allow data exploration, visualisation 

and comparison. For array data, which is the main area where CandiMeth addresses an unmet 

need, IDAT files containing raw values for the red and green channels for each of ~850K 

probes are exported from the microarray reader. RnBeads/ChAMP can perform quality 

control, remove probes with low signal or overlapping with single nucleotide polymorphisms 

(SNPs) and provide a cleaned dataset giving absolute levels of methylation as beta (β) or M 

values. The packages can also facilitate exploratory visualisation through principle 

components analysis or similar and allow grouping of data prior to looking for differential 

methylation. Probes showing substantial differences in methylation (delta beta: ∆β) can be 

identified and then ranked based on a variety of parameters, including probability of 

occurrence (p value), delta beta, false discovery rate (FDR) or a combination of several of 

these. The packages can look for enriched gene sets using gene ontologies/GSEA [22] and 

visualise differences for annotated categories of array probe such as promoter and gene body.  

While packages for array analysis provide genome-level data such as whether promoters in 

general are losing or gaining methylation, querying specific gene sets which might give more 
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biological insight cannot be easily done in this or other R packages with similar functionality 

without extracting the processed dataset and writing bespoke code. Visualization of the data 

against the genome map is also of great attraction for the wet-lab biologist, but is also not 

easily done within these packages. While RnBeads can map methylation values to the 

genome as customised tracks, this can only be carried out if a local instance is installed on the 

user’s server, which requires substantial investment for set-up and maintenance. ChAMP 

does not currently provide tracks at all, to our knowledge. Typically, many biologists have 

specific genes which are of interest to them, or they may want to examine the area in which 

top sites are located and determine if adjacent probes are also losing or gaining methylation. 

A ready way of assessing the degree to which methylation is changing across a particular 

region and the exact location of the probes also greatly facilitates the design of gene-specific 

assays such as primer sets for pyrosequencing or clonal analysis. It is also generally of 

interest to try and leverage the enormous pool of publicly-available data accessible through 

UCSC genome browser tracks to explore possible novel correlations between methylation 

changes in your dataset and other genome characteristics such as replication timing, histone 

modifications, or similar.  

We therefore wished to develop a user-friendly non-computationally intensive method of 

candidate feature investigation which avoided command-line but was more powerful than 

browser-only interfaces. To this end we chose the Galaxy (RRID:SCR_006281) platform at 

www.galaxy.org which is a free open-source environment for user-friendly and reproducible 

bioinformatics [23]. It provides a variety of data manipulation and analysis tools via a web 

interface with no prior installation or dependency packages required, with results stored 

within the Galaxy infrastructure and every action producing a new history entry so the 

original data is never compromised via destructive edits. Galaxy also allows users to 

aggregate analysis steps into repeatable pipelines called workflows which can be easily 

http://www.galaxy.org/
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shared, along with the histories, via URL or username. These can allow biologists with little 

bioinformatics experience to conduct complex analyses on their own data within a system 

which has a low maintenance requirement and with little worry over data storage or data 

corruption. Moreover, workflows can be published to a repository such as GitHub 

(RRID:SCR_002630) or MyExperiment (RRID: SCR_001795) [24] or within a scientific 

journal – further encouraging open data science and reproducibility. Galaxy also provides 

many plugins such as interactive visualisation software to view results, the option to export 

results to genome browsers and the option to configure tools, or indeed an entire Galaxy 

instance, to the desired end-user needs. 

Overview of workflow 

The main process undertaken by CandiMeth is to take as input the methylation data from an 

R pipeline such as RnBeads or ChAMP and 1) Visualise the data as tracks in the UCSC 

genome browser and 2) Analyse the methylation differences relative to genomic features 

specified by the user. The workflow is comprised of 3 main steps; Inputs, Feature Mapping 

and Analysis (Fig.1). There are also 4 items required at input stage: the user must a) indicate 

the R package used with the keywords ‘RnBeads’, ‘ChAMP’ or ‘Custom’, then supply b) the 

methylation data, c) a list of the genes of interest, and d) specify the human genome build to 

be used e.g. hg19. The basic workflow for CandiMeth is that the genes of interest are mapped 

to the reference genome and then cross referenced with the input methylation data to get 

feature- specific statistics. The workflow can currently look at either the promoters (-500 to 

+1 bp relative to transcription start site; suffix “_P” on results) or gene bodies (the 

transcription unit; “_GB”), or both parts of the gene together (“_all”). We have found this to 

be a particularly useful split, since the current consensus is that promoters and gene bodies 

can show opposite methylation patterns, with methylation at the promoter is largely 

associated with repression, whereas gene body methylation instead is a feature of transcribed 
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genes. Outputs are then grouped in the history into two types, Results or Tracks (Fig.1). The 

methylation data from the R packages is a standard differential methylation table as routinely 

generated, and either a single table comparing two groups, or several tables can be processed 

at once as inputs, e.g. comparing different experimental conditions with the control. Each 

comparison will result in a separate table and tracks, grouped together and given a condition-

specific identifier to avoid confusion. The CandiMeth workflow, together with the example 

datasets used and a step-by-step tutorial, are available on GitHub at 

https://github.com/sjthursby/CandiMeth . CandiMeth is optimised to work on the latest 

version of Galaxy (19.0) through the Galaxy website (www.usegalaxy.org), thus making it 

platform-independent. For users who have their own instance of Galaxy, the workflow can be 

downloaded and imported via a link on the GitHub page above, where a .yaml file is also 

available.  

Example outputs 

To illustrate the type of analysis that can be done, Figure 2 shows outputs from one of the 

example dataset runs. Here we used as input one of our previously-published differential 

methylation tables generated by RnBeads (NCBI Gene Expression Omnibus (GEO) identifier 

GSE90012, the table is also given as Suppl. Table 1) [25]. The experiment compared wild 

type hTERT1604 human fibroblast cells (WT) and a clonal derivative with a stable 

knockdown (KD) of the maintenance DNA methyltransferase DNMT1 (d8 KD), which gave 

large alterations in DNA methylation levels, very suitable for the purpose of illustration here. 

The second item needed for CandiMeth, namely features of interest, was in this case a set of 

microRNA (MIR) genes not analysed in the original paper, which was input here simply as a 

list of names (given in Supp. File 2). CandiMeth first mapped the miR locations to the human 

genome (in this case hg19), then analysed the co-occurrence of probes at these locations. The 

https://github.com/sjthursby/CandiMeth
http://www.usegalaxy.org/
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results appeared in Galaxy as two grouped sets of datasets (Fig.2A): ‘Mir Cluster | hg19 all | 

CandiMeth Results’ and ‘CandiMeth Tracks’.  

The Results set contained an output table for each condition, namely KD (d8) and WT cells 

(Fig.2B, first 5 rows of each shown). Each table consisted of seven numbered columns. It 

should be noted here that methylation values from the array are expressed as a number from 1 

(no methylation) to 1000 (fully or 100% methylated) to facilitate visualisation. The numbered 

columns correspond to 1) Feature, the candidate region of interest, in this case each of the 

MIR in the initial list; 2) Probes, the number of array probes which are found in the specified 

feature; 3) Median, the methylation value which is the median of all probes mapping to that 

feature e.g. 626.208/1000 is the median of all probes at MIR1185-1, or 62.6% methylated; 4) 

Mean, the mean methylation value across all probes; 5) SD, the standard deviation; 6)Max., 

the maximum probe value seen in the feature and 7) Min, the minimum probe value (Fig.2B). 

It can be seen that methylation values are much lower in the DNA methyltransferase-depleted 

cells (d8) for each miR compared to the parental or WT cells e.g. MIR1185-1 62.6% median 

methylation in d8 vs 72.2% in KD. It can be seen that, while usually in reasonable agreement, 

in some cases the median and mean vary substantially, and having data on the numbers of 

probes can be useful on deciding confidence in the results and on any threshold to be applied.   

In the Tracks folder CandiMeth also generated four tracks on the UCSC genome browser 

(Fig.2C, 1-4), which can be visualised by clicking on the eye icon on the Galaxy datasets 

under CandiMeth Tracks in Fig.2A (clicking on each track overlaid it on the previous one to 

generate the cumulative view shown).  

Tracks 1 and 2 are absolute methylation (raw β) tracks, denoted as ‘Mean_beta’ in 

CandiMeth outputs. These show the methylation per probe for all probes in the differential 

methylation table that passed QC and other screening steps in RnBeads, and not just the 

feature-specific (here MIR) probes, as we have found that the genomic methylation context is 
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very valuable to consider when looking at features. In other words, even if Promoters is 

selected at input, the tracks will show all probes, including those in gene body and other 

regions. Track 1 is the DNMT1-depleted cell line (‘Mean_beta_d8’) data, and Track 2 is from 

the WT cells (‘Mean_beta_WT’).  

Track 3 is the delta beta (∆β) track (‘Delta_d8vsWT’) showing the difference between 

methyltransferase-deficient and WT cells. These are BedGraph files like Tracks 1 and 2, but 

since methylation can be higher or lower in one sample versus another, the visualisation is 

different from the absolute methylation tracks. Instead, gains in methylation in the 

experimental condition are shown as blue columns above the zero (no change) line, and 

losses are shown as red columns below the line, with a change of +1 being 100% increase 

and -1 being -100% i.e. an array probe going from 100% methylated to 0% methylated. The 

Delta track also allows the user to see how many array probes in a region are showing large 

differences in methylation and if a Differentially Methylated Region (DMR) identified by 

RnBeads extends further than originally estimated [26]. Note that this track shows all 

differences in methylation, however small: the FDR-corrected probes are shown in the next 

track.  

Lastly, an FDR-corrected track (‘FDR_D8’, Track 4) was also produced: this only showed 

information for those probes where the R package has assessed the false discovery rate to be 

below 0.05, as this is a statistical cut-off implemented by many array users.  This is an 

excellent method for visualising only CG which have high-confidence differences in 

methylation between samples. Here, only a single probe passed the FDR threshold and is 

shown: the absolute methylation level at the probe is given, as p values would not scale 

correctly.  

One of the most powerful features of using this approach is that data can easily and more 

intuitively be compared to other UCSC tracks (Fig.2C, 5-7). The specific CpG site can be 
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identified in UCSC for example by right-clicking on the column on the track, or by typing the 

CG identity into the UCSC browser search window, which will then pull out a track with the 

site highlighted, in this case the ENCODE project’s HAIB Methyl450 (Fig.2C, Track 5). A 

particularly useful took in this context is UCSC’s BLAT, which can be used to help ensure 

primers designed to verify methylation differences at specific regions of interest by 

pyrosequencing or similar do indeed overlap the crucial sites (Fig.2C Track 6, Pyro), in this 

case the FDR-significant site. Off-the-rack assays for each CG on the EPIC array can also 

now be purchased commercially. Other UCSC tracks shown in Fig. 2C include the RefSeq 

track (Track 7), invaluable for identifying well-curated genes rather than predicted or rare 

products. These tracks were all overlaid on the CandiMeth tracks, allowing the user to see if 

methylation changes were located in or near any of these features. These are examples only, 

any track available through UCSC or which can be called through Galaxy can potentially be 

aligned with the CandiMeth tracks.  

Data Preparation and inputs: 

A complete User Guide document with step-by-step tutorials is available at 

https://github.com/sjthursby/CandiMeth, here we will describe more general features of the 

workflow. As indicated, CandiMeth runs in the Galaxy environment: users must first create 

an account and copy the CandiMeth test history and workflows to their account, as explained 

in the Guide. Once these simple steps have been carried out the first time, they do not need to 

be repeated. When CandiMeth is being run, the initial window will look as shown in Fig.3: 

the workflow occupies the central window, while the example data and datasets required for 

the workflow are in the History window at right; the left window Tools will not be used. One 

initialising, the workflow window will look as shown, with one Yes/No choice and four fields 

(numbered 1-4) to fill in. We recommend saving the outputs of CandiMeth to a new history 

when initiating the pipeline. This will 1) enable you to continue working on other tasks while 

https://github.com/sjthursby/CandiMeth
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CandiMeth is running in the background – the workflow can take a while to run depending on 

server usage and 2) segregate the current job from the reference datasets in the CandiMeth 

initial history, which avoids cluttering the initial history or causing problems if a particular 

run fails and generates incompletely processed datasets. The four fields are the 4 forms of 

inputs required, as indicated in the example above and dealt with below.  

Input Type 1: R package used 

CandiMeth works downstream of R-based packages which are designed to process 

epigenome-wide datasets. The two most popular packages (by Bioconductor download) 

ChAMP and RnBeads both automatically generate tabular data outputs which are suitable as 

input for CandiMeth without further processing, but the tables are in slightly different 

formats. Therefore, CandiMeth users should select either ‘RnBeads’ or ‘ChAMP’ when asked 

what R package was used. CandiMeth also supports other packages via a ‘Custom’ keyword. 

Input Type 2: Differential Methylation Table 

The user needs to identify the location of, or upload directly, a copy of the output table from 

the R package containing the differential methylation data. For RnBeads this can be found via 

the html interface by opening “differential_methylation_html” and choosing the desired 

comparison table. Once uploaded, the differential methylation table must be converted to a 

dataset collection through a 1-step operation (see the User Guide at 

https://github.com/sjthursby/CandiMeth and [27]), which allows all the data from the table to 

be processed at once. An example table is available in dataset collection format in the 

CandiMeth default history: the raw table itself is also available as Supp. Table 1.  In addition, 

an example ChAMP output is also available as Suppl. Table 5 in the CandiMeth History. 

If the custom option is chosen at Input 1 above, the user can input a data frame of any origin 

as long as it follows the default CandiMeth format namely: Chromosome; Start; cgid; 

mean.X; mean.Y; the difference between the two groups; and the FDR corrected p value 

https://github.com/sjthursby/CandiMeth
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(were X and Y equal the names of the experimental and control groups respectively). Data 

frames can also be rearranged in Galaxy using the text manipulation tools “cut” and “join” 

within the Galaxy tool panel to produce an acceptable input table. We hope to extend the 

number of preformatted options beyond RnBeads and ChAMP to reduce the need for custom 

inputs in future. 

Input Type 3: Gene Features of Interest 

Here the user can choose which features they want to investigate. This can be done in a 

customised fashion, but commonly biologists initially want to see how much methylation is 

present across well-defined genomic features such as genes. This can easily be done in 

CandiMeth by following the commands >Get Data >upload File >paste/Fetch and then typing 

the official gene names, one per line, into the window which opens there (see Step-by-Step 

Guide). Alternatively, they can be uploaded as a list in a tab-delimited file format at this step. 

To facilitate initial trials, the miR gene names used above have been preloaded into the 

default CandiMeth history for use, and are also supplied as Supp. Table 2. The features 

associated with the gene names are then mapped to the genome using the genomic data 

discussed next. 

Input Type 4: Genome Information 

An important part of the CandiMeth workflow is the parsed human genome information used 

to assign array probes to various genomic features. Example human genome build 

information used for the mapping part of the CandiMeth pipeline can be found within the 

CandiMeth history (right hand pane in Fig.3). The data provided here covers two genome 

assemblies, hg19/hg38 and will aid the mapping of candidate features to promoters, whole 

gene body region or both (hg19_all option ) as defined by RefSeq [28].  

Using CandiMeth, users can query RefSeq-defined genes or repeats to obtain the same types 

of information as can be obtained by analysis in an R package. One advantage here however 
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is that the simultaneous visualisation allows the user to inspect the match between probe 

location and gene structure for candidate regions of interest: for example, the initial screen 

may indicate changes in promoter methylation from the manifest-defined promoter, when 

inspection shows all of the probes lie in the first exon of a single-exon gene, and therefore are 

in fact gene body, the discrepancy being due to the definition of promoter in the manifest. 

CandiMeth allows the user to refine or alter the promoter definition to exclude bases 

downstream of the TSS for example, and re-evaluate. An approximation of promoter areas of 

these RefSeq genes was generated for the example data analysis and was defined as the 

region from 500 bp upstream to the first base (-500-> +1bp) and is available in the 

CandiMeth history [29] mentioned above. Similarly, probes were also parsed into gene body 

and repeat categories for CandiMeth to facilitate user analysis of affects over these types of 

genomic intervals for their candidate genes of interest.  

Processing steps  

Figure 4 shows a workflow editor view of CandiMeth: different sections have been numbered 

for ease of reference here.  

1.Inputs: Inputs are indicated at left; R package used to generate the table (1.1) differential 

methylation table (1.2), features of interest (1.3), and parsed genome information specific to 

that type of interval e.g. promoters (1.4). Once the four input types have been decided- 

examples of each of these were given above- the workflow proceeds as follows.  

2. Generation of a standardised data frame between RnBeads and ChAMP: First the comma 

separated values (csv) file output from the R package is processed by converting the 

delimiters used into tabs (2.1), then the keyword identifier for that package (either ‘RnBeads’, 

‘ChAMP’ or ‘Custom’) added to the differential methylation table (2.2) to form an extra 

column. A table is then output showing the chr, start, cgid, mean methylation between control 

and experimental groups, the difference between these experimental groups and FDR 
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corrected p value (2.3). Subsequently, the end co-ordinates for each cg site are calculated and 

added to this table (2.4), so the data can be configured to run on UCSC genome browser at a 

later stage in the workflow. 

3,4. Track generation and naming: Differential Table inputs from RnBeads (1.2) are 

converted into a variety of tracks compatible with UCSC Genome Browser. These include 

two absolute methylation tracks (3.4, 3.5) in this case, one false discovery rate (FDR) track 

showing only FDR significant sites (3.1) and one delta beta track (3.3), showing the 

difference in beta value between the two absolute methylation tracks. Track and results 

names (4.1 – 4.4) are also generated from the differential table inputs: this is an important 

step as both absolute methylation data for individual samples and a number of types of 

comparison data must be separated and given logical and intuitive names to allow easy 

identification among the multiple output datasets. The workflow utilises a number of pre-

existing tools available in Galaxy to carry out these steps (Table 1).  

5. Merging of tracks and names: Following track creation (3), the resultant tracks and their 

names are merged into separate dataset collections (5.1 – 5-4) and then collapsed into 

singular dataset collections (5.5, 5.6), one for all comparative tracks (5.5), one for all 

comparative track names and one for all absolute methylation (mean beta) tracks (5.4) with 

its associated names (5.7). The mean beta tracks will be used for feature investigation later in 

the workflow. The results here are compilations containing information on methylation at 

each probe across the genome in each sample, or the differences in methylation at specific 

probes between pairs of samples.  

6. Feature mapping: Features of interest (1.3) input by the user such as a particular set of 

genes are joined (6.1) to the specified genome release information (1.4) using the Paste tool. 

The gene features of interest are overlapped with the genome release information to obtain 

the desired genome intervals using AWK (6.2). Any repeated columns or rows that are no 
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longer required are discarded and unique records extracted (6.3). The output here is a set of 

genomic coordinates matching only the specific features of interest e.g. a specific set of 

genes. 

7. Compilation of methylation data for features: The dataset collection containing now 

correctly named absolute methylation tracks (5.7) is now joined with the mapped features of 

interest (7). This allows the generation of feature-specific statistics. 

8,9 Outputs: Feature-specific statistics such as mean methylation over all probes in each 

feature, median, maximum etc. (see below) are tabulated and form one major output (8). The 

comparative tracks (generated in 3) are also given unambiguous final names, collated and 

output as a dataset collection called ‘CandiMeth Tracks’ (9, with green stars marking final 

output states).  

Output Files 

The CandiMeth workflow produced as indicated above under Example output two main 

types: 

Tables  

Results tables all follow the same layout; feature name, probe coverage, median methylation, 

mean methylation, standard deviation, maximum and minimum. A partial example of a 

Tabular output for the set of miRs used in the example above is shown in Fig.2B (first five 

lines) and given in full in Suppl. Table 3. Methylation values for the features can then be 

plotted within Galaxy via their integrated visualization software or the Table can be exported 

and downloaded then plotted within the user’s preferred visualization software such as Prism, 

Excel etc. as desired.  
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Tracks  

CandiMeth produced four different tracks from the differential methylation table input in the 

first step, of three different kinds (absolute methylation, relative differences in methylation 

(delta beta) and FDR-significant methylation difference, as shown in the example above for a 

cell line system.  

Findings 

The utility of the CandiMeth workflow may be best illustrated by some case studies.  

Case Study 1: Application to array results from model systems 

One straightforward use of CandiMeth which has found common use in our lab and among 

collaborators is to test a specific gene set, as illustrated by the MIR example above (Fig.2). To 

do this, the user only has to specify a list of the names of the genes they are interested in, 

together with the genome release, then upload a table containing differential methylation 

data. This can either be one generated by the bioinformatics team in-house, one which was 

supplied, typically when array services are bought in, or one which was generated from 

publicly-available array data such as our dataset GSE90012 described previously [30] and 

used above.  

Case Study 2: Application to EWAS study outputs 

A major application of methylation array technology is in epigenome-wide association 

studies (EWAS). CandiMeth can provide a very useful tool for quickly examining in detail 

and quantifying methylation differences around candidate regions identified either by the R-

based packages or from the literature. Fig.5 shows the application of this approach to an 

EWAS we have recently published containing data from 86 participants divided into 45 on 

placebo and 41 on folic acid treatment during trimesters 2 and 3 of pregnancy to assess the 

potential positive effects of prolonging this vitamin treatment beyond the currently-
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recommended periconception and first trimester periods [26]. Output differential methylation 

tables from RnBeads were used as input for CandiMeth, together with the names of the top 

candidate promoters reported earlier. This produced a collection of outputs (Fig.5A) 

including a set of tabular Results for the two groups Placebo and Treatment, as well as a set 

of Tracks. The latter included absolute mean beta, delta beta and an FDR track, although the 

latter returned the message “#No FDR significant sites” (not shown), often the case for 

EWAS if the sample set was small or the perturbation mild.  Clicking through to the tabular 

results (Fig.5B) showed tables indicating the number of probes present at each promoter and 

mean methylation, revealing for example that median methylation at the CES1 promoter is 

2.5% lower in folic acid-treated participants than placebo (666.14 - 641.1=25/1000=0.025 or 

2.5%).  

Examination of the CandiMeth Tracks (Fig.5C) was however also informative here. This 

BedGraph track type is set by default to scale to the maximum loss and gain on visualisation, 

so that when the UCSC browser is opened on a genomic region of interest, not only are the 

maximum loss and gain shown, but the graph is scaled to these, meaning that even when 

small differences in methylation occur, as typically seen in epidemiological studies, the areas 

of the genome with the greatest changes can be easily identified at a glance. In-house testing 

has found delta-beta tracks to be particularly useful, as it can easily be seen if a feature 

contains any probes with methylation differences between samples big enough to assess by 

other means – e.g. pyrosequencing can accurately assess differences in methylation greater 

than 5%. It can be easily seen from the delta beta (track 3) that the biggest loss of methylation 

was 7% (-0.071). The clustering of sites losing methylation at the promoter is also striking 

(boxed in green) compared to the rest of the gene, suggestive of a step-change in methylation 

at this important regulatory element rather than a point source. The seamless integration of 

BLAT [31] meant that designing primers to verify methylation changes could be done very 
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intuitively and the area covered by the assay mapped against the methylation data to confirm 

that the assay could confirm methylation levels at the exact same location (Fig.5C track 4 

“Pyro”).  

It was also seen from the absolute methylation levels in the samples (tracks 1,2, values for 

promoters given in Fig.5B) that loss of methylation at the CES1 promoter occurred against a 

background of high methylation at this region, which suggested this control element is 

normally methylated and silenced, a type which often responds to even small losses of 

methylation. Additional data to corroborate this could be obtained by examining chromatin 

state data available through the ChomHMM track in UCSC (Fig.5 track 6) which showed that 

the promoter falls into the “poised promoter” category (colour-coded pink) and is regulated in 

part by polycomb-group proteins (grey shading). A low likelihood of SNPs at the pyroassay 

region could be confirmed by examination of the Common SNPs dataset (Fig.5C track 7) and 

individual CpGs labelled by searching using the UCSC query window, and their status in 

other public datasets highlighted if desired (Fig.5C, track 8).  Thus CandiMeth allowed quick 

examination of candidate regions, quantification of differences specifically at these, the 

assessment of sites which could be verified in the lab, exclusion of confounding SNPs, eased 

assay design and gave additional valuable insights through mining of UCSC datasets using 

only a few simple inputs and no coding.  

Case Study 3: Analysis of methylation at genomic repeats such as LINE1 

Many studies looking for epigenetic changes also try to assess DNA methylation outside of 

the coding regions. One common approach is to assess methylation at a highly-repetitive 

interspersed repeat such as LINE1, which is found scattered throughout the genome at 

~500,000 copies, so in theory sampling methylation across many locations. This normally has 

to be done using a separate wet-lab assay such as pyrosequencing, since the 450K and EPIC 

arrays are designed to cover genes and their associated control elements, not repetitive DNA. 
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However, as has been noted elsewhere [29 , 30], a substantial number of probes on the arrays, 

particularly the EPIC, nevertheless fall within repeats such as LINEs and SINEs. Taking 

advantage of this, we parsed data from the RepeatMasker track on UCSC to allow mapping 

and quantification of methylation at the major repeat classes using array data (Fig.6A). By 

simply listing the categories of repeat given by RepeatMasker (as in Suppl. Table 4), it is 

possible to obtain summary statistics indicating the numbers of probes overlapping the 

respective elements, together with median methylation etc. from any differential methylation 

table, in this case from our experiment comparing WT and DNMT1-deficient cell lines 

(Fig.6B). It can be seen from the tables that very substantial numbers of probes on the EPIC 

map to the various repeat classes, with ~20,000 probes in LINE elements spread across the 

genome, and equal numbers in SINE elements, with satellite repeats near centromeres 

showing the lowest coverage at ~1000. The summary data was exported to Excel and graphed 

to highlight where the greatest differences lay (Fig.6C), which showed that satellite 

sequences appear to be most demethylated on average, with notable decreases at LINE and 

long terminal repeat (LTR)-containing elements too, which would include endogenous 

retroviruses for example, whereas low complexity and simple repeats show almost no 

changes, despite good probe coverage (Fig.6B). Thus CandiMeth allowed straightforward 

assessment of repeat methylation across the genome without the need for wet-lab analysis, 

and gave novel insights into the differential effects of DNMT1 loss on individual repetitive 

DNA classes.  

Case Study 4: Analysis of methylation changes seen at a large complex gene locus in 

multiple samples using parallel processing in CandiMeth 

A powerful feature of CandiMeth is the ability to process data from multiple differential 

methylation analyses at once. To illustrate this, we took three sets of comparisons between 

the independently-derived DNMT1 knockdown cell lines described earlier (d8, d10 and d16), 
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each of which had been compared to the parental WT cell line and processed them 

simultaneously. In our earlier publication [25] we had found differences between the variable 

A and B classes and the variable C class of exons at the important neurodevelopmental gene 

cluster Protocadherin β (PCDHB), with the A&B classes showing severe loss of methylation 

but no change at the C class. This highlighted differences between these classes, which 1) 

indicate a hyper-dependence on DNMT1 for maintenance of methylation levels and 2) a 

potential difference in methylation-dependence which may track with allele usage, since the 

A&B classes show monoallelic expression but not the C class. Here, we wished to examine 

the neighbouring PCDHG locus which has a similar structure and see if the same effect could 

be seen there.  

We therefore generated a candidate region list containing the names of the gamma cluster 

genes and input this as our candidate feature list input to CandiMeth, together with the three 

differential methylation tables from RnBeads (d8 vs WT, d10 vs WT, d16 vs WT). All three 

sets are processed at once (Fig.7A, left) and give as outputs data on absolute methylation 

levels in each KD line as well as the WT parental line (which will not vary), from which 

summary tables were derived specific to the PCDHG exons- example data for one A and one 

C exon in each cell line only is shown (Fig.7A, right). Interestingly, the summary statistics 

indicated that, while levels of methylation appeared to be decreased across A&B class 

variable exons at this locus too (e.g. PCDHGA1 63.8% median methylation in WT vs 50.9%, 

55.1% and 46% in d8, d10 and d16, respectively), median methylation at C class variable 

exons appeared to be increasing rather than remaining constant (e.g. PCDHGC3 86.5% WT, 

89.1%, 89.1% and 88.9% d8, d10 and d16).  

CandiMeth additionally generated Tracks outputs including the full range of tracks for each 

input table (absolute methylation in WT and each KD, delta beta and FDR for each vs WT). 

In Fig.7C we show the differential methylation (delta beta) tracks, from which it appeared 
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that methylation was largely lost across the region of the gene containing the A&B class 

variable exons (Fig.7C, region boxed in red), though some gains (blue peaks) could be seen 

particularly in the d10 track. Additionally, given the size of the region (~200kb) it cannot be 

assessed whether many of the probes lie in the introns rather than the exons themselves. For 

the C class exons (Fig.7C, blue box at right) most changes appeared to be gains (blue) though 

peak sizes were smaller and interspersed with some individual large losses in red. To resolve 

the exact nature of the changes seen, the tabular data (Fig.7A) was exported and median 

values across all A&B exons vs WT generated, converted back to β value to allow direct 

comparison to previous results [26] and plotted (Fig.7D). This clearly showed a general loss 

of methylation at A&B class exons in all three cell lines (p<0.001 vs WT by Kruskal-Wallis 

test), although the effect was least marked in the d10 cell line. When values were averaged in 

a similar fashion across the C class variable exons however (Fig.7E) we saw a clear gain of 

methylation in all three cell lines (p<0.05, K-W test).  The reason this effect was not noted 

before is likely to be because our previous examination of the C class exons at PCDHG used 

the FDR-significant probes only, and as can be seen the magnitude of the gains at the C class 

exons is much smaller than the losses at the A&B classes (compare scales in Fig.7D and E).   

The analysis thus confirmed and extended observations from our previous study that the 

A&B class variable exons at the clustered protocadherin loci are hypersensitive to loss of 

DNMT1 across multiple independently-derived cell lines, suggesting a strong dependence on 

this enzyme for maintenance of epigenetic state at this important neurodevelopmental locus.  

Further, we have uncovered new evidence for differences between the A&B exons and the C 

exons, which may reflect divergent transcriptional control, or an increased transcription 

across the C class exons in response to loss of DNMT1, in line with observations that 

intragenic DNA methylation is associated with transcription at active loci [10 , 31].  In terms 

of CandiMeth functionality, the study highlights the ability of the workflow to process 
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multiple comparisons in parallel and the value of being able to directly compare the visual 

outputs and the quantitative data where complex genetic loci are being examined, giving 

insights into the underlying biology.  

Conclusions and Future Directions 

CandiMeth provides a user-friendly non-computationally intensive method of candidate 

feature investigation. With a minimum of training and no coding, users of CandiMeth can set 

up and run quite advanced exploratory and confirmatory analyses and use the rich set of 

existing data in UCSC to formulate and test hypotheses regarding the methylation changes 

they are seeing.    

In future versions, we hope to add support for further methylation processing pipelines and 

continue to grow the CandiMeth history with additional genomic data such as DNA 

hypersensitivity sites. In addition to the current pipeline, we also wish to make CandiMeth 

more intuitive via the creation of a Galaxy tool which would allow the pipeline to be 

extended to whole genome bisulphite sequencing or RNA-seq data and would also allow 

further analysis options for those with a private instance of Galaxy. 

Availability of supporting source code and requirements 

Project Name: CandiMeth 

Project home page: https://github.com/sjthursby/CandiMeth  

Operating system: www.usegalaxy.org 

License: GNU GPL 

Availability of supporting data 

 

https://github.com/sjthursby/CandiMeth
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Tables 

Table 1 List of Galaxy tools used 

TOOL NAME TOOL ID VERSION CANDIMETH STEP REFERENCE 

CONVERT DELIMITERS TO 
TAB 

convert_characters 1.0.0 2.1 [35] 

ADD COLUMN TO AN 
EXISTING DATASET 

add_value 1.0.0 2.2 [36] 

TEXT TRANSFORMATION 
WITH SED 

tp_sed_tool 1.1.1 2.3 [37] 

COMPUTE AN 
EXPRESSION ON EVERY 
ROW 

column_maker 1.2.0 2.4 [38] 

MERGE COLLECTIONS 
INTO SINGLE LIST OF 
DATASETS 

__MERGE_COLLECTIONS__ 1.0.0 5 [39] 

RELABEL LIST IDENTIFIERS 
FROM CONTENTS OF A 
FILE 

__RELABEL_FROM_FILE__ 1.0.0 5.7/9 [40] 

COLLAPSE COLLECTION 
INTO SINGLE DATASET IN 
ORDER OF COLLECTION 

collapse_dataset 4.1.0 5.5/5.6 [41] 

PASTE TWO FILES SIDE BY 
SIDE 

Paste1 1.0.0 6.1 [42] 

TEXT REFORMATTING 
USING AWK 

tp_awk_tool 1.1.1 6.2 [43] 

UNIQUE OCCURENCES OF 
EACH RECORD 

tp_sorted_uniq 1.1.0 6.3 [44] 

JOIN THE INTERVALS OF 
TWO DATASETS SIDE BY 
SIDE 

tp_easyjoin_tool 1.0.0 7 [45] 

GROUP DATA BY A 
COLUMN AND PERFORM 
AGGREGATE OPERATIONS 
ON OTHER COLUMNS 

Grouping1 2.1.4 8 [46] 
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Figures  

Figure 1 Overview of CandiMeth workflow  

When the CandiMeth workflow is started the user needs to specify as Inputs (left): 1) the type 

of R package used; 2) the methylation data, normally in the form of a differential methylation 

table generated by the package 3) a list of genes to be analysed and 4) a human genome build 

to match the data to. The methylation data are then mapped (centre left) to the genome and 

sites overlapping features of interest analysed (centre right). The data are then output 

quantitatively as Results and visually as Tracks (right).  

Figure 2 Case Study 1: analysing new genes in a published dataset 

Our previously-published dataset GSE90012 using RnBeads to compare methylation levels in 

cells deficient in DNA methyltransferase 1 (d8 KD) with wild type (WT) was reanalysed for 

methylation levels at microRNA (MIR) using CandiMeth. (A) The workflow generated two 

grouped sets of outputs (white boxes at left) on completion, ‘Mir Cluster | hg_19_all | 

CandiMeth Results’ containing links to the tabular quantitative data and ‘CandiMeth Tracks’ 

with links to the tracks on UCSC (B) CandiMeth Results box expanded: a separate dataset for 

each cell line is generated showing the list of candidates, probe coverage, median and a 

variety of other statistics for each gene analysed (top 5 rows only shown). (C) CandiMeth 

Tracks: UCSC genome browser view, accessible via the eye symbols on the Galaxy history 

shown in (A): (From the top down) Scale bar, size of region in kilobases of DNA; chr1, 

chromosome number and exact coordinates from the hg19 genome build. (1-4) CandiMeth 

tracks: 1) Mean_beta_d8R, absolute methylation track reflecting array output going from 1, 

no methylation, to 1000, fully methylated e.g. 811= 81.1% , max and min indicated at left 2) 

Mean_beta_d8R, absolute methylation in WT 3) delta_d8vsWT, a differential methylation 

track showing proportional change going from -1.0 (100% loss, red) to +1.0 (100% gain, 

blue) e.g -0.155 = loss of 15.5% compared to WT; 4) FDR_D8, a significance score track 
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showing only those sites whose differential methylation meets the cut-off criteria of a 0.05 

false discovery rate. (5-7) Examples of some of the tracks available through the UCSC 

genome browser which can be aligned and directly compared to CandiMeth tracks: 5) HAIB 

Methyl450, data on comparative methylation from ENCODE projects; 6) Pyro, the Blat tool 

in UCSC, which can be used to find primers for pyroassays to cover one or multiple CG 7) 

RefSeq track, showing the location of the top two MIR from (B) above. 

Figure 3: User Interface for the workflow  

Screenshot of the workflow start window (middle pane) which appears on right-clicking 

>CandiMeth>Run. The right-hand side (RHS) shows the CandiMeth starting history, where 

preloaded data used with the workflow can be found, together with any user-uploaded 

datasets. Galaxy tools (LHS) are not used. For the workflow the user chooses whether to save 

results to a new history (recommended), then specifies 1) which R package was used to pre-

process the data e.g. RnBeads; 2) the dataset collection table of pre-processed data- available 

sets will appear in the drop-down menu; 3) a list of the genes/other features of interest to 

analyse 4) the reference genome to be mapped to e.g. hg19.  Once all four have been decided, 

the user clicks on the blue “Run workflow” button at top right to initiate a run.  

Figure 4: Galaxy Workflow Editor View of CandiMeth  

Detailed view of the workflow using the editing tool in Galaxy. Steps in the workflow have 

been grouped for clarity. (1) Inputs: here the user indicates which R package was used to 

analyse their array using the keywords ‘RnBeads’, ‘ChAMP’ or ‘Custom’ (1.1), identifies the 

differential methylation table resulting from this R package (1.2) and the genomic features 

they wish to analyse (1.3) and specifies the desired genome build (1.4). (2) Standardising the 

input data: Using the R package information in 1.1 and the differential methylation table in 

1.2, CandiMeth generates a table showing the chromosome location, start, end, mean 

methylation in the control and experimental groups, the difference between these groups and 
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the FDR adjusted p value. 3) Track generation: maps the data on absolute as well as 

differential methylation from the table to the genome build (4) Track naming: generates 

unambiguous labels for each type of track. (5) Merging of tracks and names: this ensures 

logical labelling and grouping of tracks. (6) Feature mapping: this maps the specific features 

to the same genome build. (7) Compilation of feature methylation: this parses the data in the 

tracks to only examine the features of interest (8) Output Tables: these contain summary 

statistics on the features of interest and are one major output (9) Output Tracks: the user can 

also see the mapping which the summary stats are based on, which allows them to see areas 

adjacent to the features of interest, and overlay other UCSC tracks, as well as use tools such 

as Blat.  

Figure 5: Case Study 2: Using CandiMeth to mine EWAS data  

Example data from an EWAS dataset comparing 45 placebo and 41 treated samples from a 

randomised control trial of a folic acid intervention during second and third trimester of 

pregnancy. (A) Output Results and Tracks from the workflow when the RnBeads differential 

methylation table and a list of the top-ranked differentially methylated promoters were used 

as inputs. (B) Summary statistics generated by the workflow indicates the number of probes 

and methylation values (from 1-1000) for the top promoters (C) Tracks view for the CES1 

locus showing the absolute levels of methylation (tracks 1,2) as well as the most 

differentially-methylated probes (track 3) located at the promoter (boxed in green). 

Comparison to ChromHMM data in UCSC (track 6) shows this to be a poised promoter 

(pink). Identification of individual CG (numbered in track 8) facilitated the design of a 

pyrosequencing assay (track 4) covering the CG to be validated in the lab.  

Figure 6: Case Study 3: Analysis of LINEs and SINEs  

Use of CandiMeth to give an overview of methylation at repetitive elements. (A) Data on 

repeat location and type from the RepeatMasker track on UCSC has been parsed and made 
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available through the workflow: users can therefore simply type in the name(s) of a class of 

repeats as a query. (B) Example outputs showing probe coverage of repeats on the EPIC array 

and methylation statistics for each repeat class in a DNMT1 knockdown cell line (d16 KD) 

versus WT. (C) Tables from B were exported median methylation levels converted to % and 

then graphed to highlight differences between the two cell lines: decreases in methylation are 

seen at some (LINE, SINE, satellite) but not other repeats (low complexity, simple).  

Figure 7: Case Study 4: Parsing data from a complex gene locus using parallel 

processing 

Analysis of methylation at variable exons in the large (~200kb) clustered Protocadherin γ 

(PCDHG) locus on human chromosome 5. (A) Results: changes at the variable exons across 

three independent cell lines deficient in DNMT1 (d8, d10, d16) were scored using the 

RnBeads tables comparing each to WT as input, together with a list of variable exon names. 

Example quantitative outputs are shown at right for WT and knockdown (KD) cells. (B) 

Tracks: part of the output set of tracks is shown, which included mean beta, differential 

methylation and FDR significant sites (not shown) for all cell lines, generated simultaneously 

in one run. (C) The UCSC browser view available by following the links in (B). The region 

covering the A and B class variable exons (boxed in red) appears to show more loss of 

methylation while the C class (boxed in blue) appear to show predominantly gains, however 

this is not exclusive and many probes lie between exons. (D, E) Data on probes which lie 

solely in exons and not introns, obtained through Results (B), was exported and grouped as 

indicated. The numbers were then converted back into beta values and graphed. This 

confirmed that methylation was lost on average at the A and B class exons, while the C class 

predominantly gained methylation. *** p<0.001, *, p<0.05 by Kruskal-Wallis test.  
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Supplementary Materials 
 

Supplementary File 1: CandiMeth User Guide  

A complete Guide to setting up and using CandiMeth, including some background on Galaxy 

and UCSC browser, how to import the workflow and example files, tutorials on the use of the 

example data, and further guidance and instruction. 

Supplementary Table 1: Example Differential Methylation Table generated by RnBeads 

from GSE90012 for input to CandiMeth  

Table comparing wild type hTERT1604 human fibroblasts (WT) and a clonally-derived 

daughter cell line with depleted levels of DNA methyltransferase 1 (d8) from GEO database 

entry GSE90012, used as Input 2 to CandiMeth in Case Study 1 (Fig.2). 

Supplementary Table 2: MIR gene list used to query data from GSE90012 

List of human microRNA genes (MIR) used as Input 3 to CandiMeth in Case Study 1. 

Supplementary Table 3: Methylation summary for MIR genes derived by CandiMeth 

Full table of Results for MIR methylation in GSE90012 WT vs DNMT1-depleted (d8) cells 

given as output from CandiMeth (Fig.2B). 

Supplementary Table 4: Classes of repetitive DNA sequence which can be analysed 

List of repetitive DNA classes as given by RepeatMasker and which can be used to as Input 3 

by CandiMeth to query datasets, as in Case Study 3 (Fig.6). 

Supplementary Table 5: Example Differential Methylation Table from ChAMP 

Example data in ChAMP format for use in tutorial as Input 2 in CandiMeth. 
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